复变函数D卷答案
复变函数联系题库参考答案
复变函数综合测试题库(解答)一、选择题(单选题)1、复数z i =的幅角主值为( C ) (A )3π (B )3π- (C )6π- (D )6π2、复数1cos sin ,0z i θθθπ=-+≤≤的模为( A ) (A )2sin 2θ (B )2sin2θ- (C )22cos θ- (D )2cos 2θ-3、设z =,则z 的指数表示为( B ) (A )cossin44z i ππ=+ (B )4i z eπ⋅= (C )cossin44z i ππ=- (D )4i z eπ-⋅=4、若ω是方程310z -=的一个非零复数根,则21ωω++=( A )(A )0 (B )i (C )2ω (D )ω-5、函数()f z z =在z 平面上( C )(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 6、满足11z z -=+的点z 所组成的点集为(B )(A )Im 0z = (B )Re 0z = (C )Im 0z > (D )Re 0z > 7、函数()f z u iv =+在区域D 内解析的充要条件是( D )(A ),,,u u v vx y x y∂∂∂∂∂∂∂∂都在D 内连续 (B )在D 内,u v u v x y y x∂∂∂∂==-∂∂∂∂ (C ),,,u u v v x y x y ∂∂∂∂∂∂∂∂都在D 内存在,且,u v u v x y y x ∂∂∂∂==-∂∂∂∂ (D ),,,u u v v x y x y ∂∂∂∂∂∂∂∂都在D 内连续,且,u v u v x y y x ∂∂∂∂==-∂∂∂∂ 8、1(0)()nz a dz z a ρρ-=>-⎰的值为( A )(A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π 9、1zz e dz z==⎰( C ) (A )0 (B )2π(C )2i π (D )(2)(0,1,2,)k i k π+= 10、()f z 在复平面上解析且有界,则()f z 在平面上为(B ) (A )0 (B )常数 (C )z (D )()nz n N ∈ 11、复级数1n n z ∞=∑收敛的必要条件是( D )(A )对一切n ,0n z = (B )存在一列自然数{}k n ,使得0kn z =(C )lim 0n n z →∞≠ (D )lim 0n n z →∞=12、幂级数11nn n z n∞=+∑的收敛半径为(A )(A )+∞ (B )0 (C )1 (D )2 13、0z =为()sin f z z z =-的( D )(A )极点 (B )非孤立奇点 (C )本性奇点 (D )3阶零点 14、设1()1zf z e =-,则0z =是()f z 的( A ) (A )1阶极点 (B )2阶极点 (C )可去奇点 (D )本性奇点 15、0z ≠∞是函数()f z 的可去奇点,则0Re (,)s f z =( B ) (A )0()f z (B )0 (C )2π (D )2i π 16、若复数22z i =-,则z 的幅角主值为( C ) (A )2π (B )2π- (C )4π(D )4π-17、复数1cos sin (0)z i θθθπ=++≤≤的模为( A ) (A )2cos 2θ (B )2cos2θ- (C )22cos θ+ (D )2sin 2θ+18、设z =,则z 的指数表示为( B ) (A )cossin44z i ππ=+ (B )4i z eπ⋅= (C )cossin44z i ππ=- (D )4i z eπ-⋅=19、若122ω=-+,则23ωωω++=( A ) (A )0 (B )ω (C )2ω (D )ω- 20、函数()Re f z z =在z 平面上( C )(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 21、下列哪些点集是区域(B ) (A )Im 0z = (B )1Re 2z >(C )12z i ++≤ (D )Re 0z ≥ 22、若()f z u iv =+,且在区域D 内满足,u v u v x y y x∂∂∂∂==-∂∂∂∂,则( D ) (A )()f z 在D 内解析 (B )()f z 在D 内不解析 (C )()f z 在D 内可微 (D )()f z 在D 内不一定可微23、113z dz z =-⎰的值为( B ) (A )2i π (B )0 (C )1 (D )1- 24、1sin z zdz z==⎰( A ) (A )0 (B )i π (C )2i π (D )2i π-25、若区域D 内解析函数()f z u iv =+满足00uxu y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,则()f z 在区域D 内为(B )(A )0 (B )常数 (C )不一定为常数 (D )0v = 26、若复级数1n n z ∞=∑收敛,则( D )(A )对一切n ,0n z ≠ (B )存在一列自然数{}k n ,使得0kn z ≠(C )lim 0n n z →∞≠ (D )lim 0n n z →∞=27、幂级数11!nn z n ∞=+∑的收敛半径为(B )(A )+∞ (B )0 (C )1 (D )2 28、0z =为()1cos f z z =-的( D )(A )极点 (B )非孤立奇点 (C )本性奇点 (D )2阶零点29、设函数()f z 在00z z <-<+∞内解析,且0lim ()z z f z →=∞,则0z 是()f z 的( B )(A )非孤立奇点 (B )极点 (C )本性奇点 (D )解析点 30、变换az bw cz d+=+(a ,b ,c ,d 为复常数)为分式线性变换的条件是( A ) (A )0ad bc -≠ (B )0ad bc -= (C )a bc d= (D )a b c d ===31、复数1z =的幅角主值为( C )(A )6π (B )6π- (C )3π(D )3π-32、若ω是方程310z -=的一个非零复数根,则345ωωω++=( A )(A )0 (B )i (C )2ω (D )ω-33、下列等式正确的是( B )(A )z z z ⋅= (B )2z z z ⋅= (C )2Im z z i z += (D )2Re z z z -= 34、下列哪些函数在复平面上解析( A )(A )sin z (B )z (C )2z (D )Re z 35、满足11z z ->+的点z 所组成的点集为(B )(A )Im 0z < (B )Re 0z < (C )Im 0z > (D )Re 0z > 36、使函数()f z u iv =+在区域D 内解析的柯西—黎曼条件是(B ) (A )在D 内,u v u v x y y x ∂∂∂∂==∂∂∂∂ (B )在D 内,u v u v x y y x ∂∂∂∂==-∂∂∂∂ (C )在D 内,u v u v x y y x ∂∂∂∂=-=∂∂∂∂ (D )在D 内,u v u v x y y x∂∂∂∂=-=-∂∂∂∂ 37、设()f z 在区域D 内解析,且0{}U z z z D δ=-<⊂,在U 上()0f z =,则在D 内的( D )(A )()f z 不恒为零 (B )()f z 为不为零的常数 (C )()f z 只有惟一的零点 (D )()0f z ≡38、1()nCdz z a -⎰(其中C 为包围点a 任意围线)的值为( A ) (A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π 39、21zz e dz z ==⎰( C )(A )0 (B )2π(C )2i π (D )i π 40、()f z 在复平面上解析且Re ()f z 有界,则()f z 在平面上为(B ) (A )0 (B )常数 (C )ze (D )ln z41、在1z <内解析,在区间(1,1)-上具有展式0n n x ∞=∑的函数只能是( D )(A )1(1)1z z <+ (B )ln(1)(1)z z -< (C )1(1)1z z <- (D )1(1)1z z<-42、幂级数21121n n z n -∞=-∑的收敛半径为(B )(A )+∞ (B )1 (C )0 (D )2 43、若1()cosf z z i=+,则z i =-是()f z 的( D ) (A )可去奇点 (B )非孤立奇点 (C )极点 (D )本性奇点 44、若()()g z f z z a=-,且()g z 在点a 解析,()0g a ≠,则Re (,)s f a =( A ) (A )()g a (B )2()ig a π (C )0 (D )()g a '45、变换(01)1z aw a a z-=<<-⋅把单位圆1z <保形映射成( B )(A )上半平面Im 0z > (B )单位圆1w < (C )下半平面Im 0z < (D )1w > 46、arg(34)i -+=( C )(A )3arctan4π-(B )3arctan 4π+ (C )4arctan 3π- (D )4arctan 3π+ 47、若ω是方程31z =的一个非零复数根,则下列哪些也是此方程的根( A )(A )ω (B )ω- (C )2ω- (D )i48、下列等式不正确的是( B )(A )2z z z ⋅= (B )1212arg arg arg z z z z ⋅=+(10z ≠,20z ≠) (C )1212rg rg rg A z z A z A z ⋅=+(10z ≠,20z ≠) (D )arg arg (0)z z z =-≠ 49、下列哪些函数在复平面上不解析( A )(A )sin z (B )cos z (C )chz (D )ze -50、设{Im 2,Re 3}E z z z =<<,则E 一定是(B )(A )无界区域 (B )有界单连通区域 (C )多连通区域 (D )闭区域 51、使函数()f z u iv =+在区域D 内解析的充要条件是(B ) (A )u ,v 在D 内具有一阶连续的偏导数(B )u ,v 在D 内可微,且在D 内满足柯西—黎曼条件(C )u ,v 在D 内具有一阶偏导数,且在D 内满足柯西—黎曼条件 (D )u ,v 在D 内在D 内满足柯西—黎曼条件52、设()f z 在复平面上解析,且C 为不通过原点的围线,则()Cf z dz z=⎰( D ) (A )2(0)i f π⋅ (B )(0)f (C )0 (D )0或2(0)i f π⋅53、11cos z dz z==⎰( A ) (A )0 (B )1 (C )2i π (D )i π54、若()f z 在区域D 内满足 ()0f z '=,则()f z 在区域D 内必为( C ) (A )0 (B )z (C )常数 (D )ze55、()f z 在复平面上解析且Im ()f z 有界,则()f z 在平面上为(B ) (A )0 (B )常数 (C )ze (D )ln z 56、在复平面上解析,在区间[0,1]上等于sin x 的函数只能是( D ) (A )sin()2z π+ (B )sin()z π+(C )sin iz (D )sin z57、若幂级数1nn n a z ∞=∑的收敛半径0R >,则在闭圆()z r R ≤<上1nn n a z ∞=∑(B )(A )不绝对收敛 (B )一致收敛且绝对收敛 (C )绝对收敛但不一致收敛 (D )一致收敛但不绝对收敛 58、0z =为21cos ()zf z z-=的( D ) (A )本性奇点 (B )非孤立奇点 (C )二阶极点 (D )可去奇点59、函数1()z e f z z-=在0z =处的留数为( A )(A )0 (B )2i π (C )1 (D )i π 60、变换z iw z i-=+把上半平面Im 0z >保形映射成( B )(A )上半平面Im 0z > (B )单位圆1w < (C )下半平面Im 0z < (D )1w > 61、若复数1z i =-,则z 的幅角主值为( A )(A )4π-(B )4π(C )34π- (D )34π 62、若21z =-,则z 等于( B )(A )i - (B )i ± (C )i (D )1±63、下列点集是区域的是( C )(A )1{Im }2z z = (B ){1}z z = (C )1{Im }2z z > (D )2{1}z z = 64、设()f z x yi =-(,x y R ∈),则( D )(A )()f z 在z 平面上解析 (B )()f z 在0z =可导 (C )()f z 在z 平面上处处可导 (D )()f z 在z 平面上连续 65、设()f z u iv =+,且在区域D 内满足柯西—黎曼条件,则( A ) (A )()f z 在D 内不一定解析 (B )()f z 在D 内解析 (C )()f z 在D 内可导 (D )()f z 在D 内一定不可导 66、下列哪些函数在z 平面上解析(B )(A )z (B )cos z (C )z (D )ze 67、11cos z dz z==⎰( C ) (A )1 (B )2i π (C )0 (D )1- 68、1zz e dz z==⎰( D ) (A )0 (B )1 (C )12iπ (D )2i π 69、若()f z 在区域D 内解析,且Re ()f z =实常数,则()f z 在区域D 内为( A ) (A )复常数 (B )Re z (C )z (D )sin z 70、若()sin f z z =,则下列结论不成立的是(B )(A )()f z 为解析函数 (B )()f z 有界 (C )()f z 为周期函数 (D )()f z 有零点71、复级数0n n i ∞=∑( C )(A )一定收敛 (B )等于11i- (C )一定发散 (D )以上结论都不对 72、设幂级数为00()n n n a z z ∞=-∑,则( D )(A )00()nn n a z z ∞=-∑仅在点0z 收敛 (B )00()n n n a z z ∞=-∑在全平面上收敛(C )00()nn n a z z ∞=-∑在点0z 不收敛 (D )00()n n n a z z ∞=-∑在点0z 收敛73、幂级数11n n n n z ∞=+⋅∑的收敛半径为(A )(A )0 (B )+∞ (C )1 (D )2 74、幂级数1n n z ∞=∑在1z <内的和函数为( B )(A )11z - (B )1z z - (C )11z + (D )1z z+ 75、()1cos f z z =-以0z =为( C )(A )一阶零点 (B )一阶极点 (C )二阶零点 (D )二阶极点 76、设()f z 在00z z R <-<内解析,且0lim ()z z f z →=∞,则0z 是()f z 的( D )(A )零点 (B )可去奇点 (C )非孤立奇点 (D )极点 77、若21cos ()zf z z-=,则0z =必为()f z 的 ( A ) (A )可去奇点 (B )零点 (C )本性奇点 (D )二阶极点 78、若∞是函数()f z 的可去奇点,则Re (,)s f ∞=( B )(A )0 (B )不一定为0 (C )不存在 (D )以上结论都不对 79、若1()zf z e =,则Re (,0)s f = ( C )(A )∞ (B )0 (C )1 (D )以上答案都不对 80、映射322w z z =+在点z i =处的伸缩率为 ( D )(A (B ) (C )25 (D )581、若复数1z i =-+,则z 的幅角主值为( A )(A )23π (B )23π- (C )6π- (D )6π 82、若31z =且Im 0z >,则z 等于( B )(A )1 (B )122i -+ (C )122+ (D )122--83、下列点集不是区域的是( C )(A ){Im 0}z z > (B ){Re 0}z z < (C ){1}z z i ≤+ (D ){1}z z > 84、设()f z i z =⋅,则( D )(A )()f z 在z 平面上处处不连续 (B )()f z 在z 平面上解析 (C )()f z 为整函数 (D )()f z 在z 平面上处处不解析 85、设()f z u iv =+,则使得()f z 在区域D 内解析的柯西—黎曼条件是( A )(A ),u v u v x y y x ∂∂∂∂==-∂∂∂∂ (B ),u v u v x y y x ∂∂∂∂=-=∂∂∂∂ (C ),u v u v x y y x ∂∂∂∂=-=-∂∂∂∂ (D ),u v u v x y y x∂∂∂∂==∂∂∂∂ 86、在z 平面上处处不解析的函数是(B )(A )z (B )Im z (C )cos z (D )sin ze87、13z zdz z ==-⎰( C ) (A )2i π- (B )2i π (C )0 (D )1 88、21sin z z dz z==⎰( D ) (A )2i π (B )1 (C )i π- (D )089、若()f z 在区域D 内解析,且()f z =实常数,则()f z 在区域D 内为( A ) (A )复常数 (B )0 (C )z (D )ze 90、若()zf z e =,则下列结论不成立的是(B )(A )()f z 为整函数 (B )()f z 非周期函数 (C )()f z 无零点 (D )()f z 无界 91、幂级数0!nn n z ∞=⋅∑的收敛半径为( C )(A )+∞ (B )1(C )0 (D )以上结论都不对92、设幂级数为0nn n a z ∞=∑的收敛半径0R >,则此幂级数的和函数( D )(A )在z R <内不连续 (B )在z R <内不解析 (C )在z R <内不能逐项求导 (D )在z R <内可逐项积分93、在1z <内解析,且在区间(1,1)-上具有展式0(1)n n n x ∞=-⋅∑的函数只能为(A )(A )11z + (B )11z - (C )211z + (D )211z- 94、若1()cos f z z i=+,则z i =-为()f z 的( B )(A )极点 (B )本性奇点 (C )可去奇点 (D )非孤立奇点 95、2()(1)z zf z e =-以0z =为( C ) (A )可去奇点 (B )本性奇点 (C )一阶极点 (D )二阶极点 96、若()()z f z z aϕ=-,且()z ϕ在点a 解析,则Re (,)s f a =的( D )(A )0 (B )()a ϕ' (C )2()i a πϕ'⋅ (D )()a ϕ97、22()1ize f z z =+在z i =的留数为 ( A )(A )2i i e --(B )0 (C )12i e -- (D )112e -- 98、ln(1)z +在0z =处的幂级数展开式为( B )(A )1n n z n ∞=∑ (B )11(1)n n n z n ∞-=-∑ (C )1(1)n n n z n ∞=-∑ (D )0!n n z n ∞=∑99、变换1i z iw ei zθ-=+⋅(θ为实常数)把单位圆1z <保形映射成( C )(A )上半平面Im 0z > (B )下半平面Im 0z < (C )1w < (D )1w > 100、变换i z iw ez iθ-=+(θ为实常数)把上半平面Im 0z >保形映射成( D ) (A )左半平面Re 0z < (B )右半平面Re 0z > (C )上半平面Im 0z >(D )1z <二、多项选择题(每题至少有两个或两个以上的正确答案)1、若12ω=-是方程31z =的根,则下列哪些值不为21ωω++的值(B 、C 、D ) (A )0 (B )i (C )i - (D )2ω 2、复数1cos sin z i θθ=-+(0θπ<<)的模为 ( A 、B ) (A )2sin2θ (B(C )2(1cos )θ- (D )2sin2θ-3、下列点集哪些是区域 (A 、C ) (A )Im Re(1)z i >+ (B )0arg 4z π<≤(C )1Im 2z << (D )Im 3z =4、若()Re f z z =,则下列结论正确的是( A 、B )(A )()f z 在z 平面上连续 (B )()f z 在z 平面上处处不解析 (C )()f z 在z 平面上解析 (D )()f z 仅在0z =处解析 5、若1()1f z z=+,则下列结论正确的是 ( A 、C 、D ) (A )Re (,0)1s f = (B )2Re (,0)1s f = (C )2Re (,0)2s f = (D )Re (,0)0s z f ⋅=6、若ω不是方程31z =的虚数根,则下列哪些值也一定不是此方程的根(A 、B 、C 、) (A )ω (B )3ω (C )1- (D )ω-7、复数z =的指数表示形式为 ( A 、C ) (A )4i z e π-⋅= (B )4i z eπ⋅= (C )(2)4i k z eππ-⋅+= (k Z ∈)(D )(2)4i k z eππ⋅+= (k Z ∈)8、设{1Im 1,1Re 1}E z z z =-<<-<<,则E 一定不能是 (B 、C ) (A )有界单连通区域 (B )有界闭区域 (C )无界区域 (D )区域9、下列哪些函数在全平面上不解析(B 、C 、D )(A )sin z (B )z (C )Re z (D )2z 10、若1()sinf z z=,则0z =为()f z 的( A 、B ) (A )本性奇点 (B )孤立奇点 (C )可去奇点 (D )极点三、填空题(将正确的答案填在横线上)1、复数(3)(2)(3)(2)i i z i i +-=-+的模z =1。
复变函数1到5章测试题及答案
复变函数1到5章测试题及答案(总20页)--本页仅作预览文档封面,使用时请删除本页--- 2 -第一章 复数与复变函数(答案)一、 选择题1.当iiz -+=11时,5075100z z z ++的值等于(B ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z (A )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+-3.复数)2(tan πθπθ<<-=i z 的三角表示式是(D )(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i(C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i4.若z 为非零复数,则22z z -与z z 2的关系是(C ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线- 3 -6.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数是(A )(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是(D )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设z 为复数,则方程i z z +=+2的解是(B ) (A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是(D ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程232=-+i z 所代表的曲线是(C )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为(B ) (A )221=+-z z (B )433=--+z z- 4 -(C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则12()f z z -=(C ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.000Im()Im()limz z z z z z →--(D )(A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是(C ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为(A )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg 8arctan -π 3.设43)arg(,5π=-=i z z ,则=z i 21+- 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 ie θ16- 5 -5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z522=++-z (或1)23()25(2222=+y x ) 的内部 7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为 122=+y x8.方程i z i z +-=-+221所表示的曲线是连接点 12i -+ 和 2i - 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为()2211u v -+= 10.=+++→)21(lim 421z z iz 12i -+三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围. (]25,25[+-(或25225+≤+≤-z )) 四、设0≥a ,在复数集C 中解方程a z z =+22. (当10≤≤a 时解为i a )11(-±±或)11(-+±a 当+∞≤≤a 1时解为)11(-+±a ) 五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或Im()0z =. 六、对于映射)1(21zz +=ω,求出圆周4=z 的像.- 6 -(像的参数方程为π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u .表示w 平面上的椭圆1)215()217(2222=+v u ) 七、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .(1.)(z f 在复平面除去原点外连续,在原点处不连续; 2.)(z f 在复平面处处连续)第二章 解析函数(答案)一、选择题:1.函数23)(z z f =在点0=z 处是( B )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( B )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( D )(A )设y x ,为实数,则1)cos(≤+iy x- 7 -(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( C )(A )xyi y x 222-- (B )xyi x +2 (C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0z =处的导数( A )(A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( C )(A )0 (B )1 (C )2 (D )2- 7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是( C )(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数- 8 -(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( A )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.i i 的主值为( D )(A )0 (B )1 (C )2πe (D )2e π-11.z e 在复平面上( A )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( C )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( D )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( C )(A )αz 在复平面上处处解析 (B )αz 的模为αz- 9 -(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(limi +1 2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 常数 3.导函数x v i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 xv x u ∂∂∂∂,可微且满足222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂ 4.