2017年考研数学二真题与答案解析
2017年考研数学二真题解析
(5)设 具有一阶偏导数,且对任意的 ,都有 ,则
(A) (B) (C) (D)
【答案】C
【解析】 是关于 的单调递增函数,是关于 的单调递减函数,
所以有 ,故答案选D.
(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线 (单位: ),虚线表示乙的速度曲线 ,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为 (单位:s),则()
(I) 二阶导数,
解:1)由于 ,根据极限的保号性得
有 ,即
进而
又由于 二阶可导,所以 在 上必连续
那么 在 上连续,由 根据零点定理得:
至少存在一点 ,使 ,即得证
(II)由(1)可知 , ,令 ,则
由罗尔定理 ,则 ,
对 在 分别使用罗尔定理:
且 ,使得 20)(本题满分11分)已知平面区域 计算二重积分 。
∴
(II)由(1) ,知 ,即 的基础解系只有1个解向量,
由 可得 ,则 的基础解系为 ,
又 ,即 ,则 的一个特解为 ,
综上, 的通解为
(23)(本题满分11分)设二次型 在正交变换 下的标准型 ,求 的值及一个正交矩阵 .
【答案】
【解析】
,其中
由于 经正交变换后,得到的标准形为 ,
故 ,
将 代入,满足 ,因此 符合题意,此时 ,则
,
由 ,可得A的属于特征值-3的特征向量为 ;
由 ,可得A的属于特征值6的特征向量为
由 ,可得A的属于特征值0的特征向量为
令 ,则 ,由于 彼此正交,故只需单位化即可: ,
则 ,
(15)(本题满分10分)求极限
【答案】
2017考研数学二答案真题解析
s
。 t = 25时,S I (t) — Sz(t) = r 压(t) — Vz(t)]dt
o
s
= r 压Ct)-v 2 Ct)]dt+ r 压(t)-V 2 (t)]dt
0
10
= 10-20 = — 10.
。 t>25时,s 1 Ct)-s 2 Ct) = 『压(t)-v 2 (t)]dt
5
= f2 压(t)-v 2 (t)]dt十『 压(t) -V 2 (t)]dt
F(O)=O,F(c)=O,F(b)=0.
根据罗尔定 理,存在�E
CO,c),r; E
1
(c,b),使 得 F (0
= F 1C r;) = O,
即名T/是 方 程
f(x)广(x)+ (f
1
(x))
2
=O在区间(0'1)内的两个不同实根
.
第 5 页,共 7 页
梦想不会辜负每一个努力的人
解』 』 (20)
对于微分方程:y" —
1
4y
+8y
=产其特解y1·
可设为:
对=Ae幻
而微分方程 :y"- 4y'+8y = e2xcos2x的特解y{可设为:
对 = x芒 (B cos2x+Csin2x)
峰
由二阶常系数非齐次线性微分特解的结构知原方程的特解 y
为y1·
与y;
之和,即
y*
=y; +y;
=
Ae2工
+xe
2
工
(Bcos2x+Csin2x).
故应选C.
(5)D
o/(x,y)
2017年考研数学二真题及答案分析PDF版
)
( A) f ( x)dx 0
1 0
1
B 1 f ( x)dx 0 D 1 f ( x)dx 0 f ( x)dx
0 1
取 xn 1 ,排除 B,C.所以选 D. (4)微分方程的特解可设为 (A) Ae (C) Ae
2x
e 2 x (B cos 2 x C sin 2 x ) xe 2 x (B cos 2x C sin 2x )
(B) Axe
2x
e 2 x (B cos 2x C sin 2x ) e 2 x (B cos 2x C sin 2x )
二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答题纸 指定位置上. ... (9) 曲线 y x 1 arcsin 【答案】 y x 2 【解析】
2 的斜渐近线方程为_______ x
lim
y 2 2 lim(1 arcsin ) 1, lim y x lim xarcsin 2, x x x x x x x y x2
【答案】-1
1 【解析】设 1 ,由题设知 A ,故 2 4 1 2 1 1 1 1 2 a 1 1 3 2a 3 1 1 2 2 2 2
故 a 1 . 三、解答题:15—23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、证明过程或 ... 演算步骤.
2017年考研数学二试题及详解
【答案】
【解析】
(13)已知动点 在曲线 上运动,记坐标原点与点 间的距离为 .若点 的横坐标对时间的变化率为常数 ,则当点 运动到点 时, 对时间的变化率是________________.
【答案】
【解析】
(14)设矩阵 与 等价,则 ________________.
令F(x)=f1(x)-f2(x),则F(x0)=0,F’(x0)=0,F”(x0)<0.
由极值的第二充分条件得x=x0为极大值点。
则F(x)≤F(x0)=0,即f1(x)≤f2(x),
综上所述,应选A.
(6)已知函数 ,则( ).
A.
B.
C.
D.
【答案】D
【解析】
选D.
(7)设 是可逆矩阵,且 与 相似,则下列结论错误的是( ).
A. 与 相似
B. பைடு நூலகம் 相似
C. 与 相似
D. 与 相似
【答案】C
【解析】
因为 与 相似,因此存在可逆矩阵 ,使得 ,于是有:
,即 ,
,因此 ,
,因此 ,
而C选项中, 不一定等于 ,故C不正确,选择C.
