圆的一题多解

合集下载

一题多解直线与圆相切求参数取值范围问题

一题多解直线与圆相切求参数取值范围问题

一题多解直线与圆相切求参数取值范围问题
纵观往年高考,直线与圆的位置关系一直是高考考查的热点,其中圆的切线和弦的问题是本部分的重点,解题时要充分利用圆的性质,注意数形结合,尽可能简化运算。

例说:
由直线与圆相切自然想到圆心到直线的距离等于半径,从而得到一个关于m,n的式子,对于绝对值和二次根式的处理方法就很直接想到平方法,整理出来的这个式子大家就非常熟悉了,利用基本不等式就可以m+n的取值范围。

解法1:
解法2:
解法2是再解法1的基础上,利用换元法求解一元二次不等式解法3:
看着简单,但是不常用,这道题从解题速度和准确度来说是倾向于推荐方法1,同学在思考和计算上会更熟练,正确率就更高,学有余力的同学也可以看看后面两种方法,归根结底,还是选自己最擅长最容易懂的方法来做。

第一单元 圆的周长和面积解决问题(易错突破)-2023-2024学年六年级数学上册重难点北师大版)

第一单元  圆的周长和面积解决问题(易错突破)-2023-2024学年六年级数学上册重难点北师大版)

第一单元圆的周长和面积解决问题(易错突破)一、解答题1.给直径是0.55米的铁锅做一个木制锅盖,锅盖的直径比铁锅的直径要大5厘米,这个锅盖的周长是多少米?面积是多少平方米?2.直径为10米的圆形花坛周围,需要铺一圈宽度为3米的水泥路。

已知每平方米水泥路的成本是100元,那么修这条路需要多少元?3.公园里有一个圆形的养鱼池,量得养鱼池的周长是100.48米,养鱼池的中间有一个圆形小岛,直径是6米。

这个养鱼池的水域面积是多少?4.如图,钟表的分针长11cm。

经过30分后,分针的针尖走过的路程是多少厘米?分针扫过的面积是多少平方厘米?5.一辆自行车的车轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?(车身的长度忽略不计)6.李星和李佳骑自行车经过一段长为628米的大桥,李星自行车车轮直径为0.8米、每分钟都转动50圈,需要用多长时间才能通过大桥?(自行车身长忽略不计)7.如图,将两根直径是15cm的钢管用绳子捆在一起,每周需要绳子多少厘米?(接口处不计)8.从一张梯形铁皮上剪下一个直径为8厘米的半圆后(如图),剩下部分的面积是多少平方厘米?(单位:厘米)9.在一块长为25米、宽为15米的长方形草地上的一个顶点处拴一只羊,拴羊的绳子长度是8米。

算一算,草地上羊吃不到草的部分面积是多少平方米?10.王奶奶用6.28米长的篱笆靠墙围成了一个如图的扇形养鸡场,这个养鸡场的面积是多少?11.兰兰用3米长的绳子测量一棵树干横截面的周长,将绳子在树干上绕了3周还余17.4厘米,这棵树干的横截面的面积是多少平方厘米?12.一个圆形会议桌桌面的直径是5米。

(1)它的面积是多少平方米?(2)开会时,如果一个人需要0.5米的位置,这个会议室大约能做几人?(3)会议桌中央是一个直径2米的自动旋转的圆形转盘,转盘外围的面积是多少?13.张大爷打算在空地上围成一个直径是10米的半圆形鸡圈,需要用篱笆多长?为了节约篱笆,张大爷决定一面靠墙,围成一个直径是10米的半圆形鸡圈,需要用篱笆多长?14.一只大钟,它的分针长20厘米。

