开关电源的分类和结构形式

合集下载

最详细的开关电源分析

最详细的开关电源分析

最详细的开关电源分析开关电源是一种能将输入电源电能高效地转换成输出电源电能的电子装置,广泛应用于各种电子设备和系统中。

本文将详细介绍开关电源的工作原理、分类、特点以及常见故障分析。

开关电源的工作原理:开关电源通过使用开关器件(如MOS管、可控硅等)的开通和关断来对输入电源进行周期性切换,从而实现输入电源电能到输出电源电能的转换。

开关电源的主要工作原理可以分为四个阶段:整流、滤波、变压和稳压。

1.整流:开关电源的输入一般是交流电,首先需要将交流电转换为直流电。

整流电路可以使用整流桥或者整流二极管进行半波或全波整流,将交流电转换为脉冲电流。

2.滤波:在整流后,脉冲电流中还存在很多纹波,需要通过滤波电路将其滤除,使得输出电压更加平稳。

常见的滤波电路有电容滤波器和电感滤波器,它们通过对电流进行平滑处理来得到稳定的直流电压。

3.变压:在滤波后,输出电压一般较低,需要通过变压器将其升高或降低。

变压器的工作原理是利用磁性耦合将输入电压传递到输出端,通过变压器的变比关系调整输出电压。

4.稳压:得到了所需的输出电压后,还需要对输出电压进行稳定控制。

稳压电路通过反馈控制将输出电压与设定值进行比较,调整开关器件的开闭时间,使得输出电压稳定在设定值。

开关电源的分类:按照输入电源类型,开关电源可以分为交流输入开关电源(AC/DC)和直流输入开关电源(DC/DC)两种类型。

交流输入开关电源主要被应用于家用电器、工业设备等领域,直流输入开关电源则主要用于电子设备和通信设备等领域。

按照结构形式,开关电源可以分为离线式开关电源和在线式开关电源。

离线式开关电源将输入电流与输出电路通过电压变换器隔离,具有较好的安全性能。

在线式开关电源则可以将输入电流直接传导至输出电路,体积小巧,但对工作环境要求较高。

开关电源的特点:1.高效性:开关电源采用开关器件进行切换,可以实现高效率的能量转换,尤其在大功率和高频率应用中效果显著。

2.稳定性:开关电源采用稳压反馈控制,能够在输入电压范围和负载变化时保持稳定的输出电压。

开关电源11种拓扑结构介绍

开关电源11种拓扑结构介绍

开关电源11种拓扑结构介绍1、基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。

基本的脉冲宽度调制波形定义如下:2、Buck降压■把输入降至一个较低的电压。

■可能是最简单的电路。

■电感/电容滤波器滤平开关后的方波。

■输出总是小于或等于输入。

■输入电流不连续 (斩波)。

■输出电流平滑。

3、Boost升压■把输入升至一个较高的电压。

■与降压一样,但重新安排了电感、开关和二极管。

■输出总是比大于或等于输入(忽略二极管的正向压降)。

■输入电流平滑。

■输出电流不连续 (斩波)。

4、Buck-Boost降压-升压■电感、开关和二极管的另一种安排方法。

■结合了降压和升压电路的缺点。

■输入电流不连续 (斩波)。

■输出电流也不连续 (斩波)。

■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。

■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

5、Flyback反激■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。

■输出可以为正或为负,由线圈和二极管的极性决定。

■输出电压可以大于或小于输入电压,由变压器的匝数比决定。

■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。

6、Forward正激■降压电路的变压器耦合形式。

■不连续的输入电流,平滑的输出电流。

■因为采用变压器,输出可以大于或小于输入,可以是任何极性。

■增加次级绕组和电路可以获得多个输出。

■在每个开关周期中必须对变压器磁芯去磁。

常用的做法是增加一个与初级绕组匝数相同的绕组。

■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

7、Two-Transistor Forward双晶体管正激■两个开关同时工作。

■开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。

■主要优点:■每个开关上的电压永远不会超过输入电压。

■无需对绕组磁道复位。

8、Push-Pull推挽■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。

开关电源设计

开关电源设计

一个比较好的解决方案是:以轻巧的高频变压器取代笨重的工频变压器,采用脉冲调制技术的直流--直流变换器型稳压电源,即我们马上就要讲到的开关电源。

开关电源具有管耗小、效率高、稳压范围宽及体积小、重量轻等优点,目前已在各种电子仪器和设备、航空和宇宙飞行器、发射机、电子计算机、通讯设备和电视机、录放像机等中得到了广泛应用。

开关电源按变换方式可分为以下四大类:1、AC/DC 开关电源2、DC/DC 开关电源3、DC/AC 逆变器4、AC/AC 变频器目前只将前面两类称为开关电源,将后面两类分别称为逆变器和变频器。

开关电源按应用方式可分为以下三大类:1、外置电源与设备分开放置的电源模块或电源系统,如:---通信用一次电源模块和系统---电力操作电源模块和系统---手机电池充电器---笔记本电脑的Adapter---各类手提设备、便携设备的电池充电器等等2、内置电源放在设备内部的电源模块或电源系统,如:---计算机内部的SilverBox和VRM---家电(如:普通电视机、等离子电视机、液晶电视机)内部的供电电源---工业控制设备内部的电源---仪器中使用的电源---通信设备内部的电源模块和系统---复印机、传真机、打印机等的内部电源等等3、板上电源放在设备内单板上的电源模块,如:---标准砖类电源(全砖、半砖、1/4砖、1/8砖)---非隔离POL(Point of Load 负载点)变换器---VRM(V oltage regulator module电压调节模块)和VRD(V oltage regulator down)---小功率SMD电源---SIP和DIP电源等等开发一个开关电源产品所需要的基本技能:1、认识组成开关电源的所有元器件2、掌握各种元器件的电气性能和电路符号3、会自己制作各种磁芯元件4、会正确装配电源中的各个部分5、了解电源各项指标的意义并掌握如何测试的方法6、会使用仪器对装配后的电源进行正确的调试,优化和折中7、会对获得的实验结果进行分析,并进行总结8、会从不同渠道不断地学习电源知识并能够和别人交流开发一个开关电源产品所需要的专业理论知识:1、有源PFC的拓扑分析,控制与设计2、DC/DC功率变换器的拓扑与稳态分析3、开关电源的功率级参数设计4、开关电源的控制与动态分析5、开关电源的小信号分析与设计6、开关电源的大信号分析与设计7、开关电源的EMI分析与设计8、开关电源的热分析与设计9、开关电源的容差分析与设计10、开关电源的各种保护技术11、开关电源的同步整流技术12、开关电源的模块均流控制技术有些技术很成熟了,只要查表或者使用现成电路或专用芯片就可以做好。

反激式开关电源(毕业论文)

反激式开关电源(毕业论文)

反激式开关电源(毕业论⽂)随着电⼒电⼦技术的发展,开关电源的应⽤越来越⼴泛。

反激式开关电源以其设计简单,体积⼩巧等优势,⼴泛应⽤于⼩功率场合。

开关电源以其⼩型、轻量和⾼效率的特点,被⼴泛地应⽤于各种电⽓设备和系统中,其性能的优劣直接关系到整个系统功能的实现。

开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点⽽⼴泛应⽤于⼩功率电源领域。

传统的反激式开关电源⼀般由PWM控制芯⽚(如UC3842)和功率开关管(频率较⾼时⼀般使⽤MOSFET)组成,PWM芯⽚控制环路设计复杂,容易造成系统⼯作不稳定,功率开关管有时需要外加驱动电路。