(8)设二次型 的正、负惯性指数分别为1,2,则( ).
A.
B.
C.
D. 或
【答案】C
【解析】
所以,-2<a<1,所以,选C.
∴x=-1,y=-1为极大值点,极大值为z=1.
(18)(本题满分10分)
设 是由直线 围成的有界区域,计算二重积分 .
【答案】
【解析】
(19)(本题满分10分)
已知函数 是二阶微分方程 的两个解,若 ,求 并写出微分方程的通解.
2017年考研(数学二)真题试卷(题后含答案及解析)
2017年考研(数学二)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.若函数f(x)=在x=0处连续,则( )A.ab=1/2B.ab=-C.ab=0D.ab=2正确答案:A解析:=1/2a,∵f(x)在x=0处连续,1/2a=bab=1/2,选A.2.设二阶可导函数f(x)满足f(1)=f(-1)=1,f(0)=-1且f”(x)>0,则( ) A.∫-11f(x)dx>0B.∫-11f(x)dx<0C.∫-10f(x)dx>∫01f(x)dxD.∫-10f(x)dx<∫01f(x)dx正确答案:B解析:f(x)为偶函数时满足题设条件,此时∫-10f(x)dx=∫01f(x)dx,排除C,D.取f(x)=2x2-1满足条件,则∫-11f(x)dx=∫-11(2x2-1)dx=-<0,选B.3.设数列{xn}收敛,则( )A.B.C.D.正确答案:D解析:特值法:A取xn=π,有xn=π,A错;取xn=-1,排除B,C.所以选D.4.微分方程y”-4y’+8y=e2x(1+cos2x)的特解可设为yk=( )A.Ae2x+e2x(Bcos2x+Csin2x)B.Axe2x+e2x(Bcos2x+Csin2x)C.Ae2x+xe2x(Bcos2x+Csin2x)D.Axe2x+xe2x(Bcos2x+Csin2x)正确答案:C解析:特征方程为:λ2-4λ+8=0λ1.2=2±2i∵f(x)=e2x(1+cos2x)=e2x+e2xcos2x,∴y1*=Ae2x,y2*=xe2x(Bcos2x+Csin2x),故特解为:y*=y1*+y2*=Ae2x+xe2x(Bcos2x+Csin2x),选C.5.设f(x,y)具有一阶偏导数,且对任意的(x,y),都有>0,则( )A.f(0,0)>f(1,1)B.f(0,0)<f(1,1)C.f(0,1)>f(1,0)D.f(0,1)<f(1,0)正确答案:D解析:f(x,y)是关于y的单调递减函数,所以有f(0,1)<f(1,1)<f(1,0),故答案选D.6.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3计时开始后乙追上甲的时刻记为t0(单位:s),则( )A.t0=10B.15<t0<20C.t0=25D.t0>25正确答案:C解析:从0到t0这段时间内甲乙的位移分别为∫0t0v1(t)dt,∫0t0v2(t)dt,则乙要追上甲,则∫0t0v2(t)dt-v1(t)dt=10,当t0=25时满足,故选C.7.设A为三阶矩阵,P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1,α2,α3)=( )A.α1+α2B.α2+2α3C.α2+α3D.α1+2α2正确答案:B解析:P-1AP=A(α1,α2,α3)=(α1,α2,α3)=α2+2α3,因此B正确.8.已知矩阵A=,则( )A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B解析:由|λE-A|=0可知A的特征值为2,2,1,因为3-r(2E-A)=1,∴A可相似对角化,即A~由|λE-B|=0可知B特征值为2,2,1.因为3-r(2E-B})=2,∴B不可相似对角化,显然C可相似对角化,∴A~C,但B不相似于C.填空题9.曲线y=x(1+arcsin)的斜渐近线方程为_______.正确答案:y=x+2解析:∵=2,∴y=x+2.10.设函数y=y(x)由参数方程确定,则d2y/dx2=|t=0_______.正确答案:解析:11.∫0+∞dx=_______.正确答案:1解析:12.设函数f(x,y)具有一阶连续偏导数,且af(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=_______.正确答案:xyey解析:f’x=yey,f’y1=x(1+y)ey,f(x,y)=∫yeydx=xyey+c(y),故f’y=xey+xyey+c’(y)=xey+xyey,故c’(y)=0,即c(y)=c,由f(0,0)=0,即f(x,y)=xyey.13.∫01dy∫y1dx=_______.正确答案:lncos1解析:∫01dy∫y1dx=∫01dx∫0xdy=∫01tanxdx=lncos1.14.设矩阵A=的一个特征向量为,则a=_______.正确答案:-1解析:设α=,由题设知Aα=λα,故(1 1 2)T=λ(1 1 2)T故a=1.解答题解答应写出文字说明、证明过程或演算步骤。
2017年考研数二真题及答案
绝密★启用前2017年全国硕士研究生入学统一考试数学(二)(科目代码302)考生注意事项1.答题前,考生必须在试题册指定位置上填写考生姓名和考生编号;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.考生须把试题册上的试卷条形码粘贴条取下,粘贴在答题卡“试卷条形码粘贴位置”框中。
不按规定粘贴条形码而影响评卷结果的,责任由考生自负。
3.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
4.填(书)写部分必须使用黑色字迹签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
5.考试结束后,将答题卡和试题册按规定一并交回,不可带出考场。
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程的特解可设为 (A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( ) (A )010t =(B )01520t <<(C )025t =(D )025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+(8)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) (A ),A C B C 与相似与相似(B ),A C B C 与相似与不相似 (C ),A C B C 与不相似与相似(D ),A C B C 与不相似与不相似二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线21arcsiny x x ⎛⎫=+ ⎪⎝⎭的斜渐近线方程为_______ (10) 设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则220t d ydx ==______ (11)2ln(1)(1)x dx x +∞+=+⎰_______ (12) 设函数(,)f x y 具有一阶连续偏导数,且(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)______f x y =(13)11tan ______y xdy dx x=⎰⎰(14)设矩阵41212311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的一个特征向量为112⎛⎫⎪ ⎪ ⎪⎝⎭,则_____a =三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限0lim t x dt +→(16)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求x dy dx=,22x d y dx =(17)(本题满分10分)求21lim ln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑(18)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(19)(本题满分10分)设函数()f x 在区间[0,1]上具有2阶导数,且0()(1)0,lim 0x f x f x+→><,证明: ()I 方程()0f x =在区间(0,1)内至少存在一个实根;()∏方程2''()()(())0f x f x f x +=在区间(0,1)内至少存在两个不同实根。