与圆有关综合问题-高考数学一题多解

与圆有关综合问题-高考数学一题多解

与圆有关综合问题-高考数学一题多解一、攻关方略1.求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心(2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.2.点与圆的位置关系的判断方法:(1)几何法:利用圆心到该点的距离d 与圆的半径r 比较;(2)代数法:直接利用下面的不等式判定:①22200()()x a y b r -+->,点在圆外;②22200()()x a y b r -+-=,点在圆上;③22200()()x a y b r -+-<,点在圆内.3.判断二元二次方程220x y Dx Ey F ++++=是否表示圆的方法:(1)利用圆的一般方程的定义,求出224D E F +-利用其符号(2)将方程配方化为()()22x a y b m -+-=的形式,根据m 的符号判断.4.应用待定系数法求圆的一般方程的步骤如下:5.求与圆有关的轨迹方程的常用方法:(1)直接法:能直接根据题目提供的条件列出方程.步骤如下:(2)定义法:当动点的轨迹符合圆的定义时,可直接写出动点的轨迹方程.(3)相关点法:若动点(,)P x y 随着圆上的另一动点11(),Q x y 运动而运动,且11,x y 可用,x y 表示,则可将Q 点的坐标代入已知圆的方程,即得动点P 的轨迹方程.【典例】【2022·高考数学甲卷文科第14题】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【针对训练】2.已知圆的圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5),则圆的一般方程为________________.3.已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=C 的方程为__________.【2022年全国乙卷(文数)第15题】4.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.(2022年新高考全国I 卷)5.写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程________________.6.由圆229x y +=外一点(5,12)P 引圆的割线交圆于A B ,两点,求弦AB 的中点M 的轨迹方程.7.已知直线l :30mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别作l的垂线与x 轴交于C ,D 两点,若||AB =,则||CD =__________.8.设直线2y x a =+与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =C 的面积为________9.在平面内,定点,,,A B C D 满足||||||DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点P ,M 满足||1AP = ,PM MC =,则2||BM 的最大值是()A .434B .494C D 10.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于________.11.设m ,n ∈R ,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是.A .[1+B .(),11⎡-∞+∞⎣C .[22-+D .(),22⎡-∞-++∞⎣参考答案:1.22(1)(1)5x y -++=【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=[方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线y=3x-4与直线210x y +-=的交点(1,-1).R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=2.x 2+y 2+2x +4y -5=0【分析】方法一:设出圆的标准方程,代入点的坐标,建立方程组,求出答案;方法二:求出线段AB 的垂直平分线方程,联立x -2y -3=0求出圆心坐标,进而计算出半径,写出圆的标准方程,化为一般方程.【详解】方法一:设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由题意得:()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10,a b r =-⎧⎪=-⎨⎪=⎩故所求圆的方程为(x +1)2+(y +2)2=10,即x 2+y 2+2x +4y -5=0.方法二:线段AB 的中点坐标为2235,22---⎛⎫⎪⎝⎭,即()0,4-,直线AB 的斜率为531222-+=--,所以线段AB 的垂直平分线的斜率为-2,所以线段AB 的垂直平分线方程为42y x +=-,即2x +y +4=0,由几何性质可知:线段AB 的垂直平分线与230x y --=的交点为圆心,联立240,230,x y x y ++=⎧⎨--=⎩,得交点坐标()1,2O --,又点O 到点A 的距离d =,所以圆的方程为(x +1)2+(y +2)2=10,即x 2+y 2+2x +4y -5=0.故答案为:x 2+y 2+2x +4y -5=0.3.22(2)9.x y -+=【详解】试题分析:设(,0)(0)C a a >2,3a r ===,故圆C 的方程为22(2)9.x y -+=【考点】直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质、直线和圆的位置关系等求出圆心、半径,进而写出圆的标准方程.4.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒=22(2)(3)13x y -+-=;(2)若圆过A B D 、、三点,设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程为25y x =-+,联立得47,33x y r ==⇒=,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =,线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=.故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.5.3544y x =-+或7252424y x =-或=1x -【分析】先判断两圆位置关系,分情况讨论即可.【详解】[方法一]:显然直线的斜率不为0,不妨设直线方程为0x by c ++=,1=4.=故221c b =+①,|34||4|.b c c ++=于是344b c c ++=或344b c c ++=-,再结合①解得01b c =⎧⎨=⎩或247257b c ⎧=-⎪⎪⎨⎪=-⎪⎩或4353b c ⎧=⎪⎪⎨⎪=-⎪⎩,所以直线方程有三条,分别为10x +=,724250x y --=,3450.x y +-=(填一条即可)[方法二]:设圆221x y +=的圆心(0,0)O ,半径为11r =,圆22(3)(4)16x y -+-=的圆心(3,4)C ,半径24r =,则12||5OC r r ==+,因此两圆外切,由图像可知,共有三条直线符合条件,显然10x +=符合题意;又由方程22(3)(4)16x y -+-=和221x y +=相减可得方程3450x y +-=,即为过两圆公共切点的切线方程,又易知两圆圆心所在直线OC 的方程为430x y -=,直线OC 与直线10x +=的交点为4(1,)3--,设过该点的直线为4(1)3y k x +=+1=,解得724k =,从而该切线的方程为724250.(x y --=填一条即可)[方法三]:圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为=1x -,故答案为:3544y x =-+或7252424y x =-或=1x -.6.225120x y x y +--=,其中33x -<<.【分析】方法一:根据题设条件列出几何等式OM AB ⊥,再根据勾股定理或者数量积转化成代数等式,化简即可求出曲线方程.【详解】[方法一]:【通性通法】【最优解】直接法设弦AB 的中点M 的坐标为(,)M x y ,连接OP 、OM ,则OM AB ⊥.在OMP 中,由勾股定理有2222(5)(12)169x y x y ++-+-=,而(,)M x y 在圆内,所以弦AB 的中点M 的轨迹方程为225120(33)x y x y x +--=-<<.[方法2]:定义法因为M 是AB 的中点,所以OM AB ⊥,所以点M 的轨迹是以OP 为直径的圆,圆心为5,62⎛⎫ ⎪⎝⎭,半径为||1322OP =,所以该圆的方程为:222513(6)22x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,化简得225120(33)x y x y x +--=-<<[方法3]:交轨法易知过P 点的割线的斜率必然存在,设过P 点的割线的斜率为k ,则过P 点的割线方程为:12(5)y k x -=-.∵OM AB ⊥且过原点,∴OM 的方程为1=-y x k这两条直线的交点就是M 点的轨迹.两方程相乘消去k ,化简,得:225120x y x y +--=,其中33x -<<.[方法4]:参数法设过P 点的割线方程为:12(5)y k x -=-,它与圆229x y +=的两个交点为A 、,B AB 的中点为M ,设()()1122(,),,,,M x y A x y B x y .由22(5)129y k x x y =-+⎧⎨+=⎩可得,()()()2221212512590k x k k x k ++-+--=,所以,()12221251k k x x k -+=-+,即有()21251k k x k -=-+,21251ky k -=+,消去k ,可求得M 点的轨迹方程为:225120x y x y +--=,33x -<<.[方法5]:点差法设()()1122(,),,,,M x y A x y B x y ,则12122,2x x x y y y +=+=.∵222211229,9x y x y +=+=.两式相减,整理,得()()()()212121120x x x x y y y y -+--+=.所以21122112y y x x xx x y y y-+=-=--+,即为AB 的斜率,而AB 的斜率又可表示为1212,55y y xx x y--∴=---,化简并整理,得225120x y x y +--=.其中33x -<<.【整体点评】方法一:直接根据轨迹的求法,建系、设点、列式、化简、检验即可解出,是该类型题的常规方法,也是最优解;方法二:根据题设条件,判断并确定轨迹的曲线类型,运用待定系数法求出曲线方程;方法三:将问题转化为求两直线的交点轨迹问题;方法四:将动点坐标表示成某一中间变量(参数)的函数,再设法消去参数;方法五:根据曲线和方程的对应关系,点在曲线上则点的坐标满足方程,用点差法思想,设而不求.7.4【分析】由题,根据垂径定理求得圆心到直线的距离,可得m 的值,既而求得CD 的长可得答案.【详解】因为AB =且圆的半径为r =所以圆心()0,0到直线30mx y m ++=33=,解得m =l的方程,得3y x =+l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,4cos30ABCD ==︒.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.8.4π【详解】因为圆心坐标与半径分别为(0,),=C a rd =则2232a +=+,解之得22a =,所以圆的面积2(22)4πππ==+=S r ,应填答案4π.9.B【分析】根据题意得到ABC 为正三角形,且D 为ABC 的中心,结合题设条件求得2=DA,得到ABC 为边长为A 为原点建立直角坐标系,设(cos ,sin )P θθ,根据PM MC = ,得到3cos (2M θ+,进而求得23712sin()64BM πθ+-= ,即可求解.【详解】由题意知||||||DA DB DC == ,即点D 到,,A B C 三点的距离相等,可得D 为ABC 的外心,又由2DA DB DB DC DC DA ⋅=⋅=⋅=-,可得()0DA DB DB DC DB DA DC DB CA ⋅-⋅=⋅-=⋅=,所以DB AC ⊥,同理可得,DA BC DC AB ⊥⊥,所以D 为ABC 的垂心,所以ABC 的外心与垂心重合,所以ABC 为正三角形,且D 为ABC 的中心,因为21cos ()22DA DB DA DB ADB DA ⋅=∠=⨯-=- ,解得2=DA ,所以ABC 为边长为如图所示,以A 为原点建立直角坐标系,则(3,(2,0)B C D ,因为1AP =,可得设(cos ,sin )P θθ,其中[0,2]θπ∈,又因为PM MC = ,即M 为PC 的中点,可得3cos sin ()22M θθ+,所以2223712sin()3cos sin 3712496(3)(22444BM πθθθ+-++=-++=≤= .即2BM 的最大值为494.故选:B.10.43.【详解】试题分析:显然两切线1l ,2l 斜率都存在.设圆222x y +=过()1,3的切线方程为()31y k x -=-,则圆心()0,0到直线30kx y k -+-=的距离等于半径,=得127, 1.k k =-=由夹角公式得1l 与2l 的夹角的正切值:12124tan 13k k k k θ-==+.考点:1.直线与圆的位置关系(相切);2.两直线的夹角公式.11.D【详解】试题分析:因为直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,所以,即=++1mn m n ,所以()2+=++14m n mn m n ≤,所以+m n 的取值范围是(,2)-∞-⋃∞.考点:圆的简单性质;点到直线的距离公式;基本不等式.点评:做本题的关键是灵活应用基本不等式,注意基本不等式应用的前提条件:一正二定三相等.。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.已知⊙O的周长为9π,当PO= 时,点P在⊙O上.【答案】4.5【解析】根据圆上点,圆内点和圆外点到圆心的距离与圆的半径的大小关系,可以确定点P的位置.解:∵⊙O的周长为9π,∴⊙O的半径为4.5,∵圆上点到圆心的距离等于半径,所以当PO=4.5时,P点在圆上.故答案为:4.5.点评:本题考查的是点与圆的位置关系,把点到圆心的距离与圆的半径进行大小比较,得到点与圆的位置关系.2.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .【答案】1+【解析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.3.△ABC中,∠C=90°,AC=5,BC=8,以C为圆心,r为半径作圆,使点A在圆内,点B在圆外,则半径r的取值范围为.