分式方程说课稿PPT课件

合集下载

《分式方程》_课件-完美版

《分式方程》_课件-完美版
小结:工程问题,若没有告诉总工作量,通常设总工作量为1;工程问题的等量关系通 常根据“各分工作量之和等于总工作量”来确定。
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
巩固新知
1.解分式方程 x 2 3 ,去分母后的结果是( )
运用新知
例4 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一, 这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快? 追问1:工程问题中有哪几个基本量,其关系是什么?通常把工作总量看作多少? 追问2:由题意可知,甲队的工作效率是多少?若设乙队独做x天完成,则乙队的工作 效率是多少? 追问3:此题中的等量关系是什么?你能用题中的一句话或一个等式来表示吗? 追问4:工程类问题常用的等量关系是什么?
x2
x2
A.x=2+3
B.x=2(x-2)+3
C.x(x-2)=2+3(x-2) D.x=3(x-2)+2
答案:B
2.解下列方程:(1)
x
1 5
10 x2 25
7
1
6
;(2)
x2
x x2
x x2
x。
答案:(1)无解;(2)x=3。
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
此方程中含有分式,即方程的分母中含有未知数,而整式方程的左右两边都是整式。 归纳:分式方程的概念:像这样 分母中含有未知数的方程 叫分式方程。
追问:分式方程与整式方程有何区别?
小结:分式方程中含有分式,即分母中含有未知数的方程;整式方程是指方程的左右 两边都是整式,不含有分式。

课件《分式方程》PPT全文课件_人教版1

课件《分式方程》PPT全文课件_人教版1

去分母,得2x+2m-3m=6x-12.
∴x=
>0且x=
≠2.
经检验,x=4是分式方程的解. 得4x+2(x+3)=7. 得4=x-3+x+1. (2)设“?”的数为m, 经检验,分式方程无解. (2)设“?”的数为m,
谢谢!
检验:当x= 时,2(x+3)≠0.
解得x= .
由于原分式方程无解,所以把x=2代入等式,
(1)她把这个数“?”猜成 5,请你帮小华解这 个分式方程;
解:(1)方程两边同时乘以x-2, 得5+3(x-2)=-1. 解得x=0. 经检验,x=0是原分式方程的解.
(2)小华的妈妈说:“我看到标准答案是原分 式方程无解”.请你求出原分式方程中“?”代 表的数是多少?
(2)设“?”的数为m, 方程两边同时乘以x-2,得m+3(x-2)=-1. 由于原分式方程无解,所以把x=2代入等式, 得m+3(2-2)=-1,解得m=-1.
解得m<12且m≠4.
由于原分式方程无解,所以把x=2代入等式,
得5+3(x-2)=-1.
解得x= .
两边都乘以(x+3)(x-3),
解得x= .
解得x=3.
经检验,分式方程无解.
4. 若关于 x 的分式方程

解为正实数,求实数 m 的取值范围.
解:原方程可变形为
去分母,得2x+2m-3m=6x-12.
整理,得4x=12-m. 解得x=
.
∵方程的解为正实数,
∴x=
>0且x=
≠2.
解得m<12且m≠4.
C

5. 小华想复习分式方程,由于印刷问题,有一 个数“?”看不清楚:

分式方程(第二课时) 课件(共26张PPT) 初中数学人教版八年级上册

分式方程(第二课时)   课件(共26张PPT)  初中数学人教版八年级上册

方程两边同时乘以6x,得 2x+x+3=6x .解得 x=1.
检验:当x=1时,6x≠0.
所以原分式方程的解为 x=1.
由上可知,若乙队单独施工1个月可以完成全部任务,对比甲 队1个月完成任务的 1 ,可知乙队的施工速度快.
3
探究新知
【问题2】某次列车平均提速 v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶 50 km,提速前列车的平均速度为多少?
知识练习
解分式方程:(1) 7 1 x 1 ; (2) x 1 x 1 1.
x2 2x
x 1 x2 1
解:(1) 7 1 x 1 , x2 2x
解:(2) x 1 x 1 1, x 1 x2 1
去分母得: 7 x 2 1 x ,
去分母得: x 12 x 1 x2 1 ,
B.300
C.400
D.500
解析:设改造后每天生产的产品件数为 x,则改造前每天生产的
产品件数为 x 100 ,
根据题意,得: 600 400 , x x 100
解得: x 300 , 经检验 x 300 是分式方程的解,且符合题意, 答:改造后每天生产的产品件数 300.故选:B.
练习 3 A,B 两种机器人都被用来搬运化工原料,A 型机器人比 B
个月的工程量 = 总工程量(记为1).
1 3
+
1 6
1
+ 2x
探究新知
甲队施工1个月的工程量 + 甲队施工半个月的工程量 + 乙队施工半 个月的工程量 = 总工程量(记为1).
解:设乙队单独施工1个月能完成总工程的 根据工程的实际进度,得 1 1 1 1