2017年考研数学二试题及答案解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数1cos 0(),0xx f x b x ⎧->⎪=⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】0011cos 12lim lim ,()2x x xx f x ax a++→→-==在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B 当lim()0n n n x x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为全国统一服务热线:400—668—2155 精勤求学 自强不息(A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),x xy y y Ae xe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数, 所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )0510********()s (/)v m s 1020(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+【答案】 B 【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2017年考研数学二真题与解析
2017年考研数学二真题一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =- (C )0ab = (D )2ab = 【详解】0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A )2.设二阶可导函数()f x 满足(1)(1)1f f =-=,(0)1f =-,且()0f x ''>,则( ) (A )11()0f x dx ->⎰(B )11()0f x dx -<⎰(C )11()()f x dx f x dx ->⎰⎰ (D )011()()f x dx f x dx -<⎰⎰【详解】注意到条件()0f x ''>,则知道曲线()f x 在[][]1,0,0,1-上都是凹的,根据凹凸性的定义,显然当[]1,0x ∈-时,()21f x x ≤--,当[]0,1x ∈时,()21f x x ≤-,而且两个式子的等号不是处处成立,否则不满足二阶可导.所以10111()(21)(21)0f x dx x dx x dx --<--+-=⎰⎰⎰.所以选择(B ).当然,如果在考场上,不用这么详细考虑,可以考虑代一个特殊函数2()21f x x =-,此时11011(),()33f x dx f x dx -=-=-⎰⎰,可判断出选项(A ),(C ),(D )都是错误的,当然选择(B ).希望同学们在复习基础知识的同时,掌握这种做选择题的技巧. 3.设数列{}n x 收敛,则(A )当limsin 0n n x →∞=时,lim 0n n x →∞= (B)当lim(0n n x →∞+=时,lim 0n n x →∞=(C )当2lim()0n n n x x →∞+=时,lim 0n n x →∞= (D )当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【详解】此题考核的是复合函数的极限运算法则,只有(D )是正确的. 其实此题注意,设lim n n x A →∞=,则22limsin sin ,lim(),lim(sin )sin n n n n n n n n n n x A x A x x A A x x A A →∞→∞→∞→∞==+=++=+分别解方程2sin 0,0,0,sin 0A A A A A A ==+=+=时,发现只有第四个方程sin 0A A +=有唯一解0A =,也就是得到lim 0n n x →∞=.4.微分方程2489(1cos 2)xy y e x '''-+=+的特解可设为*y =( ) (A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe xe B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe xe B x C x ++【详解】微分方程的特征方程为2480r r -+=,有一对共轭的复数根22r i =±.所以12λ=不是特征方程的根,所以对应方程2489xy y e '''-+=的特解应该设为21*x y Ae =;而222i λ=+是方程的单根,所以对应方程2489cos 2xy y e x '''-+=的特解应该设为22*(cos 2sin 2)x y xe B x C x =+;从而微分方程2489(1cos 2)x y y e x '''-+=+的特解可设为2212***(cos 2sin 2)x x y y y Ae xe B x C x =+=++,应该选(C ).5.设(,)f x y 具有一阶偏导数,且对任意的(,)x y 都有(,)(,)0,0f x y f x y x y∂∂><∂∂,则( ) (A )(0,0)(1,0)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f <【详解】由条件对任意的(,)x y 都有(,)(,)0,0f x y f x y x y∂∂><∂∂可知(,)f x y 对于x 是单调增加的,对y 就单调减少的.所以(1,1)(1,0)(0,0),(1,1)(0,1)(0,0),(0,1)(0,0)(1,0)f f f f f f f f f <>><<<,只有第三个不等式可得正确结论(D ),应该选(D ).6.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,如图中,实线表示甲的速度曲线1()v v t =(单位:米/秒),虚线表示乙的速度曲线2()v v t =(单位:米/秒),三块阴影部分的面积分别为10,20,3,计时开始后乙追上甲的时刻为0t ,则( ) (A )010t = (B )01520t << (C )025t = (D )025t >【详解】由定积分的物理意义:当曲线表示变速直线运动的速度函数时,21()()T T S t v t dt =⎰表示时刻[]12,T T 内所走的路程.本题中的阴影面积123,,S S S -分别表示在时间段[][][]0,10,10,25,25,30内甲、乙两人所走路程之差,显然应该在25t =时乙追上甲,应该选(C ).7.设A 为三阶矩阵,()123,,P ααα=为可逆矩阵,使得1000010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123()A ααα++=( )(A )12αα+ (B )232αα+ (C )23αα+ (D )132αα+ 【详解】显然这是矩阵相似对角化的题目.