设2233)(y ix y x z f ++=,则=+-')2323(i f i 827427- 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f ic xyi y x ++-222或ic z +2c 为实常数6.函数)Re()Im()(z z z z f -=仅在点=z i 处可导 7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k8.复数i i 的模为),2,1,0(2 ±±=π-k e k9.=-)}43Im{ln(i 34arctan -- 10 -10.方程01=--z e 的全部解为),2,1,0(2 ±±=πk i k三、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -= (;sin )(z z f -=')2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=(.)1()(z e z z f +=') 四、已知22y x v u -=-,试确定解析函数iv u z f +=)(. (c i z i z f )1(21)(2++-=.c 为任意实常数)第三章 复变函数的积分(答案)一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( D )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( D)(A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( B ) (A ) i π2- (B )0 (C )i π2 (D )i π44.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( C)(A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( B) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( A ) (A )i π2- (B )1- (C )i π2 (D )1 7.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c ⎰+'+'')()()(2)( ( C )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定 8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( A )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( A )(A )i π22(B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( C) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( C )(A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D ) (A )积分⎰=--ra z dz a z 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( D)(A)c iz +2 (B ) ic iz +2 (C )c z +2 (D )ic z +2 14.下列命题中,正确的是(C)(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =(B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( B )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 2 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(23 i π103.设⎰=-=2)2sin()(ξξξξπd z z f ,其中2≠z ,则=')3(f 0 4.设c 为正向圆周3=z ,则=+⎰cdz zzz i π6 5.设c 为负向圆周4=z ,则=-⎰c z dz i z e 5)(π 12iπ 6.解析函数在圆心处的值等于它在圆周上的 平均值7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内 解析8.调和函数xy y x =),(ϕ的共轭调和函数为 C x y +-)(21229.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a -3 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为),(y x u -三、计算积分 1.⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; (当10<<R 时,0; 当21<<R 时,i π8; 当+∞<<R 2时,0) 2.⎰=++22422z z z dz.(0) 四、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .(i π2)五、若)(22y x u u +=,试求解析函数iv u z f +=)(. (321ln 2)(ic c z c z f ++=(321,,c c c 为任意实常数))第四章 级 数(答案)一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( C )(A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( C )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) ∑∞=+1)1(1n n i n (B )∑∞=+-1]2)1([n n n in(C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( A )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( D )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( D )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( B ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( A )(A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n nn z c ,那么幂级数∑∞=0n n n z c 的收敛半径=R ( C )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( B ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的 11.函数21z在1-=z 处的泰勒展开式为( D)(A ))11()1()1(11<++-∑∞=-z z n n n n (B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( B )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( B )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+=,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n n n z c 的收敛域为( A ) (A )3141<<z (B )43<<z(C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( C )(A )1 (B )2 (C )3 (D )4 二、填空题1.若幂级数∑∞=+0)(n n n i z c 在i z =处发散,那么该级数在2=z 处的收敛性为 发散2.设幂级数∑∞=0n nn z c 与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 12R R ≥ .3.幂级数∑∞=+012)2(n n n z i 的收敛半径=R22 4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c ),2,1,0()(!10)( =n z f n n 或()0,2,1,0()()(21010d r n dz z z z f ir z z n <<=-π⎰=-+ ). 5.函数z arctan 在0=z 处的泰勒展开式为 )1(12)1(012<+-∑∞=+z z n n n n .6.设幂级数∑∞=0n nn z c 的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为2R. 7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 211<-<z . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 nn nn z n z n ∑∑∞=∞=+00!11!1 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R π .10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 ∑∞=+--02)()1(n n nn i z i 三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. ()2(,12110≥+===--n a a a a a n n n ,),2,1,0(})251()251{(5111 =--+=++n a n n n ) 四、求幂级数∑∞=12n nz n 的和函数,并计算∑∞=122n n n 之值.(3)1()1()(z z z z f -+=,6)五、将函数)1()2ln(--z z z 在110<-<z 内展开成洛朗级数.(n n nk k z k n z z z z z z )1()1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+)第五章 留 数(答案)一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( D ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f的( B )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数zz ex sin 142-的m 级极点,那么=m ( C ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( D ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( B ) (A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设∑∞==0)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( C ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( A ) (A)m (B )m - (C ) 1-m (D ))1(--m8.在下列函数中,0]0),([Re =z f s 的是( D )(A ) 21)(ze zf z -= (B )z z z z f 1sin )(-= (C )z z z z f cos sin )(+= (D) ze zf z 111)(--= 9.下列命题中,正确的是( C )(A ) 设)()()(0z z z z f m ϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s(C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s(D ) 若0)(=⎰cdz z f ,则)(z f 在c 内无奇点10. =∞],2cos [Re 3zi z s ( A ) (A )32- (B )32 (C )i 32 (D )i 32- 11.=-],[Re 12i ez s i z ( B) (A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( D)(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s(B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-= (D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞ 13.设1>n 为正整数,则=-⎰=211z ndz z ( A ) (A)0 (B )i π2 (C )n i π2 (D )i n π214.积分=-⎰=231091z dz z z ( B ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( C ) (A )0 (B )61-(C )3i π- (D )i π- 二、填空题 1.设0=z 为函数33sin z z -的m 级零点,那么=m 9 .2.函数z z f 1cos 1)(=在其孤立奇点),2,1,0(21 ±±=+=k k z k ππ处的留数=]),([Re k z z f s 2)2()1(π+π-k k. 3.设函数}1exp{)(22zz z f +=,则=]0),([Re z f s 0 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s m - . 5.设212)(zz z f +=,则=∞]),([Re z f s -2 . 6.设5cos 1)(z z z f -=,则=]0),([Re z f s 241- . 7.积分=⎰=113z z dz e z 12i π .8.积分=⎰=1sin 1z dz z i π2 . 三、计算积分⎰=--412)1(sin z z dz z e z z .(i π-316) 四、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数. 五、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=.。
2007级《复变函数期》期中试题D答案
班级 学号 姓名长治学院2009-2010学年 第一学期期中考试D 卷答案课程 复变函数 适用专业年级 数学系2007级各专业一、 单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设z =1-i ,则Im(1/z 2)=( C ) A .-1B .-21C .21 D .12.复数z =ii-+23的幅角主值是( B ) A .0B .4π C .2π D .43π3(3)(2)3(1)255i i i i z i ++++===- 3.设n 为整数,则Ln (-ie )=( C ) A .1-2πi B .)22(πn π-i C .1+(2)2πn πi -D .1+(2)2πn πi+长治学院2007级《复变函数》期中试题(D)答案4.设12,22iz i z ==+,则ln z 2z (ln z 表示主值) A .>B .=C .<D .不能确定1212ln ln ,ln ln |ln |||||ln 22626i z i i z i z z ππππ⎫====⇒=>=⎪⎪⎝⎭5.函数)Im()(2z z z f =在z =0处的导数( A )A. 等于0B.等于1C.等于1-D.不存在2Im()(0)lim lim Im()0z z z z f z z z→∞→∞'===6.2()f z x iy =-,直线1:2L x =-,则()f z 在( B ) A. z 平面上解析 B. L 上可微C.L 上解析D.z 平面上可微2()2,0,0,1x y x y f z x iy u x u v v =-⇒====-C-R 成立211/2x x ⇔=-⇔=-7.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则(C )A .m =-3,n =-3B .m =-3,n =1C .m =1,n =-3D .m =1,n =18.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C )A.0B.1C.-1D.任意常数长治学院2007级《复变函数》期中试题(D)答案()f z 在单位圆1<z 为常数, 1)0(-=f () 1 ||1f z z ⇒≡-<9.积分⎰=2i iπz dz e ( A )A .)1(1i +πB .1+iC .πi2 D .π210.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( B )A .i π2-B .i π-C .i πD .2i π3sin 2sin 2!2()2Czi dz i z ππππ⎛⎫''==-⎪⎝⎭-⎰二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
完整版)复变函数测试题及答案
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
复变函数模拟考试题参考解答
f (z)
1 cos z 1
2 z2
的
(
).
(A) 可去奇点
(B) 一阶极点
(C) 二阶极点
【答案】 A
【解析】
(D) 本性奇点
1 cos z 1
2 z2
2 z2
z2
1 z4
2 z2
2 z2
1 6
z2 120
1 6
z2 120
,
2! 4!
【解析】由对数的运算性质有
Ln(z12 z22 ) Ln z12 Ln z22 ,但 Ln z2 2 Ln z ,例如取 z 1则容易验证,故选(B).其他
等式均可由相应的运算法则得到.
6.设 D 为复平面除去上半虚轴的割缝区域,w z 为该区域上的单值分支,且 w(1) i ,
z(z 2) (1 z)2
在
z
0 处等于零,所以该函数非单叶
解析函数,故选(B).可以用定义验证其他函数在单位圆盘内是单叶解析的,如(D)的函数,
由于
1
z1 z12
z2 1 z22
(z1 z2 )(z1z2 1) (1 z12 )(1 z22 )
,易知该函数在
z
1内是单叶的.
(B)必要但非充分条件 (D)既非充分条件也非必要条件
【解析】由定义 f (z) 在点 z 解析要求 f (z) 在点 z 的一个邻域内可导,因此在 z 处一定可导.
但反之则不成立,例如函数 f (z) z 2 在 z 0 处可导但不解析,故选(B).
