实验2:连续信号的采样和恢复

合集下载

《信号与分析》连续信号的采样与重构实验报告

《信号与分析》连续信号的采样与重构实验报告
ylabel('振幅');
axis([-2.5,1.5,-0.1,1.1]);
t=0:0.01:2*pi;
Y=2*t.*sin(t.^2);
subplot(2,1,1);
plot(t,Y);
title('原信号');
xlabel('时间/s');
ylabel('振幅');
axis([0,2*pi,-12,12]);
grid;
ylabel(‘Cn’);
xlabel(‘角频率/rad*s^(-1)’);
title(‘幅度频谱序列‘);
实验心得:
通过本次实验我学会了利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的认识,学会该软件的操作和使用方法。并且我还熟练掌握了利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
%幅度频谱Cn=2[sin(pi*n*t/T)/(pi*n)
N=10;
n=1:N;
C0=0.1; %计算n=0傅里叶级数C0及直流幅度
%计算n=1到10的傅里叶级数系数
Cn=sin(pi*n/5)/pi./n.*2; %T/t=5
CN=[C0 Cn];
nN=0:N;
subplot(1,2,2);
stem(nN,CN);
《信号与分析》连续信号的采样与重构实验报告
实验目的:1)掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。
(2)掌握利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
(3)学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

信号的采样与恢复

信号的采样与恢复

信号的采样与恢复实验一、任务与目的1. 熟悉信号的采样与恢复的过程。

2. 学习和掌握采样定理。

3. 了解采样频率对信号恢复的影响。

二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。

1. 采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。

这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。

采样定理是连续时间信号与离散时间信号之间的桥梁。

采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。

三角波信号的采样如图4-1-1所示。

图4-1-1信号的采样2. 采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。

所以抽样信号的频谱便是原信号频谱的周期性拓延。

某频带有限信号被采样前后频谱如图4-1-2。

图4-1-2 限带信号采样前后频谱从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。

这样只需要利用截止频率适当的滤波器便可以恢复出原信号。

3. 采样信号的恢复将采样信号恢复成原信号,可以用低通滤波器。

低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。

实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为1802f Hz RCπ=≈图4-1-3 滤波器电路4. 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。

其中的采样保持部分电路由一片CD4052完成。

此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。

三、内容与步骤本实验在脉冲采样与恢复单元完成。

1. 信号的采样(1)使信号发生器第一路输出幅值3V、频率10Hz的三角波信号;第二路输出幅值5V,频率100Hz、占空比50%的脉冲信号。

连续信号的采样和恢复

连续信号的采样和恢复

电 子 科 技 大 学实 验 报 告(二)学生姓名: 学 号: 指导教师:实验室名称:信号与系统实验室 一、 实验项目名称:连续信号的采样和恢复 三、实验原理:实际采样和恢复系统如图3.4-1所示。

可以证明,奈奎斯特采样定理仍然成立。

⊗)x t )(t P T )图3.4-1 实际采样和恢复系统采样脉冲:其中,T s πω2=,2/)2/sin(τωτωτs s k k k T a =,T <<τ。

采样后的信号: ∑∞-∞=-=−→←k s S FS k j X T j X t x )((1)()(ωωω当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。

四、实验目的与任务:()()2()FT T ksk p t P j a k ωπδωω+∞=-∞←−→=-∑目的:1、使学生通过采样保持电路理解采样原理。

2、使学生理解采样信号的恢复。

任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。

五、实验内容:1、采样定理验证2、采样产生频谱交迭的验证六、实验器材(设备、元器件):数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。