⾼效率与⼩型化在⼀定程度上是互相限制的,因为实现⾼效率会要求电路有相当的复杂度,⼤量的器件对⼩型化⼗分不利。

在开关电源设计初期,采⽤的都是分⽴元件,集成度很低,⼤部分电路只能在PCB版上实现,极⼤的限制了⼩型化实现的可能。

⽽且⼤量器件暴露在外,也影响了系统的稳定性。

采⽤近年来,为了实现更⾼的效率和更⼩的体积,开关电源的⼯作频率有了很⼤的提⾼。

⾼⼯作频率能够减⼩外围电感和电容的⼤⼩,从⽽减少系统的体积。

另外,反激变压器的设计也是⼀个难点,其往往导致电源设计周期延长。

随着PI公司⽣产的以TOPSwitch为代表的新⼀代单⽚开关电源的问世,以上诸多问题都得到了很好的解决。

应⽤TOPSwitch-HX设计开关电源,不仅器件更少,结构更简单,发热量更少,⼯作更可靠,采⽤该系列芯⽚已成为⼀种⾼效的反激式开关电源设计⽅案。

关键词:TOPSwitch-HX 反激式变换器⾼频变压器开关电源.第⼀章绪论 (1)⼀、反击式开关电源的背景 (1)⼆、反击式开关电源现状与发展趋势 (2)三、本课题选题意义及所做⼯作 (2)第⼆章反击式开关电源简介 (3)⼀、开关电源的分类 (3)⼆、反击式开关电源的原理 (4)第三章⾼效反激式开关电源系统设计 (5)⼀、提⾼效率的⽅法 (5)⼆、⾼效反激式开关电源的系统设计原理图 (6)三、各个⼦电路的分析设计 (7)第四章反激式开关电源元件选择及其参数 (8)⼀、Topswitch-HX 系列元件简介 (8)⼆、提⾼开关电源效率元件选取⽅法 (10)三、主要参数的计算 (11)第五章设计总结与展望 (13)参考⽂献 (14)致谢 (15)附录 (16)第⼀章绪论⼀、反激式开关电源的背景开关电源的前⾝是线性稳压电源。

开关电源top224芯片

开关电源top224芯片

绪论开关电源(Switched Mode Power Supply,SMPS)是一种由占空比控制的开关电路构成的电能变换装置,用于交流—直流或直流—直流电能的变换.其功率从零点几瓦到数十千瓦,被广泛用于生活、生产、科研、军事等各个领域。

比如:小到彩色电视机、DVD播放机等家用电器、大到飞机、卫星、导弹、舰船中,都大量采用了开关电源。

开关电源的核心为电力电子开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利用反馈控制电路,采用占空比控制方法,对开关电路进行控制.脉宽调制(PWM)技术的发展,导致了PWM开关电源问世(PWM开关电源的特点是用20KHz的载波进行脉冲宽度调制,电源的效率可达65%~70%),大幅度节约了能源,引起了人们的广泛关注,在电源技术发展史上被誉为20KHz革命。

高频化使开关电源装置空前的小型化,并使其进入更广泛的领域,特别是推动了高新技术产品的小型化、轻便化,在节约资源及保护环境方面具有深远的意义.随着电子技术的高速发展,电子设备的应用领域越来越广,与人们的工作、生活的关系日益密切。

但是,任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高.并且,随着集成芯片尺寸的不断减小,处理速度越来越高,需要更加小型化、轻量化的电源(磁性元件和电容的体积、重量应随之减小);未来的绿色电源要求开关电源的效率更高,性能更好,可靠性更高等.这一切将促进开关电源的不断发展和进步。