可知()()12312323000000(,,)010,,0100,,2002002A AP P αααααααα⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以12312323()2A A A A αααααααα++=++=+,所以可知选择(B ).8.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.曲线2(1arcsin )y x x=+的斜渐近线为 .解:2(1arcsin )lim lim1x x x y x x x→∞→∞+==,2lim()lim arcsin 2x x y x x x →∞→∞-==,所以斜渐近线为2y x =+. 10.设函数()y y x =由参数方程sin t x t e y t ⎧=+⎨=⎩确定,则202|t d ydx == .【详解】223cos 1cos (1)sin cos ,1(1)t t t t t t d e dy t d y e t e t dt dx dx e dx e dt⎛⎫ ⎪+⎝⎭++===-++,所以2021|8t d y dx ==-. 112ln(1)(1)x dx x +∞++⎰.【详解】022000ln(1)1ln(1)1ln(1)|1(1)11(1)x x dx x d dx x x x x +∞+∞+∞+∞++=-+=-+=++++⎰⎰⎰ 12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y ydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =. 13.11tan y xdy dx x=⎰⎰. 【详解】交换二重积分的积分次序得:1111100000tan tan tan ln cos ln cos1.x y x x dy dx dx dy xdx x x x ===-=-⎰⎰⎰⎰⎰14.设矩阵41212311A a -⎛⎫ ⎪= ⎪ ⎪-⎝⎭的一个特征向量为112⎛⎫ ⎪⎪ ⎪⎝⎭,则a = .【详解】根据特征向量的定义,有412111121132311222A a a αλ-⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪===+ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,解得1a =-.三、解答题 15.(本题满分10分)求极限0lim t x dt +→【详解】令x t u -=,则,t x u dt du =-=-,t x u dt du -=⎰⎰00002limlim limlim 33t x u u x x x x x dt e du du ++++---→→→→==== 16.(本题满分10分)设函数(,)f u v 具有二阶连续偏导数,(,cos )xy f e x =,求0|x dydx=,202|x d y dx =.【详解】12(,cos )(,cos )(sin )x x x dy f e x e f e x x dx ''=+-,01|(1,1)x dyf dx='=; 2111122222122(,cos )((,cos )sin (,cos ))cos (,cos )sin (,cos )sin (,cos )x x x x x x x x x x d y e f e x e f e x e xf e x xf e x dx xe f e x xf e x ''''''=+--''''-+2011122|(1,1)(1,1)(1,1)x d yf f f dx=''''=+-.17.(本题满分10分) 求21limln 1nn k k k n n →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分)已知函数()y x 是由方程333320x y x y +-+-=. 【详解】在方程两边同时对x 求导,得2233330x y y y ''+-+= (1)在(1)两边同时对x 求导,得2222()0x y y y y y '''''+++=也就是222(())1x y y y y '+''=-+令0y '=,得1x =±.当11x =时,11y =;当21x =-时,20y = 当11x =时,0y '=,10y ''=-<,函数()y y x =取极大值11y =; 当21x =-时,0y '=,10y ''=>函数()y y x =取极小值20y =. 19.(本题满分10分)设函数()f x 在区间[]0,1上具有二阶导数,且(1)0f >,0()lim 0x f x x-→<,证明:(1)方程()0f x =在区间()0,1至少存在一个实根;(2)方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.证明:(1)根据的局部保号性的结论,由条件0()lim 0x f x x-→<可知,存在01δ<<,及1(0,)x δ∈,使得1()0f x <,由于()f x 在[]1,1x 上连续,且1()(1)0f x f ⋅<,由零点定理,存在1(,1)(0,1)x ξ∈⊂,使得()0f ξ=,也就是方程()0f x =在区间()0,1至少存在一个实根;(2)由条件0()lim 0x f x x-→<可知(0)0f =,由(1)可知()0f ξ=,由洛尔定理,存在(0,)ηξ∈,使得()0f η'=;设()()()F x f x f x '=,由条件可知()F x 在区间[]0,1上可导,且(0)0,()0,()0F F F ξη===,分别在区间[][]0,,,ηηξ上对函数()F x 使用尔定理,则存在12(0,)(0,1),(,)(0,1),ξηξηξ∈⊂∈⊂使得1212,()()0F F ξξξξ''≠==,也就是方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.20.(本题满分11分)已知平面区域{}22(,)|2D x y x y y =+≤,计算二重积分2(1)Dx d σ+⎰⎰ 【详解】由于积分区域关于y 轴左右对称,所以由二重积分对称性可知20Dxd σ=⎰⎰.所以2sin 2222044224620(1)(1)(cos 1)2sin cos 2sin 4(4sin 4sin 2sin )54DDx d x d d r rdrd d πθππσσθθθθθθθθθθπ+=+=+⎛⎫=+ ⎪⎝⎭=-+=⎰⎰⎰⎰⎰⎰⎰⎰其中利用瓦列斯公式,知24600013135315sin ,sin ,sin 2242864216d d d ππππππθθπθθπθθπ⨯⨯⨯=⨯==⨯==⨯=⨯⨯⨯⎰⎰⎰21.(本题满分11分)设()y x 是区间30,2⎛⎫ ⎪⎝⎭上的可导函数,且(1)0y =.点P 是曲线:()L y y x =上的任意一点,L 在点P 处的切线与y 轴相交于点()0,P Y ,法线与X 轴相交于点(),0P X .若P p X Y =,求L 上的点的坐标(,)x y 满足的方程.【详解】曲线过点(,)P x y 的切线方程为()()()Y y x y x X x '-=-,令0X =,得()()p Y y x xy x '=-; 曲线过点(,)P x y 的法线方程为1()()()Y y x X x y x -=--',令0Y =,得()p X x yy x '=+. 由条件P p X Y =,可得微分方程y xy x yy ''-=+标准形为11ydy x y xy y dx x y x--+'===++,是个一阶齐次型微分方程. 设y u x =,方程化为11du u u x dx u -+=+,整理,得211du u x dx u +=-+ 分离变量,两边积分,得1arctan ln ln ln 2u u x C +=-+ 由初始条件(1)0y =,得1,0,0x y u ===,确定常数1C = 所以曲线的方程为1arctan ln ln 2y yx x x+=-. 22.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫ ⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.23.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭. 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵.(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
