力学习题-第10章波动(含答案)

合集下载

大学物理波动练习题

大学物理波动练习题

大学物理波动练习题1、下列哪一种波属于机械波?A.电磁波B.声波C.地震波D.核辐射波2、在机械波的传播过程中,介质中的质点发生的是()A.随波逐流的相对运动B.周期性变化的相对运动C.振幅变化的相对运动D.垂直于波传播方向的相对运动3、下列哪一种说法正确地描述了波动现象的特征?A.波动现象是独立存在的,与振动源无关B.波动现象与振动源无关,只与传播介质有关C.波动现象是振动源和传播介质共同作用的结果D.波动现象只与传播介质有关,与振动源无关4、在波动现象中,下列说法正确的是()A.各质点的起振方向都与振源的起振方向相同B.各质点的振动周期都与振源的振动周期相同C.各质点的振动方向都与振源的振动方向相同D.各质点的振动步调都与振源的振动步调相同二、解答题5.什么是机械波的传播速度?它与介质有关吗?如果有关,是怎样的关系?6.在机械波的形成过程中,介质中的各质点是如何随波迁移的?为什么?1、在以下物理量中,哪个是矢量?A.路程B.速率C.速度D.时间答案:C.速度解释:矢量是具有大小和方向的物理量,而速度是既有大小又有方向的物理量,因此是矢量。

而路程、速率和时间都只有大小,没有方向,因此是标量。

2、下列哪个选项可以表示物体的惯性?A.速度B.质量C.加速度D.动量答案:B.质量解释:惯性是物体抵抗运动状态被改变的性质,是物体的固有属性。

质量是惯性的唯一量度,因此质量可以表示物体的惯性。

速度、加速度和动量都与物体的运动状态有关,但它们都不能直接表示物体的惯性。

3、在以下哪个条件下,物体的运动状态会发生改变?A.受到力的作用B.受到重力C.受到支持力D.受到摩擦力答案:A.受到力的作用解释:物体的运动状态会发生改变,即物体的速度会发生改变,这只有当物体受到力的作用时才会发生。