开关电源体积小、效率高,被誉为高效节能电源,现已成为稳压电源的主导产品。

当今开关电源正向着集成化、智能化的方向发展.高度集成、功能强大的开关型稳压电源代表着开关电源发展的主流方向。

本论文主要围绕当前流行的集成开关电源芯片进行小功率开关型稳压电源特性的研究。

本文采用TOP224Y研制了一款单片开关电源,论文给出了外围电路各部分的详细设计方法,并进行了参数计算,通过实测结果分析,验证了理论的可行性。

具有较强的适用性。

(整理)开关电源的设计与制作

(整理)开关电源的设计与制作

开关电源的设计与制作第一章开关电源概述一. 什幺是开关电源(Switching Power Supply)所谓开关电源是指以高频变压器取代工频变压器,采用脉冲调制技术的直流直流变换器型稳压电源.开关晶体管,开关二级管和开关变压器是组成开关电源的三个关键组件.二. 隔离式高频开关电源.图标说明:1)交流线路电压无论是来自电纲的,还是经过变压器降压的,首先要经过电纲滤波,以消除电磁干扰和射频干扰;2)经电纲滤波后的电流首先要经过整流,滤波电路变成含有一定脉动电压成分的直流电压,然后进入高频变换部分;3)高频变换器具有多种形式,主要分为半桥式,全桥式,推挽式,单端正激式,单端反激式等;高频变换部分的核心是一个高频功率开关组件,比如开关晶体管,场效应管(MDSFET)等组件,高频变换器产生高频(20KHZ以上)高压方波,所得到的高压方波送给高频隔离变压器的初级,在变压器的次级感应出的电压被整流,滤波后就产生了低压直流.4)脉冲宽度调制器(P WM)主要用于调节输出电压,使得在输入交流和输出直流负载发生变化时,输出电压能保持稳定,运作过程是P WM电路通过输出电压采样,并把采样的结果反馈给控制电路,控制电路把它与基准电压作比较,根据比较结果来控制高频功率开关组件的开关时间比例(占空比),达到调整输出电压的目的.(注:控制电路还有调频方式的)5)为了使整个电路安全可靠地工作,必须设置过压,过流保护电路等辅助电路.三.开关电源常用术语.1.效率(dfficiency):电源的输出功率与输入功率的百分比(测量条件为满负载,输入交流电压为标准值)2.ESR: 等效串联电阻,它表示电解电容呈现的电阻值的总和. ESR值越低的电容,性能越好.3.输出电压保持时间: 在开关电源的输入电压撤离后,依然保持其额定输出电压的时间;4.激活浪涌电流限制电路: 属保护电路,它对电源激活时产生的尖峰电流起限制作用.5.隔离电压: 电源电路中的任何一部分与电源基板地之间的最大电压.或者能够加在开关电源的输入端与输出端之间的最大直流电压.6.线性调整率: 输出电压随输入线性电压在指定范转内变化的百分率,条件是线电压和环境温度保持不变.7.负载调整率: 输出电压随负载在指定范围内变化的百分率,条件是线电压和环境温度保持不变.8.噪音和纹波: 附加在直流输出信号上的交流电压和高频兴峰信号的峰值.通常是以mV度量.9.隔离式开关电源: 一般指高频开关电源,它从输入的交流电源直接进行整流和滤波,不使用低频隔离变压器.10.输出瞬态响应时间: 从输出负载电流产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间.11.过载或过流保护: 防因负载过重,使电流超过原设计的额定值而造成电源损坏的电路.12.远程检测: 为了补赏电源输出的电压降,直接从负载上检测输出电压的方法.13.软激活: 在系流激活时,一种延长开关波形的工作周期的方法,工作周期是从零到它的正常工作点所用的时间.14.电磁干扰无线频率干扰(EMI一RFI):那些由开关电源的开关组件引起的,不希望传输和发射的高频能量频谱.15.快速短路保护电路:一种用于电源输出端的保护电路,当出现过压现象时,保护电路激活,将电源输出端电压快速短路.16.占空比:在高频开关电源中,开关组件的导通时间和变换器的工作周期之比.即:δ=Ton /Τ(T= Ton+Toff)开关电源的设计与制作第二章输入电路一.电压倍压整流技术世界范围内的交流输入电压,通常是交流90~130V和180~260V的范围,为了适应不同电源输入环境的需要,实现两种输入电源的转换,要利用倍压整流技术.如下图2一1所示.2一15可用于110V和220V交流的开关电源输入电路电路工作过程为:1)当开关S1闭合时,电路在115V交流输入电压下工作,在交流电的正半周,通过二极管VD1和电容器C1被充电到交流电压的峰值,即115×1.4=160V,在交流电的负半周,电容器C2通过二极管VD4也被冲电到160V, 这样,电路输出的直流电压应该是电容器C1和C2上充电电压之和(160+160V=320V) 注意:不同的用电环境电压选择开关位置一定要选择正确.否则,会导致直流变换器中的开关功率管损坏,或因为输入电压太低而使开关电源进入欠压输入自动保护状态.二.抗电磁干扰和射频干扰电路考虑输入滤波电路(电纲滤波)1.开关电源的设计,生产,一定要将其辐射和传导干扰降低到可接受的程度.在美国,权威的指导性文件是F CCD ocket20780,在国际上,德国的Verband Deutscher Elektronotechniker(VDE)安全标准则得到了广泛的采用.2.开关电源中的RFI产生源:开关噪声的主要来源是开关晶体管,主回路整流器,输出二极管,晶体三极管的保护二极管以及控制单元本身.反激式变换器,由于设计的原因,其输入电流波形呈现三角形,较之输入波形为矩形的变换器,如正激式,桥式变换器等将产生较少的传导RFI噪声.(付里叶分析表明,一个三角形电流波形的高频谐波幅度是以40dB每倍频程进行跌落的,而对一个差不多的矩形电流波形,则只呈现20dB每倍频程的跌落)3.交流输入线路噪声滤波器对RFI的抑制.通常在开关电源中采用的噪声抑制方法是在主交流输入回路接入一个LC组成的滤波器,用于差模一共模方式的RFI抑制,通常是交流线路上串入一对电感L1, , 其两端并联二只电容器(X电容器),并在交流线二端对大地各接一只电容器(Y电容器),如图2一2(低通滤波纲络)2一2开关电源输入线路滤波器结构1)上图中电容电感的值可以采用下列的数值:C (X): 0.1~2UF;C(Y): 2200PF~ 0.033uF;L: 在25A时, 为1.8mH; 0.3A时, 为47mH注意:在选择滤波器的组件时,重要的是要使输入滤波器的谐振频率远低于电源的工作频率;另一方面,滤波器使得电源的工作频率增加时,会使噪声的传导变得更容易.2)上图中并联在交流输入线的电阻R是X电容的放电电阻,这是由VDE一0806和IEC一380两个标准中的有关安全的规范条款推荐应用的.IEC一380的8.8节阐明:若线路滤波器的X电容器的值大于0.1UF,则放电电阻的数值应由下式确定:R=t /2.21c (2一1)式中,t=ls, c为l电容器的总和值3)为进一步减少对称和不对称的干扰电压的措施是在交流线路中另外再接入一对电感L2,从而使得电容C4(X)的充电电流得到限制,于是降低了干扰,如图2一32一3改进的线路滤波器上图中L1与C3.C4组成常模抗干扰回路,L1与C1.C2组成共模,抗干扰回路,L2用于C4的充电电流的限制,因此,整个组合对各种高频干扰信号的抑制作用较好.三.输入整流器及整流后滤波电路.一)输入整流器如图2一1中,此整流电路由VD1~VD4组成(桥式或倍压整流)在选择组合组件或分立组件的整流器时,必须要查对下面的一些重要参数:1.最大正向整流电流,这个参数主要根据开关电源设计的输出功率决定.所选择的整流二极管的稳态电流容量至少应是计算值的2倍.2.峰值反向截止电压(PIV).由于整流器工作在高电压的环境,所以它们必须有较高的PIV值,一般应为600V以上.3.要有能承受高的浪涌电流的能力.二.输入滤波电容.由于滤波电容的选择将会影响到:电源输出端的低频交流波及电压和输出电压保护时间.一般情况下,高质量的电解电容所具有的滤除交流波纹电压的能力越强,它的ESR值越低.其工作电压的额定值至少应达到200V.在图2一1中,C1,C2 为滤波电容,电阻R4,R5与之并联以便在电源关闭时,给电容提拱一个放电通路.计算滤波电容的公式为:C=It /ΔV (2一2)式中C: 电容量, F;I: 负载电流 At: 电容提供电流的时间, s;ΔV: 所允许的峰一峰值纹波电压v .例:计算50w开关电源的输入滤波电容器的值.设输入交流电压为115V,60HZ,允许30V峰一峰值的纹波电压,且电容可维持电压电平的时间为半周期.解:1)计算直流负载电流假定一个最坏的情况,电源的效率为70%,那幺,输出功率为50W的电源其输入功率应该是:Pin=Pout/η=50 / 0.7=71.5(w)利用电压倍压技术(图2一1),在输入交流为115V时,直流输出电压将是2×(115×1∙4)=320(V),则负载直流电流应为I=P/E=7105/320=0.22(A)2)因半周期的线性频率或者说对于60HZ的交流电压大约是8ms,即t=1/2×1/60=8.33ms,故根据式2一2有.C=0.22(8×10 –3) /30=58×10 _6 =58(uF)选择标称值为50 uF的电容器.3)因为在倍压结构中,C4C5为串联,故有1/C=1/C1+1/C2,有C1=C2=100uF,即50W的开关电源,其滤波电容C4,C5为100uF.四.输入保护电路一).浪涌电流1.浪涌,一般情况下,只是电容的ESR值,如果不采取任何保护措施,浪涌电流可接近几百安培.2.控制电流主要是由滤波电容充电引起的,在开关管开始导通的瞬间,电容对交流电呈现出很低的阻抗浪涌电流的方法:广泛采用的措施有两种,一种是利用电阻 双向可控硅并联纲络;另一种是采用负温度系数(NTC)的热敏电阻,用以增加对交流线路的阻抗.1) 如图2一1,R 1,VS 组成此电路,R 1与VS 并联,当输入滤波电容充满电后,由于双向可控硅和电阻是并联的,可以把电阻短路,对其进行分流.这种电路结构需要一个触发电路,当某些预定的条件满足后,触发电路把双向可控硅触发导通,如图2一4 所示.1 T 2可控硅VS 的工作过程为:当电源接通后,C 6两端的电压逐渐升高,电流相应稳定.在C 6两端的电压稳定之前,浪涌电流被与之串联的电阻R 1(6.8Ω)所抑制,当输入交流为115V 时,C6两端的电压V C =115×1∙4=160(V).当电容器C 6充电时,电压加到高频变压器T 1的绕组LB 上,则在绕组LP 4端上产生感应电压,当感应电压达到1.5V 时,电流I G 开启可控硅.即当IG 流过可控硅的控制极G 时,触发T 1与T 2短接,可控硅导通,电阻R 1被VS 短路,使其温度下降,于是实现了R 1抑制浪涌电流的目的 .注:设计时要认真地选择双向可控硅的参数,并加上足够的散热片,因为在它导通时,要流过全部的输入电流.2)热敏电阻技术:这种方法是把负温度系数(NTC)的热敏电阻串联在交流输入或者串联在经过桥式整流后的直流线上,如2一1图中的RT 1和RT 2,其工作原理为:当开关电源接通后,热敏电阻的阻值基本上是电阻的标称值,这样,由于阻值较大,它就限制了浪涌电流,当电容开始充电时,充电电流流过热敏电阻开始对其加热.由于其具有负温度系数,随着电阻的加热,其电阻值开始下降,如果热敏电阻选择得合适,在负载电流达到稳定状态时,其阻值应该是最小,这样,就不会影响整个开关电源的效率..二) 输入瞬间电压保护一般情况下,交流电纲上的电压比较稳定,但由于电纲附近电感性开关,暴风雨天气雷电等现象的存在,都会产生高压的尖峰(如受严重的雷电影响,电纲上的高压尖峰可达5KV;而电感性开关产生的电压尖峰的能量公式W=1/2L.I2.式中L是电感器的漏感:I是通过线圈的电流)可是,虽然电压尖峰持续的时间很短,但是它有足够的能量使开关电源的输入滤波器,开关晶体管等造成致命的损坏,故必须采取措施加以干扰.