【答案】5<r<8【解析】当点A在圆内时点A到点C的距离小于圆的半径,点B在圆外时点B到圆心的距离应该大于圆的半径,据此可以得到半径的取值范围.解:当点A在圆内时点A到点C的距离小于圆的半径,即:r>5;点B在圆外时点B到圆心的距离应该大于圆的半径,即:r<8;故答案为:5<r<8点评:本题考查了点与圆的位置关系,解题的关键是明确半径的大小与位置关系的关系.4.在△ABC中,∠ACB=90°.AC=2cm,BC=4cm,CM是斜边中线,以C为圆心以cm长为半径画圆,则A、B、M三点在圆的外是,在圆上的是.【答案】点B,点M【解析】先求出AB的长,根据直角三角形斜边上的中线等于斜边的一半,求得CM的长;再由点与圆的位置关系,确定出点三点与⊙C的位置关系.解:∵∠ACB=90°,AC=2cm,BC=4cm,∴AB==2,∵CM是中线,∴CM=AB=,∵2<<4∴在圆外的是点B,在圆上的是点M.故答案为:点B,点M.点评:本题考查了点与圆的位置关系:①点P在⊙O上;②点P在⊙O内;③点P在⊙O外,及勾股定理的运用.5.一点到圆周上点的最大距离为18,最短距离为2,则这个圆的半径为.【答案】10或8【解析】分点在圆内和圆外两种情况,当点在圆内时,最大距离与最小距离的和等于直径,然后求出半径;当点在圆外时,最大距离与最小距离的差等于直径,然后求出半径.解:当点在圆内时,圆的直径为18+2=20,所以半径为10.当点在圆外时,圆的直径为18﹣2=16,所以半径为8.故答案是:10或8.点评:本题考查的是点与圆的位置关系,根据点到圆的最大距离和最小距离,求出圆的直径,然后得到圆的半径.6.两个圆的直径比是2:5,这两个圆的周长之比是,面积比是.【答案】2:5;4:25【解析】利用所有的圆都相似得到直径比为2:5的两圆的相似比为2:5,据相似多边形的性质可以求得其周长之比和面积之比.解:∵直径比是2:5的两个圆相似,∴相似比为2:5,∵相似多边形周长的比等于相似比,面积的比等于相似比的平方,∴两圆的周长之比为2:5,面积的比等于4:25,故答案为2:5;4:25.点评:本题考查了圆的认识,解题的关键是判定两圆相似并利用相似多边形的性质得到面积之比和周长之比.7.一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.A,B,C,D四点在同一个圆上吗?请说明理由.【答案】A、B、C、D能在同一个圆上【解析】取AC的中点O,连接OB,OD,根据直角三角形斜边上中线性质得出OB=OD=AC=OA=OC,根据对圆的认识得出答案.解:A、B、C、D能在同一个圆上,理由是:取AC的中点O,连接OB,OD,∵∠B=∠D=90°,∴OD=AC=OA=OC,BO=AC=OA=OC,∴OA=OB=OC=OD,∴A、B、C、D在以O为圆心,以OA为半径的圆上,即A、B、C、D能在同一个圆上.点评:本题考查了直角三角形斜边上中线性质和对圆的认识的应用,注意:直角三角形斜边上中线等于斜边的一半.8.如何在操场上画出一个很大的圆?说一说你的方法.作图说明:已知点AB=4cm,到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形.【答案】【解析】根据圆的定义解答即可.解:在操场上用一根很长的绳子,固定一头,拉紧后另一头旋转一周即可得到一个很大的圆.阴影部分就是到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形点评:本题考查了圆的认识,关键是了解圆的定义.9.如图,△ABC和△ABD都为直角三角形,且∠C=∠D=90゜.求证:A、B、C、D四点在同一个圆上.【答案】见解析【解析】取弦AB的中点O,利用直角三角形斜边上的中线等于斜边的一半证得OA=OB=OC=OD后即可求证A、B、C、D四点在同一个圆上.证明:取弦AB的中点O,连接OC,OD,∵△ABC和△ABD都为直角三角形,且∠C=∠D=90゜∴DO,CO分别为Rt△ABD和Rt△BCD斜边上的中线,∴OA=OB=OC=OD.∴A、B、C、D四点在同一个圆上.点评:本题考查了圆的认识,求证几个点在同一个圆上就是证明这几个点到一个点的距离相等.10.如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,求证:△ABC的外心O与点A、P、Q四点共圆.【答案】见解析【解析】先作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt△OPF≌Rt△OQE,得到∠P=∠Q即可得到答案.证明:作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,∵O是△ABC的外心,∴OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,∴BE=AF,∵AP=BQ,∴PF=QE,∵OE⊥AB,OF⊥AC∴∠OFP=∠OEQ=90°,∴Rt△OPF≌Rt△OQE,∴∠P=∠Q,∴O、A、P、Q四点共圆.即:△ABC的外心O与点A、P、Q四点共圆.点评:本题主要考查了四点共圆,勾股定理,全等三角形的性质和判定,确定圆的条件等知识点,作辅助线构造全等三角形证∠P=∠Q是解此题的关键.11.(2009•武汉模拟)如图,已知△ABC的外接圆⊙O的半径为1,D,E分别为AB,AC的中点,则sin∠BAC的值等于线段()A.BC的长B.DE的长C.AD的长D.AE的长【答案】B【解析】本题需将∠BAC构建到直角三角形中求解,过B作⊙O的直径,交⊙O于点F,由圆周角定理,知∠F=∠A;在Rt△BCF中,易求得sin∠F==,而DE是△ABC的中位线,即DE=,由此得解.解:过B作⊙O的直径BF,交⊙O于F,连接FC,则∠BCF=90°,Rt△BCF中,sin∠F==,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,即DE=,∴sin∠A=sin∠F==DE.故选B.点评:本题主要考查的是三角形中位线定理、圆周角定理等知识点.12.下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个【答案】C【解析】在同一直线上三点不能作圆,即可判定①;一个圆可以作无数个圆,判断②即可;每个三角形都有一个外接圆,外接圆的圆心是三角形三边的垂直平分线的交点,该点到三角形的三个顶点距离相等,即可判断③④.解:经过不在同一条直线上三点可以作一个圆,∴①错误;任意一个圆一定有内接三角形,并且有多个内接三角形,∴②错误;任意一个三角形一定有一个外接圆,并且只有一个外接圆,∴③正确;三角形的外心是三角形三边的垂直平分线的交点,到三角形的三个顶点距离相等,∴④正确.故选C.点评:本题考查了确定圆的条件和三角形的外接圆与外心的应用,主要考查学生运用性质进行说理的能力,题目比较好,但是一道比较容易出错的题目.13.已知点P到⊙O的最长距离是3,最短距离是2,则⊙O的半径是()A.2.5B.0.5C.2.5或0.5D.无法确定【答案】C【解析】分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可.解:①点P在圆内;如图,∵AP=2,BP=3,∴AB=5,∴OA=2.5;②点P在圆外;如图,∵AP=3,BP=2,∴AB=1,∴OA=0.5.故选C.点评:本题考查了点和圆的位置关系,分类讨论是解此题的关键.14.已知⊙O的圆心在坐标原点,半径为5,点P的坐标为(﹣2,﹣4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.不能确定【答案】A【解析】根据两点间的距离公式求出OP的长,再与半径比较确定点A的位置.解:OP==2<5,所以点P在⊙O内.故选A.点评:本题考查的是点与圆的位置关系,知道O,P的坐标,求出OP的长,与圆的半径进行比较,确定点P的位置.15.⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不确定【答案】C【解析】已知圆的半径是r,点到圆心的距离是d,点和圆的位置关系有三种:当r=d时,点在圆上,当r>d时,点在圆内,当r<d时,点在圆外,根据进行判断即可.解:∵⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,5>3,∴点P与⊙O的位置关系是点P在圆内,故选C.点评:本题考查了点与圆的位置关系的应用,注意:当圆的半径是r,点到圆心的距离是d时,点和圆的位置关系有三种:①当r=d时,点在圆上,②当r>d时,点在圆内,③当r<d时,点在圆外.16.直角三角形两直角边长分别是,,那么它的外接圆的直径是()A.B.4C.2D.【答案】D【解析】首先根据勾股定理求得该直角三角形的斜边是2,再根据其外接圆直径就是斜边的长度进行计算即可.解:∵直角三角形两直角边长分别是,,∴该直角三角形的斜边长是:=2,∴该直角三角形的外接圆的直径是2.故选D.点评:本题综合考查了勾股定理、三角形外接圆圆心.解决此题的关键在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长是圆的直径.17.已知⊙O的半径为4cm,A为线段OP的中点,当OP=6cm时,点A与⊙O的位置关系是()A.A在⊙O内B.A在⊙O上C.A在⊙O外D.不能确定【答案】A【解析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.解:因为OP=6cm,A是线段OP的中点,所以OA=3cm,小于圆的半径,因此点A在圆内.故选A.点评:本题考查的是点与圆的位置关系,根据OP的长和点A是OP的中点,得到OA=3cm,与圆的半径相等,可以确定点A的位置.18.已知点A的坐标为A(3,4),⊙A的半径为5,则原点O与⊙A的位置关系是()A.点O在⊙A内B.点O在⊙A上C.点O在⊙A外D.不能确定【答案】B【解析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.解:∵点A的坐标为A(3,4),∴OA==5,∴根据点到圆心的距离等于半径,则知点在圆上.故选B.点评:本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.19.①直径是弦;②过三点一定可以作圆;③三角形的外心到三个顶点的距离相等;④半径相等的两个半圆是等弧.以上四种叙述正确的有()个.A.1B.2C.3D.4【答案】C【解析】根据直径、弦的定义即可判断①,根据不在同一直线上的三点一定可以作圆即可判断②,根据三角形外接圆的定义即可判断③;根据等弧的定义即可判断④.解:直径是弦,①正确;过不在同一直线上的三点一定可以作圆,②错误;三角形的外心到三个顶点的距离相等,③正确;半径相等的两个半圆是等弧,④正确;即正确的有3个,故选C.点评:本题考查了三角形的外接圆,圆的有关概念,确定圆的条件的应用,主要考查学生的理解能力和辨析能力,题目比较典型,但是比较容易出错.20.已知AB为⊙O的直径P为⊙O上任意一点,则点关于AB的对称点P′与⊙O的位置为()A.在⊙O内B.在⊙O外C.在⊙O上D.不能确定【答案】C【解析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P关于AB的对称点P′与⊙O的位置为:在⊙O上,故选C.点评:本题考查了点与圆的位置关系,利用了圆的对称性求解.。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.【考点】1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.3.已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为 ()A.15π cm2B.30π cm2C.60π cm2D.3cm2【答案】B【解析】圆锥的侧面积=π×3×10=30π cm2.故选B.4.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是A.4cm B.6cm C.8cm D.10cm【答案】C.【解析】连接OB;∵CD=10cm,∴OC=5cm;∵OM:OC=3:5,∴OM=3cm;Rt△OCP中,OC=OA=5cm,OM=3cm;由勾股定理,得:所以AB=2AM=8cm,故选C.考点: 1.垂径定理;2.勾股定理.5.如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是.【答案】.【解析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.试题解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.考点: 1.垂径定理;2.勾股定理;3.圆心角、弧、弦的关系;4.轴对称-最短路线问题.6.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.【答案】t=1或或.【解析】∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.【考点】圆周角定理.7.如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为(结果保留π)【答案】.【解析】如图,根据正方形和圆的对称性,上方的小扇形与下方的红色小扇形面积相等,所以图中阴影部分两个小扇形的面积之和为四分之一半径为1的圆的面积,即.【考点】1.网格问题;2. 正方形和圆的对称性;3. 扇形的面积;4.转换思想的应用.8.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B地;B.老鼠先到达B地;C.猫和老鼠同时到达B地;D.无法确定.【答案】C.【解析】以AB为直径的半圆的长是:•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+b+c+d=(a+b+c+d)=•AB.故猫和老鼠行走的路径长相同.故选C.【考点】弧长公式.9.如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝,过O作OC AB求点O与AB的距离.【答案】3cm.【解析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.试题解析:连接OA.如图:∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC=考点: 1.垂径定理;2.勾股定理.10.如图所示,内接于,,,则______.【答案】.【解析】由圆周角定理知:,由于,得到,所以:.故答案是.【考点】圆周角定理.11.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【答案】(1)详见解析;(2)6【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.试题解析:(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【考点】1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理12.如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。

