离散数学第二章

合集下载

离散数学第二章关系

离散数学第二章关系

例9 .设A={1,2,3,4} ,B={2,4,6,8,10} 。 R={(1,2),(2,4),(3,6)}。
则 (R) = {1,2,3}A , (R) = {2,4,6}B 。
二.关系的一些关联性质 17
离散数学
定理1. 设R1,R2 A×B是两个关系。若 R1 R2 ,则
(1)保序性: (R1) (R2) ; (2)保序性: (R1) (R2) ;
注:笛卡尔(1596-1650 ),法国数学家, 1637年发表《方法论》之 一《几何学》,首次提出坐标及变量概念。这里是其概念的推广。
定义2. • 二个集合A,B的(二维或二重)叉积定义为 A×B ={(a, b): a A bB} ; •其元素——二元组(a, b)通常称为序偶或偶对(ordered
故 (R1)∩ (R2) = {1,2 }
21
离散数学
所以 (R1)∩ (R2) (R1 ∩ R2) 。
元素aA和集合A1A在关系R A×B下的关联集 (1)a的R-关联集(R-relative set of a):
R(a)={b : bBaRb }B ;
(2) A1的R-关联集(R-relative set of A1): R(A1)={b : bB (aA1)(aRb) }B 。
•当A=B时,即RA×A,则称R是A上的一个二元关 系。
例1 . 设A是西安交通大学全体同学组成的集合。 11
离散数学
R={(a,b) : aAbAa与b是同乡}A×A 于是,R是西安交通大学同学之间的同乡关系。
例2 . 设A是某一大家庭。
R1 = {(a,b) : aAbAa是b的父亲或母亲}A×A R2 = {(a,b) : aAbAa是b的哥哥或姐姐}A×A R3 = {(a,b) : aAbAa是b的丈夫或妻子}A×A 于是,

离散数学第二章

离散数学第二章

P (t1 , t2 , , tn ) 是原子公式。
32
§2.1.3 谓词逻辑公式(公式 )
定义 谓词公式由下述各条规定组成: (1)原子公式是谓词公式。 (2)若A是谓词公式,则﹁ A也是谓词公式。 (3)若A和B是谓词公式,则A ∨ B,A ∧ B,A → B, 也是谓词公式。
22
2.存在量词
注意:1.在存在量词 的作用下,x不再起变量的作用, 存在量词也“约束”了x的变量作用。 注意:2.在存在量词作用下,命题中的特性谓词与命题 变元之间必须采用联结词合取,而不能用条件。 注意:3.命题的表示形式与个体域密切相关。 例:有些狗是聪明的。 若个体域为所有狗的集合,则该命题表示为:
这种“描述主语性质的谓语结构的抽象形式或描述主语所 涉及对象之间的关系的抽象形式”就是谓词。语句中的主 语称为个体。 在原子命题中引进谓词和个体的概念,这种以命题中的谓 词为基础的分析研究,称为谓词逻辑(或称谓词演算)。
7


§2.1.1 谓词与个体

在谓词逻辑中,将原子命题分解为谓词与个体两部分。
F (a1 , a2 , , an )
例如, T(a):a是教师。 D(3,2):3大于2。 C(武汉,北京,广州):武汉位于北 京和 广州之间。 注意顺序
9
§2.1.1 谓词与个体
在一个谓词中,个体是可以变化的,如 “是大学生” 中个体是可以变化的,可以是“张华是大学生” 也可
以是“何勇是大学生” ,等等。
31
§2.1.3 谓词逻辑公式(公式 )
定义( 项 ) (1)个体常量符是项;
(2)个体变量符是项;
(3)设f是n元函数符,
t1 , t2 , , tn 为项,则

离散数学第2章 命题逻辑等值演算

离散数学第2章 命题逻辑等值演算
6/2/2013 9:02 PM Discrete Math. , Chen Chen 15
例2.6
CHAPTER TWO
例2.6 在某次研讨会的休息时间,3名与会者根据王教授的口音 对他是哪个省市的人进行了判断: 甲说王教授不是苏州人,是上海人。
乙说王教授不是上海人,是苏州人。 丙说王教授不是上海人,也不是杭州人。 听完3人的判断,王教授笑着说,他们3人中有一人说得全对, 有一人说对了一半,有一人说得全不对。试用逻辑演算法分析 王教授到底是哪里的人? 解: 设命题 p, q, r分别表示 : 王教授是苏州、上海、杭州人。 则p, q, r中必有一个真命题,两个假命题。要通过逻辑演算将 真命题找出来。 设: 甲的判断为: A1= ┐p∧q; 乙的判断为:A2= p∧┐q; 丙的 判断为:A3= ┐q∧r。
等值式模式
CHAPTER TWO
当命题公式中变项较多时,用上述方法判断两个公式是否 等值计算量很大。为此,人们将一组经检验为正确的等值式作 为等值式模式,通过公式间的等值演算来判断两公式是否等值。 常用的等值式模式如下:
1.双重否定律:A⇔ ┐(┐A) 2.幂等律:A⇔A∨A, A⇔A∧A
3.交换律: A∨B⇔B∨A, A∧B⇔B∧A 4.结合律: (A∨B)∨C⇔A∨(B∨C), (A∧B)∧C⇔A∧(B∧C) 5.分配律:A∨(B∧C)⇔(A∨B)∧(A∨C) (∨对∧的分配律)
⇔ ┐(┐p∨q)∨r (蕴含等值式,置换规则) ⇔ (p∧┐q)∨r (德摩根律,置换规则)
⇔(p∨r)∧(┐q∨r)(分配律,置换规则) 为简便起见, 以后凡用到置换规则时, 均不必标出。
6/2/2013 9:02 PM Discrete Math. , Chen Chen 10