最通用的抑制干扰器件是金属氧化物物压敏电阻(MOV)瞬态电压抑制器.如图2一1中的RV 把压敏电阻RV连在交流电压的输入端,起到一个可变阻抗的作用.即,当高压尖峰瞬间出现在压敏电阻两端时,它的阻抗急剧减小到一个低消值,消除了尖峰电压使输入电压达到安全值.其瞬能量消耗在压敏电阻上,选择压敏电阻时应按下述步骤进行.(1)选择压敏电阻的电压额定值,应比最大的电路电压稳定值大10%~20%;(2)计算或估计出电路所要承受的最大瞬间能量的焦耳数.(3)查明器件所需要承受的最大尖峰电流开 关 电 源 的 设 计第三章 高频电源变换器的基本类型一. 高频电源变换器的基本类型高频电源变换器的基本类型有五种:单端反激式,单端正激式,推挽式.半桥式和全桥式变换器,而半桥式和全桥式变换器电路实际上是推挽式变换器电路的改进型,所以,有人把这三种电路形式统称为推挽式变换器.高频电源变换器从激励方式上可分为单端(单极性)激励和双极性激励变换器,双极性变换器包括推挽式,半桥式,桥式等,其工作原理的实质是两个单端正激式变换器电路,从其耦合方式可分为直接耦合和变压器隔离两种,其中直接耦合形式为其基本形式.近年来出现的新型的变换器为C U K 变换器.1.单端反激式变换器的模型图: (3一1)(a) (b) 3 一1单端反激式变换器模型图单端反激式变换器的工作原理为:1) 当开关s 闭合时,电流I 流过电感L,在L 中储存能量,由于电压的作用,使二极VD 处于反向偏置,因此,在负载电阻R L 上无电压;2) 当开关S 打开时(上b 图),电感上的感应电压极性相反,则二极管VD 处于正向偏置,并产生电流Iv,这样,在负载电阻R L 上就出现一个与输入电压极性相反的电压.由于开关S 不断地开关动作,电路中的电流就以及脉的形式出现,因此,在单端反激式变换器中,当开关闭合时,能量存储在电感L 中,在开关打开时,能量被传递到负载RL 上.3. 单端正激式变换器的电路模式图(3一2)单端正激式变换器的工作原理为:Vin Ic------------- 1) 当开关S 闭合时,电流I 流过电感L,系,二极管VD 处于反向偏置; 2) 当开关S 打开时,电感L 中的磁场极性发生变化,,b2单端正激式变换器模型图,无脉动现象,恰恰与其相反,输入电流则是不连续的,. 3.(3一3)推挽式变换器的工作原理为:1)当S 1闭合S 2打开时,电源电流流过方向为 a Lp 1 b s1 d V in,那幺此时,在变压器次级绕组中咸应出电压并形成感应电流Is 1.2)当S 2闭 合S 1打工时,电源电流方向为 a f e d vin,那幺此时在变压器次级绕组LS 2中感应出电压形成感应电流IS 2二. 隔离式单端反激式变换器电路.概述 :一般情况下,隔离式开关电源都是用高频变压器作为主要隔离器件.在单端反激式隔离L-------------电路中,高频变压器是以变压器的形成出现的,但实际上它起的作用是扼流圈,所以应称之为变压器 扼流圈.如图3一4中,由于隔离变压器T 除了具有初次级间安全隔离的作用外,它还有变压器和扼流圈的作用,所以在反激式变换器的输出部分一般不需要加电感,但在实际应用中,往往在整流器和滤波电容之间加一个小的电感线圈,用以降低高频开关噪声的峰值.单端隔离激式变换器的工作过程为:1) 当晶体管VT1导通时,它在变压器初 级电感线圈中储存能量,与变压器次 级相连的二极管VD 处于反偏压状 态而截止,故在变压器次级回路无电 流流过,即没有能量传给负截. 2) 当晶体管VT 1截止时,变压器次级电 感感线圈中的电压极性反转过来,使得二极管VD 导通,给输出电容C 充电,同时在负载L 年也有了电流I L 3 一4隔离单端反激式变换器电路注:图3一4中C 为输出滤波电容.1.单端反激式变换器电路中的开关晶体管在单端反激式变换器电路中,所使用的开关晶体管必须具备两个条件:1)在晶体管截止时,要能承受集电极尖峰电压; 2)在晶体管导通时,要能承受集电极的尖峰电流.1) 晶体管截止时尖峰电压的计算公式:V CE max =Vin / 1一δmax式中Vin 是输入电路整流滤波后的直流电压, δmax 是晶体管最大工作占空比(注意:为了限制限晶体管的集电板安全电压,工作占空比应保持在相对地低一些,一般要低于50%,δmax<0.5,在实际设计时, δmax 一般取0.4左右,这样就限制集电极峰值电压: V CE max ≦2.2Vin,因此,在单端反激式变换器电路设计中,晶体管的工作电压一般在800V 通常接900V 计算可安全可靠地工作.)2) 晶体管导通时的集电极电流计算式:I C = I L / n式中,I L 是变压器初级绕组的峰值电流,而n 是变压器初级与次级间的匝数比.注: 为了导出用变压器输出功率和输入电压表达集电极峰值工作电流的公式.变压器绕组传递的能量Pout =可用下式表示:Pout = L . I L 2 / 2T ·η (3 一 3 )式中,η是变换器的效率.则有: Ic= 2Pout / η·Vin ·δmax ( 3 一 4 )假定变器的效率η是0.8,最大占空比δmax=0.4(即40%),那幺Ic = 6. 2Pout / Vin ( 3 一 5 )2. 单端反激式变换电路中的变压器绕组.在单端反激式变换器电路中,在设计时要汪意不要使磁芯饱和,所选的磁芯一定要有足够大+ RL 一的有效体积,通常应用空气隙来扩大其有效体积:V=Uo ·Ue · I L max ·L / B 2max ( 3一6 )中,Ilmax: 最大负载电流;L :变压器次级绕组的电感量; Uo : 空气的导磁率,其值为1;Ue: 所选磁芯的磁性材料的相对导磁率Bmax:磁芯的最大磁通密度;(具体见第五章)3一53.基本的单端反激式变换器的变形.1)如图3一5中,由于考虑到单只晶体管有时承受不了过高的输入电压,(一般商甲晶体管达不到指针),故利用两只晶体管工作.图中VD 1和VD 2同时导通或截止,二管起箝位作用,它们把晶体管的最大集电板电压限制在Vin,这样耐压低的晶体管就可以使用了.2单端反激式变换器电路的优点是:电路结构简单,可以实现多路电压输出.如图3一6,在电路中隔离变压器对各路输出电压起到公共扼流圈的作用变压器的次级可以有多个绕组,故可以实现多路输出 .每个次级绕组只需一个整流二极管和一个滤波电容,就可以得到一组直流输出电压.3一6有多路输出的单端反激式变换器电路+ R L 一1 1 out 1 out2 + V out3 一 L L3一7隔离单端正激式变换器电路图三.隔离单端正激式变换器电路1.概述:如图3一7所示1)在单端正激式变换器电路中,隔离组件是一个纯粹的变压器,为了有效地传递能量,,在输出电路中, 必须有储能组件电感线圈Lo同时,初次级绕组的极性是相同的.其电路工作过程为:当VT1导通时,在变压器的初级产生了电流,并储存了能量,由于变压器的次级极性与初级同相,这个能量也传到了变压器的次级并处在偏正的二极管VD2把能量储存到了电感L中.此时,二极管VD3是处在反向偏压状态,为截止状态,当三极管VT1截止时,二极管VD2是反向偏压,变压器绕组中的电压反向,续流二级管VD3处于正向偏压,在输出回路中,储存在电感中的能量通过电感L 继续传负载R L .2)变压器的第三绕组称为箝位绕组(或回授绕组)LP2,它与二极管VD1串联,其作用是用来限制晶体管C一E结上的电压尖峰,在晶体管截止时,还能使高频变压器的磁通复位, 这是因为:A.在VT1导通时,变压器初级绕组LP 1中会储存能理,当VT1截止时,变压器次级侧二极管VD2截止,那幺储存在LP1中的能量再不能传递到次级绕组了,此时必须要通过一种途径释放出来,否则,必然在线圈两端产生过高的电压,解决的办法是增加箝位绕组和二极管VD1,并使箝位绕组的匝数与初级绕组的匝数相同,二者紧密耦合,这样,当箝位绕组上的感应电超过电源电压时,二极管VD1导通,将磁能送回电源中,就可以把初级绕组的电压限制在电源电压上,所以,开关晶体管VT1的C一E极间的最高电压就被限制在二倍电源电压上.B.为满足磁芯复位的条件,使磁通建立和复位的时间相等,所以这种把电路的占空比不能超过50%.3)磁化电流Imag的计算公司为:Ima= Tδmax·Vin∕N ( 3一7)式中, T·δmax是VT时向,L是输出电感Ho4))单端正激式变换器是在晶体管导通时通过变压向负载传输能量,故运用的输出功率范转较大,一般情况下可达50~200W,其高频变压器要起变压器隔离和传输能量的作用,又起电感线圈储存能量的作用.2单端正激式变换器电路中的开关晶体管1)晶体管截止峰值电压:在单端正激式变换器电路中,由于有第三绕组和续流二极管VD1的作用,所以其截止时降在VT1上的最大电压VCEmax应为2Vin,且只要二极管VD1处于导通状态,即在Tδmax这个时间内,降在VT铁C 一E间的2Vin的峰值电压就维持不变.2)晶体管导通时集电极电流的峰值:为正激式变换器的电流值加上磁化电流Imag.Ic= Ic / n + Tδmax Vin / L =6.2Pout / Uin式中.n: 变压器初次级匝数比;IL : 输出电感电流. A;Tδmax: 晶体管导通时间L: 输出电感, H.3.单端正激式变换器电路的传输变压器在设计正激式变换器的传输变压器时,应十分注意选择适当的磁芯有效体积,并选择空气隙,以避免磁芯的饱和,其有效体积V为:V= UoUe I2mag L / B2max注意:A.这种电源的最大工作占空比应保持低于50%,以便通过第三绕组将变压器的电压进行箝位,将总电限制在2倍输入电压之内.这样,当VT1导通时,为箝位电平:当VT停止时,使该总电压接近于0值.如果最大工作占空比大于50%,即δmax > 0.5,将打破这种2倍于电源电压的平衡,导致变压器发生饱和,反过来会产生很高的集电峰位电流,这可能会损坏开关晶体管.B.尽管有第三绕组以及箝位二极管可将开关晶体管的峰值集电极电压限制在2倍直流输入电压之内,但在制作变压器时,还要严格注意初级绕组和第三绕组间的紧密耦合,以消除由于漏感引起的致命的电压尖峰.4.单端正激式变换器电路的变形.1)如同单端反激式变换器电路一样,也可用两个晶体管代替一个晶体管工作,它们同时导通或同时截止,但每个晶体管所承受的电压不会高于Vin.2)此电路也可以产生多路的出电压,但是需增加二极管和扼流圈应指出的是,续流二极管的容量至少要与主回路中的整流二极管相同,因为在晶体管VT1截止时,它要提供输出电路中的全部电流.四. 推挽式变换器电路概述:如图3一8所示,推挽式变换器电路实际上是由两个正激式变换器电路组成,只是它们工作时相位相反,在每个周期里,,两个晶体管交替导通和截止,在各自导通的半个周期内,分别把能量传递给负载,所以称之为”推挽”电路.故在推挽式变换器电路中,两组开关三极管和输出整流二极管因流过每一组组件的平均电流比同等的单端正激式变换器电路减少35%以上,其设计计算可接单端正激式变换器.还应看到,在只开关晶体管导通间隙,二极管VD1和VD2同时导通,它们把高频变压器的次级给短路了,与此同时,把能量传递到了输出回路,实质上,它们起到了续流二极管的作用.推挽式变换器电路的输出电压可用下式计算:V out= 2δmax·Vin / n (3一10)注意:为了避免两只开关晶体管同时导通而引起损坏,公式中δmax的值必须得持在0.5以下.假定δmax=0.4则有:Vout = 0.8Vin / n (3一11 )式中n是高频变压器的初级对次级的匝数比.1)每只开关管的峰值集电极电流Ic=Ic / n (3一12)Ic = Pout / η. (3一13)设η=0.8 δmax=0.8则Ic= 1.6Pout / Vin (3一14)2)每只管所承受的峰值电压限制在2Vin以内.3.推挽式变换器电路中的高频变压器在推挽式变换器电路中,两只晶体管导通时间相等(或者说强制两管导通时间相等),高频变压器的。