圆的一题多解一题多变

圆的一题多解一题多变

亲爱的同学们:数学常常一题多解,在多解的探索过程中,犹如一次历险记,本期我们将通过答案的展示再次一起去感受题目的构造美、图形美、因果美、推理美、创造美、对称美!已知在圆O中,A为优弧BC的中点,且AB=BC,E为弧BC上的一点,求AE=BE+CE.【分析】本题知识点(1)等边三角形和全等的相关知识;(2)利用截长补短的解题方法.1.一题多解(1)利用截长方法的方法解题解析:在AE上取点F,使得AF=BE,(AFC BECAF BEFAC EBCAC BC∆∆=⎧⎪∠=∠⎨⎪=⎩在和中作法可得)(同弧所对的圆周角相等)(等边三角形边相等)AFC∆≌BEC∆(SAS)∴CF=CE60AEC ABC∠=∠=︒∴ECF∆是等边三角形∴EF=ECAE=AF+EF∴AE=BE+CE(2)利用补短的方法解题解析:延长EB至点F,使BF=EC,BF ACEB C(ABF ACE ABEB AAF EA C∆∆=⎧⎪∠=∠∠⎨⎪=⎩在和中作法可得)(同角的补角相等)(等边三角形边相等)ABF∆≌ACE∆(SAS)FE∴BAF=CAE ∠∠ AE=AFCAE+EAB=60∠∠︒∴+EAB=60BAF ∠∠︒ ∴AFE ∆是等边三角形 ∴AE=EF=BE+BF 即AE=BE+CE(3)利用旋转的方法解题解析:将ACE ∆顺时针旋转60︒,则ABF ∆≌ACE ∆∴AEF ∆是等边三角形,ACE ABF ∠=∠+ABE=180ACE ∠∠︒(圆内接四边形对角互补)∴BF+ABE=180A ∠∠︒ 即点F 、B 、E 三点共线 ∴AE=EB+BF 即:AE=EB+EC(4)利用平行的方法解题解析:过点C 作AE 的平行线CF 交圆于点F ,连接AF.(5)利用托勒密定理解题解析:利用托勒密定理可得+EC AB=AE BC BE AC ⋅⋅⋅ ABC ∆是等边三角形∴AB=AC=BC ∴BE+EC=AE九年级版ECF//AEFCE+18060+CFB=180CE//FGCEGF BEG AFG BE=EG,CF=GF=AG BF+CF=GE+AG=AECEA BFC CEA FCE ∴∠∠=︒∠==︒∴∠∠︒∴∴∆∆∴∴即四边形是平行四边形和是等边三角形F。

巧用圆中的“一题多解”,培养学生发散性思维

巧用圆中的“一题多解”,培养学生发散性思维

巧用圆中的“一题多解”,培养学生发散性思维摘要:在初中数学教学中,习题解答是重要的组成部分,这不仅是由数学学科能用于解决现实问题的特征决定的,更是为了培养学生的逻辑思维、解题能力。

一题多解指的就是学生在解决数学问题的时候,不再局限一道题目一个解题思路和方法的限制,而是学会从不同的角度寻找切入点,使用多种方法解决问题。

本文从初中数学教学“圆”的一题多解教学入手展开研究,进行有效的一题多解训练,带出多种数学知识与方法,培养学生的发散性思维。

关键词:发散性思维;一题多解;初中数学;圆数学本身具有着一定的抽象性和逻辑性,而且解决问题的方式也是多样的。

教师注重转变教学理念和教学方法,引导学生从多角度和多层面进行问题的分析,学会使用一题多解来找到解决问题的多种方式,对发散学生的思维,培养学生的数学能力至关重要。

一、数学课程中的一题多解数学学科教学本身具有一定的抽象性与综合性内涵,它旨在培养学生的灵活逻辑思维能力。

在新课改背景下,为了实现数学教学实效性的有效提升,教师也希望从多个方面思考,实现多角度数学教学,引入一题多解训练模式,在提炼数学知识内容过程中也希望培养学生良好的变式思维,更多结合数学问题、条件、结论之间的相互转换来彰显学生对于教学内容、方法的不同理解,培养学生思维的广阔性和慎密性。

在该过程中,教师的教学过程不再固定于某一局限性定式思维上思考问题,要鼓励学生充分的发挥出想象力,能针对一个题目从多角度和多方向进行观察和分析,多角度和多变并且多层次的应用学习过的知识,得出不同类型解决问题的方式方法,同时也养成任何问题都去多方面思考的习惯。

二、圆的一题多解问题探析在学完圆的有关知识后,很多学生会发现有些习题常出现一题多解的特点.这是由于图形的位置及圆的对称性等特性而出现的情况。

本文将课本中的例、习题的改编题及近几年来全国各地的中考题有关圆中一题多解的问题归纳起来,作为培养学生发散思维的有效路径并展开分析。

圆的一题多解

圆的一题多解

圆中多解问题
1、已知⊙O中,半径为5,AB、CD是两条平行弦,且AB=8,CD=6,则弦AC
的长为,co s∠CAB= ,ta n∠CAB= 。

2、点P到⊙O上一点A的最大距离为5,到⊙O上一点B的最短距离为3,AC
为弦,且∠CAB=30°,则弦AC的长为。

3、已知⊙O的直径为4,弦AB、AC的长分别为2
2,则∠BOC的度数
2和3
为。

4、相交两圆的公共弦长为6,两圆的半径分别为2
3和5,则两圆的圆心距为。

5、在⊙O中,弦AB为圆内接六边形的边长,弦AC为圆内接正方形的边长,
那么∠BAC= °。

6、⊿ABC中,AB=AC=5cm,面积为12cm2,则⊿ABC的外接圆半径等
于。

7、已知⊙O的半径为5,⊿ABC内接于⊙O中,若AB=AC,BC=8,则
AB= 。

8、在梯形ABCD中,A D∥BC,AC⊥CD,以AB为直径的⊙O与CD相切于E,边
BC比AD大6,在直径AB上有一点P,使A、D、P为顶点的三角形与⊿BCP相似,则AP的长为。

9、直线l上有两点A、B,点A在点B的左侧,AB=6cm,把半径为1cm 的⊙
O的圆心O与A重合,以点B为圆心,以2cm为半径画⊙B,将⊙O的圆心O沿射线AB向右以1cm/s的速度运动,当两圆相交时,⊙O的运动时间t(s) 的取值范围是。

10、两个半径都为1cm的⊙A和⊙B的圆心都在直线l上,且⊙A在⊙B的左侧,
开始时AB=4cm,现⊙A、⊙B同时沿直线l以每秒2cm的速度相向移动,当两圆相切时,⊙A运动的时间为秒。

在⊿ABC中,AB=13,AC=5,BC边上的高为4,则⊿ABC的外接圆半径等于。

中考数学《圆(一)》专题练习含答案解析

中考数学《圆(一)》专题练习含答案解析

圆(一)一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.513.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为度.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=度.三、解答题(共5小题)26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.圆(一)参考答案与试题解析一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°【考点】圆周角定理;含30度角的直角三角形.【专题】几何图形问题.【分析】由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值.【解答】解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.【点评】本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°【考点】圆周角定理;垂径定理.【分析】先求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°【考点】圆周角定理.【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【解答】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=(180°﹣50°)=65°.故选C.【点评】本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D【考点】圆周角定理;垂径定理;圆心角、弧、弦的关系.【分析】根据垂径定理、圆周角定理,进行判断即可解答.【解答】解:A、∠A=∠D,正确;B、,正确;C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;故选:D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB的度数,继而求得∠A的度数,又由圆周角定理,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=52°,∴∠A=90°﹣∠ABD=38°;∴∠BCD=∠A=38°.故选:B.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C,得到答案.【解答】解:∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.故选:D.【点评】本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°【考点】圆周角定理.【专题】计算题.【分析】连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.【解答】解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB 与∠ACB是优弧AB所对的圆周角.11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°【考点】圆周角定理.【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.【点评】此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.13.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【专题】计算题;压轴题.【分析】根据图形,利用圆周角定理求出所求角度数即可.【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选C【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【考点】圆周角定理.【分析】先根据圆周角定理求出∠BOC的度数,再根据等腰三角形的性质即可得出结论.【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°【考点】圆周角定理.【分析】根据∠DOB=140°,求出∠AOD的度数,根据圆周角定理求出∠ACD的度数.【解答】解:∵∠DOB=140°,∴∠AOD=40°,∴∠ACD=∠AOD=20°,故选:A.【点评】本题考查的是圆周角定理,掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°【考点】圆周角定理;圆内接四边形的性质.【分析】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°【考点】圆周角定理.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B=∠AOC=45°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是①②④.【考点】圆周角定理;等腰三角形的判定与性质;弧长的计算.【专题】压轴题.【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角等知识,运用排除法逐条分析判断.【解答】解:连接AD,AB是直径,则AD⊥BC,又∵△ABC是等腰三角形,故点D是BC的中点,即BD=CD,故②正确;∵AD是∠BAC的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确;∵∠EBC=22.5°,2EC≠BE,AE=BE,∴AE≠2CE,③不正确;∵AE=BE,BE是直角边,BC是斜边,肯定不等,故⑤错误.综上所述,正确的结论是:①②④.故答案是:①②④.【点评】本题考查了圆周角定理,等腰三角形的判定与性质以及弧长的计算等.利用了圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角求解.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为25度.【考点】圆周角定理.【专题】计算题.【分析】连接OA,OB,根据题意确定出∠AOB的度数,利用圆周角定理即可求出∠ACB 的度数.【解答】解:连接OA,OB,由题意得:∠AOB=50°,∵∠ACB与∠AOB都对,∴∠ACB=∠AOB=25°,故答案为:25【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=40°.【考点】圆周角定理.【专题】计算题.【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故答案为40.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为2.【考点】圆周角定理;解直角三角形.【专题】计算题.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【解答】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=28°.【考点】圆周角定理;等腰三角形的性质.【分析】由AD=AC,可得∠ACD=∠ADC,由∠BAC=∠ACD+∠ADC=2∠D,可得∠BAC的度数,由∠D=∠BAC即可求解.【解答】解:∵AD=AC,∴∠ACD=∠ADC,∵∠BAC=∠ACD+∠ADC=2∠D,∴∠BAC=∠BOC=×112°=56°,∴∠D=∠BAC=28°.故答案为:28°.【点评】本题主要考查了圆周角及等腰三角形的性质,解题的关键是找出∠D与∠BOC 的关系.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=150度.【考点】圆周角定理;等边三角形的判定与性质;圆内接四边形的性质.【分析】根据AO=AB,且OA=OB,得出△OAB是等边三角形,再利用圆周角和圆心角的关系得出∠BAC+∠ABC=30°,解答即可.【解答】解:∵点A,B,C是⊙O上的点,AO=AB,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠BAC+∠ABC=30°,∴∠ACB=150°,故答案为:150【点评】此题考查了圆心角、圆周角定理问题,关键是根据AO=AB,且OA=OB,得出△OAB是等边三角形.三、解答题26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.【考点】圆周角定理;勾股定理;扇形面积的计算.【分析】(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.【点评】本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【考点】圆周角定理;圆心角、弧、弦的关系.【专题】计算题.【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【考点】圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;垂径定理.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得;(3)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为的中点时,PE+CF=PC从而得出最大面积.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.=AB•PE,S△ABC=AB•CF,∵S△APB=AB•(PE+CF),∴S四边形APBC当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,=×2×=.∴S四边形APBC【点评】本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【考点】圆周角定理;全等三角形的判定与性质;扇形面积的计算.【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF +S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.【点评】本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD的面积=阴影部分的面积是解此题的关键.30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.【考点】圆周角定理;含30度角的直角三角形;等腰直角三角形;弧长的计算.【分析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC的度数,即可求出∠BOC的度数;最后根据弧长公式,求出的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.【解答】解:(1)如图,连接OC,OD,,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,∵,∴∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,∴的长=.(2)∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD,∴AD=BD,∴∠ABD=∠BAD=45°,在Rt△ABD中,BD=AB×sin45°=10×.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握.(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:①弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).②在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.。