离散数学第二章谓词逻辑

离散数学第二章谓词逻辑
一般来说,当多个量词同时出现时, 它们的顺序不能随意调换。
*
第二章 谓 词 逻 辑 命题函数与量词
当个体域为有限集合时,如D={a1, a2 …, an},对任意谓词A(x),有 xA(x)A(a1)∧A(a2)∧…∧A(an ) xA(x)A(a1)∨A(a2)∨…∨A(an )
特性谓词常作合取项,如x(M(x)∧ G(x))。
第二章 谓 词 逻 辑
命题函数与量词
*
第二章 谓 词 逻 辑 2.2 命题函数与量词
例如:在实数域上用H(x,y)表示x+y=5,则命题“对于任意的x,都存在y使得x+y=5”可符号化为:xyH(x,y),其真值为1。若调换量词顺序后为: yxH(x,y) , 其真值为0。
*
第二章 谓 词 逻 辑 2.2 命题函数与量词
*
令S(x): x吸烟。则符号化为:
(x)(M(x)∧S(x))
令D(x): x登上过木星。则符号化为:
令Q(x):x是清华大学的学生。H(x):x是高
第二章 谓 词 逻 辑 2.2 命题函数与量词
*
小结:本节介绍了n元谓词、命题函数、全称量词和存在量词等概念。重点掌握全称量词和存在量词及量化命题的符号化。
添加标题
x(M(x) F(x)).
添加标题
第二章 谓 词 逻 辑
添加标题
命题函数与量词
*
当个体域为全体学生的集合时:
01
令P(x): x要参加考试。则(2)符号化为
02
xP(x).
03
当个体域为全总个体域时:
04
令S(x): x是学生。则(2)符号化为
05
x(S(x) P(x)).

离散数学第二章

离散数学第二章
怎么符号化? 怎么符号化?
5
3 量词的有关概念
1. 全称量词: “所有的”,“任何一个”,“每 全称量词: 所有的” 任何一个” 一个” 凡是” 一切” 一个”,“凡是”,“一切”表示个体域中每一 表示,称为全称量词。 用符号“ 个,用符号“∀”表示,称为全称量词。
如,所有的人都要呼吸。 所有的人都要呼吸。
16
常用一阶逻辑中的基本等值式
1. 有限个体域 有限个体域D={a1, a2, … ,an }中消去量词 中消去量词 等值式: 等值式
1) ∀xA( x) ⇔ A(a1 ) ∧ A(a2 ) ∧⋯∧ A(an );
2) ∃xA( x ) ⇔ A(a1 ) ∨ A(a2 ) ∨ ⋯ ∨ A(an ).
10
指导变项( 指导变项(元)等概念
在合式公式∀ 和 在合式公式∀xA和∃xA中,称x是指导变元,称A为相应量词 中 是指导变元, 为相应量词 作用域或辖域。 的作用域或辖域。 在辖域中x的出现称为 在公式 中的约束出现 在辖域中 的出现称为x在公式 中的约束出现; 的出现称为 在公式A中的约束出现; 公式A中不是约束出现的其它变元称为该变元的自由出现. 中不是约束出现的其它变元称为该变元的自由出现 公式 中不是约束出现的其它变元称为该变元的自由出现 例1 指出下列公式中的指导变项、量词的辖域、个体变项的 指出下列公式中的指导变项、量词的辖域、 自由出现和约束出现. 自由出现和约束出现 1) 2) ∀xF(x,y)→∃x(G(x) ∧¬ ∀zP(x,z)) → ∀x ∃ y(A(x,y)→∃z(B(x) ∧P(x,z))) →
永假式 如果 在任何解释下均为假 称A为矛盾 如果A在任何解释下均为假 解释下均为假,称 为 或称永假式 式(或称永假式 ; 或称永假式); 如果存在一个解释使A为真 则称A为 为真,则称 可满足式 如果存在一个解释使 为真 则称 为 可满足式; 可满足式;

离散数学-第二章-谓词逻辑-变元的约束

离散数学-第二章-谓词逻辑-变元的约束
例 I(x):表示x是整数,N(x):表示x是自然数, 假设个体域E是自然数集合,公式I(x)与N(x)在E上是 等价的。 而公式N(x)→I(x) 与N(x)∨I(x)就是与个体域无 关的等价的公式,即 N(x)→I(x)N(x)∨I(x)。
河南工业大学离散数学课程组
四、谓词公式的蕴含式定义
约束 变元
自由
(1)(x)(y)(P(x, y)∨Q(y, z))∧(x)R(x,y)
变元
指导 变元
(x)的 (y)的 指导 (x)的 辖域 辖域 变元 辖域
P(x, y)、Q(y, z)中的x, y为约束变元,z为自由变元, R(x,y)中的x为约束变元,但y为自由变元。
河南工业大学离散数学课程组
例(x)(A(x)∨B(x,y))∨C(x)∨ D(x,w) 换名: (y)(A(y)∨B(y,y))∨C(x)∨ D(x,w) 错
(w)(A(w)∨B(w,y))∨C(x)∨ D(x,w) 对 (z)(A(z)∨B(z,y))∨C(x)∨ D(x,w) 对
代入: (x)(A(x)∨B(x,y))∨C(y)∨ D(y,w) 错 (x)(A(x)∨B(x,y))∨C(w)∨ D(w,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(x,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(u,w) 对
(x)G(x) =
1, 0,
x D,G(x) = 1 x0 D,G(x0 ) = 0
(x)G(x) =
1, 0,
x0 D,G(x0 ) = 1 x D,G(x) = 0
河南工业大学离散数学课程组