七、实验步骤:打开PC机端软件SSP.EXE,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。

【1.采样定理验证】1、连接接口区的“输入信号1”和“输出信号”,如图1所示。

图1 观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz”。

按“F4”键把采样脉冲设为10kHz。

3、点击SSP软件界面上的按钮,观察原始正弦波。

4、按图2的模块连线示意图连接各模块。

自动控制原理--信号的采样与复现

自动控制原理--信号的采样与复现

例1 设 e(t) 1(t) ,试求 e* (t) 的拉氏变换。
解:显然,对于给定的 e(t),其拉式变换
为 E(s) 1 ,根据式(8-6)定义,可得
s
E* (s) e(kT ) ekTs 1 eTs e2Ts k 0
这是一个无穷等比级数,公比为eTs,求
级数和可得闭合形式
E*(s)
例3 xt Asin 0t ,求x t 和 X s 。
解:由拉式变换的一般公式,可得
L[x(t)] xs A0
s 2 02
所以 ,x(s)有两个极点 。t 0时 ,xt 0 ,
由式(8-7)得
X s
A0 T
s
1
jks 2
02
A0 T
s2
1 02
s
1
js 2
02
s
1
js 2
jT
e2
sin T
T
sin(T
/
2)
e
jT
2
T 2 2
T / 2
• 零阶保持器的频率特性如图所示
Gh j
Gh j
T
0
s
2s
3s
2
Gh j
3
• 零阶除了允许主频谱分量通过之外,还 允许一部分附加高频分量通过。因此复 现出的信号与原信号是有差别的。
4、小结
• 采样控制系统的结构; • 计算机控制的采样系统的优点; • 采样过程和采样定理; • 零阶保持器的传函和特性。
(4)随机采样:采样是随机进行的,没有固定的规律
1、信号的采样过程
et
e* t
e* t
et T e*t
0
0
t

信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。

2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。

3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。

4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。

可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。

5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。

6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。

7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。

8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。

它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。

抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。

一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。

抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。

抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。

具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。

这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。

抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。

它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。

这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。

如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。

抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。

当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。

三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。

采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。

例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。

信号分析实验报告总结

信号分析实验报告总结

一、实验目的本次信号分析实验旨在通过MATLAB软件,对连续信号进行采样、重建、频谱分析等操作,加深对信号处理基本理论和方法的理解,掌握信号的时域、频域分析技巧,并学会使用MATLAB进行信号处理实验。

二、实验内容1. 连续信号采样与重建(1)实验内容:以正弦信号为例,验证采样定理,分析采样频率与信号恢复质量的关系。

(2)实验步骤:a. 定义连续信号y(t) = sin(2π×24t) + sin(2π×20t),包含12Hz和20Hz 两个等幅度分量。

b. 分别以1/4、1/2、1/3Nyquist频率对信号进行采样,其中Nyquist频率为最高信号频率的两倍。

c. 利用MATLAB的插值函数对采样信号进行重建,比较不同采样频率下的信号恢复质量。

(3)实验结果与分析:a. 当采样频率低于Nyquist频率时,重建信号出现失真,频率混叠现象明显。

b. 当采样频率等于Nyquist频率时,重建信号基本恢复原信号,失真较小。

c. 当采样频率高于Nyquist频率时,重建信号质量进一步提高,失真更小。

2. 离散信号频谱分析(1)实验内容:分析不同加窗长度对信号频谱的影响,理解频率分辨率的概念。

(2)实验步骤:a. 定义离散信号x[n],计算其频谱。

b. 分别采用16、60、120点窗口进行信号截取,计算其频谱。

c. 比较不同窗口长度对频谱的影响。

(3)实验结果与分析:a. 随着窗口长度的增加,频谱分辨率降低,频率混叠现象减弱。

b. 频率分辨率与窗口长度成反比,窗口长度越长,频率分辨率越高。

3. 调频信号分析(1)实验内容:搭建调频通信系统,分析调频信号,验证调频解调原理。

(2)实验步骤:a. 搭建调频通信系统,包括信号源、调制器、解调器等模块。

b. 产生调频信号,并对其进行解调。

c. 分析调频信号的频谱,验证调频解调原理。

(3)实验结果与分析:a. 调频信号具有线性调频特性,其频谱为连续谱。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告抽样定理与信号恢复实验报告引言:信号恢复是数字信号处理中的一个重要问题,其目标是通过采样和重构技术来恢复原始信号。