学生做数学题的一题多解释

学生做数学题的一题多解释

学生做数学题的一题多解释(一题多解)是一种很好的学习方法,它有助于学生从多个角度理解问题,培养创新思维和解决问题的能力。

下面是一个例子:
题目:一个圆形的半径是5厘米,求它的面积。

方法一:使用圆的面积公式
我们知道,圆的面积可以通过公式 A = πr² 来计算,其中 A 是面积,r 是半径。

将 r = 5 代入公式,得到 A = π × 5² = 25π 平方厘米。

方法二:使用圆的面积与直径关系
我们知道,圆的面积与直径的关系是:A = (d/2)²π,其中 d 是直径。

由于 r = d/2,所以可以将 d = 10 代入公式,得到 A = (10/2)²π = 25π 平方厘米。

方法三:使用正方形近似法
我们可以将圆近似为一个正方形,这个正方形的边长就是圆的直径。

因此,圆的面积可以看作是正方形的面积。

所以,A = d²/4 = 10²/4 = 25π 平方厘米。

通过以上三种方法,我们可以得到相同的答案,这有助于学生从多个角度理解问题,提高解决问题的能力。

圆中一题多解训练《湘教版》九年级下册

圆中一题多解训练《湘教版》九年级下册

2 圆心角 AOB 360 144 0 5
0
弦所对的圆周角有两 个∠C、∠D
例3.⊙O的半径为5cm,弦AB∥CD,AB=6cm,CD= 8cm,则AB和CD的距离为___已知弓形的弦长为8cm,所在圆的半径为5cm,则弓形的高 为___________ 2或8
2.由两圆相离的双重意义引发双解
例4 已知:⊙O1的半径为2cm, ⊙O2的半径为5cm,两圆没有公共 点,则两圆的圆心距d的取值范围为 0cm≤d<3cm ___________ 或d>7cm
两圆没有公共点,有外离和内含 两种情况。
三、圆与圆的位置关系不明确引发双解
3.两圆相交公共弦与两圆心位置关系不明确引发双解
练习3 已知:矩形ABCD中,AB=5, BC=12,如果分别以A、C为圆心的 两圆相切,点在圆内,点在圆外, 那么圆的半径的取值范围 是 1 r 8或18 r 25 . 题中未指明两圆 是内切还是外切,故 应对内(外)切分类 讨论。
回忆圆中哪些情况可能引 发双解? 本节课你还有什么收获?
A A 应考虑直线圆相离、 D B O
相切、相交三种可能 情形。
B O C
C
三、圆与圆的位置关系不明确引发双解
1.由两圆相切的双重意义引发双解
例3 半径分别为3cm和5cm的两圆相切, 则两圆圆心距为 cm.
两圆相切包 括内切和外切。
A O1 O2 O1 O2
A
三、圆与圆的位置关系不明确引发双解
的位置关系问题, 在没有指明其位置 时,应考虑点在圆 内、圆上、圆外三 种可能情形。
二、直线与圆的位置关系不明确引发双解
例2 已知:∠ABC=45°,点O 为BC上的一点,且OB=6,若 以点O为圆心,以r为半径的圆 凡涉及直线与圆 与射线BA只有一个公共点,则 的位置关系问题,在 r的取值范围是 r 3 2或r 6 . 没有指明其位置时,

中考数学模型巧构辅圆解难题一题多解

中考数学模型巧构辅圆解难题一题多解

中考数学模型巧构辅圆解难题一题多解一道题目,11种解法,不同的构造方法,不同的思路,每一种解法都是一道思维的火花,点燃智慧的火焰。

方法一:巧构圆如图,构造△ABC的外接圆,圆心O,过O作OE⊥AB于E,过O作OF//AB,交CD延长线于F.连接OA,OC,AB.∵AD=6,BD=20∴AE=BE=13∴DE=7∵∠ACB=135°∴∠AOB=90°∴OE=13,AO=BO=CO=13√2由辅助线易得,四边形OEDF是矩形.∴OF=7由勾股定理可得,CF=17∴CD=4方法二:勾股定理如图,延长AC,过点B作BE⊥AC延长线于E设,BE=x,因为∠ACB=135°,所以∠BCE=45°,则CE=x,BC=√2x,则勾股定理可得其余线段的长度如上图。

由题很容易得到△ADC∽△AEB,则则CD=4或9√10(多出来一个解,有谁知道为什么吗?).备注:上面的方程很难解!所以虽然这个方法可以解出来,但是不推荐。

如果数字小一点,可以使用。

向另外一边作垂线一样可以求出,如下图:评述:第一种方法,根据135度圆周角所对圆心角是90度,巧妙的构造圆,然后巧妙转化,解决问题。

第二种方法,从135度的邻补角是45度入手,构造直角三角形。

通过勾股定理来解决。

第一种方法辅助线多,构思巧妙,不容易想到,第二种方法容易想到,但是数字比较大,方程难解。

从普通的条件入手,开拓思路,张引路老师的方法还是很巧妙的解法三:面积法如上图,过A作AE//BC,BE//AC交于E点.过E作EF⊥BC于F.因为∠ACB=135°,所以∠CBE=45°∴∴∴解得 x=4简评:这个方法同样存在方程难题的问题,如果数字比较小可以用。

解法三变式三角形的面积公式可以表示为直接用三角形面积公式,不过初中没有学过这个公式,还有一个就是sin135°的问题,好的学生可以补充,老师参考一下,拓宽一下思路。

初中数学圆中常见的两解及多解问题_徐静

初中数学圆中常见的两解及多解问题_徐静

线 MN 的交点以每秒 1 cm 的速度( 左边的交点) 向左、( 右边的
交点) 向右运动,两圆相切有四种情形,①当 2t + t = 9 时,即 t =
3
秒时,两圆第一次相切;
②当
2t
+
t
=
11
时,即
t
=
11 3
秒时,两圆
第二次相切; ③当 2t - t = 11 时,即 t = 11 时,两圆第三次相切;
例 5 圆 O1 的半径为 17,圆 O2 的半径为 10,两圆相交于 A、B 两
点,AB = 16,求 O1 O2 . 分析: 两种情况 ( 1) 两圆圆心在公共弦两侧,如图 5 ( 1 ) ,
( 2) 两圆圆心在公共弦同侧,如图 5( 2) .
图5
解析: ( 1) 连接 O1 A,O2 A,O1 O2 交 AB 于点 C,如图 5( 1) . 由
现在的问题是点 P 是假设出来的,点 A 已知,点 B 可以任 意确定,但点 C 的位置是不确定的. 因此在作图时,可以先任意 确定点 C 的位置,也就是在直线 l 上,任意截取线段 BC( 如图 6) ,然后过这三点作平行四边形.
图5
图6
图7
此图中,AB、BC 都是确定的线段,我们可以分别以 A、B 为
动,与此同时,⊙B 的半径也不断增大,其半径 r( cm) 与时间 t
( 秒) 之间的关系式为 r = 1 + t( t≥0) ,当点 A 出发后
秒两圆相切.
分析: ⊙A 以每秒 2cm 的速度自左向右运动,则⊙A 与直线
MN 的交点也以每秒 2cm 的速度自左向右运动,⊙B 的半径 r
( cm) 与时间 t( 秒) 之间的关系式为 r = 1 + t( t≥0) ,则⊙B 与直

初中数学圆中常见的两解及多解问题

初中数学圆中常见的两解及多解问题

初中数学圆中常见的两解及多解问题摘要:随着我国的素质教育的改革力度不断加强下,其中初中数学的教学中,为了养成学生们正确的解题思路和思考模式,是提高学生的思维能力,促进学生们探索和创新能力的重要途径。