《分式方程》课件ppt1

《分式方程》课件ppt1

检验:当x=1时,(x+1)(x-1)=0,
所以x=1不是原分式方程的解,
则原分式方程无解.
学习目标
1.会列分式方程解决实际问题. 2.能根据题意找出正确的等量关系,列出分式方程并求 解,会根据实际意义验证结果是否合理.
课堂导入
两个工程队共同参与一项筑路工程,甲队单独施工1个 月完成总工程的 1 ,这时增加了乙队,两队又共同工作
已知玉兰树的单价是银杏树的倍,那么银杏树和玉兰树的单价分别是多少?
分析:根据题中等量关系“甲、乙两个工程队共同工 作9天的工作量+甲工程队单独工作5天的工作量=总工 作量(记为1)”列方程,再比较甲、乙两个工程队单 独完成任务所用的时间,然后做出决策.
解:设甲工程队单独完成工程需要x天.
根据题意,得
已知玉兰树的单价是银杏树的倍,那么银杏树和玉兰树的单价分别是多少?
800kg材料所用的时间相同. (1)审题时,先寻找题目中的关键词,然后借助列表、画图等方法准确找出相等关系.
现要从这两个工程队中选出一个工程队单独完成,从缩短工期的角度考虑,你认为应该选择哪个工程队?
(1)求A、B两种型号的机器人每小时分别搬运多少材 (2021·济南历下区期末)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用
D. 1000 - 1000 2
x - 30 x
2.(2020·柳州中考)甲、乙二人做某种机械零件, 已知每小时甲比乙多做6个,甲做90个所用的时间与 乙做60个所用的时间相等,设乙每小时做x个零件, 以下所列方程正确的是( C )
A.
90 x-6
60 x
B.
90 x
60 x6

课件《分式方程》完美PPT课件_人教版3

课件《分式方程》完美PPT课件_人教版3

(1)求分式
1
1
,
2x3y2z 4x2y3
1 , 6xy4
的公分母。
分析: 对于三个分式的分母中的系数2,4,
6,取其最小公倍数12;对于三个分式的 分母的字母,字母x为底的幂的因式,取 其最高次幂x3,字母y为底的幂的因式, 取其最高次幂y4,再取字母z。所以三个 分式的公分母为12x3y4z。
首页 上页 下页 返回
练习2:计算:
3 y2 2
(1)
5x
y 2 ;(2) 2 x ;
2
a
3
(3) c 2
2 a 2b 3
(5)
c
;(4)
3b 2a
2

;(6)xy2
2
yx2
3
xy4

(7)
3m2n2 2mn
2
4mn 9m3n2
3;(8)
2
yx
x
y
x y2。
思考:你能用字母表示上述运算法则吗?
首页 上页 下页 返回
一、分式的乘除法则:
a c ac b d bd
这里abcd都 是整数,bcd
都不为零
ac ad ad b d b c bc
你会用语言叙述一下吗? 如果让这里的整数换
分数乘分数,用分子的积成做整式积,的这分个子结,论还
分母的积做积的分母;
两队共同工作一天完成这项工程的_________________.
3、请将下列各分式进行约分: 解:设船在静水中的速度为x km/h.
2、各分母所含有的因式。 分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
把每个苹果平均切成4块,分给每位小朋友3块

人教版数学八年级上册15分式方程课件(15张PPT)(共13张PPT)

人教版数学八年级上册15分式方程课件(15张PPT)(共13张PPT)