在实际应用中,由于各种原因,我们往往无法直接获得完整的信号,而只能通过采样来获取信号的部分信息。

因此,如何有效地从有限的采样数据中恢复原始信号成为一个关键问题。

本实验旨在通过抽样定理来解决信号恢复问题,并通过实验验证其有效性。

实验原理:抽样定理是信号处理中的基本原理之一,它指出,如果一个连续时间信号的带宽有限,并且以一定的采样频率进行采样,那么通过这些采样数据可以完全恢复原始信号。

具体而言,抽样定理要求采样频率至少是信号带宽的两倍,即Nyquist采样定理。

实验步骤:1. 准备信号源:我们选择了一个正弦信号作为原始信号源,其频率为f0,幅度为A。

通过函数生成器产生该信号,并连接到示波器上。

2. 采样:根据抽样定理,我们选择了采样频率为2f0,即原始信号频率的两倍。

通过示波器的采样功能,将信号进行采样,并记录采样数据。

3. 信号恢复:根据采样数据,我们使用重构算法对信号进行恢复。

在本实验中,我们选择了最常用的插值法进行信号恢复。

通过对采样数据进行插值处理,可以得到连续时间的信号。

4. 重构信号验证:将恢复的信号与原始信号进行对比,验证重构的准确性。

通过示波器将原始信号和恢复信号进行叠加显示,观察它们的相似程度。

实验结果与分析:在本实验中,我们选择了一个频率为1kHz的正弦信号作为原始信号源,采样频率选择为2kHz。

通过示波器进行采样,并得到了采样数据。

接下来,我们使用插值法对采样数据进行信号恢复,并将恢复的信号与原始信号进行对比。

通过观察示波器显示的结果,我们可以明显看到恢复的信号与原始信号非常接近,几乎无法区分它们之间的差异。

这表明,通过抽样定理和插值法,我们成功地从有限的采样数据中恢复了原始信号。

结论:本实验通过采样定理与信号恢复技术,成功地实现了从有限采样数据中恢复原始信号的目标。

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告广州大学学生实验报告开课学院及实验室:电子信息楼日期:2014年6月08日物理与电子学院年级、专业、班姓名学号工程学院实验课程信号与系统实验成绩名称实验项目指导信号的抽样与恢复名称老师一、实验目的(1)了解电信号的采样的方法与过程以及信号的恢复方法(2)验证抽样定理二、实验仪器(1)20MHz的双踪示波器一台(2)信号与系统的实验箱一套三、实验原理(1)离散时间信号可以从离散信号获得,也可以从连续时间信号抽样而得。

抽样信号fp(t)可以看成连续信号f(t)和一组开关函数s(t)的乘积。

p(t)是一组周期性窄脉冲,见图。

Ts为抽样周期,其倒数称为抽样频率。

(2)抽样信号在一定条件下可以恢复成原信号,只要用一截止频率等于原信号的频谱中最高频率fn的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号的频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

(3)还原信号得以恢复的条件是f>2fm,其中fs为抽样频率,fm为原信号的最高频率。

s(4)为了实现对连续信号的抽样和抽样信号的复原,选用足够高的抽样频率外,采用前置低通滤波器来防止信号的频谱宽而造成抽样信号频谱的混叠,选用的信号频带较窄,即可恢复原信号。

四、实验内容及步骤(1)先将函数信号的发生器产生的正弦波或三角波送入抽样器,即用跳线将函数信号发生器的输出端与本实验模块的输入端连接。

(被抽样的连续信号,最好选为三角波,并选择三角波的频率为80Hz,幅度为2V左右)(2)再将抽样频率分别选为1200Hz,1600Hz,2400Hz,5600Hz对三角波或正弦波抽样,观察经抽样后的正弦波或三角波信号以及复原后的信号,比较失真的情况(为便于观察,被抽样信号的频率一般选择50~400Hz的范围,而抽样频率纪委抽样脉冲的频率,抽样脉冲的频率则是通过电位器来调节的)(3)若使用外接信号源,应将外接信号源的地与本实验箱的地相连,并将信号源的输出端接入本实验模块的输入端。

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告实验报告:连续信号的采样与恢复一、实验目的:1.了解连续信号的采样原理和采样定理;2.理解采样后信号的频谱特性;3.掌握信号恢复的方法。

二、实验原理:采样定理:对于频谱带宽有限的信号,为了保证采样信号不发生混叠现象,必须满足采样频率大于信号频谱的最高分量频率的两倍。

三、实验器材:1.信号发生器;2.示波器;3.编码器;4.数字示波器;5.连接线。

四、实验步骤及结果:1.首先使用信号发生器产生频率为1kHz、幅值为5V的正弦信号作为待采样信号;2.将信号发生器输出的信号连接至示波器进行观察;3.将示波器输出信号连接至编码器进行信号的采样;4.将编码器的输出信号连接至数字示波器,观察离散采样值;5.对离散采样值进行信号恢复,使用零阶保持、线性插值和兰特尔-曼豪姆插值三种恢复方法;6.将恢复后的信号与原信号进行比较,观察恢复的效果。