对以下公式赋值后求真值。
(x)(P(x)→Q(f(x),a)) (x)(P(x)∧Q(x,a))

离散数学第二章 命题逻辑等值演算

离散数学第二章 命题逻辑等值演算

范式存在定理
定理2.3 任何命题公式都存在着与之等值的析取范式与合 定理 取范式. 取范式. 求公式 的范式的步骤 的范式的步骤: 证 求公式A的范式的步骤: (1) 消去 中的→, ↔ 消去A中的 中的→ A→B⇔¬ ∨B ⇔¬A∨ → ⇔¬ A↔B⇔(¬A∨B)∧(A∨¬ ∨¬B) ↔ ⇔ ¬ ∨ ∧ ∨¬ (2) 否定联结词¬的内移或消去 否定联结词¬ ¬ ¬A⇔ A ⇔ ⇔¬A∧¬ ¬(A∨B)⇔¬ ∧¬ ∨ ⇔¬ ∧¬B ⇔¬A∨¬ ¬(A∧B)⇔¬ ∨¬ ∧ ⇔¬ ∨¬B
真值表法
例1 判断 ¬(p∨q) 与 ¬p∧¬q 是否等值 ∨ ∧ 解 p q 0 0 0 1 1 0 1 1 ¬p ¬q 1 1 0 0 1 0 1 0 p∨q ¬(p∨q) ¬p∧¬q ¬(p∨q)↔(¬p∧¬q) ∨ ∨ ∧ ∨ ↔¬ ∧ 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
实例(续)
(2) (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) 解 (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) ∨¬p) ⇔ (¬p∨q)↔(q∨¬ ¬ ∨ ↔ ∨¬ ⇔ (¬p∨q)↔(¬p∨q) ¬ ∨ ↔¬ ∨ ⇔1 该式为重言式. 该式为重言式 (蕴涵等值式) 蕴涵等值式) (交换律) 交换律)
实例(续)
(3) ((p∧q)∨(p∧¬ ∧r) ∧¬q))∧ ∧ ∨ ∧¬ 解 ((p∧q)∨(p∧¬ ∧r) ∧ ∨ ∧¬ ∧¬q))∧ (分配律) 分配律) (排中律) 排中律) (同一律) 同一律) ∨¬q))∧ ⇔ (p∧(q∨¬ ∧r ∧ ∨¬ ⇔ p∧1∧r ∧ ∧ ⇔ p∧r ∧ 成假赋值. 成假赋值 总结:A为矛盾式当且仅当 ⇔ 为重言式当且仅当A⇔ 总结 为矛盾式当且仅当A⇔0; A为重言式当且仅当 ⇔1 为矛盾式当且仅当 为重言式当且仅当 说明:演算步骤不惟一, 说明 演算步骤不惟一,应尽量使演算短些 演算步骤不惟一

离散数学第2章 谓词逻辑

离散数学第2章 谓词逻辑
例4:某些人对某些食物过敏。 设F(x,y):x对y过敏。 M(x):x是人。 G(y):y是食物。 (x) (y) (M(x) ∧ G(y) ∧ F(x,y))
33
§3 谓词公式与翻译
例5:凡是实数不是大于0,就是等于0或者小于0。 设R(x):x是实数。 P(x,0):x大于0。 Q(x,0):x等于0。 S(x,0):x小于0。 (x) (R(x) → ( P(x,0) Q(x,0) S(x,0) ) )
例:所有的人都是会死的。
设M(x):x是人。S(x):x是会死的。
个体域约定为{人类}:(x) (S(x))
全总个体域:
(x) ( M(x) → S(x) )
例:有一些人是不怕死的。
设M(x):x是人。F(x):x是不怕死的。
个体域约定为{人类}:(x) (F(x))
全总个体域:
(x) ( M(x) ∧ F(x) )
定义:在反映判断的句子中,用以刻划客体的性质或 关系的即是谓词。
5
§1 谓词的概念与表示法
客体,是指可以独立存在的事物,它可以是具体 的,也可以是抽象的,如张明,计算机,精神等。
表示特定的个体,称为客体常元,以a,b,c… 或带下标的ai,bi,ci…表示;
表示不确定的个体,称为客体变元,以x,y, z…或xi,yi,zi…表示。
4. 谓词中通常只写客体变元,因此不是命题,仅当 所有客体变元做出具体指定时,谓词才成为命题, 才有真值。
12
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
13
§2 命题函数与量词