练习 3、解分式方程 x 2 1 x1 3x3
3x 1 1 x4 4x
练习
4、对于方程 xx23123x,小明是这样解的: 解: 方程两边同乘以得:
x313 ①
解得:
x1 ②
检验: 当 x1时, x2≠0, ③
所以, x1是原分式方程的解.
你认为小明的解法正确吗?如果有错误,错 在第 1 步,你能写出正确的解题过程吗?
去分母的过程
90 60 30v 30v
两边同时乘(30+v)(30-v) 当v=6时(30+v)(30-v) ≠0
90(30-v)=60(30+v)
方程两边同乘了不为0的式子,所得的整式方程的解是原分 式方程的解。
1 x5
10 x2 25
两边同时乘(x+5)(x-5) 当x=5时(x+5)(x-5) =0
去分母后的结果,其中正确的是( ) A、 2-1-x=1
(D)X 40 A、 2-1-x=1
两边同时乘(30+v)(30-v)
2
1、本节课我们学习了
所以, 是原分式方程的解.
练习
x 2、把分式方程 x 2
1 x
化为整式方程,
方程两边需同时乘(D )
(A) x-2 (B) x (C) 2(x-2) (D) x(x-2)
去x=分5 母后的结果,其中正确的是( )
1、本节课我们学习了 当这v些=方6时程(有3什0+么v)共(3同0-v的) 特≠0征?
方无程解两 ,边则同m的乘值了是等(于0的)式子,所得的整式方程的解使原分式
2、解分式方程的基
4方、程对两于边方同程乘了不为0的,小式明子是,这所样得解的的整:式方程的解是原分式方程的解。

第8讲-分式方程PPT课件

第8讲-分式方程PPT课件

宇轩图书
3.解分式方程的步骤 (1)去分母(不能忘记乘没有分母的项),转化为整 式方程;(2)解整式方程;(3)验根. 4.验根 解分式方程时,有可能产生增根,因此解分式方 程要验根,其方法是将根代入最简公分母中,使最简 公分母为 0 的根是增根,应舍去.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
量关系、列方程、解方程、检验、作答.但与整式方
程不同的是求得方程的解后,要进行两次检验:(1)检
验所求的解是否是所列分式方程的解;(2)检验所求的
解是否符合实际意义.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
2.分式方程的应用题主要涉及工程问题、行程 问题等,每个问题中涉及三个量,如工作总量=工作 效率×工作时间,路程=速度×时间.在工作总量或 路程是已知条件时,一般建立分式方程解决问题.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
方法总结: 列分式方程解应用题必须进行“双检验”,既要 检验去分母化成的整式方程的解是否为分式方程的 解,又要检验分式方程的解是否符合实际意义.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
宇轩图书
考点二 增根在含参数的分式方程中的应用 由增根求参数的值,解答思路为:(1)将原分式方 程化为整式方程;(2)确定增根;(3)将增根代入变形后 的整式方程,求出参数的值.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点三
分式方程的应用

分式方程ppt课件

分式方程ppt课件
0时,分式方程无实根。
适用于分子、分母均为二次多项式的分 式方程。
因式分解法
将分式方程的分子或分母进行因式分解,从而简化方程。 因式分解法可以方便地找到分式方程的解,特别是当分子或分母含有公因式时。
适用于分子、分母均可因式分解的分式方程。
03
分式方程应用举例
工程问题
工作总量 = 工作时间 × 工作 效率
工作时间 = 工作总量 ÷ 工作 效率
工作效率 = 工作总量 ÷ 工作 时间
举例:一项工程,甲单独做需 要20天完成,乙单独做需要30 天完成。如果两人合作,需要 多少天完成?
行程问题
速度 = 路程 ÷ 时间
举例:甲、乙两地相距360千米,一辆汽车从甲地开 往乙地,每小时行驶60千米。问这辆汽车需要多少小
方程的解。
04
对于第三个练习题,找到公共分母$x^2-1$,两边乘 以公共分母,得到整式方程$(x+1)(x-1)-4=x^2-1$, 解得$x=3$,经检验$x=3$是原方程的解。
THANKS
感谢观看
分式方程ppt课件
目 录
• 分式方程基本概念 • 分式方程解法 • 分式方程应用举例 • 分式方程与实际问题结合 • 分式方程求解技巧与注意事项 • 分式方程练习题与答案解析
01
分式方程基本概念
分式方程定义
分式方程是指分母里含有未知数 的有理方程。
分式方程是方程中的一种,且分 母里含有未知数的(有理)方程
之几?
经济问题
利润 = 售价 - 进价
利润率 = 利润 ÷ 进 价 × 100%
售价 = 进价 × (1 + 利润率)
进价 = 售价 ÷ (1 + 利润率)