实验结果:在示波器上观察到频率为1kHz、幅值为5V的正弦信号。

数字示波器上显示出了一系列离散的采样值。

通过零阶保持、线性插值和兰特尔-曼豪姆插值三种方法进行信号恢复后,观察到恢复的信号与原信号基本一致。

五、实验分析:1.信号恢复的效果受到采样频率和采样幅值的影响,采样频率过低或采样幅值过小都会造成信号失真;2.零阶保持方法可以保持离散信号的幅值不变,但是无法恢复信号的高频分量;3.线性插值可以恢复少量的高频分量,但是如果信号存在高频噪声或非线性失真,会导致恢复后信号的质量下降;4.兰特尔-曼豪姆插值是一种高阶插值方法,能够更好地恢复信号的高频分量,但是计算量较大。

六、实验总结:通过本次实验,我了解了连续信号的采样原理和恢复方法,掌握了采样频率的要求和恢复过程中常用的插值方法。

实验中,我观察到了采样信号和恢复信号的特性,并进行了比较分析。

实验结果表明,在合适的采样条件和恢复方法下,可以有效地采样和恢复信号。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统实验四-信号的采样及恢复

信号与系统实验四-信号的采样及恢复

实验四 信号的采样及恢复一、实验目的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进行抽样和恢复的基本方法;3、通过实验验证抽样定理。

二、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。

(1))102cos()(1t t x ⨯=π(2))502cos()(2t t x ⨯=π (3))1002cos()(3t t x ⨯=π2、产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。

3、对连续信号)4cos()(t t x π=进行抽样以得到离散序列,并进行重建。

(1)生成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。

(2)以10=sam f Hz 对信号进行抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利用抽样内插函数)/1()(sam r f T T t Sa t h =⎪⎭⎫⎝⎛=π恢复连续信号,画出重建信号)(t x r 的波形。

)(t x 与)(t x r 是否相同,为什么? (3)将抽样频率改为3=sam f Hz ,重做(2)。

4、利用MATLAB 编程实现采样函数Sa 的采样与重构。

三、实验仪器及环境计算机1台,MATLAB7.0软件。

四、实验原理对连续时间信号进行抽样可获得离散时间信号,其原理如图8-1。

采样信号)()()(t s t f t f s ∙=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。

其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f ππω22==称为抽样角频率。

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

实验六、连续信号得采样与恢复一、实验目得1.加深理解采样对信号得时域与频域特性得影响;2.加深对采样定理得理解与掌握,以及对信号恢复得必要性;3.掌握对连续信号在时域得采样与重构得方法。

二、实验原理(1)信号得采样ﻫ信号得采样原理图如下图所示,其数学模型表示为:=ﻫ其中得f(t)为原始信号,为理想得开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到得信号称为采样信号。

由此可见,采样信号在时域得表示为无穷多冲激函数得线性组合,其权值为原始信号在对应采样时刻得定义值。

ﻫ令原始信号f(t)得傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 得傅立叶变换Fs(jw)=FT(fs(t))=。

由此可见,采样信号fs(t)得频谱就就是将原始信号f(t)得频谱在频率轴上以采样角频率ws为周期进行周期延拓后得结果(幅度为原频谱得1/Ts)。

如果原始信号为有限带宽得信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。

(2)信号得重构ﻫ设信号f(t)被采样后形成得采样信号为fs(t),信号得重构就是指由fs(t)经过内插处理后,恢复出原来得信号f(t)得过程。

因此又称为信号恢复。

ﻫ由前面得介绍可知,在采样频率w s≥2wm得条件下,采样信号得频谱Fs(jw)就是以w s为周期得谱线。

选择一个理想低通滤波器,使其频率特性H(jw)满足:H(j w)=式中得wc称为滤波器得截止频率,满足wm≤wc≤ws/2。

将采样信号通过该理想低通滤波器,输出信号得频谱将与原信号得频谱相同。

因此,经过理想滤波器还原得到得信号即为原信号本身。

信号重构得原理图见下图。

通过以上分析,得到如下得时域采样定理:一个带宽为w m得带限信号f(t),可唯一地由它得均匀取样信号fs(n Ts)确定,其中,取样间隔Ts<π/wm,该取样间隔又称为奈奎斯特(Nyquist)间隔。