力是改变物体运动状态的原因。

重力、支持力和摩擦力都是具体的力,但它们并不能独自改变物体的运动状态。

二、填空题4、在物理学中,我们将物体相对于其他物体位置的变化称为______。

10+波 动++习题解答

10+波 动++习题解答

第十章 波 动10-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题10-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).10-2 机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( )(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播分析与解 波动方程的一般表式为⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=ϕωu x t A y cos ,其中A 为振幅,φ为初相,u 为波速.x /u 前的“-”表示波沿x 轴正向传播,“+”表示波沿x 轴负向传播.因此将原式写为()()()m 100/π6cos 05.0x t y +=和一般式比较可知(B)、(D) 均不对.而由ω=2π/T =6πs-1 可知T =(1/3)s.则λ=uT =33.3 m ,因此(A)也不对.只有(C)正确. 10-3 一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u .设4T t =时刻的波形如图(a )所示,则该波的表达式为( )()()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πωπωπωπωu x t A y u x t A y u x t A y u x t A y cos B 2cos C 2cos B cos A题10-3 图分析与解 因为波沿x 轴负向传播,由上题分析知(A)、(B )表式不正确.找出(C )、(D )哪个是正确答案,可以有很多方法.这里给出两个常用方法.方法一:直接将t =T /4,x =0 代入方程,那么对(C )有y 0 =A 、对(D )有y 0 =0,可见(D )的结果与图一致.方法二:用旋转矢量法求出波动方程的初相位.由图(a )可以知道t =T /4 时原点处质点的位移为0,且向y 轴正向运动,则此时刻的旋转矢量图如图(b )所示.要求初相位,只要将该时刻的旋转矢量反转(顺时针转)Δφ=ω·Δt =ω·T /4 =π/2,如图(b )所示,即得φ0 =π.同样得(D )是正确答案.题10-4 图10-4 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( ) ()()()()()()πλπϕϕπλπϕϕπϕϕπk r r k r r k k r r 22A 22A 2A A 211212121212=-+-=-+-=-=-// 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λr r /π2Δ1212---=,故选项(D )正确.10-5 在驻波中,两个相邻波节间各质点的振动( )(A ) 振幅相同,相位相同 (B ) 振幅不同,相位相同(C ) 振幅相同,相位不同 (D ) 振幅不同,相位不同分析与解 驻波方程为t λx A y v π2cos π2cos 2=,因此根据其特点,两波节间各点运动同相位,但振幅不同.因此正确答案为(B ).10-6 频率为υ=1.25 ×104 Hz 的平面简谐纵波沿细长的金属棒传播,棒的弹性模量为E =1.90 ×1011 N·m -2 ,棒的密度ρ =7.6 ×103 Kg·m -3 .求该纵波的波长.分析 因机械波传播速度与介质性质有关,固体中纵波传播速度ρ/E u =.而波的特征量波长λ与波速u 、频率υ之间有λ=u /υ.所以,频率一定的振动在不同介质中传播时,其波长不同.由上述关系可求得波长.解 由分析可知金属棒中传播的纵波速度ρ/E u =,因此,该纵波的波长为m 40.0//2===v v ρE u λ10-7 一横波在沿绳子传播时的波动方程为()()m 52cos 200x y ππ-=...(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同.分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率υ、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中u x 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv (2) 绳上质点的振动速度()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1m ax s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示.x =1.0m 处质点的运动方程为 ()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题10-7 图10-8 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式()ϕω+=t cos A y 进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解.解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-10-9 已知一波动方程为()()m 2-π10sin 05.0x t y =.(1) 求波长、频率、波速和周期;(2) 说明x =0 时方程的意义,并作图表示.题10-9 图分析 采用比较法.将题给的波动方程改写成波动方程的余弦函数形式,比较可得角频率ω、波速u ,从而求出波长、频率等.当x 确定时波动方程即为质点的运动方程y =y (t ).解 (1) 将题给的波动方程改写为()[]()m 2/ππx/5t π10cos 05.0--=y 与()[]0cos ϕω+-=u x t A y /比较后可得波速u =15.7 m·s-1 , 角频率ω=10πs-1 ,故有m 14.3,s 2.0/1,Hz 0.5π2/======uT l v T ωv(2) 由分析知x =0 时,方程()()m 2/ππ10cos 05.0-=t y 表示位于坐标原点的质点的运动方程(如图).10-10 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得 m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 =15.0 m 和x 2 =5.0 m 处质点的运动方程分别为 ()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-15.5π和φ10 =-5.5π(若波源初相取φ0=3π/2,则初相φ10 =-13.5π,φ10 =-3.5π.)