离散数学 第二章:一阶逻辑

离散数学 第二章:一阶逻辑
(1) xF(x) yH(x, y);
(2) xF(x) G(x, y);
(3) xyR(x, y) L(y, z) xH(x, y).
2.闭式
定义6. 设A为任一公式,若A中无自由出现的个体变项,则称A是 封闭的合式公式,简记闭式.
例: xF(x) G(x),xyF(x) G(x, y) 闭式, 但 xF(x) G(x, y),zyL(x, y, z) 不是闭式.
(1)所有的人都要死的. (2)有的人活百岁以上.
全称量词:一切,所有,任意. 用 表示.
1.量词
x:表示对个体域中的所有个
xF(x)体:表. 示个体域中的所有个体都具有性质F.
存在量词:存在着,有一个,至少有一个. 用 表示.
x:表示存在个体域里的个体.
xF ( x):表示存在着个体域中的个体具有性质F.
(2)xR(x) G(x), 其中 G(x): x是整数.
3) 同2).
例3. 将下面命题符号化. (1)对所有的x ,均有 x2-1=(x+1)(x-1). (2)存在x,使得 x+5=2.
要求: 1)个体域为自然数集合. 2)个体域为实数集合.
解:1) 不用引入特性谓词.
(1)xF(x), 其中 F(x): x2-1=(x+1)(x-1). 真命题
(3) xF(x) yF(y) L(x, y),
其中 F(x): x是自然数, L(x,y): y是 x的先驱数.
§2.2 一阶逻辑合式公式及解释
一、合式公式
1.字母表 定义1.字母表如下: (1)个体常项: a,b,c,… (2)个体变项: x,y,z,… (3)函数符号: f,g,h,… (4)谓词符号: F,G,H,…

离散数学第二章

离散数学第二章


{1}
{2} {0,1}{0,2} {1,2}{0,1,2}
M
1 0 {0} {1} 1 {0,1} 0

~

1 0 0 0
~
1 1 1 1
1 1 0 0 ~
1 0 1 0
若将Mρ的行列交换,可得到M 显然Mρ′ =M
,即
的关系矩阵.
1 1 1 1
练习: 设A={1,2,3},写出2A×A及A上的恒等关系 : IA={(a,b)|a,b∈A, a=b}及A上的普遍关系 :
若ρ是由A到B的一个关系,且(a,b)∈ρ.则 我们说a 对b 有关系ρ, 记作aρb. 若(a,b)∈ρ记作aρb; 若(a,b) ∈ρ则 我们记作aρ′b. 前例中有oρ11 , oρ13 ,1ρ12 但
o1' 2 o1' 1 o1' 3 证明中常用(a,b)∈ρ充要条件是aρb,
而(a,b)∈ρ充要条件
个关系.
若ρ=A2, 则ρ称为A上的普遍关系,记为UA. UA={ (ai,aj)| ai, aj ∈A }, UA的关系矩阵元素全为1. A上的恒等关系记为IA,,用集合表示为 IA={ (ai,ai)| ai∈A }
例4中IA={(1,1),(2,2),(3,3),(4,4)}
五.关系图
一个有限集合A上的关系ρ除用(#A)×(#A)矩阵表示 外,还可以用关系图的图形来表示: 该图有与A中元素相同
画出ρ={(1,5),(1,4),(2,1),(3,1),(3,4),(4,4)}的关系图.
§ 2.3 关系的复合
一.概念
由于关系是一个集合,因此集合的各种运算也是适 合的. 例: 设A={2,4,6,9}, 的关系 . B={3,4,6} ρ1,ρ2分别是A到B

离散数学第二章

离散数学第二章

(5) 只有有限次地应用(1)-(4)构成的符号串
才是合式公式(也称谓词公式),简称公式。
(1) x( P( x) Q( y)) (2) x(G( x) xH ( x, y)) (3) x(y(R( x, y)) F ( x)) (4), x2 , xn )是任意 n 元谓词,
t1 , t2 ,, tn 是项,则称 R(t1 , t2 ,, tn ) 为原子公式。
4、合式公式的递归定义。
(1) 原子公式是合式公式;
(2) 若 A 是合式公式,则(A)也是合式公式;
(3)若 A, B 是合式公式,则( A B),( A B),
个体常项
用 a, b, c 表示
个体词 个体变项
用 x, y , z 表示
个体域(或称论域)——个体变项取值的范围。 2、 谓词——刻画个体词的性质或 个体词之间关系的词。
谓词常项
谓词 谓词变项
都用 F , G, H 表示
n元谓词(用 F ( x1 , x2 ,, xn ) 表示) 如 F ( x, y):x 比 y 高。
构成了公式的一个解释。
1、解释 I 由以下4部分组成: (3) D 上一些特定的函数; (4) D 上一些特定的谓词;
例1 A x( P( x) Q( x))
I : D {2,3}, P( x) : x 2, Q( x) : x 3
A x( P( x) Q( x))
性质F 1 D中至少有一个元素满足 xF ( x) : D中所有元素不满足性质 F 0
D {a1, a1,, an }
xF( x) F (a1 ) F (a2 ) F (an ) xF( x) F (a1 ) F (a2 ) F (an )