信号取样与恢复实验报告

信号取样与恢复实验报告

实验四信号取样与恢复一、实验目的1.了解模拟信号取样及恢复的基本方法。

2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。

3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。

4.熟悉DDS-3X25虚拟信号发生器的使用方法。

二、实验内容1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。

2.有混叠条件下正弦信号的取样与恢复测试分析。

3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。

三、实验仪器1.信号与系统实验硬件平台一台2.信号取样与恢复实验电路板一块3.DSO-3064虚拟示波器一台4.DDS-3X25虚拟信号发生器二台5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台四、实验原理1. 信号取样信号取样与恢复实验电路板,如图4.1所示。

该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。

)()()(t s t f t f s =图4.1 信号取样与恢复实验电路板电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。

在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。

取样信号()s f t 可用(4-1)式来描述(4-1)式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则()0s t =。

电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。

其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告
抽样频率和抽样脉冲占空比可调,恢复滤波器载止频率可调;
四、实验报告要求
1. 整理数据,正确填写表格,总结离散信号频谱的特点;
2. 整理在不同抽样频率(三种频率)情况下,F(t)与F′(t)波形,比较后得出结论;
3. 比较F(t)分别为正弦波和三角形,其Fs(t)的频谱特点;
4.用仿真软件分析4KHZ三角波抽样频率取值和恢复滤波器载止频率取值;
图5-5 信号抽样流程图
三、实验内容
1. 观察抽样信号波形。
调整信号源,使DDS1输出1KHZ的三角波,调节电位器1W1,使输出信号幅度为1V;
② 连接DDS1与1P01,输入抽样原始信号;
改变抽样脉冲的频率,用示波器观察1TP03(Fs(t))的波形,此时需把拨动开关1K1拨到“空”位置进行观察;
图5-1 连续信号抽样过程
将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图5-2所示。
2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱
它包含了原信号频谱以及重复周期为fs(f s = 、幅度按 Sa( )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。
为了防止原信号的频带过宽而造成抽样后频谱混迭,实验中常采用前置低通滤波器滤除高频分量,如图5-5所示。若实验中选用原信号频带较窄,则不必设置前置低通滤波器。
本实验采用有源低通滤波器,如图4-6所示。若给定截止频率fc,并取Q= (为避免幅频特性出现峰值),R1=R2=R,则:
C1= (4-1)
C2= (4-2)
以三角波被矩形脉冲抽样为例。三角波的频谱:
F(jω)=
抽样信号的频谱:
Fs(jω)=

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。

通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。

而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。

本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。

一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。

二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。

2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。

三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。

将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。

将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。

2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。

然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。

最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。

3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。

比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。

根据实验结果,验证信号抽样与恢复的有效性。

四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。

信号的采集与恢复

信号的采集与恢复

实验报告课程名称: 信号分析与处理指导老师: 欢老师 成绩:__________________ 实验名称: 信号的采集与恢复 实验类型: 基础实验 同组学生:第一次实验 信号的采集与恢复一、实验目的1.1了解信号的采样方法与过程以及信号恢复的方法; 1.2验证采样定理。

二、实验原理2.1信号采集与时域采样定理对一个连续时域信号的采集,理论上是用一系列冲激函数与信号做乘积,实际中常用占空比尽可能小的周期矩形脉冲作为开关函数来代替冲激函数。

采样信号的频谱,是由原来信号的频谱进行幅值尺度变换并在频率轴(横轴)上做平移延拓组成的,频率轴上平移延拓的“周期”为开关函数的频率值。

具体推导如下:∑∞-∞=-=n sns n F S F )()(ωωω其中,)(ωs F 是采样信号)(t f s的频谱。

n S 为开关函数s (t )的傅里叶级数的傅里叶系数,)(ωF 为连续信号的频谱。

若理想开关函数可表示为周期为T s 的冲激函数序列∑∞-∞=-=n snT t t s )()(δ于是)()()()()(sn ss nT t nT f t s t f t f -==∑∞-∞=δ∑∞-∞=-=n sss n F T F )(1)(ωωω一个典型的例子:矩形脉冲采样信号s(t),作为理想冲激串的替代。

假设脉冲宽度τ,则s(t)的傅里叶变换)2(Sa τωτs s n n T S ⋅=,于是)()2(Sa )(s n s s s n F n T F ωωτωτω-⋅=∑∞-∞= 装订线平移后的频率幅度按Sa(x )规律衰减。

采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

显然,对于开关函数,若它的频率为f s ,信号的最大频率为f m ,那么为了采样后采样信号的频谱不发生混叠,存在时域采样定理:f s ≥f m (时域采样定理,即香农定理)。