(2) 距波源16.0m 和17.0 m 两点间的相位差()π/π2Δ1212=-=-=λx x10-11 有一平面简谐波在空间传播.已知在波线上某点B 的运动规律为()ϕ+=ωt A y cos ,就图(a )(b )(c )给出的三种坐标取法,分别列出波动方程.并用这三个方程来描述与B 相距为b 的P 点的运动规律.分析 (1) 波动方程的一般表式为()[]0cos ϕω+=u x t A y / ,式中振幅A 、角频率ω和波速u 从B 点运动方程和所给图均已知.因此只要求出原点的初相φ0 .而对(a )、(b )情况,B 点即为原点,所以φ0=φ,对情况(c ),原点比B 点超前相位Δφ=ω1 /u ,则φ0 =φ+ω1/u .(2) 写出三种情况下波动方程后只要将P 点相应的坐标代入即可写出P 点的运动规律.解 (1) 根据分析和图示波的传播方向,有(a ) 情况下:()[]ϕω+-=u x t A y /cos(b ) 情况下:()[]ϕω++=u x t A y /cos(c ) 情况下:()⎥⎦⎤⎢⎣⎡++-=u l u x t A y ωϕω/cos题10-11图(2) 将P 点的x 坐标值分别代入上述相应的波动方程可得三种情况下均有:()[]ϕω+-=u b t A y /cos P讨论 由于三种情况下,在沿波传播方向上,P 点均落在B 点后距离为b 处,即P 点的振动均比B 点的振动落后时间b /u ,落后相位ωb /u ,因而P 点的运动方程均为()[]ϕω+-=u b t A y /cos P .10-12 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为7.5 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λυ;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度υ=d y /d t .解 (1) 从图中得知,波的振幅A =0.10 m ,波长λ=20.0m ,则波速u =λυ=5.0 ×103 m·s-1 .根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t ωA y(2) 距原点O 为x =7.5m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12πsin13π50/d d ⋅=-===t t y v题10-12 图10-13 如图所示为一平面简谐波在t =0 时刻的波形图,求(1)该波的波动方程;(2) P 处质点的运动方程.题10-13 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A =0.04 m, 波长λ=0.40 m, 波速u =0.08m·s-1 ,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为()m 208.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=πx t(2) 距原点O 为x =0.20m 处的P 点运动方程为()m 2520.04cos y ⎥⎦⎤⎢⎣⎡+=ππ 10-14 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x =1.0 m 处质点的振动曲线,求此波的波动方程.题10-14图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A =0.40 m,t =0 时位于x =1.0 m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) s -1 .由上述特征量可写出x =1.0 m 处质点的运动方程为()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x =1.0 m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x =1.0 m 处的运动方程作比较,可得φ0 =-π/2,则波动方程为()()m 2π10/6π0.04cos y ⎥⎦⎤⎢⎣⎡-+=x t 10-15 图中(Ⅰ)是t =0 时的波形图,(Ⅱ)是t =0.1 s 时的波形图,已知T >0.1 s ,写出波动方程的表达式.题10-15 图分析 已知波动方程的形式为()[]02cos ϕλπ+-=//x T t A y从如图所示的t =0 时的波形曲线Ⅰ,可知波的振幅A 和波长λ,利用旋转矢量法可确定原点处质点的初相φ0 .因此,确定波的周期就成为了解题的关键.从题给条件来看,周期T 只能从两个不同时刻的波形曲线之间的联系来得到.为此,可以从下面两个不同的角度来分析.(1) 由曲线(Ⅰ)可知,在t =0 时,原点处的质点处在平衡位置且向Oy 轴负向运动,而曲线(Ⅱ)则表明,经过0.1s 后,该质点已运动到Oy 轴上的-A 处.因此,可列方程kT +T /4 =0.1s ,在一般情形下,k =0,1,2,…这就是说,质点在0.1s 内,可以经历k 个周期振动后再回到-A 处,故有T =0.1/(k +0.25) s .(2) 从波形的移动来分析.因波沿Ox 轴正方向传播,波形曲线(Ⅱ)可视为曲线(Ⅰ)向右平移了Δx =u Δt =λΔt /T .由图可知,Δx =kλ+λ/4,故有kλ+λ/4 =λΔt /T ,同样也得T =0.1/(k +0.25)s .应当注意,k 的取值由题给条件T >0.1 s 所决定.解 从图中可知波长λ=2.0 m ,振幅A =0.10 m .由波形曲线(Ⅰ)得知在t =0 时,原点处质点位于平衡位置且向Oy 轴负向运动,利用旋转矢量法可得φ0 =π/2.根据上面的分析,周期为()()(),...,,./.210250s 10=+=k k T由题意知T >0.1 s ,故上式成立的条件为k =0,可得T =0.4 s .这样,波动方程可写成()[]()m 5002402cos 100ππ.././.++=x t y 10-16 平面简谐波的波动方程为()()m 24cos 080πx πt y -=.. 求:(1) t =2.1 s 时波源及距波源0.10m 两处的相位;(2) 离波源0.80 m 及0.30 m 两处的相位差.解 (1) 将t =2.1 s 和x =0 代入题给波动方程,可得波源处的相位π4.81=将t =2.1 s 和x ′=0.10 m 代入题给波动方程,得0.10 m 处的相位为 π2.82= (2) 从波动方程可知波长λ=1.0 m .这样,x 1 =0.80 m 与x 2 =0.30 m 两点间的相位差π/Δπ2Δ=⋅=λx π10-17 为了保持波源的振动不变,需要消耗4.0 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源5.0 m 和10.0 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 =5.0 m 、r 2 =10.0m 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I10-18 有一波在介质中传播,其波速u =1.0 ×103m·s -1 ,振幅A =1.0 ×10-4 m ,频率ν =1.0 ×103Hz .