(完整版)复变函数试题及答案
-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7
复变函数复习题详细答案
复变函数复习题详细答案复变函数复习题详细答案如下:1. 复数的代数形式和几何解释复数 \( z = a + bi \) 可以表示为平面上的一个点 \( (a, b) \),其中 \( a \) 是实部,\( b \) 是虚部。
复数的模 \( |z| \) 表示该点到原点的距离,即 \( |z| = \sqrt{a^2 + b^2} \)。
2. 复数的运算两个复数 \( z_1 = a + bi \) 和 \( z_2 = c + di \) 的加法和乘法运算如下:\[ z_1 + z_2 = (a + c) + (b + d)i \]\[ z_1 \cdot z_2 = (ac - bd) + (ad + bc)i \]3. 复数的共轭和模复数 \( z = a + bi \) 的共轭为 \( \overline{z} = a - bi \),模为 \( |z| = \sqrt{a^2 + b^2} \)。
4. 复数的指数形式复数 \( z \) 可以表示为指数形式 \( z = re^{i\theta} \),其中\( r = |z| \) 是模,\( \theta \) 是 \( z \) 的辐角,满足\( \cos\theta = \frac{a}{r} \) 和 \( \sin\theta = \frac{b}{r} \)。
5. 复数的对数复数 \( z \) 的对数定义为 \( \log z = \log r + i\theta \),其中 \( r = |z| \),\( \theta \) 是 \( z \) 的主辐角。
6. 复数的导数设 \( f(z) = u(x, y) + iv(x, y) \) 是复函数,其中 \( z = x +iy \),则 \( f(z) \) 的导数为:\[ f'(z) = \frac{\partial u}{\partial x} + i\frac{\partialv}{\partial x} \]前提是 \( u \) 和 \( v \) 的偏导数满足柯西-黎曼方程。
复变函数试题及答案解读
点列 = 以 为聚点
在点列 上,
由解析函数的唯一性定理
在 的邻域内 = 分
但在这个邻域内又有 矛盾
在 解析的函数 不存在 分
一、填空题(每小题2分)
1、复数 的指数形式是
2、函数 = 将 上的曲线 变成 ( )上
的曲线是
3、若 ,则 =
4、 =
5、积分 =
6、积分
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1、设 为任意实数,则 =()
A无意义B等于1
A B
C D
三、判断题(每小题2分)
1、()幂级数 在 <1内一致收敛
2、()z= 是函数 的可去奇点
3、()在柯西积分公式中,如果 ,即a在 之外,其它条件
不变,则积分 0,
4、()函数 在 的去心邻域内可展成洛朗级数
5、()解析函数的零点是孤立的
四、计算题(每小题6分)
1、计算积分 ,C: 1+ 的直线段
= = 分
2解: 为 一阶极点 分
为 二阶极点 分
分
分
…6分
3解: = …2分
= …5分
(0< <2)…6分
4解:在C内 有一个二阶极点 =0和
一个一阶极点 …1分
…3分
…5分
所以原式= i …6分
5解:令
…1分
= …3分
被积函数在 内的有一个
一阶极点
…5分
I= …6分
6解: 分
所以 分
于是所求变换 分
2、 =
(完整版)复变函数试题及答案
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。
2zz +2z z -izz 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1|-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式的值。
+∞→n lim +∞→n lim ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明若 ,则a 2+b 2=1。
复变函数考试卷试题及答案
应用数理统计 试题 第 1 页 共 4 页复变函数考试卷一、单项选择题(15分,每小题3分)1. 设()2,00,0z z f z z z ⎧≠⎪=⎨⎪=⎩,则()fz 的连续点集合为( )。
(A )单连通区域 (B )多连通区域 (C )开集非区域 (D )闭集非闭区域 2. 设()(,)(,)f z u x y iv x y =+,那么(,)u x y 与(,)v x y 在点()00,x y 可微是()f z 在点000z x i y =+可微的( )。
()()()()A B C D 充分但非必要条件必要但非充分条件充分必要条件既非充分也非必要条件3. 下列命题中,不正确的是( )。
()()()()()()()()()0R e s ,0I m 1.zz A f z f z B f z D z f z D C e i D z e iωπω∞∞=-=<<<+如果无穷远点是的可去奇点,那么若在区域内任一点的邻域内展开成泰勒级数,则在内解析.幂级数的和函数在收敛圆内是解析函数.函数将带形域0()映射为单位圆4. 设c 是()1z i t =+,t 从1到2的线段,则arg d cz z ⎰( )。
()()()()()11444A B iC iD i πππ++5. 设()f z 在01z <<内解析且()0lim 1z zf z →=,那么()()Res ,0f z =( )。
()()()()2211A iB iC Dππ-- 二、填空题(15分,每空3分) 1.()Ln 1i -的主值为 。
2.函数()()Re Im f z z z z ()=+仅在点z = 处可导。
3.罗朗级数的()()11211133nnnnn n z z ∞∞==⎛⎫⎛⎫-+-- ⎪ ⎪-⎝⎭⎝⎭∑∑收敛域为 。
应用数理统计 试题 第 2 页 共 4 页4. 映射1w z=,将圆域11z -<映射为 。
复变函数考题及答案
复变函数考题及答案【篇一:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇二:复变函数期末考试复习题及答案详解】=txt>1、 ?|z?z?1(z?z)n?0|__________.(n为自然数) 022.sinz?cos2z? _________.3.函数sinz的周期为___________.f(z)?14.设z2?1,则f(z)的孤立奇点有__________.?5.幂级数?nzn的收敛半径为__________.n?06.若函数f(z)在整个平面上处处解析,则称它是__________. lim 1?z2?...?zn7.若nlim??zn??z,则n??n?______________.zres(ezn,0)?8.________,其中n为自然数.9. sinzz的孤立奇点为________ .limf(10.若z0是f(z)z?zz)?___的极点,则0.三.计算题(40分):f(z)?11. 设(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz2. ?|z|?1cosz.2??13. 设f(z)??3??7c??zd?,其中c?{z:|z|?3},试求f(1?i).w?z?14. 求复数z?1的实部与虚部.四. 证明题.(20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 试证: f(z)在割去线段0?rez?1的z平面内能分出两个单值解析分支, 并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则zlim?1?if(z)?________.3.?dz|z?z0|?1(z?zn?_________.(n为自然数)0)?4. 幂级数?nzn的收敛半径为__________ .n?05. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________.8. 设f(z)?11?z2,则f(z)的孤立奇点有_________.9. 函数f(z)?|z|的不解析点之集为________.10. res(z?1z4,1)?____. 三. 计算题. (40分)1. 求函数sin(2z3)的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.i3. 计算积分:i???i|z|dz,积分路径为(1)单位圆(|z|?1)的右半圆.sinzz?24. 求(z?dz)22.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设f(z)?1z2?1,则f(z)的定义域为___________. 