考研数学二真题(2017年)
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab = (D)2ab =(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰(3)设数列{}n x 收敛,则( )()A 当lim sin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程的特解可设为( )(A )22(cos2sin 2)x x Ae e B x C x ++ (B )22(cos2sin 2)x x Axe e B x C x ++ (C )22(cos2sin 2)x x Ae xe B x C x ++ (D )22(cos2sin 2)x x Axe e B x C x ++ (5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则( )(A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f < (6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s(A )010t =(B )01520t << (C )025t =(D )025t >(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( )(A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+(8)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) (A ),A C B C 与相似与相似 (B ),A C B C 与相似与不相似(C ),A C B C 与不相似与相似 (D ),A C B C 与不相似与不相似二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9) 曲线21arcsin y x x ⎛⎫=+ ⎪⎝⎭的斜渐近线方程为_______(10) 设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则220t d y dx ==______(11)2ln(1)(1)x dx x +∞+=+⎰_______(12) 设函数(,)f x y 具有一阶连续偏导数,且(,)(1)y y df x y ye dx x y e dy =++,(0,0)0f =,则(,)______f x y = (13)110tan ______yxdy dx x=⎰⎰ (14)设矩阵41212311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的一个特征向量为112⎛⎫⎪ ⎪ ⎪⎝⎭,则_____a = 三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限0lim t x dt +→(16)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )x y f e x =,求x dydx=,22x d y dx =(17)(本题满分10分)求21lim ln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑(18)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(19)(本题满分10分)设函数()f x 在区间[0,1]上具有2阶导数,且()(1)0,lim 0x f x f x+→><,证明: ()I 方程()0f x =在区间(0,1)内至少存在一个实根;()∏方程2''()()(())0f x f x f x +=在区间(0,1)内至少存在两个不同实根。
2017考研数学二真题及答案
2017考研数学二真题及答案一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)设二阶可导函数)(x f 满足1)1()1(=-=f f ,1)0(-=f ,且0)(>''x f ,则( ))(A ⎰->110)(x f 。
)(B ⎰-<110)(x f 。
)(C ⎰⎰->101)()(dx x f x f 。
)(D ⎰⎰-<11)()(dx x f x f 。
【答案】)(B【解】取12)(2-=x x f ,显然⎰-<110)(x f ,应选)(B 。
(3)设数列}{n x 收敛,则 ( ))(A 当0sin lim =∞→n n x 时,0lim =∞→n n x 。
)(B 当0)||(lim =+∞→n n n x x 时,0lim =∞→n n x 。
)(C 当0)(lim 2=+∞→nn n x x 时,0lim =∞→n n x 。
)(D 当0)sin (lim =+∞→n n n x x 时,0lim =∞→n n x 。
【答案】)(D【解】令A x n n =∞→lim ,由0sin )sin (lim =+=+∞→A A x x n n n 得0=A 。
(4)微分方程)2cos 1(842x e y y y x+=+'-''的特解可设为=*y ( ))(A )2sin 2cos (22x C x B e Ae x x ++。
2017年考研数学二试题及答案
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→==在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为(A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),x xy y y Ae xe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数, 所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+【答案】 B 【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2017数学二考研真题-答案
n
(17) (本题满分 10 分)求 lim
n k 1
k ln 1 n2
k 。 n
1 1 n k k k k ln(1 ) lim ln(1 ) x ln(1 x)dx 2 0 n n n n k 1 n 【解析】 n k 1 n
lim
n
1 1 1 x (2 1 ) 1 1 1 2 1x ) dx l n (1 x d) x ( ) x 2 l n ( 2 20 1 x 2 0 0
三、解答题 (15) (本题满分 10 分)
求极限 lim
x 0
x
0
x tet dt x3
。
x
【解析】
x
0
x tet dt
x t u
0
ue x u du e x
x
0
ueu du
x
则 lim
x 0
x
0
x tet dt x3
lim
x 0
ex
S2
S1
10 ,所以 t0
25
,
故选(C).