而对于频谱不受限的信号,往往需要先用低通滤波器滤除高频分量,使它近似成为频谱受限的信号,在进行采样。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

实验一 信号的抽样与恢复(抽样定理)一、实验目的1.了解信号的抽样方法与过程以及信号恢复的方法。

2.验证抽样定理。

二、实验设备1.Dais -XTB 信号与系统实验箱 一台 2.双踪示波器 一台 3.任意函数发生器 一台三、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号()s x t 可以看成连续信号()x t 和一组开关函数()s t 的乘积。

()s t 是一组周期性窄脉冲,如图1-1,s T 称为抽样周期,其倒数1/s s f T =称抽样频率。

图1-1 矩形抽样信号对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按sin x /x 规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2.在一定条件下,从抽样信号可以恢复原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

3.原信号得以恢复的条件是f s ≥2f max ,f s 为抽样频率,f max 为原信号的最高频率。

当f s <2 f max 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此恢复后的信号失真还是难免的。

实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种抽样频率对连续信号进行抽样,以验证抽样定理。

4.连续信号的抽样和抽样信号的复原原理框图如图1-2所示。

除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混迭,但这也会造成失真。

连续信号的采样与重构实验报告

连续信号的采样与重构实验报告

信号与系统上机实验报告学院:电子信息学院班级:08011202姓名:王喜成学号:2012301794上机实验 5 连续信号的采样与重构一、实验目的(1)验证采样定理;(2)熟悉信号的抽样与恢复过程;(3)通过实验观察欠采样时信号频域的混迭现象;(4)掌握采样前后信号频域的变化,加深对采样定理的理解;(5)掌握采样频域的确定方法。

二、实验内容和原理信号的采样与恢复示意图如图2.5-1所示图2.5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。

一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率。

当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。

f (t )的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF 。

观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图2.5-2所示。

图2.5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A转换环节实现数/模转换,得到连续时间信号;低通滤波器的作f。

用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t三、涉及的MATLAB函数subplot(2,1,1)xlabel('时间, msec');ylabel('幅值');title('连续时间信号x_{a}(t)');axis([0 1 -1.2 1.2])stem(k,xs);grid;linspace(-0.5,1.5,500)';ones(size(n)freqs(2,[1 2 1],wa);plot(wa/(2*pi),abs(ha)buttord(Wp, Ws, 0.5, 30,'s');[Yz, w] = freqz(y, 1, 512);M= input('欠采样因子= ');length(nn1)y = interp(x,L)[b,a] = butter(N, Wn, 's');get(gfp,'units');set(gfp,'position',[100 100 400 300]);fx1=fft(xs1)abs(fx2(n2+1))如有帮助,欢迎下载支持。

实验信号的抽样与恢复

实验信号的抽样与恢复

实验一信号的抽样与恢复(PAM)一、实验目的1、验证抽样定理2、观察了解PAM信号形成的过程;二、实验原理由于模拟通信的有效性和可靠性很低,不能满足实际通信的需要,现在普遍采用数字通信,可大大提高可靠性和有效性。

但是实际的信号一般都是模拟信号,所以模拟信号数字化是实现数字通信的基础,而模数转化的第一步就是信号的抽样。

我们的目的就是用离散值来代替模拟信号,以便于在新道中传输,而且由这些离散值能准确无误地恢复原来的模拟信号。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息,并且从抽样信号中可以无失真地恢复出原始信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

数字通信系统是以此定理作为理论基础。

抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。

抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。

抽样信号的时域与频域变化过程与原理框图如下。

抽样定理实验原理框图抽样:一个频带限制在(0—Fm)范围内的信号f(t),如果用频率为fs>=2fm 的脉冲序列对其进行等间隔抽样,则抽样信号能完全确定原信号f(t),这也就是奈奎斯特定理。

此外实际中还有一类带通信号,频带限制在(f1—f2)范围内,此时抽样频率最小为fs=2B+2(f2-nB)/n,其中n为小于f2/B的最大整数。

上面的定理也可以从频谱的角度来说明。

抽样信号为s(t)=f(t) (t)f(t) 相乘s(t)冲激序列2 恢复由频谱图标显示的频谱图可知通过适当的滤波器既可恢复原信号。

三、实验步骤1 根据信号的抽样与恢复定理,用Systemview软件建立仿真电路如下:2 元件参数的配置Token 4,5,6,7 观察点—分析窗Token 1 乘法器Token 0 正弦信号(1,频率100Hz)Token 3低通滤波器(极点数=3,截止频率=100Hz)Token 2信号源(脉冲信号,1,频率?Hz,脉冲宽度?)500 10-63 运行时间设置运行时间= 2.047s 采样频率=1000Hz 102.3e-34 运行系统在Systemview系统窗内运行该系统后,转到分析窗观察Token 4,5,6,7三个点的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电 子 科 技 大 学
实 验 报 告(二)
学生姓名: 学 号: 指导教师: 一、 实验室名称:信号与系统实验室 二、 实验项目名称:连续信号的采样和恢复 三、实验原理:
实际采样和恢复系统如图3.4-1所示。