开关电源的结构和基本原理

开关电源的结构和基本原理

开关电源的结构和基本原理开关电源是一种将电能由一种形式转换为另一种形式的装置。

它通常将交流电转换为直流电,并以高频的方式进行开关控制,达到稳定输出所需的电压和电流。

下面将详细介绍开关电源的结构和基本原理。

1.结构(1)整流滤波电路:将交流电转换为直流电,并对直流电进行滤波以去除其中的纹波。

(2)功率因数校正电路:用于提高电源的功率因数,减小对电网的污染。

(3)直流—直流变换电路:根据需要将直流电的电压变换为所需的输出电压。

(4)功率开关器件:用于实现开关电源的开关控制,通常使用晶体管或MOSFET等器件。

(5)控制电路:负责监测和控制开关电源的输出电压和电流的稳定性,保持其在设定范围内。

(6)保护电路:降低过电流、过电压和短路等故障对开关电源及外部设备的损害。

2.基本原理(1)变压器:从交流电源中采集电能,并将其变换为合适的电流和电压。

通常使用高频变压器以提高转换效率。

(2)整流滤波:利用整流器将交流信号转化为直流信号,并通过滤波电容去除直流信号中的纹波,得到较为稳定的直流电压。

(3)PWM控制:通过PWM(脉宽调制)技术,通过开关器件控制开关电源输出的电流和电压。

PWM控制的关键是周期性地打开和关闭开关器件,通过控制开关时间比例来控制输出的电压和电流。

(4)变换电路:根据需要,通过变压和整流滤波电路将直流电压转换为所需输出电压,并通过输出变压器调整输出电流。

(5)控制电路:通过对反馈信号的监测和比较,实时调整PWM的工作状态,保持输出电压和电流的稳定性。

(6)保护电路:通过监测开关电源的工作状态,避免过载、短路和过温等故障对电源和外部设备的损害。

3.工作过程(1)输入电压整流滤波:将输入的交流电源通过整流滤波器转换为直流电压,去除其中的纹波。

(2)PWM控制:通过PWM控制器对开关器件进行开关控制,控制开关的开关时间比例,从而控制输出电压和电流的大小。

(3)输出电压调整:通过变压器和输出电感来调整输出电压,并通过负反馈控制电路监测实际输出电压,使其稳定在设定范围内。

(完整版)开关电源的基本原理与分类方法

(完整版)开关电源的基本原理与分类方法

开关电源的基本原理与分类方法开关电源是指调整功率管以开关方式进行工作的稳压电源。

缩写为SPS(Switching Power Supply),开关电源的核心部分是一个直流变换器。

目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模块化方向发展。

开关电源现在在社会上应用越来越广泛,需求也越来越大。

电源在一个典型系统中或者在一台机器中担当十分重要的角色,电源给系统的电路提供持续、稳定的能量,使得系统或者机器能够正常地工作。

电源的好坏直接影响了系统能否正常工作。

随着电源的应用和需求越来越广泛,人们对于电源的要求也越来越高。

人们对电源的效率、体积、重量、稳定性和可靠性等方面都有了更高的要求。

开关电源正是以其效率高、体积小、重量轻、稳定性高、零负载消耗低等多方面的优势逐步取代了效率低、又笨又重的线性电源。

现在社会上出现的需要应用开关电源的仪器、机器越来越多;利用开关电源作为驱动电源的产品也层出不穷,例如LED驱动开关电源的需求量越来越多。

而现代电力电子技术的发展,特别是大功率器件IGBT和MOSFET、各类电源芯片的迅速发展,将开关电源的工作频率提高到相当高的水平,使得开关电源的转换效率不断提高。