离散数学第二章

离散数学第二章


相当于 “任意”,“凡是”,“所有”...
存在量词(Existential Quantifier):
表示个体域中部分个体的词, 记作
相当于 “存在”,“至少有一个”,“有些”...
若个体域中所有个体x,均使A(x)为真,记作(x)A(x) 若个体域中存在某些个体x,使A(x)为真,记作(x)A(x)
4.特性谓词: 若在全总个体域讨论问题,还需在命题表达中
增加特性谓词,以说明命题中个体的取值范围.
5.命题符号化
“每个计算机系的学生都学离散数学“
“存在着偶素数”
现在你正浏览到当前第二十二页,共一百一十七页。
谓词逻辑 >谓词公式
课堂练习
在谓词逻辑中符号化: 1. 北京是中国的首都 2. 甲是乙的父亲 3. 3介于2与4之间 4. 3大于2仅当3大于4。 5. 张三和李四是同班同学 6. 天下乌鸦一般黑 7. 火车都比汽车跑得快 8. 有的火车比所有汽车快。
例题 用谓词逻辑处理苏格拉底三段论:
人总是要死的, (x) (M(x) P(x)),
苏格拉底是人, M(a),
所以,苏格拉底是要死的。 P(a).
令 P(x): x是要死的,
M(x): x是人, a: 苏格拉底
推理形式为: (x) (M(x) P(x)), M(a) P(a).
现在你正浏览到当前第十九页,共一百一十七页。
现在你正浏览到当前第二十三页,共一百一十七页。
谓词逻辑
2-1 谓词的概念与表示 2-2 量词 2-3 谓词公式
2-4 谓词公式的解释 2-5 等价式与蕴含式 2-6 前束范式 2-7 谓词演算的推理理论
现在你正浏览到当前第二十四页,共一百一十七页。

大学高等数学 离散数学 第二章“随机变量及其分布”

大学高等数学 离散数学 第二章“随机变量及其分布”

0 x1 0 3 dt 11 dt 0 3 11 x 2 dt dt 3 9 03 1
3
2 使 P( X k ) F (k ) k 4.5 3
几个重要的连续量 均匀分布 定义:X具有概率密度
1 x ( a, b) f ( x) b a 0 其他
1 P( S ) P( X xi ) pi
i 1 i 1


# 概率分布
1、写出可能取值--即写出样本点 2、写出相应的概率--即写出每一个样本点出现的概率
例:某人骑自行车从学校到火车站,一路上要经 过3个独立的交通灯,设各灯工作独立,且设 各灯为红灯的概率为p,0<p<1,以X表示首次 停车时所通过的交通灯数,求X的概率分布律。
f ( x)的性质: 1) f ( x) 0
2)
面积为1
y f ( x)

+

f ( x)dx 1
P x1 X x2
3) 对于任意的实数x1,x2 ( x2 x1 ) P x1 X x2

x2
x1
f (t ) dt P( X a) 0
1 2
求T的概率分布函数; 已知设备无故障运行10个小时,求再无故障运行 8个小时的概率。
k
解:1 P N t k e t t / k !, k 0,1, 2,
FT t P T t 1 P T t
当t 0 时,FT t 1 P N t 0 1 e t
称X服从参数为λ 的泊松分布,记 X ~ ( )
例:设某汽车停靠站候车人数 X ~ ( ), 4.5 (1)求至少有两人候车的概率; (2)已知至少有两人候车,求恰有两人候车的概率。 解: e 4.5 4.5k P( X k ) , 0,1, 2, k k!

离散数学第二章一阶逻辑

离散数学第二章一阶逻辑

(2) ∀x∀y(x+0=y →y+0=x) 真命题 (3) ∀x∀y∃z(x+y=z) 真命题 (4) ∀x∀y(x+y=x*y) 假命题 (5)x+y=y+z,它的真值不确定,因而不是命题. 注)非闭式,在有的解释中不是命题.
定义:设A为一公式(谓词公式),如果A在任何解释下都是 真的,则称A为逻辑有效式(永真式);如果A在任何解释下 都是假的,则称A是矛盾式(永假式);若至少存在一个解 释使A为真,则称A是可满足式. 2.代换实例 设A0是含命题变项p1,p2,…,pn的命题公式,A1,A2,…,An 是n个谓词公式,用Ai(1≤i≤n)处处代换pi,所得公式A 称为A0的代换实例. 例如:F(x)→G(x),∀xF(x)→∃xG(x)等都是p→q的代换实例; 命题公式中的重言式的代换实例在谓词公式中可仍称为重言式 ,这样的重言式都是逻辑有效式. 命题公式中的矛盾式的代换实例仍为矛盾式.
例2.7 给定解释I如下: 1)DI={2,3} 2)DI中特定元素a=2 3)函数f(x)为f(2)=3,f(3)=2 4)谓词F(x)为F(2)=0,F(3)=1 G(x,y)为G(i,j)=1,i,j=2,3 L(x,y)为L(2,2)=L(3,3)=1,L(2,3)=L(3,2)=0 在解释I下,求下列各式的真值 (1) ∀ ∀x(F(x)∧G(x,a)) (2)∃x(F(f(x))∧G(x,f(x))) ∃ (3)∀x∃yL(x,y) ∀ ∃
例2.2 在一阶逻辑中将下面命题符号化 (1)凡有理数均可表成分数; (2)有的有理数是整数; 要求:1)个体域为有理数集合, 2)个体域为实数集合, 3)个体域为全总个体域. 解: 1)个体域为有理数集合(不用引入特性谓词): (1) 设 F(x):x可表成分数; 则命题符号化为∀xF(x). ∀ (2) 设 G(x):x是整数;则命题符号化为∃xG(x). 2)个体域为实数集合(引入特性谓词):令 R(x):x是有理数; (1) 设F(x):x可表成分数;则命题符号化为∀x(R(x)→F(x)) (2) 设G(x):x是整数;则命题符号化为∃x(R(x)∧G(x))。