若介质的密度为ρ =8.0×102 kg·m -3 ,求:(1) 该波的能流密度;(2) 1 min 内垂直通过4.0 ×10-4m 2 的总能量.解 (1) 由能流密度I 的表达式得 2522222m W 10581221-⋅⨯===.v uA uA I ρπωρ (2) 在时间间隔Δt =60 s 内垂直通过面积S 的能量为J 107933⨯=∆⋅=∆⋅=.t IS t P W 10-19 如图所示,两振动方向相同的平面简谐波波源分别位于A 、B 两点.设它们相位相同,且频率均为υ=30Hz ,波速u =0.50 m·s -1 .求在P 点处两列波的相位差.分析 在均匀介质中,两列波相遇时的相位差Δφ一般由两部分组成,即它们的初相差φA -φB 和由它们的波程差而引起的相位差2πΔr /λ.本题因φA =φB ,故它们的相位差只取决于波程差.解 在图中的直角三角形ABP 中cm 5130sin o .==AP BP两列波在点P 处的波程差为Δr =AP -BP ,则相位差为π8.1/π2/π2Δ===u r Δλr Δv题10-19图10-20 如图所示,两相干波源分别在P 、Q 两点处,它们发出频率为ν、波长为λ,初相相同的两列相干波.设PQ =3λ/2,R 为PQ 连线上的一点.求:(1) 自P 、Q 发出的两列波在R 处的相位差;(2) 两波在R 处干涉时的合振幅.题10-20 图分析 因两波源的初相相同,两列波在点R 处的相位差Δφ仍与上题一样,由它们的波程差决定.因R 处质点同时受两列相干波的作用,其振动为这两个同频率、同振动方向的简谐运动的合成,合振幅ϕ∆++=cos 2212221A A A A A .解 (1) 两列波在R 处的相位差为πλr 3/Δπ2Δ==(2) 由于π3Δ=,则合振幅为21212221cos32A A A A A A A -=++=π10-21 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距30.0m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题10-21 图分析 两列相干波相遇时的相位差λr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k 获得. 解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /υ=4.0 m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r 因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分 ()π16π2ΔA B A B =---=r r显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B ,x r +=15A ,则两列波在点P 的相位差为()()π1/π2ΔA B A B +=---=x λr r根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m ,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.10-22 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1 )题10-22 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λr λr r /Δπ2/π2Δ12=-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.10-23 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题10-23 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1 在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos P 1t T A λλt TA y 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos P 3t TA t T A y 设反射波的波动方程为()/π2/π2cos 3+-=λx T t A y ,则反射波在x =-3λ/4处引起的振动为⎪⎭⎫ ⎝⎛++=π23π2cos P 3t T A y与上式比较得π2-=,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt T A x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.10-24 一弦上的驻波方程式为()()()m π550cos π6.1cos 100.32t x y -⨯=(1) 若将此驻波看成是由传播方向相反,振幅及波速均相同的两列相干波叠加而成的,求它们的振幅及波速;(2) 求相邻波节之间的距离;(3) 求t =3.0 ×10-3 s 时位于x =0.625 m 处质点的振动速度.分析 (1) 采用比较法.将本题所给的驻波方程,与驻波方程的一般形式相比较即可求得振幅、波速等.(2) 由波节位置的表达式可得相邻波节的距离.(3) 质点的振动速度可按速度定义v =d y /d t 求得.解 (1) 将已知驻波方程 ()()()m π550cos π6.1cos 100.32t x y -⨯=与驻波方程的一般形式()()t λx A y v π2cos /π2cos 2=作比较,可得两列波的振幅A =1.5 ×10-2 m ,波长λ=1.25 m ,频率υ=275 Hz ,则波速u =λυ=343.8m·s -1 .(2) 相邻波节间的距离为()[]()m625024124112k 1k .///==+-++=-=∆+λλλk k x x x (3) 在t =3.0 ×10-3 s 时,位于x =0.625 m 处质点的振动速度为 ()()1s m 2.46π550cos π6.1cos π5.16d /d -⋅-=-==t x t y v*10 -25 在下述两种情况下,求长度为0.15 m 的风琴管的基频和前四个谐频.(1) 管子两端开口;(2) 管子的一端封闭,一端开口.设声速为340m·s -1 .分析 当风琴管的某个端口封闭时,那么风琴管内形成的驻波在该端口就是波节.而当风琴管的端口开口时,就形成波腹.根据限定区域内驻波形成条件(如图所示),当管子两端为波腹时,其管长与波长有关系式L =kλk /2 成立,k 为正整数.而当管子一端为波节、另一端为波腹时,管长与波长有关系式L =(2k -1)λk /4 成立.