在初中数学中,鉴于圆的特殊性质,所以有关圆的问题常常会出现两解甚至多解问题。

教师可以引导学生们加以辩证的思维角度的分析此类问题,将便于他们今后的学习过程中遇到的各种各样问题,进一步培养学生发展自己的思维能力和创新能力。

关键词:平面几何,初中数学,多解问题,思维能力同其他平面图形一样,圆形是一个对称图形,在大家的日常生活中到处都能见到。

教师引导学生理解并掌握圆形的性质,一定要采用较为科学的教学手法。

教师可以根据圆形图形的特殊性质来引导学生们从不同的角度去观察圆形,从而找到一个教学突破口,让学生能够不光带着兴趣和热情投入学习,还可以在学习中真正理解圆的特殊。

教师需要从圆的两解和多解问题题型的角度出发,引导学生找到正确解题方法和思路,从而为学生提供有趣,形象的数学课堂教学。

一、圆的概述1.1圆的定义在一个平面内,一条线段上一动点以另一个定点为中心,旋转一周所形成的封闭曲线叫做圆。

圆形的长度,是圆的周长,。

圆是平面上的一条封闭曲线,而曲线上的每一个点到圆中心的距离都是相等的。

通过圆心、半径以及圆周率三方面的相互联系来进行对圆周长。

面积等的计算,圆内最中心的一点被便是圆心,圆心与圆曲线中任意一点的连接线段又被称为半径,在圆曲线上的两点经过圆心相互连接的是直线则被称为直径,圆的周长与直径的比值叫做圆周率。

圆周率属于一个无限不循环小数,通常用字母π(读作“派”)来表示。

1.2圆的两解与多解圆的知识涉及范围较广,其在初中数学阶段也占据了较多的学习比例,而不管是圆的两解还是多解都离不开圆本身的概念,老师只有将圆内包含的所有因素的概念全部让学生了解清楚,不光要了解定义,还需要了解其生成原理以及其它各个方面的数据。

这样才能够使学生遇到圆的两解以及多解等题型的时候,首先将其进行一定程度上的剖析,然后在通过相关的理论将其更好的解答出来,从而达到提高学生解题准确率的目的。

初中数学一题多解

初中数学一题多解

初中数学一题多解【一】圆的多解题型1、平面上一点到圆的最大距离、最小距离分别是6和2,求圆的直径。

〔分点在圆内和圆外两种情况,直径是6+2或6-2〕2、圆的两条弦长6和8,半径5,求两条弦的距离。

〔分弦在圆心的同旁和两旁两种情况,距离是4+3或4-3〕3、半径是4的圆中,长是4的弦所对的圆周角是多少度?〔分弦所对的优弧和劣弧对的圆周角两种情况,度数是30或150〕4、相切两圆半径分别是4和6,求圆心距。

〔分内切、外切两种情况,圆心距是6-4或6+4〕5、相交两圆半径分别是25和39,公共弦长30,求圆心距。

〔分两圆心在公共弦的同旁和两旁两种情况,是36-20或36+20〕6、三角形ABC的外接圆半径是4,BC=4,求角A的度数。

〔分圆心在三角形内部和外部两种情况,是30度或150度)【二】数的多解题型1、a的相反数是本身,b的倒数是本身,那么a-b的值是多少?〔倒数是本身的数有1和-1,结果是-1或1〕2、平方是本身的数是_____(是0或1〕3、a的立方根是2,a的平方根是几?〔正数的平方根都有两个,是正负2根号2〕4、a、b的平方相等,a+2=3,b-2的差是几?〔平方相等的数要么相等要么互为相反数,b是1或-1,差是-1或-3〕5、绝对值是5的数与平方根是3的数的和是几?〔绝对值是正数的数有两个,和是8或-2〕6、数轴上,与表示2的点距离等于6的点表示的数,是倒数等于1.5的数的多少倍?〔距离是6的点表示的数是原数加上6或减去6,结果是-6倍或12倍〕【三】三角形的多解题型1、等腰三角形一腰上的高等于腰长的一半,求顶角。