离散数学 第二章 谓词演算及其形式系统

离散数学 第二章 谓词演算及其形式系统

第二章谓词演算及其形式系统2.1 个体、谓词和量词内容提要谓词演算中把一切讨论对象都称为个体,它们可以是客观世界中的具体客体,也可以是抽象的客体,诸如数字、符号等。

确定的个体常用a,b,c等到小写字母或字母串表示。

a,b,c等称为常元(constants)。

不确定的个体常用字母x,y,z,u,v,w等来表示。

它们被称为变元(variables)。

谓词演算中把讨论对象——个体的全体称为个体域(domain of individuals)),常用字母D表示,并约定任何D都至少含有一个成员。

当讨论对象遍及一切客体时,个体域特称为全总域(universe),用字母U表示。

例如,当初中学生说“所有数的平方非负”时,实数集是个体域;而达尔文在写《物种起源》时,则以全体生物为个体域;也许哲学家更偏爱全总域。

讨论常常会涉及多种类型个体,这时使用全总域也是比较方便的。

当给定个体域时,常元表示该域中的一个确定的成员,而变元则可以取该域中的任何一个成员为其值。

表示D上个体间运算的运算符与常元、变元组成所谓个体项(terms)。

例如,x+y,x2等。

我们把语句中表示个体性质和关系的语言成分(通常是谓语)称为谓词(predicate)。

谓词携有可以放置个体的空位,当空位上填入个体后便产生一个关于这些个体的语句,它断言个体具有谓词所表示的性质和关系。

通常把谓词所携空位的数目称为谓词的元数。

谓词演算中的量词(quantifiers)指数量词“所有”和“有”,分别用符号∀(All的第一个字母A的倒写) 和∃(Exist的第一个字母E的反写)来表示。

为了用量词∀和∃分别表示个体域中所有个体和有些个体满足一元谓词P,需引入一个变元,同时用作量词的指导变元(放在量词后)和谓词P的命名式变元:∀xP(x) 读作“所有(任意,每一个)x满足P(x)”。

表示个体域中所有的个体满足谓词P(x)。

∃x P(x) 读作“有(存在,至少有一个)x满足P(x)”。

自考离散数学第2章

自考离散数学第2章

域E,若对 A和B的任一组变元进行赋值,所得命题的真值相同,则称 谓词公式A和B在E上是等价的,并记作 A B
定义2.3.2 给定任意谓词公式WffA,其个体域为E,对于A的所有赋值
WffA都为真,则称WffA在E上有效的(或永真的)
定义2.3.3 一个谓词公式WffA,如果在所有赋值下都为假,则称WffA
P
(2)H(s)→M(s)
(3)H(s) (4)M(s)
US(1)
P T(2)(3)I
2.5 谓词演算的推理理论
例:专业委员会成员都是教授,并且是计算机设计师,有些成员是资
深专家,所以有的成员是计算机设计师,且是资深专家。请用谓词推 理理论证明上述推理。
证:设个体域为全总个体域。 M(x):x 是专业委员会成员; H(x):x 是教授; G(x):x 是计算机设计师;
2.3 谓词演算的等价式与蕴含式
表2.3.1
2.3 谓词演算的等价式与蕴含式
2.3 谓词演算的等价式与蕴含式
2.3 谓词演算的等价式与蕴含式
2.4 前束范式
定义2.4.1 一个公式,如果量词均在全式的开头,它们的作用域,延伸
到整个公式的末尾,则该公式叫做前束范式。
定理2.4.1 任意一个谓词公式均和一个前束范式等价。
2.3 谓词演算的等价式与蕴含式
例:寻求下式的真值。
(x)(P Q( x)) R(a) ,其中P:2>1,Q(x):x≦3,R(x):x>5,a=5,
且论域{-2,3,6}
2.3 谓词演算的等价式与蕴含式
2.3 谓词演算的等价式与蕴含式
定义2.3.1 给定任何两个谓词公式 WffA和WffB,设它们有共同的个体

离散数学自考第二章

离散数学自考第二章

“”表达式的读法:
· x A(x) :存在一个x,使x是…;
· x¬ A(x) :存在一个x, 使x不是…;
· ¬ x A(x) :不存在一个x, 使x是…;
· ¬ x¬ A(x) :不存在一个x, 使精选xp不pt 是…。
7
著名的苏格拉底三段论可论述如下: a. 所有人都是要死的; b. 因为苏格拉底是人; c. 所以苏格拉底总是要死的; d. 试讲其符号化为谓词公式。 e. 解M(x):表示x是人,D(x):x是要死的;a:苏格拉底。 f. 上述三段论可符号化为: g. (x)(M(x) → D(x)) h. M(a) i. D(a) j. 该三段论可用推理描述为: k. 前提:(x)(M(x) → D(x) ), M(a) , l. 结论: D(a)
在上述的谓词合式公式中,有的个体变元既可以是约束出 现,也可以是自由出现,为了避免混淆采用以下两个规 则。
1.下面介绍约束变元的改名规则: (a)在改名中要把公式中所有相同的约束变元全部同时改掉; (b)改名时所用的变元符号在量词辖域内未出现的。
精选ppt
11
例: xP(x) yR(x,y)可改写成xP(x) zR(x,z) ,但不能改成 xP(x) xR(x,x) , xR(x,x)中前面的x原为自由变元,现在变为 约束变元了。
P,A,B为不含有变元X的任何谓词公式
E30 xA(x)B x(A(x)B) E31 xA(x)B x(A(x)B) E32 AxB(x) x(AB (x)) E33 A x B(x) x(AB (x))
精选ppt
21
(3)量词分配率
E23 x (A(x) B(x)) xA(x) xB(x) E24 x(A(x)B(x)) xA(x) xB(x) E29 (x (A(x) B(x)) xA(x) xB(x) I17 xA(x) xB(x) x(A(x) B(x)) I18 x(A(x) B(x)) x(A(x) B(x)) I19 xA(x) xB(x) x(A(x) B(x))