可以证明,奈奎斯特采样定理仍然成立。


)
x t )
(t P T )
图3.4-1 实际采样和恢复系统
采样脉冲:
其中,T
s π
ω2=
,2/)2/sin(τωτωτs s k k k T a =,T <<τ。

采样后的信号: ∑∞
-∞
=-=−→←
k s S F
S k j X T j X t x )((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。

()()2()
F
T
T k
s
k p t P j a k ωπδωω+∞
=-∞
←−→=-∑
四、实验目的与任务:
目的:1、使学生通过采样保持电路理解采样原理。

2、使学生理解采样信号的恢复。

任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。

五、实验内容:
1、采样定理验证
2、采样产生频谱交迭的验证
六、实验器材(设备、元器件):
数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。

七、实验步骤:
打开PC机端软件SSP.EXE,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。

【1.采样定理验证】
1、连接接口区的“输入信号1”和“输出信号”,如图1所示。

图1 观察原始信号的连线示意图
2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz”。

按“F4”键把采样脉冲设为10kHz。

3、点击SSP软件界面上的按钮,观察原始正弦波。

4、按图2的模块连线示意图连接各模块。

图2观察采样波形的模块连线示意图
5、点击SSP软件界面上的按钮,观察采样后的波形。

6、用截止频率为3kHz的低通滤波器U11恢复采样后的信号。

按图3的模块连线示意图连接各模块。

图3观察恢复波形的模块连线示意图
7、点击SSP软件界面上的按钮,观察恢复后的波形。

【2.采样产生频谱交迭的验证】
重复实验内容(一)的实验步骤1~7;注意在第2步中正弦波的频率仍设为“2.6kHz”后,按“F4”键把采样脉冲频率设为“5kHz”;在第6步中用3kHz 的恢复滤波器(U11)。

【思考问题】
(1)画出实验内容(一)的原理方框图和各信号频谱,说明为什么实验内容(一)
的输出信号恢复了输入信号?
(2)画出实验内容(二)的方框图,解释与实验内容(一)有何不同之处? (3)如果改变实验内容(二)的3kHz 恢复低通滤波器为截止频率为5kHz 的低通滤波器(U22),系统的输出信号有何变化?
八、实验数据及结果分析: 【1.采样定理验证】
【2.采样产生频谱交迭的验证】
【3.结果分析】
1、 时
2、

3、 时
N
s ωω>>N s ωω=N s ωω<
九、实验结论:
1.当采样频率大于信号最高频率两倍,可以用低通滤波器)
(ωj
H
r
由采样后的信号)(t
x
S
恢复原始信号)(t x。

2. 当采样频率介于信号最高频率一倍与两倍之间,用低通滤波器
)
(ωj H
r 将采样后的信号)(t
x
S
恢复,会使原始信号)(t x产生频谱交迭。

3.合理设置采样脉冲对恢复信号很重要
十、总结及心得体会:
1.当采样频率大于信号最高频率两倍,可以用低通滤波器由采样后
的信号)(t
x
S
恢复原始信号)(t x。

当采样频率介于信号最高频率一倍与两倍之间,用低通滤波器对信号)(t
x
S
恢复时,会产生频谱交迭。

2.实际问题中,合理选择采样频率很重要。

3. 通过对信号的采样与恢复加深了对采样定理的理解,验证了采样定理的正确性
4. 实际电路实验对理论课的学习有很大帮助。

十一、对本实验过程及方法、手段的改进建议:
1、产生一个5KHz的原始正弦波,并用5KHz的采样脉冲对其采样,然后用滤波器对其恢复,观察能否恢复。

2、将正弦波改成其他波形,如方波,上述频率数据不变,步骤相同,观察实验结果。

报告评分:
指导教师签字:。

相关文档
最新文档