(7)设 A 为三阶矩阵, p
α1, α2, α3 为 可 逆 矩 阵 , 使 得 P AP
-1
000 0 1 0 ,则 002
.
A α1 +α2 +α3 =
(A) α1 (C) α2 B 【答案】
α2 (B) α2
α3 (C) α1
2α3 2α3
0 0 0 0 0 0 由 P AP 0 1 0 得 AP P 0 1 0 【解析】 0 0 2 0 0 2
2017年考研数学二真题及答案解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1))若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( )(A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】001112lim lim ,()2x x xf x ax ax a++→→-==在0x =处连续11.22b ab a ∴=⇒=选A.(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则()()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B. (3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为(A )22(cos 2sin 2)xx Ae e B x C x ++(B )22(cos 2sin 2)xx Axee B x C x ++(C )22(cos 2sin 2)xx Aexe B x C x ++(D )22(cos 2sin 2)xx Axee B x C x ++【答案】A【解析】特征方程为:21,248022iλλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+故特解为:***2212(cos 2sin 2),xx y y y Aexe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f <【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数, 所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则()()s (A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+【答案】 B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2017考研数学二真题与答案解析
2017考研数学二真题与答案解析2017年考研数学二真题与答案解析一、选择题部分1.设函数f(x) = ∫(1, x) [(3t^2 - 1) e^t] dt,则f(x)的导函数为()。
A. 3x^2 e^x - 1 B. 3x^2 e^x C. 3x^2 e^x + 1 D. 3x e^x - 1 答案:A 解析:根据牛顿-莱布尼兹公式,f(x) = ∫(1, x) [(3t^2 - 1) e^t] dt = [(3t^2 - 1) e^t] |(1, x) = (3x^2 - 1) e^x - (3 - 1) e = 3x^2 e^x - e^x - 3e^x + e。
所以f'(x) = 3x^2 e^x - e^x - 3e^x + e = 3x^2 e^x - (3e- 1) e^x - 3e^x = (3x^2 - 3e + 1) e^x - 3e^x = (3x^2 - 3e - 2) e^x。
2.设函数f(x) = x^3 + 3x^2 + 3x + 1,下列哪个不是f(x)的零点? A. 0 B.-1 C. 1 D. -2答案:D 解析:将选项代入函数f(x)中,只有选项D不满足f(x) = 0,所以选项D不是f(x)的零点。
3.设正方形ABCD的边长为a,点P、Q分别位于BC、CD上,且BP = 2DQ,则△APQ的面积为()。
A. a^2/12 B. a^2/6 C. a^2/3 D. a^2/2 答案:A 解析:设△APQ的面积为S,△ABP的面积为S1,△ADQ的面积为S2,则S = S1 + S2。
根据△ABP和△ADQ的面积公式,S1 = (1/2) × a × BP = a × DQ = 2S2。
所以S = S1 + S2 = 2S2 + S2 = 3S2。
而正方形ABCD的面积为a^2,△ABD的面积为(1/2) × a × a = a^2/2,所以S2 = a^2/12。
2017考研数学二真题及答案解析
2017考研数学二真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)设二阶可导函数)(x f 满足1)1()1(=-=f f ,1)0(-=f ,且0)(>''x f ,则( ))(A ⎰->110)(x f 。
)(B ⎰-<110)(x f 。
)(C ⎰⎰->101)()(dx x f x f 。
)(D ⎰⎰-<11)()(dx x f x f 。
【答案】)(B【解】取12)(2-=x x f ,显然⎰-<110)(x f ,应选)(B 。
(3)设数列}{n x 收敛,则 ( ))(A 当0sin lim =∞→n n x 时,0lim =∞→n n x 。
)(B 当0)||(lim =+∞→n n n x x 时,0lim =∞→n n x 。
)(C 当0)(lim 2=+∞→nn n x x 时,0lim =∞→n n x 。
)(D 当0)sin (lim =+∞→n n n x x 时,0lim =∞→n n x 。
【答案】)(D【解】令A x n n =∞→lim ,由0sin )sin (lim =+=+∞→A A x x n n n 得0=A 。
(4)微分方程)2cos 1(842x e y y y x +=+'-''的特解可设为=*y ( ))(A )2sin 2cos (22x C x B e Ae x x ++。
2017考研数学二真题及答案
2017考研数学二真题及答案一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)设二阶可导函数)(x f 满足1)1()1(=-=f f ,1)0(-=f ,且0)(>''x f ,则( ))(A ⎰->110)(x f 。