离散数学第二章谓词逻辑

离散数学第二章谓词逻辑

则xP和xP都是谓词公式
(5)当且仅当能够有限次地应用(1)-(4)所得到的
式子是谓词公式
二、谓词公式的概念

谓词公式是命题公式的扩展,约定最外层圆括号可 以省略,但量词后面若有括号则不省略。

例如 (P(x,y)→(Q(x)→R(y,z)))
P(x,y,z)∧(P(x,y,z)→Q)
y((A(x)∧A(y))→F(x,y,0))
2.2 命题函数与量词

例2.2.6 翻译命题
甲村人与乙村人都同姓。
解 设A(x):x是甲村人。 B(y):y是乙村人。 P(x,y):x与y同姓。 (1)全总个体域 xy((A(x)∧B(y))→P(x,y)) (2)x的论域:甲村人 xy(P(x,y)) y的论域:乙村人
1.令F(x):x是金属。G(y):y是液体。H(x,y):x可以溶解在y 中。则命题“任何金属可以溶解在某种液体中。”可翻译 为( )。 A.x(F(x)∧y(G(y)∧H(x,y))) B.xy(F(x)→(G(y)→H(x,y))) C.x(F(x)→y(G(y)∧H(x,y))) D.x(F(x)→y(G(y)→H(x,y))) 2.令F(x):x是火车。G(y):y是汽车。H(x,y):x比y快。则命 题“某些汽车比所有火车慢。”可翻译为( )。 A.y(G(y)→x(F(x) ∧H(x,y))) B.y(G(y)∧x(F(x)→H(x,y))) C.xy(G(y)→(F(x)∧H(x,y))) D.y(G(y)→x(F(x)→H(x,y)))
由一个谓词常量或谓词变量A,n(n≥0)个个体变量 x1,x2,…,xn组成的表达式A(x1,x2,…,xn) 注意:0元谓词是命题,谓词逻辑是命题逻辑的扩 展。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23

注意:
有些关系既不是对称的也不是反对称的;
0 1 0 1 0 1 0 0 0
可以是既是对称的,也是反对称的

如相等关系
24
定义2.10:在集合X上的关系R,如果有:
x, y R且 y, z R ,则必有 x, z R ,
即非对角线上的1, 对称位置必须是0; 而非对角线上的0 不做要求
判断方法:
1. 如果如果存在a到b的有向边,就不存在b到a的有向边。 (逆命题不成立,即可以两条有向边都不存在); 2. 关系矩阵中,如果 a j ,i 1则ai , j 0,这里i j
(注意:a j ,i 0不一定ai , j 1)
n个
容易证明: n m nm m n i: R R R , R R mn ,m,n均为正整数 0 ii: R 是相等关系,即: R0 ={(x,x)|x∈A} 1 iii: R R
13

逆关系
由于关系中的元素是有序偶,则如果将该有序偶的顺
序颠倒,会得到一个新的关系,称之为逆关系。
~ ~ ~
~
补集的逆关系
~ ~ ~
(5) R S R S , R S R S
注意,这个跟德· 摩根律不一样
(6) R S R S
~
~
~
18
关系的重要性质

定义2.6:在集合X上的关系R,如果对任意 x X , 有 x, x R ,则称R是自反的。
如:整数集合上的相等关系、" " 关系等;

如果 miq mqj 1 即mij 0 ,则 miq mqj 1 即 ai , aq R且 aq , a j R 由传递性的定义可知,如果R为传递的, 必有 ai , a j R ,即应有 mij 1 2 即:当R是A上的传递关系时,如果 M R 中的元素 bij 0 , 则必须有 mij 1 ,反之亦然
1 1 0 M R 0 0 1 0 0 0
B =m时,M R 为n m矩阵 1. A =n, 2. 当R为A上的关系时,M R 为n n方阵
7
关系的运算

关系的交、并、补、差
由于关系也是集合,是一些有序偶组成的集合,因而
集合的一些交、并、补、差等在关系中也适用,并且 集合的运算性质也同样适用; 新运算:复合运算、逆运算。
S T R S T R S T R S T
12
R
关系的幂运算
由于关系中的复合运算满足结合律,所以复合运算 的括号可以省去,即: R S T R S T R S T 说明关系的幂运算是有意义的:
R n 14444 RoR oL o4 R 42 4444 3
y2
y3 y1
R x1
x2 x3
S
z3
R◦S
z2
z1
在关系图中,两条相连的有向边,其中第一条有向边
的起始点和第二条有向边的终点组成的有序偶就是复 合关系的元素。
9
关系复合运算的矩阵表示:
设X= x1 L xn , Y y1 L ym , Z z1 L zk
R是从X到Y的关系,关系矩阵为 M R ; S是从Y到Z的关系,关系矩阵为 M s 。 则复合关系 R S 的关系矩阵:
判断方法:
1. 关系图中,每个节点都有环; 2. 关系矩阵中主对角线上的元素都是1(其它元素任意)。
19