《分式方程》课件

《分式方程》课件

《分式方程》课件xx年xx月xx日•引言•分式方程的解法•分式方程的应用目录•分式方程的注意事项•练习与巩固01引言总结词:基本概念详细描述:介绍分式方程的基本概念和定义,包括分式的定义、分式方程的构成要素和形式等。

分式方程的定义总结词:差异比较详细描述:通过比较分式方程和整式方程的异同点,让学生明确分式方程的特殊性和需要注意的事项。

分式方程与整式方程的区别总结词:实际应用详细描述:介绍分式方程在解决实际问题中的应用,例如在物理学、工程学、经济学等领域的应用,让学生感受到数学的实际价值。

分式方程的应用02分式方程的解法求解分式方程的基本思路将分式方程转化为整式方程求出整式方程的解通过去分母,把分式方程中的分母消掉对求出的解进行检验和验根求解分式方程的步骤得出分式方程的解对求出的解进行检验和验根求出整式方程的解去分母将分式方程转化为整式方程以某一具体的分式方程为例,介绍求解的过程通过具体例子,说明求解时需要注意的事项总结求解分式方程的一般步骤和注意事项举例说明03分式方程的应用1分式方程在物理中的应用23总结词:概念抽象,需借助实际生活场景理解。

分式方程可以描述速度、加速度等物理量之间的关系,如匀加速运动公式。

分式方程可以描述密度、体积、质量等物理量之间的关系,如密度公式。

分式方程在化学中的应用分式方程可以描述化学反应速率、平衡常数等之间的关系。

分式方程可以描述酸碱度、氧化还原反应等化学量之间的关系。

总结词:复杂方程式,需掌握化学反应原理。

分式方程在实际生活中的应用总结词:涉及实际问题,需具备实际生活经验。

分式方程可以描述路程、速度、时间等时间量之间的关系,如工程问题中的关键路径分析。

分式方程可以描述成本、利润、售价等经济量之间的关系,如盈亏平衡分析。

04分式方程的注意事项解分式方程时应注意的事项要分析清楚题意,确定未知数,并且注意分式方程中未知数的取值范围。

准确理解题意将方程中的常数项移到等号右边,把未知数的系数化成1。

12.4 分式方程课件(共19张PPT)

12.4 分式方程课件(共19张PPT)
12.4 分式方程
第十二章 分式和分式方程
学习目标
1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时出现的无解情况及增根.
学习重难点
理解并掌握解分式方程的基本思路和解法.
难点
重点
理解解分式方程时出现的无解情况及增根.
复习回顾
方程含有未知数的等式叫做方程.
一元一次方程只含有一个未知数(也称元),并且未知数的次数是1.
整式方程分母不含有未知数的方程.
情景引入
小红家到学校的路程为38 km.小红从家去学校总是先乘公共汽车,下车后再步行2 km,才能到学校,路途所用时间是1 h.已知公共汽车的速度是小红步行速度的9倍,求小红步行的速度.
一起探究
知识点2 分式方程的增根
总结归纳
解分式方程的一般步骤:
分式方程
整式方程
检验
若最简公分母=0(分式方程无意义)
若最简公分母≠0(分式方程有意义)
经检验,是原分式方程的解(根)
经检验,原分式方程无解,这样的根叫做分式方程的增根
例2 解方程:
解分式方程一定要注意验根.
随堂练习
D
拓展提升
B
归纳小结
上面得到的方程与我们已学过的方程有什么不同?这两个方程有哪些共同特点?
谈一谈
像上面得到的方程那样,分母中含有未知数的方程叫做分式方程.使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根).
例题解析
例1 解方程:
思考
不是.因为当x=1时,x-1=0,即这个分式方程的分母为0,方程中的分式无意义,所以x=1不是这个分式方程的解(根).
探究新知
知识点1 分式方程及其解的概念

《分式方程》分式PPT课件 (共18张PPT)