〔分锐角三角形和钝角三角形两种情况,顶角30&deg;或150&deg;〕2、等腰三角形两边长5和6,求周长。

〔两边分别是腰和底两种情况,得周长16或17〕3、直角三角形两边长3和4,求第三边。

〔第三部边是斜边、直角边两种情况,是5或根号7〕4、三角形的一个30&deg;角对的边为5,一条邻边是8,求面积。

圆的解题技巧总结

圆的解题技巧总结

圆的解题技巧总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】圆的解题技巧总结一、垂径定理的应用给出的圆形纸片如图所示,如果在圆形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,我们很容易发现A、B两点重合,即有结论AP=BP,弧AC=弧BC.其实这个结论就是“垂径定理”,准确地叙述为:垂直于弦的直径平分这条弦,并且平分弦所对的弧.垂径定理是“圆”这一章最早出现的重要定理,它说明的是圆的直径与弦及弦所对的弧之间的垂直或平分的对应关系,是解决圆内线段、弧、角的相等关系及直线间垂直关系的重要依据,同时,也为我们进行圆的有关计算与作图提供了方法与依据.例1某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.例2如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=例3如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为多少?例4图为小自行车内胎的一部分,如何将它平均分给两个小朋发做玩具?二、与圆有关的多解题几何题目一般比较灵活,若画图片面,考虑不周,很容易漏解,造成解题错误,在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解.1.忽视点的可能位置.例5△ABC是半径为2的圆的内接三角形,若3BC cm,则∠A的度数为______.22.忽视点与圆的位置关系.例6点P到⊙0的最短距离为2cm,最长距离为6cm,则⊙0的半径是______.3.忽视平行弦与圆心的不同位置关系.例7已知四边形ABCD是⊙0的内接梯形,AB∥CD,AB=8cm,CD=6cm,⊙0的半径是5cm,则梯形的面积是______.4.忽略两圆相切的不同位置关系例8点P在⊙0外,OP=13cm,PA切⊙0于点A,PA=12cm,以P为圆心作⊙P与⊙0相切,则⊙P的半径是______.例9若⊙O1与⊙02相交,公共弦长为24cm,⊙O1与⊙02的半径分别为13cm和15cm,则圆心距0102的长为______.三、巧证切线切线是圆中重要的知识点,而判断直线为圆的切线是中考的重要考点.判断直线是否是圆的切线,主要有两条途径:1.圆心到直线的距离等于半径当题中没有明确直线与圆是否相交时,可先过圆心作直线的垂线,然后证明圆心到直线的距离等于半径.例10如图,P 是∠AOB 的角平分线OC 上一点,PD⊥OA 于点D ,以点P 为圆心,PD 为半径画⊙P ,试说明OB 是⊙P 的切线.2.证明直线经过圆的半径的外端,并且垂直于这条半径当已知直线与圆有交点时,连结交点和圆心(即半径),然后证明这条半径与直线垂直即可.例11如图,已知AB 为⊙O 的直径,直线BC 与⊙0相切于点B ,过A 作AD∥OC 交⊙0于点D ,连结CD.(1)求证:CD 是⊙0的切线;(2)若AD=2,直径AB=6,求线段BC 的长.四、结论巧用,妙解题例12已知:如图,⊙O 为Rt△ABC 的内切圆,D 、E 、F 分别为AB 、AC 、BC 边上的切点,求证:BD AD s ABC ⋅=∆.该结论可叙述为:“直角三角形的面积等于其内切圆与斜边相切的切点分斜边所成两条线段的乘积.”运用它,可较简便地解决一些与直角三角形内切圆有关的问题,举例如下:例13如图,⊙0为Rt△ABC 的内切圆,切点D 分斜边AB 为两段,其中AD =10,BD =3,求AC 和BC 的长.例14如图,△ABC 中∠A 与∠B 互余,且它们的角平分线相交于点0,又OE⊥AC ,OF⊥BC ,垂足分别为E 、F ,AC=10,BC =13.求AE ·BF 的值.五、点击圆锥的侧面展开图圆锥的侧面展开图是中考中的热点内容:解决此类问题的关键是明确圆锥的侧面展开图中各元素与圆锥各元素之间的关系:圆锥的侧面展开图是扇形,而扇形的半径是圆锥的母线,弧长是圆锥的底面周长.例15若一个圆锥的母线长是它的底面半径长的3倍,则它的侧面展开图的圆心角是()A.180°B.90°C.120°D.135°例16圆锥的侧面展开图是一个半圆面,则这个圆锥的母线长与底面半径长的比是():π:1C.2:1D.3:1例17如图,小红要制作一个高4cm,底面直径是6cm的圆锥形小漏斗,若不计接缝,不计损耗,则她所需纸板的面积是()A.15πcm2B.6π13cm2D.30cm213cm2C.12π⋅例18下图是小芳学习时使用的圆锥形台灯罩的示意图,则围成这个灯罩的铁皮的面积为______cm2.(不考虑接缝等因素,计算结果用π表示)评注:圆锥的侧面积,需要熟练掌握其计算公式,理解圆锥的侧面积等于其剪开后扇形的面积.例19如图,有一块四边形形状的铁皮ABCD,BC=CD,AB=2AD,∠ABC=∠ADB=90°.(1)求∠C的度数;(2)以C为圆心,CB为半径作圆弧BD得一扇形CBD,剪下该扇形并用它围成一圆锥的侧面,若已知BC=a,求该圆锥的底面半径;(3)在剩下的材料中,能否剪下一块整圆做该圆锥的底面?并说明理由.六、例谈三角形内切圆问题三角形的内切圆是与三角形都相切的圆,它的圆心是三角形三条角平分线的交点,它到三角形三边的距离相等,它与顶点的连线平分内角.应用内心的性质,结合切线的性质、切线长的性质可以解决很多问题,现举例说明,例20如图,△ABC中,内切圆⊙I和边BC、CA、AB分别相切于点D、E、F.求证:(1)A FDE ∠-︒=∠2190; (2)A BIC o ∠+=∠2190. 例21如果△ABC 的三边长分别为a 、b 、c ,它的内切圆⊙I 半径为r ,那么△ABC 的面积为().A .r c b a )(++B .r c b a )(++21C .r c b a )(++31D .r c b a )(++41 七、阴影部分面积的求值技巧求阴影部分面积,通常是根据图形的特点,将其分解、转化为规则图形求解.但在转化过程中又有许多方法.本文精选几个题,介绍几种常用方法.1.直接法当已知图形为熟知的基本图形时,先求出适合该图形的面积计算公式中某些线段、角的大小,然后直接代入公式进行计算.例22如图,在矩形ABCD 中,AB=1,AD=3,以BC 的中点E 为圆心的与AD 相切于点P ,则图中阴影部分的面积为()A .π32B .π43C .π43D .3π 2.和差法当图形比较复杂时,我们可以把阴影部分的面积转化为若干个熟悉的图形的面积的和或差来计算.例23如图,AB 和AC 是⊙0的切线,B 、C 为切点,∠BAC=60°,⊙0的半径为1,则阴影部分的面积是()A .π323-B .33π-C .332π-D .π-32 3.割补法把不规则的图形割补成规则图形,然后求面积.例24如图,正方形ABCD 的顶点A 是正方形EFGH 的中心,EF=6cm ,则图中的阴影部分的面积为______.4.等积变形法把所求阴影部分的图形进行适当的等积变形,即可找出与它面积相等的特殊图形,从而求出阴影部分面积.例25如图,C 、D 两点是半圆周上的三等分点,圆的半径为R ,求阴影部分的面积.5.平移法把图形做适当的平移,然后再计算面积.例26如图,CD 是半圆0的直径,半圆0的弦AB 与半圆O '相切,点O '在CD 上,且AB∥CD ,AB =4,则阴影部分的面积是(结果保留π).6.整体法例27如图,正方形的边长为a ,分别以对角顶点为圆心,边长为半径画弧,则图中阴影部分的面积是()A .224121a a π+-B .)41(222a a π-C .22.21a a π+-D .2221a a π- 7.折叠法例28如图,半圆A 和半圆B 均与y 轴相切于点0,其直径CD ,EF 均和x 轴垂直,以0为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是______.8.聚零为整法例29如图所示,将半径为2cm 的⊙0分割成十个区域,其中弦AB 、CD 关于点0对称,EF 、GH 关于点0对称,连结PM ,则图中阴影部分的面积是______(结果用π表示).八、圆中辅助线大集合圆是初中重点内容,是中考必考内容.关于圆的大部分题目,常需作辅助线来求解.现对圆中辅助线的作法归纳总结如下:1、有关弦的问题,常做其弦心距,构造直角三角形例30如图,矩形ABCD与圆心在AB上的⊙O交于点G、B、F、E,GB=8cm,AG=1cm,DE=2cm,则EF=______cm.2、有关直径问题,常做直径所对的圆周角例31如图,在△ABC中,∠C=90°,以BC上一点0为圆心,以OB为半径的圆交AB于点M,交BC于点N.(1)求证:BN⋅=BCAB⋅BM(2)如果CM是⊙0的切线,N为OC的中点,当AC=3时,求AB的值.3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系例32如图,AB、AC分别是⊙0的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙0于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于P.(1)若PC=PF,求证:AB⊥ED.(2)点D在劣弧的什么位置时,才能使AD2=DE·DF,为什么?4、两圆相切,常做过切点的公切线或连心线,充分利用连心线必过切点等定理例33如图,⊙02与半圆O l内切于点C,与半圆的直径AB切于D,若AB=6,⊙02的半径为1,则∠ABC的度数为______.C、数学思想方法与中考能力要求数学思想和方法是数学的血液和精髓,是解决数学问题的有力武器,是数学的灵魂.因此,我们领悟和掌握以数学知识为载体的数学思想方法,是提高数学思维水平,提高数学能力,运用数学知识解决实际问题的有力保证,因此,我们在学习中必须重视数学思想在解题中的应用.一、数形结合思想.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合.通过对图形的认识,数形结合的转化,可培养同学们思维的灵活性、形象性,使问题化难为易,化抽象为具体.例1MN是半圆直径,点A是的一个三等分点,点B是的中点,P是直径MN上的一动点,⊙0的半径是1,求AP+BP的最小值.二、转化思想转化思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换,使之转化,进而得到解决的一种方程,转化思想,能化繁为简,化难为易,化未知为已知.例2如图,以0⊙的直径BC为一边作等边△ABC,AB、AC交⊙0于D、E两点,试说明BD=DE=EC.在同圆或等圆中,经常利用圆心角、圆周角、弧、弦等量的转化,说明其他量.三、分类思想所谓分类思想,就是当被研究的问题包含多种可能情况,不能一概而论时,必须按可能出现的所有情况来分别讨论,得出各种情况下相应的结论.分类必须遵循一定的原则:(1)每一次分类要按照同一标准进行;(2)不重、不漏、最简.例3⊙0的直径AB=2cm,过点A的两条弦AC=2cm,AD=3cm,求∠CAD所夹的圆内部分的面积.在圆中有许多分类讨论的题目,希望同学们做题时,要全面、缜密,杜绝“会而不对,对而不全”的现象.四、方程思想通过对问题的观察、分析、判断,将问题化归为方程问题,利用方程的性质和实际问题与方程的互相转化达到解决问题的目的.例4如图,AB是⊙0的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC是⊙O 的切线,若OE:EA=1:2,PA=6,求⊙0的半径.五、函数思想例5(2005·梅州市)如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y.(1)求y与x的函数关系式;(2)试讨论以P为圆心,半径为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.例6(2006·烟台)如图,从⊙0外一点A作⊙0的切线AB、AC,切点分别为B、C,且⊙0直径BD=6,连结CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.。

六年级数学圆试题答案及解析

六年级数学圆试题答案及解析

六年级数学圆试题答案及解析1.在推导圆的面积公式时,把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的长是()。

A.圆的半径B.圆的直径C.圆的周长D.圆周长的一半【答案】D【解析】把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的长正好是圆周长的一半,宽是圆的半径.解:选:D。

【考点】圆的认识。

2.画一个周长是12.56厘米的圆,圆规两脚之间的距离应是厘米,这个圆的面积是平方厘米。

【答案】2;12.56【解析】(1)根据圆的周长公式,C=2πr,得出r=C÷π÷2,将周长12.56厘米代入,由此即可求出圆的半径,即圆规两脚之间的距离;(2)根据圆的面积公式,S=πr2,将(1)求出的半径代入,即可求出圆的面积.解:(1)12.56÷3.14÷2=2(厘米),(2)3.14×2×2,=3.14×4,=12.56(平方厘米),答:圆规两脚之间的距离应是2厘米,这个圆的面积是12.56平方厘米;【考点】圆、圆环的周长;圆、圆环的面积。