人们对于转换效率的不断要求也促使开关电源的开发技术将越来越高。

开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等部分构成。

开关带能源的工作原理:首先是将交流输入电源经整流滤波成脉动直流;然后通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;接着开关变压器次级感应出高频电压,经整流滤波供给负载;最后,输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。

常见的开关电源的分类方法有下列几种:1.按激励方式的不同可以划分为他激式和自激式。

开关电源的基础知识,学习下吧

开关电源的基础知识,学习下吧

交通运输
第1章 开关电源的基础知识
电力系统
柔性交流输电FACTS
高压直流装置HVDC
SVC
第1章 开关电源的基础知识
电子装置用电源
电子装置
程控交换机
微型计算机
第1章 开关电源的基础知识
家用电器
第1章 开关电源的基础知识
其他
航天技术
大型计算机的UPS
新型能源
第1章 开关电源的基础知识
1.3 对开关电源的基本要求
第1章 开关电源的基础知识
☆ 5.按电路的输出稳压控制方式分类 按电路的输出稳压控制方式分类 (1)脉冲宽度调制(PWM)式 (2)脉冲频率调制(PFM)式 (3)脉冲调频调宽式三种 6. 按功率开关管关断和开通工作条件分类 (1)硬开关变换器 (2)软开关变换器
第1章 开关电源的基础知识
1.4 开关电源的应用
通过本课程的系统学习, 通过本课程的系统学习,在电源公司或者相关电子行业企 业从事以下职位的工作: 业从事以下职位的工作:
技术员
测试员(工程部/ 测试员(工程部/设计 部、QA品质认证等) QA品质认证等) 品质认证等
工程师
助理工程师 应用工程师/FAE工程 应用工程师/FAE工程 /FAE 师(著名芯片管理公 司)/市场开拓工程师 高级 工程师
第1章 开关电源的基础知识
本课程主要学习内容: 本课程主要学习内容:
一、开关电源的基础知识及功率器件; ◆二、开关电源技术的主电路(电源输入电路及功率变换电 路); ◆三、开关电源的控制、驱动及保护电路; ◆四、开关电源中的磁性元Байду номын сангаас(滤波电感及高频变压器); 五、开关电源实际应用电路。
第1章 开关电源的基础知识

反激式开关电源总结

反激式开关电源总结

反激式开关电源总结开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,隔离电源按照结构形式不同,可分为两大类:正激式和反激式。

反激式指在变压器原边导通时副边截止,变压器储能。

原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。

正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。

按规格又可分为常规正激,包括单管正激,双管正激。

半桥、桥式电路都属于正激电路。

正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。

一般在小功率场合可选用反激式。

稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。

大功率输出,一般采用桥式电路,低压也可采用推挽电路。

反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。

在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过 100 瓦就没有优势,实现起来有难度。

本人认为一般情况下是这样的,但也不能一概而论,PI 公司的TOP芯片就可做到 300 瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。

输出功率大小与输出电压高低有关。

反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。

变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。

选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用 EE、EF、EER、PQ 型磁芯效果要比 EI型的好。

关于反激电源的占空比,原则上反激电源的最大占空比应该小于 0.5,否则环路不容易补偿,有可能不稳定,但有一些例外,如美国 PI 公司推出的 TOP 系列芯片是可以工作在占空比大于 0.5 的条件下。

开关电源技术复习题

开关电源技术复习题

开关电源技术复习题一、填空题:1、带有放大环节的串联式晶体管稳压电路主要由:调整环节电路、采样环节电路、基准环节电路、比校放大环节电路4个部分组成。

2、采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只是相控整流器的 1/10 ,重量已接近 1/10 。

3、开关电源驱动方式有:自励式和它励式4、DC/DC变换器的工作方式分:单端正激式和反激式、半桥式和全桥式、推挽式等;5、开关电源的组成: DC/DC变换器、驱动器、信号源、比较放大器、采样电路。

6、开关电源分类: 电源的输出稳压控制方式、开关电源的触发方式、电路的输出取样方式等组成。

7、开关电源是否隔离和反馈控制信号耦合方式分,有隔离式、非隔离式、变压器耦合式和光电耦合式等.8、非隔离型开关电源的四种典型拓补形式分别是Boost变换器(升压)、Buck 变换器(升压)、 Buck—Boost变换器(升降压)、 CUK变换器 .9、开关器件的分类:半控型器件、全控型器件、不可控器件。

10、按稳压电路实现的方法不同,稳压电源可分为三种:线性稳压电源、相控稳压电源、开关稳压电源。

11、直流供电系统的供电方式有:集中供电和分散供电两种。

12、开关电源的主要技术指标:电气技术参数、稳压器质量指标、稳压器的工作指标。

13、开关电源PWM的含义是在控制电路输出频率不变,它是利用改变占空比来改变开关管的导通与截止时间比例的。

14、开关电源谐振电路组成分, 有谐振型和非谐振型。

15、开关稳压电源可分为PWM型开关稳压电源和PFM型开关稳压电源。

16、脉冲调制控制方式有:脉冲宽度调制(PWM) 方式、脉冲频率调制(PFM) 方式、 PWM与PFM混合方式.17、PWM是输出频率不变,调整占空比;PFM是占空比不变,调整频率。

18、PWM电路产生的锯齿波进行比较,来调整输出脉冲信号的占空比。

19、开关电源控制器的作用是:将输出直流电压取样,来控制功率开关器件的. 20、谐振型技术主要是使各开关器件实现零电压或零电流导通或截止,从而减少开关损耗,提高开关频率。