定义2.7:在集合X上的关系R,如果对任意 x X , 有 x, x R ,则称R是反自反的。
如:整数集合上的 " " 、" " 关系, 等等
判断方法:
1. 关系图中,每个节点都没有环; 2. 关系矩阵中主对角线上的元素都是0。
4

5
关系的表示方法

图形法
如例2.1中的示意图; 用平面上的点来表示定义域和值域;
a, b R ,则画一条从a到b的有向边; 如果同时存在 a, b R, b, a R ,则画两条边 a b, b a
如果 如果
a, a R ,则画一个从a出发指向自身的环。
定义2.5 设R是一个从X到Y的关系
~
R x, y | x X , y Y
则从Y到X的关系 R 称为R的逆关系
R y, x | x, y R
~
14

关于逆关系的一些说明:
空关系的逆关系是空关系; 设关系 R的关系矩阵为 M R ~
,则 M R 的转置M R ,就是逆
R2 R3 R1 R2 R1 R3 1, x
R2 R3 R1
先取交集,再复合,交 运算可能会把一些可用 的有序偶先给排除掉了
17
(3) X Y Y X
~ ~ R ~ R (4) ~
R={(1,1),(1,2),(2,3)}
两个集合之间的关系
6
矩阵表示法

该矩阵称为关系矩阵,关系R的关系矩阵用 M R 表示 在关系运算中广泛应用
其中mi,j取值0或1,表示 a i ,a j 之间量的存在关系 (R是A上的关系)或表示 a i ,b j 之间的存在关系 (R是A到B的关系)
关系

关系的基本概念
关系及其定义


对现实中关系的一种抽象描述 集合内或集合间元素之间
例2.1:


设一个旅馆有n个房间,每个房间可住两 个旅客,因此一共可以住2n个客人; 则在旅馆内,旅客和房间之间就存在一定 的关系,该关系可描述为“某旅客住在某 房间”,可用R表示该关系。
1
设n=3,
用1、2、3分别表示3个房间 用a、b、c、d、e、f分别表示6个旅客 则用如下示意图可表示: a b 1 c d 2 e f 3 由图可知: 旅客a与房间1之间存在关系R,记作aR1 旅客a与房间2之间不存在关系R,记作aR2
称R是传递的。
25

x, y R
26
思考:

如下的关系具有何种性质?
基数大于1的集合上的全域关系; 空关系
非空集合上的空关系 空集合上的空关系

27

28

传递性的判别方法
很难从关系图或关系矩阵中直接判断; 思考:如何判断?
29

下面介绍的方法在关系矩阵的基础上通过矩阵运 算来进行的,适于计算机处理;
10
上例中:
y2
y3 y1
R x1
x2 x3
S
z3
R◦S
z2
z1
1 M R 0 0 0 M s 0 0
1 1 0 1 0 0
0 0 0 0 1 1
MR S MR
1 1 0 0 1 0 0 1 1 M S 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0
T
关系 R 的关系矩阵;

即: M ~ M R
R
T
M R [mi , j ]
mij=1表示(i,j)在关系R中,则在其 逆关系中应该是有( j,i),即mji=1
~
将R的关系图每条有向边的箭头方向颠倒,就得到 R

关系图。
15


Qx , Qy
Qx R R Qy R
16
(2) R1
20

注意:
有些关系既不是自反的(因为2上无环); 也不是反自反的(因为1、3上有环)。 例如:
对角线元素不全为0,也不全为1
21

定义2.8:在集合X上的关系R,如果有 x, y R , 必有 y, x R ,则称关系R是对称的。
1 1 1 1 0 0 1 0 0
b11 b12 bij bn1 bn 2
b1n bnn
由矩阵的乘法可知:
bij mik mkj mi1m1 j mi 2 m2 j L min mnj
k 1
31
n

由于 mij 的取值为1或0,所以 bij 的表达式中的各项 mik mkj 的取值也是0或1。

复合关系
定义2.3:设R是一个从X到Y的关系,S是一个从Y到Z
的关系,则R与S的复合关系 R S 可定义为:
R S={ x, z |x X , z Z , 至少存在一个y Y , 有 x, y R且 y, z S}
复合关系R S是从X到Z的关系
8

图形说明:
R2 R3 R1 R1 R2 R3 R1 R2 R3 R4 R2 R2 R3 R4 R2
R2 R1 R3 R2 R1 R3 R4 R3 R4 R4 R3 R4
注意:第二、四不是等式,以第二个式子说明为什么不是“=”
A 1, 2,3 , B a, b , C x, y, z R1 1, a , 1, b , R2 a, x , R3 b, x
判断方法:
1. 关系图中,如果有a到b的有向边,则一定也有b到a的 有向边; 2. 关系矩阵关于主对角线对称。
22

定义2.9:在集合X上的关系R,如果有 x, y R 且 x y ,必有 y, x R ,则称R是反对称的。
0 1 0 0 0 1 0 0 0
m11 设集合 A a1,L , an , m21 R是A上的二元关系, MR 关系矩阵为: mn1 思考:如何通过关系 矩阵判断传递性? m12 m22 M K O m1n m2 n M mij nn mnn
相关文档
最新文档