可见取不同的k 值,得到不同的λk ,管内就出现不同频率υk 的波.对应k =1 称为基频,k =2,3,4,…称为各次谐频.题10-25 图解 (1) 根据分析由L =kλk /2 和νk =u /λk 可得υk =ku /2L (k =1,2,3,…)因此,基频:υ 1 =1133 Hz二次谐频:υ2 =2267 Hz三次谐频:υ3 =3400 Hz四次谐频:υ4 =4533 Hz五次谐频:υ5 =5667 Hz(2) 同样根据分析由L =(2k -1)λk /4 和νk =u /λk 可得υk =(2k -1)u /4L (k =1,2,3,…)因此,基频:υ1 =567 Hz二次谐频:υ2 =1700 Hz三次谐频:υ3 =2833 Hz四次谐频:υ4 =3967 Hz五次谐频:υ5 =5100 Hz10-26 一平面简谐波的频率为500 Hz ,在空气(ρ =1.3 kg·m -3 )中以u =340 m·s -1 的速度传播,到达人耳时,振幅约为A =1.0 ×10 -6 m .试求波在耳中的平均能量密度和声强.解 波在耳中的平均能量密度2622222m J 10426221--⋅⨯===.v A A ρπωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约1.0×10-6W·m -2 左右.10-27 面积为1.0 m 2 的窗户开向街道,街中噪声在窗口的声强级为80dB .问有多少“声功率”传入窗内?分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 =1.0 ×10-12 W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS .解 根据分析,由L =lg (I /I 0 )可得声强为I =10L I 0则传入窗户的声功率为P =IS =10L I 0 S =1.0 ×10-4 W10-28 若在同一介质中传播的,频率分别为1200 Hz 和400 Hz 的两声波有相同的振幅.求:(1) 它们的强度之比;(2) 两声波的声强级差.解 (1) 因声强222/ωρuA I =,则两声波声强之比9222121==ωω//I I (2) 因声强级L =lg (I /I 0 ),则两声波声强级差为()()()dB 549B 9540lg lg lg 210201..///===-=∆I I I I I I L10-29 一警车以25 m·s -1 的速度在静止的空气中行驶,假设车上警笛的频率为800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1 的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1 )分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态.解 (1) 根据多普勒频率公式,当声源(警车)以速度v s =25 m·s -1 运动时,静止于路边的观察者所接收到的频率为sv u u v v =' 警车驶近观察者时,式中v s 前取“-”号,故有Hz 6.8651=-='sv u u v v 警车驶离观察者时,式中v s 前取“+”号,故有 Hz 7.7432=+='sv u u v v (2) 声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为 Hz 7.7432=+='s v u u vv 10-30 一次军事演习中,有两艘潜艇在水中相向而行,甲的速度为50.0 km·h -1 ,乙的速度为km·h -1 ,如图所示.甲潜艇发出一个1.0×103 Hz 的声音信号,设声波在水中的传播速度为5.47×103 km·h -1 ,试求(1) 乙潜艇接收到的信号频率;(2) 甲潜艇接收到的从乙潜艇反射回来的信号频率.分析 (1) 甲潜艇是声源,发出信号频率为υ,乙潜艇是观察者,两者相向运动,利用多普勒频率公式,即可求得乙潜艇接收到的信号频率υ′.(2) 要求甲潜艇接收到的乙潜艇的信号频率,可将乙潜艇看成是声源,它发出的信号频率是υ′,将甲潜艇看成是观察者,两者相向运动,同样利用多普勒频率公式,可求出甲潜艇接收到的信号频率υ″.题10-30 图解 由题已知v 1 =50.0 km·h -1 , v 2 =70.0 km·h -1 , u =5.47 ×103 km·h -1 ,v =1000 Hz ,由分析可知:(1) Hz 102212=-+='v v v v u u (2) Hz 104521='-+=''v v v v u u *10-31 一广播电台的辐射功率是10 kW ,假定辐射场均匀分布在以电台为中心的半球面上.(1) 求距离电台为r =10 kW 处的坡印廷矢量的平均值;(2) 若在上述距离处的电磁波可看作平面波,求该处的电场强度和磁场强度的振幅.分析 坡印廷矢量是电磁波的能流密度矢量,它是随时间作周期性变化的.求其平均值,也就是指在一周期内的平均值.在忽略电磁波传播过程中的能量损耗时,按题意,波源的辐射功率就应等于单位时间通过半球面(面积A =2πr 2 )的电磁波能量,即P =S ·A ,而平均能流密度值S =EH .另外,由电磁波的性质可知,E 与H 垂直,相位相同,且有关系式H E 00με=.因此,平面电磁波的坡印廷矢量大小的平均值可表示为2m 00m m 2121H H E S εμ==,由此可求电场强度振幅m E 和磁场强度振幅m H .解 (1) 因为辐射场分布在半球面上,则坡印廷矢量的平均值为 252m W 1059.1π2/--⋅⨯==r P S(2) 根据分析,2m 00m m 212H H E EH S εμ===/ ,则磁场强度和电场强度的振幅分别为 ()142100m m A 109122--⋅⨯==.//εμS H1m m m V 10902-⋅==./H S E*10-32 真空中有一平面电磁波的电场表达式如下:0x =E ()[]()0,m V /10π2cos 60.018y =⋅-⨯=-z E c x t E .求:(1) 波长,频率;(2) 该电磁 波的传播方向;(3) 磁场强度的大小和方向;(4) 坡印廷矢量.分析 根据电磁波的特性,电场强度E 和磁场强度H 均垂直于波的传播方向.而E 和H 又互相垂直且同相位,E ×H 的方向为波速u 的方向.在数值上有关系00με//=H E 成立.因此由题中给出的电场表达式可以求磁场表达式,而坡印廷矢量可由公式S =E ×H 求出.解 (1) 由电场表达式可知,角频率ω=2π×108 s -1 ,波速u 等于光速c ,则电磁波的波长和频率分别为 Hz 10π2m;3/π28=====ω/ωc cT λv (2) 由电场表达式看出,电磁波沿x 轴正方向传播,E 矢量是在Oxy 平面内偏振的.(3) 磁场强度表达式:00y x ==H H , ()[]()183y 00m A /10π2cos 106.1/--⋅-⨯⨯==c x t E μεH zH 矢量在Oxz 平面内偏振.(4) ()[]()2824m W i /10π2cos 106.9H E S --⋅-⨯⨯=⨯=c x t。