开关电源基本结构

开关电源基本结构

开关电源基本结构开关电源的基本结构是由输入电源、整流器、开关器件、变压器和输出滤波器组成。

1.输入电源:输入电源一般为交流电源,可以是单相或三相电源。

输入电源通过输入端子连接到整流器。

2.整流器:整流器将交流电转换为直流电。

整流器的常见形式为整流桥,由四个二极管组成。

整流桥可以将输入交流电的正半周和负半周分别转换为正向和反向的直流电。

3.开关器件:开关器件是开关电源的核心组件,用来控制输入电源的开关操作。

常见的开关器件有晶体管和功率MOSFET。

开关器件有两种工作状态:导通状态和截止状态。

在导通状态下,开关器件通过,电源能够传递能量;在截止状态下,开关器件断开,电源无法传递能量。

4.变压器:变压器用于提供所需的电压变换。

开关电源通常采用高频变压器,高频变压器具有小体积、高效率和低损耗等优点。

5.输出滤波器:输出滤波器用于滤除开关电源输出电压中的高频噪声。

输出滤波器主要由电容器和电感器组成,能够确保输出电压稳定、纹波小等。

开关电源的工作原理是通过开关器件的控制,周期性地打开和关闭电源,使输入电压按照一定的频率变化。

当开关器件导通时,输入电源能量通过变压器传递到输出端;当开关器件截止时,输入电源无法传递能量。

通过改变开关器件的导通和截止时间比例,可以调节输出电压的大小。

在工作中,控制开关器件工作的电路称为控制电路,控制电路通常由反馈电路和控制芯片组成。

开关电源相比传统的线性电源,具有高效率、小体积和稳定的输出特性等优点。

然而,开关电源的工作频率高,会产生较多的高频噪声。

因此,在设计开关电源时,需要合理设计输出滤波器来降低噪声。

总之,开关电源的基本结构包括输入电源、整流器、开关器件、变压器和输出滤波器。

通过开关器件的周期性开关操作,将输入电压转换为所需的输出电压。

开关电源具有高效率、小体积和稳定的输出特性等优点。

电源12种拓扑结构“开关管”与“整流管”应力计算

电源12种拓扑结构“开关管”与“整流管”应力计算

电源12种拓扑结构“开关管”与“整流管”应力计算电源是电子设备中的一个重要部件,为其他电子元件提供稳定的电能。

电源拓扑结构包括多种形式,其中常见的包括开关电源和整流电源。

开关电源利用开关管进行控制,整流电源则使用整流管进行能量转换。

首先,我们来了解一下开关电源的工作原理。

开关电源通过开关管的开关动作,将直流电转换为高频脉冲信号,再通过滤波电路和变压器进行能量转换和稳压控制,最终得到所需的电功率。

开关电源的拓扑结构包括多种形式,例如反激式、开关电容式、开关电感式等。

在开关状态切换时,开关管要承受较大的电流冲击,这会导致电流应力的产生。

电流应力可以通过计算开关管的电流波形来估算。

在计算电流波形时,需要考虑开关管的导通和关断过程中的电流变化情况,以及开关管的导通和关断时间。

通过计算电流波形,可以估算出开关管的最大电流应力,进而选择合适的开关管进行设计。

除了电流应力,开关管还要承受电压应力的影响。

开关管在开关状态切换时,由于电感和电容的存在,会产生一定的电压尖峰,导致开关管承受较大的电压应力。

电压应力可以通过计算开关管的电压波形来估算。

在计算电压波形时,需要考虑开关管的导通和关断过程中的电压变化情况,以及开关管的导通和关断时间。

通过计算电压波形,可以估算出开关管的最大电压应力,进而选择合适的开关管进行设计。

接下来,我们来了解一下整流电源的工作原理。

整流电源通过整流管将交流电转换为直流电,供给其他电子设备使用。

整流电源的拓扑结构包括多种形式,例如单相半波整流、单相全波整流、三相半波整流、三相全波整流等。

在整流电源中,整流管要承受较大的电流和电压应力。

电流应力的计算方法与开关电源中的类似,需要考虑整流管的导通和关断时间,以及电流波形的变化情况。

而电压应力的计算方法也与开关电源中的类似,需要考虑整流管的导通和关断时间,以及电压波形的变化情况。

通过对开关电源和整流电源中开关管和整流管的应力计算,可以了解到它们在工作过程中承受的电流和电压应力情况,从而选择合适的管件进行设计和选型。

BUCK电路

BUCK电路

开关电源拓扑结构分析(图文)一.非隔离型开关变换器(一).降压变换器Buck电路:降压斩波器,入出极性相同。

由于稳态时,电感充放电伏秒积相等,因此:Ui-Uo)*ton=Uo*toff,Ui*ton-Uo*ton=Uo*toff,Ui*ton=Uo(ton+toff),Uo/Ui=ton/(ton+toff)=Δ即,输入输出电压关系为:Uo/Ui=Δ(占空比)图1:Buck电路拓补结构在开关管S通时,输入电源通过L平波和C滤波后向负载端提供电流;当S关断后,L通过二极管续流,保持负载电流连续。

输出电压因为占空比作用,不会超过输入电源电压。

(二).升压变换器Boost电路:升压斩波器,入出极性相同。

利用同样的方法,根据稳态时电感L的充放电伏秒积相等的原理,可以推导出电压关系:Uo/Ui=1/(1-Δ)图2:Boost电路拓补结构这个电路的开关管和负载构成并联。

在S通时,电流通过L平波,电源对L充电。

当S断时,L向负载及电源放电,输出电压将是输入电压Ui+U L,因而有升压作用。

(三).逆向变换器Buck-Boost电路:升/降压斩波器,入出极性相反,电感传输。

电压关系:Uo/Ui=-Δ/(1-Δ)图3:Buck-Boost电路拓补结构S通时,输入电源仅对电感充电,当S断时,再通过电感对负载放电来实现电源传输。

所以,这里的L是用于传输能量的器件。

(四).丘克变换器Cuk电路:升/降压斩波器,入出极性相反,电容传输。

电压关系:Uo/Ui=-Δ/(1-Δ)。

图4:Cuk变换器电路拓补结构当开关S闭合时,Ui对L1充电。

当S断开时,Ui+EL1通过VD对C1进行充电。

再当S闭合时,VD关断,C1通过L2、C2滤波对负载放电,L1继续充电。

这里的C1用于传递能量,而且输出极性和输入相反。

二.隔离型开关变换器1.推挽型变换器下面是推挽型变换器的电路。

图5:推挽型变换电路S1和S2轮流导通,将在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。

中大功率开关电源常用变换拓扑结构形式

中大功率开关电源常用变换拓扑结构形式

中大功率开关电源常用变换拓扑结构形式一、前言中大功率开关电源是一种将交流电转换为直流电的电源设备,广泛应用于各个领域,如工业控制、通信设备、医疗仪器等。

常用的变换拓扑结构有:单端正激变换器、单端反激变换器、双端正激变换器、双端反激变换器和桥式变换器。

二、单端正激变换器单端正激变换器是中大功率开关电源中最常见的一种拓扑结构。

它由交流输入端、变压器、开关管、输出电感、输出滤波电容和负载组成。

当交流电输入时,开关管周期性地打开和关闭,通过变压器将输入电压转换为所需的输出电压。

这种结构简单、成本低廉,但效率较低。

三、单端反激变换器单端反激变换器是在单端正激变换器的基础上进行改进的一种结构。

它通过在变压器的次级侧串联一个电感,使得变压器在每个开关周期内都能正常工作。

这种结构能够实现零电流开关和零电压开关,提高了效率和稳定性。

四、双端正激变换器双端正激变换器是一种将输入电压转换为输出电压的常用拓扑结构。

它由两个开关管、两个变压器和输出电感组成。

当交流电输入时,两个开关管交替工作,通过变压器将输入电压转换为所需的输出电压。

这种结构能够实现双端开关,提高了效率和稳定性。

五、双端反激变换器双端反激变换器是在双端正激变换器的基础上进行改进的一种结构。

它通过在两个变压器的次级侧串联一个电感,使得变压器在每个开关周期内都能正常工作。

这种结构能够实现零电流开关和零电压开关,提高了效率和稳定性。

六、桥式变换器桥式变换器是一种将交流电转换为直流电的常用拓扑结构。

它由四个开关管和变压器组成。

当交流电输入时,四个开关管交替工作,通过变压器将输入电压转换为所需的输出电压。

这种结构能够实现全桥开关,提高了效率和稳定性。

七、总结中大功率开关电源常用的变换拓扑结构包括:单端正激变换器、单端反激变换器、双端正激变换器、双端反激变换器和桥式变换器。

每种拓扑结构都有其优点和特点,应根据具体需求选择适合的结构。

在设计中,还需要考虑电路的效率、稳定性和成本等因素,以确保电源的正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018/10/5


输出电压为: Vo/Vi = -d/1-d 这里给出电感的计算公式: L=(Vin-Vout)/((ΔI*f)*(Vout-Vin))
2018/10/5
电源的技术指标


线形电源: 工作在线形放大区内;纹波小;电路比较简单; 效率低,35~60%; 形式比较简单,只能用在降压环境下; 开关电源: 效率高。70~95%; 形式多种多样,升压、降压、升降压等; 适用范围广,40V~480V; 小巧轻便。
从设计的角度设计电源