2. 函数ez 的周期为_________.3. 若zn?21?n?i(1?1n?n)n,则limn??zn?__________.4. sin2z?cos2z?___________.dz5. ?|z?z?0|?1(z?zn_________.(n为自然数) )?6. 幂级数?nxn的收敛半径为__________.n?07. f(z)?1设z2?1,则f(z)的孤立奇点有__________.8. 设ez??1,则z?___. 9. 若z0是f(z)的极点,则limz?zf(z)?___.z10. res(ezn,0)?____.三. 计算题. (40分)11. 将函数f(z)?z2ez在圆环域0?z??内展为laurent级数.??2. 试求幂级数?n!nzn的收敛半径. n?n3. 算下列积分:?ezdzcz2(z2?9),其中c是|z|?1.4. 求z9?2z6?z2?8z?2?0在|z|1内根的个数.四. 证明题. (20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 设f(z)是一整函数,并且假定存在着一个正整数n,以及两个正数r及m,使得当|z|?r时|f(z)|?m|z|n,证明f(z)是一个至多n次的多项式或一常数。
复变函数练习题及答案
复变函数卷答案与评分标准一、填空题:1.叙述区域内解析函数的四个等价定理。
定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1)(,)u x y ,(,)v x y 在D 内可微,(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1),,,x y x y u u v v 在D 内连续,(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =⎰ 。
(3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。
(3分)2.叙述刘维尔定理:复平面上的有界整函数必为常数。
(3分)3、方程2z e i =+的解为:11ln 5arctan 222i k i π++,其中k 为整数。
(3分) 4、设()2010sin z f z z+=,则()0Re z s f z ==2010。
(3分) 二、验证计算题(共16分)。
1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。
(8分)解:(1)22u x x ∂=+∂,222u x ∂=∂;2u y y∂=-∂,222u y ∂=-∂。
由于22220u u y x∂∂+=∂∂,所以(,)u x y 为复平面上的调和函数。
(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有22v u x y x∂∂==+∂∂,所以(,)2222()v x y x dy xy y C x =+=++⎰ 2,v u y x y∂∂=-=∂∂又2()v y C x x ∂'=+∂ ,所以 ()0C x '=,即()C x 为常数。
(精品)《复变函数》习题及答案
第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。
( ) 12、有界整函数必为常数。
( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。
( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。
( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。
( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。
( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。
( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。
( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。
复变函数试卷及答案
复变函数试卷及答案【篇一:《复变函数》考试试题与答案各种总结】xt>一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若{zn}收敛,则{re zn}{im zn}与都收敛. ( )4.若f(z)在区域d内解析,且f(z)?0,则f(z)?c(常数).( )5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.( )6.若z0是f(z)的m阶零点,则z0是1/f(z)的m阶极点. ( )7.若z?z0limf(z)存在且有限,则z0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域d内的单叶函数,则f(z)?0(?z?d). ( )9. 若f(z)在区域d内解析, 则对d内任一简单闭曲线c?cf(z)dz?0.( )10.若函数f(z)在区域d内的某个圆内恒等于常数,则f(z)在区域d 内恒等于常数.()二.填空题(20分)dz?__________.(n为自然数)1、 ?|z?z0|?1(z?z)n22sinz?cosz? _________. 2.3.函数sinz的周期为___________.f(z)?4.设?1z2?1,则f(z)的孤立奇点有__________.n?nzn?0的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若n??limzn??z1?z2?...?zn?n??n,则______________.limezres(n,0)?z8.________,其中n为自然数.sinz9. 的孤立奇点为________ .zlimf(z)?___zf(z)的极点,则z?z010.若0是.三.计算题(40分):1. 设1f(z)?(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz.?|z|?1cosz2.3?2?7??1f(z)??d?c??z3. 设,其中c?{z:|z|?3},试求f(1?i).w?4. 求复数z?1z?1的实部与虚部.四. 证明题.(20分) 1. 函数为常数. 2. 试证: f(z)?f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内在割去线段0?rez?1的z平面内能分出两个单值解析分支,并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(一)参考答案一.判断题?2?in?11. ? ;2. 1;3. 2k?,(k?z);4. z??i; 5. 1 0n?1?6. 整函数;7. ?;8. 三.计算题.1. 解因为0?z?1, 所以0?z?1?1?zn111n??z??(). f(z)???2n?02(z?1)(z?2)1?z2(1?)n?021; 9. 0; 10. ?.(n?1)!2. 解因为z?resf(z)?limz??2?2z??2?lim1??1, coszz???sinzz??2resf(z)?limz???2z???2?lim1?1. coszz????sinz所以1sf(z)?resf(z)?0. z?2cosz?2?i(re??z??z?2223. 解令?(?)?3??7??1, 则它在z平面解析, 由柯西公式有在z?3内, f(z)??(?)?c??z?2?i?(z).所以f?(1?i)?2?i??(z)z?1?i?2?i(13?6i)?2?(?6?13i). 4. 解令z?a?bi, 则 w?z?122a(?1?bi)2a(?1)b2. 2?1?1?122222z?1z?1(a?1)?b(a?1)?ba(?1)?bz?12(a?1)z?12b, . )?1?im()?z?1(a?1)2?b2z?1(a?1)2?b2故 re(四. 证明题.1. 证明设在d内f(z)?c.令f(z)?u?iv,则f(z)?u2?v2?c2.2?uux?vvx?0两边分别对x,y求偏导数, 得??uuy?vvy?0(1)(2)因为函数在d内解析, 所以ux?vy,uy??vx. 代入 (2) 则上述方程组变为?uux?vvx?022. 消去ux得, (u?v)vx?0. ??vux?uvx?01) 若u?v?0, 则 f(z)?0 为常数.2) 若vx?0, 由方程 (1) (2) 及 c.?r.方程有ux?0, uy?0, vy?0. 