)(B ⎰-<110)(x f 。
)(C ⎰⎰->101)()(dx x f x f 。
)(D ⎰⎰-<11)()(dx x f x f 。
【答案】)(B【解】取12)(2-=x x f ,显然⎰-<110)(x f ,应选)(B 。
(3)设数列}{n x 收敛,则 ( ))(A 当0sin lim =∞→n n x 时,0lim =∞→n n x 。
)(B 当0)||(lim =+∞→n n n x x 时,0lim =∞→n n x 。
)(C 当0)(lim 2=+∞→nn n x x 时,0lim =∞→n n x 。
)(D 当0)sin (lim =+∞→n n n x x 时,0lim =∞→n n x 。
【答案】)(D【解】令A x n n =∞→lim ,由0sin )sin (lim =+=+∞→A A x x n n n 得0=A 。
(4)微分方程)2cos 1(842x e y y y x+=+'-''的特解可设为=*y ( ))(A )2sin 2cos (22x C x B e Ae x x ++。
2017考研资料数学二真题及答案解析.doc
2017考研数学二真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)设二阶可导函数)(x f 满足1)1()1(=-=f f ,1)0(-=f ,且0)(>''x f ,则( ))(A ⎰->110)(x f 。
)(B ⎰-<110)(x f 。
)(C ⎰⎰->101)()(dx x f x f 。
)(D ⎰⎰-<101)()(dx x f x f 。
【答案】)(B【解】取12)(2-=x x f ,显然⎰-<110)(x f ,应选)(B 。
(3)设数列}{n x 收敛,则 ( ))(A 当0sin lim =∞→n n x 时,0lim =∞→n n x 。
)(B 当0)||(lim =+∞→n n n x x 时,0lim =∞→n n x 。
)(C 当0)(lim 2=+∞→nn n x x 时,0lim =∞→n n x 。
)(D 当0)sin (lim =+∞→n n n x x 时,0lim =∞→n n x 。
【答案】)(D【解】令A x n n =∞→lim ,由0sin )sin (lim =+=+∞→A A x x n n n 得0=A 。
(4)微分方程)2cos 1(842x e y y y x+=+'-''的特解可设为=*y ( ))(A )2sin 2cos (22x C x B e Ae x x ++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017考研数学二真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)设二阶可导函数)(x f 满足1)1()1(=-=f f ,1)0(-=f ,且0)(>''x f ,则( ))(A ⎰->110)(x f 。
)(B ⎰-<110)(x f 。
)(C ⎰⎰->101)()(dx x f x f 。
)(D ⎰⎰-<11)()(dx x f x f 。
【答案】)(B【解】取12)(2-=x x f ,显然⎰-<110)(x f ,应选)(B 。
(3)设数列}{n x 收敛,则 ( ))(A 当0sin lim =∞→n n x 时,0lim =∞→n n x 。
)(B 当0)||(lim =+∞→n n n x x 时,0lim =∞→n n x 。
)(C 当0)(lim 2=+∞→nn n x x 时,0lim =∞→n n x 。
)(D 当0)sin (lim =+∞→n n n x x 时,0lim =∞→n n x 。
【答案】)(D【解】令A x n n =∞→lim ,由0sin )sin (lim =+=+∞→A A x x n n n 得0=A 。
(4)微分方程)2cos 1(842x e y y y x +=+'-''的特解可设为=*y ( ))(A )2sin 2cos (22x C x B e Ae x x ++。
)(B )2sin 2cos (22x C x B xe Axe x x ++。
)(C )2sin 2cos (22x C x B xe Ae x x ++。
)(D )2sin 2cos (22x C x B xe Axe x x ++。
【答案】)(C【解】特征方程为0842=+-λλ,特征值为i 222,1±=λ。
对方程xe y y y 284=+'-'',特征形式为xAey 21=;对方程x ey y y x2cos 842=+'-'',特解形式为)2sin 2cos (22x C x B xe y x +=,故方程)2cos 1(842x e y y y x+=+'-''的特解形式为 )2sin 2cos (22x C x B xe Aey x x++=*,应选)(C 。
(5)设),(y x f 具有一阶偏导数,且对任意的),(y x 都有0),(,0),(<∂∂>∂∂yy x f x y x f , 则 ( ))(A )1,1()0,0(f f >。
)(B )1,1()0,0(f f <。
)(C )0,1()1,0(f f >。
)(D )0,1()1,0(f f <。
【答案】)(D 【解】0),(>∂∂xy x f 得),(y x f 关于x 为增函数,从而),0(),1(y f y f >; 由0),(<∂∂yy x f 得),(y x f 关于y 为减函数,从而)1,()0,(x f x f >, 由),0(),1(y f y f >得)0,0()0,1(f f >;由)1,()0,(x f x f >得)1,0()0,0(f f >,故)1,0()0,1(f f >,应选)(D 。
(6)甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中,实线表示甲的速度曲线)(1t v v =(单位:s m /),虚线表示乙的速度曲线)(2t v v =,三块阴影部分面积的数值依次为3,20,10,计时开始后乙追甲的时刻为0t (单位:s ),则( ) )(A 100=t 。
)(B 20150<<t 。
)(C 250=t 。
)(D 250>t 。