《分式方程》分式PPT课件 (共18张PPT)
X(x―3)
X2-1=0
时,
3 x2 3、分式 2( x 3)与 x 2 3x 的最简公分母 是 2X(x―3) .
解分式方程
例1 解分式方程
x11 x1 2
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转 ● ● ● ● ● 化 x 1 1 得 2(x+1) · x1 2 · 2(x+1) 整式方程 ① 化简,得整式方程 2(x-1)=x+1
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 · · · · · · 程的根. · · · 使分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, · · · · 而不是分式方程的根. · · · ·
练 x(x 2) 解 : 方程两边同乘以最简公分母 , 一 2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . 练① ② 解得 x1= -3 , x2= 2 . ③ 检验:把x1= -3,代入最简公分母,
概 念 观察下列方程: 一元一次方程
1、2(x-1)=x+1;
一元二次方程
x2+x-20=0;
x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 1 1 1 1 x 1 5 x 9 x 0 ; ; 1 ; 2、 y 2 x 1 x 1 2 x 1 x 1 x 1
· · · · · · · · · x(x-2)=-3(-3-2)= 15 ≠0; 把x2= 2 ,代入最简公分母,
x 1 6 0 (填空)1、解方程: x 2 2 x 2 x
7
x(x-2)= 2(2-2) =0

分式方程的ppt

分式方程的ppt
八年级 上册
15.3 分式方程 (第1课时)
课件说明
• 分式方程是分母中含有未知数的方程,它是整式方 程的延伸和发展,是人们对方程认识的一次提升. 解分式方程的基本思路是将分式方程化为整式方程, 其关键步骤是去分母.去分母时可能引起方程同解 性的变化.因此,检验分式方程的根是解分式方程 过程中必不可少的重要环节.利用去分母的方法将 分式方程化为整式方程,并把整式方程逐步化为最 简的形式,然后对分式方程的根进行检验,这一过程
练习1 解方程:
(1)xx+1
-
3 x-1
=1;(2)2xx--32
=
1 1-x
+2.
解含字母系数的分式方程
例2
解关于x 的方程
a x-a
+b=1
(b 1).
解:方程两边同乘 x-a ,得 a+( b x-a)= x-a. 去括号,得 a+bx-ab= x-a. 移项、合并同类项,得(b-1)x= ab-2a买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告

《分式方程》PPT教学课文课件

《分式方程》PPT教学课文课件
为多少?
【分析】这里的字母,s表示已知数据,设提速前列车的平均速
度为 /ℎ,那么提速前列车行驶s
s
所用时间为________ℎ,

s + 50
提速后列车的平均速度为______
/ℎ,

+ 50
50)所用时间为___________ℎ。
+
提速后列车行( +
根据行驶时间的等量关系可以列出方程。
解析
解: 设提速前这次列车的平均速度为 /ℎ,则提速前它行驶

所用时间为 h;提速后列车的平均速度为( + ) /ℎ ,

+50
50) 所用时间为
+
提速后它行驶( +
根据行驶时间的等量关系,得
方程两边乘( + ),得
+ 50
=

+
( + ) = ( + 50)
解:方程两边乘( − 1)( + 2),得
( + 2) − ( − 1)( + 2) = 3
解得
=1
检验,当 = 1时,( − 1)( + 2) = 0,
因此 = 1不是原方程的解。
所以,原分式方程无解。
归纳
解分式方程的一般步骤如下:
分式方程
去分母
目标
x= a
最简公分母不为0
分母)。方程①两边乘 (30 + )(30 − ) ,得到整式方程,它的解 =6。
当=6时,(30 + )(30 − ) ≠ 0,这就是说,去分母时,①两边乘了
同一个不为0的式子,因此所得整式方程的解与①的解相同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概括:分式方程的增根是使得分式方程 数的值。检验方法是代入最简公分母, 如果为零即为增根。
的未知 ,
请同学们自学课本第14页得例2,注意例2的解题过程, 并仿照例题完成课本第14页练习第1、2、3题。通过 练习让学生熟练解可化为一元一次方程的分式方程的 解法和步骤。
2020/10/13
10
六、目标检测设计目的
方程中含有( ),且分母中含有( )。
思考练习,辨认分式方程。 同学们类比课前练习题第4题方程的求解过
程,尝试着去解一下“问题情境”中所列 出的分式方程。 总结解分式方程的思路和关键
2020/10/13
9
(四)小组讨论,解决难点
用刚才学到的方法再试着解一个方程 。
阅读课本第12页最后一段和第13页第一、二两段,思 考所给出的问题问题,并在组内讨论,概括出分式方 程增根的意义和增根的检验方法。
虽然学生对于检验一个数是否是一元一次方程的解有了一定的认 识,但本节课分式方程的增根的认识和检验方法对于学生来说还 是有一定的难度,所以,这是本节课的教学难点,在教学时,要 从“所求得的解是转化后的整式方程的解”和“分式的意义”两 方面引导学生理解。
2020/10/13
4
四、教学支持条件分析
学生已经学会了解数字分母的一元一次方程, 通过实际问题抽象出来的分式方程,运用类比 教学的方法,激励学生探究的欲望,增强学生 科学的数学精神。
因此,本节课的教学重点是分式方程的解法。
2020/10/13
2
二、目标和目标解析
通过具体问题了解分式方程的概念。 探究可化为一元一次方程的分式方程的解法。 理解验根的必要性,并会验根。 经历“实际问题——分式方程——整式方程”
的过程,渗透数学的转化思想和建模思想,培 养学生学数学用数学的意识。
2020/10/13
11
谢谢您的指导
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXXX 日期:20XX年XX月XX日
12
6
(一)课前练习,做好准备
练习题目:区分整式与分式,求分式无意 义时字母的取值,确定几个分式的最简公 分母,解数字字母的一元一次方程。
练习目的:通过练习,让学生回顾本节学 习的相关知识,为学习新知识做好铺垫。
练习要求:学生自主完成,小组交流解决 遗忘问题,学生黑板展示第4题的求解过程。
2020/10/13
第1题:认识分式方程 第2、3题:理解去分母的方法 第4、9题:掌握可化为一元一次方程的分式方程的解