对噪声抑制的控制电路,采用共模(高频 150K以上,高导磁)还是差模(150K以下, 磁通密度大); 结构空间的选择: 主要考虑体积小、形状不同(怪异)、元 器件摆放位置的差异、散热的需求、耐压安 规的需求。 保护电路:过压、过流、欠压、提示等; 电源的拓扑形式。
2018/10/5
2018/10/5
开关电源的术语
1、电压调整率:输入电压变化时,输出电压的变化率, 即 电压调整率 = ((最高输出电压Voutmax-最低输出 电Voutmin)/ 额定输出电压Vout) x 100% 2、负载调整率:负载电流从半载到额定负载时,输出 电压的变化率,即 负载调整率 = (V满 – V半)/ V额 × 100% 3、效率:电源的输出功率与输入功率的百分比,即 效率 = Pout / Pin × 100%
2018/10/5
电源在产品中占重要角色




电源是各种电子设备中不可或缺的一部分,它 是各种电压和电流的源泉。首先只有电源正常 工作,才能谈上其他设备正常工作。 优秀合格的电源,可以避免其他电子设备的干 扰(保护自己被干扰); 良好的电源在任何设备中都不会干扰其他设备 (保护干扰其它设备); 防止自身的干扰(相互)。

2018/10/5
计算Boost电路L公式

计算L的公式很多,我们列出一个: L=Vin2*Ton/0.2Po=Vin2*Ton/0.2Io*Vo 也有人用: L=Vin*Ton/0.2Ii; 这里也有人取: L=Vin*(Vout-Vin)/(ΔI*f*Vout)
2018/10/5
反转式变换器图
2018/10/5
Boost电路原理图

升压电路(Boost)其主要元件:电压源、压 控开关、二极管、电感、电容和负载电阻。
2018/10/5
Boost电路原理说明
Q导通时,输入电压Vin全部加在电感上,这时IL=IC,IC是线性增 长的,同时在L上储存能量,R全靠C放电; Q截止时,L磁能转换为自感电压,电压的极性与原来电流方向相 同,这时L上的电压为左负右正,L上的自感电压和Vin相加为输出 电压Vo,所以Vo高于Vin,这个高电压经D一部分为R供电,另一 部分为C充电,当在导通时再补给L,这里的D是阻碍C的输出电压 给Q短路烧坏Q,这里的C在设计时要求大点,用CLC滤波,纹波 更小。 这里的:Vo=((Ton+Toff)/Toff)*Vin 又因Ton+Toff=T, 所以:Vo/Vin=1/(1-D)
2018/10/5
从设计的角度设计电源
问题提出:你作为一名电源工程师设计一款手 机充电器(IN:90V,OUT:12V3A),你将 怎样考虑设计此电源呢? (大约思考15分钟的时间,可以讨论) 在能满足技术指标的情况下,选择自己熟悉的 元件(KA3844B、UC2845、TOP221~227 等); 输出负载(留有5%的余量、纹波控制在1%以 下);
所以:Vo=(Ton/T)×Vin=D × Vin
2018/10/5
计算Buck电路L公式 NhomakorabeaBuck的公式很多常用的公式: L=(5(Vin-Vout)*Vout*T)/Vin*Iout 这里的Vin和Iout是输入电压和输出电流的额 定值。 L=((Vin-Vout)*Vout)/(ΔI*f*Vin),这里的ΔI 一般取输出电流的10~30%。
开关电源的分类和结构形式

什么是开关电源? 所谓AC/DC就是交流变换为直流; AC/AC就是交流变交流,即为DC/AC称为 逆变,DC/DC就是直流变交流后又变为直 流; 凡是用半导体功率器件作为开关,将一 种电源形态的电路变换成另一种形态的电 路,叫开关变换,以自动控制稳定输出并 有各种保护环节电路的电源,叫开关电源 (Switching Power Supply)。
电源的基本概念问题

什么是“离线”开关电源? 什么是差模噪声?什么是共模噪声? 我们在设计电源时,输入保险丝是怎样选择的? 浪涌限制一般采用哪些元器件?
2018/10/5
问题的解答1


“离线”开关电源: 直接由交流电源供电,不用体积庞大的 50-60Hz低频隔离变压器,而线形电源通常采 用这种变压器。 差模噪声: 涉及任何两个电源端和输出端之间的高频 电磁噪声的分量,如在火线与中线输入端之间 或在正极与负极输出端之间可以测得 。
开关电源的组成2

PWM控制部分 主要包括:取样、供电、辅助供电、开关
2018/10/5
开关电源的组成3

输出(滤波、整流、稳压):
2018/10/5
2018/10/5
上述两种电源的重要参数



提供能量的范围: U 输出电压、I 输出电流、P 输出功率。 稳定度: 变化量 / 输出量 = 调整率 纹波的大小: (0.5~1)% 综合功能的要求: 保护、过压、过流等;
2018/10/5
开关电源的组成1

输入部分(滤波、整流、稳压):
2018/10/5
2018/10/5
问题的解答2



共模噪声: 两条共电线端一起与大地(参考地)公共端之间出现的电磁噪 声,对于某些医疗器械要求电源线与大地公共端之间地回路电流 是要严格控制的,一般不允许在火线与地之间有超过0.01uF的电 容,这在许多安全标准中都有规定。 保险丝: 为了最佳的保护,电源输入处使用的保险丝应取最小的额定 值,此值应该在最低电源输入电压时能可靠承受浪涌电流和电源 的最大工作电流 ,一般取额定功率0.6-0.7。 浪涌限制 一般用晶闸管、负温度系数的热敏电阻等。

2018/10/5
三种最长用的电源电路

降压电路(Buck)其主要原件为:电压源、 压控开关、二极管、电感、电容和负载电阻。
2018/10/5
Buck电路原理的分析



左边的Vin经S变成矩形波,并由DLC滤波器输 出; 当S导通时,电流经S、L到负载,输出平均直 流电压Vo; 当S截至时,D上负下正,是由L感应的电压所 至,由于没有能量补充,所以电感IL是下降的;
2018/10/5
开关电源设计参数



开关电源的重要参数: Vinmin:电源运行时输入最低电压;
如:AC90~265V 这里Vinmin = 90V 。
Vinman:电源运行时输入最高电压;
如:AC90~265V 这里Vinman = 265V 。
噪声和纹波:附加在直流输出信号上的交流电压和 高频尖峰的峰值,通常为mv级。 占空比:在高频开关电源中,开关元件的导通时间 和变换器的工作之比。 ESR:等效串联电阻,它表示电解电容呈现的电阻 值的总合,ESR越小,性能越好。
2018/10/5
从市场的角度设计电源



电源方案的选择: 采用何种工作方式反激、正激、推挽、半桥、 全桥等; 产品的工作环境: 主要考虑温度、湿度和灰尘等(例如销往 海南的电源和销往黑龙江的就不一样,一个是 注意温度和湿度,另一个要注意温度和干燥防 尘); 产品的保护方面考虑。
2018/10/5
2018/10/5
模块化设计的方法

选择合适的技术和拓扑形式
比较熟悉的原则(包括IC、拓扑方式、控制电路、变压器和骨架);


进行估算
功率的大小、变压器和骨架的大小、选择合理的功率元器件;
设计原理图 搭建简单模块电源中的单元电路: 试验: 确定物理机构
散热片、PCB板、风扇;
对EMI/RFI进行测试(改板和设计的可能) 产品加工生产
2018/10/5
反转式变换器原理说明
定义: 所谓反转式,就是输入电压的正负极性颠倒后输出。 原理是怎样的? 1、当开关管Q导通Ton时,输入的直流电压Vi全部加在电感 L两端,电感上的电压是上正下负,电感中的电流方向是由 上向下流的,在原来的基础上线性增加,此时的电感储存 能量; 2、当开关管Q截止Toff时,电感中的磁能变成电能,电感L两 端相当于一个电源变压器的绕组两端一样向外供电,电感 中的电流方向与原来方向相同,仍由上向下流动,但电压 极性是上负下正,这个负电压,通过二极管D整流和电容 器C2滤波后,输出负的直流电压加在负载RL上。 这里的二极管起到阻碍作用。
相关文档
最新文档