【答案】 【解】(7)设A 为3阶矩阵,),,(321ααα=P 为可逆矩阵,使得⎪⎪⎪⎭⎫ ⎝⎛=-2000100001AP P ,则=++)(321αααA ( ))(A 21αα+。
)(B 322αα+。
)(C 32αα+。
)(D 312αα+。
【答案】)(B【解】由⎪⎪⎪⎭⎫ ⎝⎛=-2000100001AP P 得⎪⎪⎪⎭⎫ ⎝⎛=200010000P AP ,于是()323232121112,,0111200010000111)(ααααααα+=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=++P AP A ,应选)(B 。
(8)已知矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=200020001,100020012,100120002C B A ,则 ( ))(A A 与C 相似,B 与C 相似。
)(B A 与C 相似,B 与C 不相似。
)(C A 与C 不相似,B 与C 相似。
)(D A 与C 不相似,B 与C 不相似。
【答案】)(B【解】C B A ,,的特征值为1,2321===λλλ,由⎪⎪⎪⎭⎫ ⎝⎛-=-1001000002A E 得1)2(=-A E r ,则A 可相似对角化,从而C A ~;由⎪⎪⎪⎭⎫ ⎝⎛-=-1000000102B E 得2)2(=-B E r ,则B 不可相似对角化,从而B 与C A ,不相似,应选)(B 。
二、填空题(本题共6小题,每小题4分,满分24分) (9)曲线)2arcsin 1(xx y +=的斜渐近线为________。
【答案】2+=x y 。
【解】1)2arcsin 1(lim lim=+=∞→∞→xx y x x ,2112arcsin 1lim )(lim =-+=-∞→∞→xx x y x x ,斜渐近线为2+=x y 。
(10)设函数)(x y y =由参数方程⎩⎨⎧=+=t y e t x t sin ,确定,则____|022==t dx yd 。
【答案】81-。
【解】tet dt dx dt dy dx dy +==1cos //, 32022)1(cos sin )1(1)1(cos )1(sin /)1cos (|t t t t t t t t t e t e t e e e t e e t dt dx e td dx y d +++-=++-+-=+==, 则81|022-==t dx y d 。
(11)________)1()1ln(02=++⎰+∞dx x x 。
【答案】2。
【解】)11()1ln()1()1ln(02⎰⎰+∞+∞++-=++x d x dx x x 2|111)1(1|1)1ln(0020=+-=++++-=∞++∞∞+⎰x dx x x x (12)设函数),(y x f 具有一阶连续的偏导数,且dy e y x dx ye y x df yy)1(),(++=,0)0,0(=f ,则_______),(=y x f 。
【答案】yxye【解】由)()1(),(yyyxye d dy e y x dx ye y x df =++=得C xye y x f y +=),(,再由0)0,0(=f 得0=C ,故yxye y x f =),(。
(13)_______tan 110=⎰⎰y dx x xdy 。
【答案】1cos ln -【解】1cos ln |cos ln tan tan tan 1010010110-=-===⎰⎰⎰⎰⎰x xdx dy dx xx dx x x dy x y 。
(14)设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=11321214a A 的一个特征向量为⎪⎪⎪⎭⎫ ⎝⎛211,则________=a 。
【答案】1-=a 。
【解】由⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--21121111321214λa 得⎩⎨⎧=+=λλa 23,1,解得1-=a 。
三、解答题(15)(本题满分10分)求30lim xdt e t x xt x ⎰-+→。
【解】⎰⎰⎰--=-==-xu x xu x ut x xtdu e u e du e u dt e t x 00,则303030limlim limxdu e u xdu e u e xdt e t x xu x xux x xtx ⎰⎰⎰-+→-+→+→=⋅=-3223lim 0==-+→x e x x x 。
(16)(本题满分10分)设函数),(v u f 具有二阶连续的偏导数,)cos ,(x e f y x=,求0|=x dxdy,022|=x dx y d 。
【解】21sin f x f e dx dy x '⋅-'=,)1,1(|10f dxdyx '==; )sin (sin cos )sin (222121211122f x f e x f x f x f e e f e dxy d xx x x ''⋅-''-'⋅-''⋅-''+'=, 则)1,1()1,1()1,1(|2111022f f f dx yd x '-''+'==。
(17)(本题满分10分)求∑=∞→+nk n n k n k 12)1ln(lim。
【解】⎰∑∑+=+=+=∞→=∞→10112)1ln()1ln(1lim )1ln(lim dx x x n knk n n k n k n k n nk ndx xx x x x d x ⎰⎰++--+=+=10210210211)1(21|)1ln(21)()1ln(21412ln 2121412ln 21)111(212ln 2110=-+-=++--=⎰dx x x 。
(18)(本题满分10分)已知函数)(x y 由方程023333=-+-+y x y x 确定,求)(x y 的极值。
【解】023333=-+-+y x y x 两边对x 求导得0333322='+-'+y y y x ,令0='y 得1,121=-=x x ,对应的函数值为01=y ,12=y ; 0333322='+-'+y y y x 两边再对x 求导得0336622=''+''+'+y y y y y x ,由02)1(>=-''y 得1-=x 为极小点,极小值为0=y ; 由01)1(<-=-''y 得1=x 为极大点,极大值为1=y 。