3.画一个半径为1厘米的圆,并标出圆心O和半径r。

【答案】【解析】圆心确定圆的位置,半径确定圆的大小,由此以点O为圆心,以1厘米长为半径画圆,并标出圆心O和半径r即可。

解答:解:以点O为圆心,以1厘米为半径画半圆如下:【考点】画圆。

4.手扶拖拉机的轮胎直径为0.65米,它转动一周可以行进米,转动100周可以行进米.【答案】2.041、204.1【解析】先根据圆的周长公式C=πd可求得手扶拖拉机轮胎的周长,再乘上100即可求出前进的路程.解:3.14×0.65=2.042(米)2.041×100=204.1(米)答:它转动一周可以行进 2.041米,转动100周可以行进 204.1米.故答案为:2.041、204.1.【点评】考查了圆周长的计算,由圆的周长C=πd求得手扶拖拉机轮胎的外周长是解题的关键.5.从一块周长为40分米的正方形铁皮上,要剪下一个最大的圆,这个圆的直径是分米.【答案】10【解析】根据题干可得这个最大圆的直径就是这个正方形的边长,根据正方形的周长公式C=4a 即可求得这个正方形的边长米,由此即可解决问题.解:40÷4=10(分米)答:这个圆的直径是10分米.故答案为:10.【点评】抓住正方形内最大圆的特点得出圆的直径等于正方形的边长是解答本题的关键.6.周长相等的正方形、长方形和圆形,的面积最大,面积最小.【答案】圆形,长方形.【解析】要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.解:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:=,面积为:π××==20.38;正方形的边长为:16÷4=4,面积为:4×4=16;长方形取长为5宽为3,面积为:5×3=15,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形圆面积最大,长方形面积最小.故答案为:圆形,长方形.【点评】此题主要考查长方形、正方形、圆形的面积公式及灵活运用,解答此题可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.7.直径大的圆周长大,直径小的圆周长小..(判断对错)【答案】√.【解析】圆的周长C=πd,由此可知:π是一定的,则圆的直径越大,周长就越大,据此判断即可.解:据分析可知:圆的周长和半径成正比例,所以直径大的圆周长大,直径小的圆周长小,所以题干的说法是正确的.故答案为:√.【点评】此题主要考查圆的周长公式的理解和灵活应用.8.半径2厘米的圆,它的周长和面积相等.(判断对错)【答案】×.【解析】首先要明确周长与面积的概念,围成圆的曲线长叫做圆的周长;圆形的面积就是圆周所围成的平面的大小;圆的周长公式是:c=2πr,圆的面积公式是:s=πr2,由此解答..解:周长:2×3.14×2=12.56(厘米);面积:3.14×22=3.14×4=12.56(平方厘米);答:圆的周长是12.56厘米,面积是12.56平方厘米.因为周长和面积不是同类量,所以它们无法进行比较.所以题干说法错误.故答案为:×.【点评】此题主要考查圆的周长和面积的意义,以及圆的周长和面积的计算方法,因为周长和面积不是同类量,所以它们无法进行比较.9.直径是10厘米的圆与半径是0.5分米的圆一样大..(判断对错)【答案】√【解析】因为圆的大小由半径决定,根据r=d÷2,把直径为10厘米的圆的半径求出,再比较半径的长度,半径长的圆就大,据此解答即可.解:10÷2=5(cm),5厘米=0.5分米,所以直径是10厘米的圆与半径是0.5分米的圆一样大,即本题说法正确;故答案为:√.【点评】此题考查了圆的面积大小比较方法,在此题中,也可以算出面积后比较大小.10.一个圆,半径扩大2倍,那么周长()A.不变 B.也扩大2倍 C.扩大4倍【答案】B【解析】根据圆的周长与半径成正比例,可知圆周长扩大的倍数与圆的半径扩大的倍数相同.解:因为一个圆的半径扩大2倍,所以周长扩大2倍.故选:B.【点评】考查了圆的周长与半径之间的关系,是基础题型,熟悉圆的周长与半径成正比例是解题的关键.11.把一个圆切拼成一个近似的长方形,量得这个长方形的宽是3厘米,这个圆的直径是厘米,长方形的长是厘米.【答案】6,9.42.【解析】根据圆面积推导公式知:把一个圆切拼成一个近似的长方形,这个近似长方形的长是圆周长的一半,宽是圆的半径,然后根据同圆或等圆中直径是半径的2倍,及圆的周长公式求出近似长方形的长.据此解答.解:圆的直径是:2×3=6(厘米),近似长方形的长是:2×3.14×3÷2,=18.84÷2,=9.42(厘米).答:这个圆的直径是6厘米,长方形的长是9.42厘米.故答案为:6,9.42.【点评】本题的关键是理解:把一个圆切拼成一个近似的长方形,这个近似长方形的长是圆周长的一半,宽是圆的半径.12.某钟表时针的长度为6cm,从3时到6时,时针扫过的面积是多少平方厘米?【答案】28.26平方厘米【解析】时针所走过的轨迹是以时针的长度为半径,圆心角为30°×3=90°的扇形的面积,据此解答即可.解:3.14×62÷4=3.14×36÷4=28.26(平方厘米).答:时针扫过的面积是28.26平方厘米.【点评】弄清楚分针时针的运动轨迹,是解答本题的关键.13.如下图所示,将两个大小不同的圆摆在一个长方形中,小圆的直径是()厘米。

圆周运动的多解问题

圆周运动的多解问题

匀速圆周运动的多解问题匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。

因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。

特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。

例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。

若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少?解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。

在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω解得角速度为:ωππ=+=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。

当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。

为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件?解析:速度相同包括大小相等和方向相同。

由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。

即质点P 应转过()n +34周(n =0123,,,…),经历的时间 t n T n =+=()()()3401231,,,…质点P 的速度v RT =22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得v =F m t ()3联立以上三式,解得:F mRn T n =+=84301232π()(),,,…例3:如图3所示,在同一竖直面内A 物体从a 点做半径为R 的匀速圆周运动,同时B 物体从圆心O 处自由落下,要使两物体在b 点相遇,求A 物体的角速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的一题多解
【案例】试题来源(浙教版九年级上册练习题)
已知在圆O 中,A 为优弧BC 的中点,且AB=BC,E 为弧BC 上的一点,求AE=BE+CE .
【分析】本题知识点(1)等边三角形和全等的相关知识;(2)利用截长补短的解题方法.
1.一题多解
(1)利用截长方法的方法解题 解析:在AE 上取点F ,使得AF=BE,
(AFC BEC AF BE FAC EBC
AC BC ∆∆=⎧⎪
∠=∠⎨⎪=⎩
在和中
作法可得)(同弧所对的圆周角相等)(等边三角形边相等) AFC ∆≌BEC ∆(SAS)
∴CF=CE
60AEC ABC ∠=∠=︒
∴ECF ∆是等边三角形 ∴EF=EC AE=AF+EF ∴AE=BE+CE
(2)利用补短的方法解题 解析:延长EB 至点F,使BF=EC,
F
BF ACE B C (ABF ACE ABE B A A F E A C ∆∆=⎧⎪
∠=∠∠⎨⎪=⎩
在和中
作法可得)(同角的补角相等)
(等边三角形边相等) ABF ∆≌ACE ∆(SAS)
∴BAF=CAE ∠∠ AE=AF
CAE+EAB=60∠∠︒
∴+EAB=60BAF ∠∠︒ ∴AFE ∆是等边三角形 ∴AE=EF=BE+BF 即AE=BE+CE
(3)利用旋转的方法解题
解析:将ACE ∆顺时针旋转60︒,则ABF ∆≌ACE ∆
∴AEF ∆是等边三角形,ACE ABF ∠=∠
+ABE=180ACE ∠∠︒(圆内接四边形对角互补)
∴BF+ABE=180A ∠∠︒ 即点F 、B 、E 三点共线 ∴AE=EB+BF 即:AE=EB+EC
(4)利用平行的方法解题
解析:过点C 作AE 的平行线CF 交圆于点F ,连接AF.
E
CF//AE
FCE+18060+CFB=180CE//FG
CEGF BEG AFG BE=EG,CF=GF=AG BF+CF=GE+AG=AE
CEA BFC CEA FCE ∴∠∠=︒∠==︒∴∠∠︒∴∴∆∆∴∴即四边形是平行四边形和是等边三角形
E
F
(5)利用托勒密定理解题 解析:利用托勒密定理可得
+EC AB=AE BC BE AC ⋅⋅⋅ ABC ∆是等边三角形
∴AB=AC=BC ∴BE+EC=AE
新课程标准中提倡“通过解决问题的反思,获得解决问题的经验”.在数学教学中离不开习题讲解,通过一题多解使学生加深知识的理解与内化,培养学生思维的灵活性、创新性,提高学生解决实际问题的能力.
一题多变
变式1:在学习了《圆的基本性质》后,小健为小康准备了如下问题:已知在圆O 中,A 为优弧BC 的中点,且AB=BC,E 为圆上不同于A 、EB 、C 的任意一点,求AE=BE+CE .
【分析】本题关键是E 点位置的不确定性,故在解决此题时必须进行点E 位置的讨论,用到分类讨论的思想.
变式2:已知如图,ABC ∆是等边三角形,AEB=60∠︒,求AE=BE+CE 【分析】把圆的条件去掉后,还是可以用截长补短的方法解决.
变式3:已知如图,ABC ∆是等边三角形,AEB=60∠︒,A,B,E,C 四点共圆吗? 【分析】以ABC ∆的外心为圆心,OA 为半径画圆,可以证明点E 在圆上,即A 、B 、C 、
D 四点共圆.
在学习了《圆的基本性质》后,小健为小康准备了如下问题:已知在圆O 中,A 为优弧C 的中点,且AB=BC,E 为圆上不同于A 、B 、C 的任意一点,,请你写出AE 、BE 、CE 之间的数量关系?
解析:设MOE θ∠=,
E
E
变式4
222
2
2
2
2+EC +2sin 2sin 602sin 6062BE EA R R R R θθθ⎡⎤⎡⎤=+++-⎣⎦⎣⎦==()()()三角形边长的平方的倍(即为定值)
变式5:在学习了《圆的基本性质》后,小健为小康准备了如下问题:已知在圆O 中,四边形ABCD 是正方形,E 是不同于A 、B 、C 、D 的任意一点,,请你写出AE 、BE 、CE 、DE 之间的数量关系?
【分析】通过探究我们可以发现2
2
2
2
+EA ++EC EB ED 是一个定值. 解析:连结AC,90AEC ∠=︒,2
2
2
+EC =d AE ,同理可得2
2
2
d BE DE +=
所以22222
2AE EC BE DE d +++=,而d
倍,即
为定值.
变式6:已知在圆O 中,A 为优弧BC 的中点,且AB=BC,E 为弧BC 上的一点,求证BE 2+EC 2+EA 2=6R 2
由变式5、变式6你能得出一个什么结论?
结论:圆内接正多边形各顶点到圆上任意一点的距离的平方和为定值.
数学“变式”练习是为了让学生更加准确地掌握数学解题方法而采取的变换方式.在数学教学中进行数学“变式”练习帮助学生多角度地理解数学方法、化归数学方法,使学生从“知识性”向“智力型”转换“教师讲例题,学生仿例题”的公式化的教学,阻止了学生思维的发展.所以在平时的例题和习题的教学中,应紧密结合例题、习题进行有目的、多角度的变式训练.
教学中要善于“借题发挥”,进行一题多解,一题多变.同时引导学生去探索数学问题的规律性,能够在生活中学以致用,增强学习的信心和兴趣
E。

相关文档
最新文档