第5题:根据方程根的意义,运用代入法求待定系数 的值
第6、7、8题:理解分式方程增根的意义,并运用增 根的代入求待定系数的值
第10题:分析数量关系,建立分式方程模型解决问题, 也为下一节课做好准备。
通过实际问题抽象成数学问题,让学生懂得数 学即生活的道理,从而激发学生学习数学的热 情。
通过自主学习、交流展示的活动,充分调动学 生参与数学学习的积极性。
2020/10/13
5
五、教学过程分析
课前练习,做好准备。 创设情境,导入新课。 归纳定义,探究解法。 小组讨论,解决难点。
2020/10/13
通过学生自主学习、交流展示活动,激发学生 乐于探究、合作学习的习惯,培养学生努力寻 找解决问题的进取心,体会数学的应用价值。
2020/10/13
3
三、教学问题诊断分析
学生在本章第一节学习了分式的概念,在七年级上册第一章学习 了方程的概念,在此基础上认识分式方程还是比较容易的,但个 别学生如果对于分式方程的概念理解不透彻的话,也会在认识分 式方程上有所片面,教学时应该对易混点加以重视。
《分式方程》说课稿
2020/10/13
1
一、内容及内容解析
本节课主要内容是建立在整式方程、分式 运算基础上,了解分式方程的概念,学习 可化为一元一次方程的分式方程的解法。
分式方程是表示、处理数量关系的有效工 具,是刻画现实世界的有效模型,要让学 生进一步理解转化的数学思想,也要让学 生进一步体会数学建模的思想方法。
7
(二)创设情境,导入新课
问题情境:甲、乙两辆汽车同时分别从A、B两城沿 同一条高速公路驶向C城.已知A、C两城的距离为450 千米,B、C两城的距离为400千米,甲车比乙车的速 度快10千米/时,结果甲乙两车同时到达C城,求两车 的速度.
步骤:学生根据题意完成表格,然后寻找题中的相等 关系布列方程。
目的:运用表格理清数量关系,一是让学生进一步理 解方程是刻画数量关系的有效工具,二是引出本节课 的研究对象。
要求:学生首先自主完成,然后让学生黑板展示布列 方程的过程。
2020/10/13

(三)归纳定义,探究解法
同学们观察“问题情境”中所列出的方程, 说说特征 ,从而概括出分式方程的概念:
学生在七年级上册第一、二、三章建立方程模型和不等式模型解 决实际问题中,已经具备了一定的表示、处理数量关系的能力, 为本节将实际问题抽象成数学问题打下基础。
学生在本章第二节学习了分式的运算和七年级上册第一章学习了 数字分母的一元一次方程的解法,为探究分式方程的解法做好准 备。但一元一次方程的解法对于个别学生而言,可能由于时间间 隔比较长,存在遗忘现象,教学时应注意。
相关文档
最新文档