所以u?c1,v?c2. (c1,c2为常数).22所以f(z)?c1?ic2为常数. 2.证明f(z)?的支点为z?0,1. 于是割去线段0?rez?1的z平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z从支割线上岸一点出发,连续变动到z?0,1 时, 只有z的幅角增加?. 所以f(z)?的幅角共增加?. 由已知所取分支在支割线上岸取正值, 于是可认为该分2?i?2支在上岸之幅角为0, 因而此分支在z??1的幅角为,故f(?1)??.2《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数f(z)?u(x,y)?iv(x,y)在d内连续,则u(x,y)与v(x,y)都在d 内连续. ( )2. cos z与sin z在复平面内有界.( )3. 若函数f(z)在z0解析,则f(z)在z0连续. ( )4. 有界整函数必为常数. ( )5. 如z0是函数f(z)的本性奇点,则limf(z)一定不存在. ( )z?z06. 若函数f(z)在z0可导,则f(z)在z0解析. ( )7. 若f(z)在区域d内解析, 则对d内任一简单闭曲线c?f(z)dz?0.c( )8. 若数列{zn}收敛,则{rezn}与{imzn}都收敛. ( ) 9. 若f(z)在区域d内解析,则|f(z)|也在d内解析. ( )11110. 存在一个在零点解析的函数f(z)使f()?0且f()?,n?1,2,....n?12n2n( )二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__z?1?i2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则limf(z)?________.3.dz?|z?z0|?1(z?z0)n?_________.(n为自然数)4. 幂级数?nzn的收敛半径为__________ .n?0?5. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________. 8. 设f(z)?1,则f(z)的孤立奇点有_________. 21?z9. 函数f(z)?|z|的不解析点之集为________.z?110. res(,1)?____. 4z三. 计算题. (40分)3sin(2z)的幂级数展开式. 1. 求函数2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.??|z|dz,积分路径为(1)单位圆(|z|?1)?ii3. 计算积分:i的右半圆.4. 求sinzz?2(z?)22dz.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.【篇二:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(b)若re(f(z))在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇三:大学复变函数考试卷试题及答案】ss=txt>?z2?,z?01.设f?z???z,则f?z?的连续点集合为()。
复变函数试题1-3答案
1-3参考答案试题一一 1.11)),22i -++ 2.526632,2,2ii i e e eπππ 3.2exp(2)2z π+ 4. 1ln 2(2)22e e i k k ππ-+++为整数 5. 2(1)i e π+6.27.21(2)(1)(21)!n nn z n +∞=-+∑ 823Re()09s s >+ 二.1-5 D A A C D三.1. 解:由于=1z ,=2z i ,均位于圆周内,由柯西积分公式得23431212C C Cdz dz dz z z i z z i ⎛⎫+=+ ⎪--++⎝⎭⎰⎰⎰ 224212i i i πππ=⨯+⨯=注:其他解法正确也应给分2. 解: ()f z 在C 所围成的区域内有121,1z z ==-两个孤立奇点,2211213211Re [(),1]lim(1),Re [(),1]lim(1)1212z z z z s f z z s f z z z z →→-++=-=-=+=--,2' 所以由留数定理,原式()2Re [(),1]Re [(),1]224i s f z s f z i i πππ=⋅+-=⨯=.注:其他解法正确也应给分 3. 解:11sin cos z zdz z d z ⋅=-⎰⎰111000cos |cos cos1sin |z z z zdz z =⎡⎤⎡⎤=--=--⎣⎦⎢⎥⎣⎦⎰sin1cos1.=-四.1. 解:因为22u x axy by =++,22v cx dxy y =++2,2,2,2u u vvx a y a x b y c x d y d x yx y x y∂∂∂∂=+=+=+=+∂∂∂∂ 要使,u v u v x y y x∂∂∂∂==-∂∂∂∂ 只需22,22x ay dx y ax by cx dy +=++=-- 得到2,1,1,2a b c d ==-=-=2. 解:23231,2!3!!(1)1,2!3!!nzn zn z z z e z n z z e z z n -=++++++-=-+-+++ 3521()23!5!(21)!z z n n e e z z z f z z n -+∞=-∴==+++=+∑收敛半径.R =+∞3. 解:011z <-<时,()21111()()(1)(1)22f z z z z z '=⋅=⋅----- 因为()()0111121111nn z z z z ∞===-=----+---∑所以()111()12n n n z z ∞-='=---∑所以 ()()12111()111n n n n f z n z n z z ∞∞--===-=--∑∑ 当 021z <-<时,220111()(1)(2)(2)12(2)n n n f z z z z z ∞==⋅=⋅---+--∑ 2(1)(2)nn n z ∞-==--∑4. 22(2)()(sin )z z f z z π-=sin()0z z k πππ=⇒=,故()f z 的奇点为,0,1,2,z k k ==±± ---------当()(),sin |0,sin |0z k z k z k z z ππ=='==≠,z k ∴=是sin()z π的一级零点, 是2(sin())z π的二级零点 ------------------又由于12z =,是(1)(2)z z --的一级零点 所以12z =,是()f z 的一级极点,-------当,1,2z k z =≠时,k 是()f z 的二级极点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南科技学院二○○ 年 学期期末考试
专业 年级 试题
考试类型:闭卷 试卷类型:D 卷 考试时量: 120 分钟
一(共7分,每小题1分) 1.nLnz Lnz
n
=(n 为正整数) ( )
2.),(),()(y x iv y x u z f +=在区域D 内解析,则在区域D 内),(y x u 是),(y x v 的共轭调 函数。
( ) 3.函数在可去奇点处的留数为0。
( ) 4.0是2sin )(z
z
z f =
的一阶极点。
( ) 5.复数0的辐角主值为0。
( ) 6.在复变函数中,0cos ,0sin ,1|cos |,1|sin |2
2
≥≥≤≤z z z z 同样成立。
( ) 7.解析函数),(),()(y x iv y x u z f +=的实部),(y x u 和虚部),(y x v 都是其解析区域内的调 和函数。
( )
二 、填空题(共28分,每小题4分)
1.
i i -1=_________.
2.⎰
=-2
|1|2
z z dz = 。
3.
dz z c
⎰=__________。
(其中c 是从1到的直线段) 4.幂级数n
n n z n ∑
+∞
=1
的收敛半径R =
5.0为
)1()(2-=z e z z f 的 阶零点。
6.2
||2(1)(3)z dz
z z =--⎰=____________
7.
)1(Re z z
s z +∞== 。
8.1z =+arg z =_______________。
三 、计算题(共39分)
1. 已知),(),()(y x iv y x u z f +=在z 平面上是解析函数,且2
33),(xy x y x u -=,求解)(z f ,
使得i f 2)0(=。
(12分) 2. 求
)
1(1
-z z 在10<<z 内和1>z 内的展开式。
(15分)
3. 利用留数求定积分20
1
.51sin 82
I d π
θθ=-⎰
(12分)
四、证明题(共12分)
若函数)(),(z f z f 在区域D 内都解析,证明在D 内)(z f 为常数。