力学习题——波动习题课后作业

力学习题——波动习题课后作业

波动(习题课后作业)1. 传播速度为200m/s, 频率为50Hz 的平面简谐波, 在波线上相距为0.5m 的两点之间的相位差是( D )(A) π/3 (B) π/6 (C) π/2 (D) π/4 解: λ=u/λ=200/50=4(m) Δφ=(2π/λ)Δx =(2π/4)⨯0.5=π/42. 图为沿X 轴正向传播的平面余弦横波在某一时刻的波形图, 图中P 点距原点1m, 则波长为( C )(A) 2.75m (B) 2.5m (C) 3m (D) 2.75m Y(cm) 解: 设波表达式为)2 cos(ϕλπω+-=x t A y x =0处 3) cos(2=+=ϕωt yv =-2ωsin(ωt+φ)<0即23) cos(=+ϕωt ,sin(ωt+φ)>0 得6 πϕω=+t所以t 时刻的波形分布函数为)26cos(2x y λππ-=P 点t 时刻的位移 0)26cos(2=-=λππy P 点t 时刻的速度 0)26sin(2>--=λππωv32O P X得)26cos(=-λππ0)26sin(<-λππ226πλππ-=-∴ λ = 3m3. 一横波沿X 轴负方向传播, 若t 时刻波形曲线如图所示, 在t+T/4时刻原X 轴上的1、2、3三点的振动位移分别是( B ) (A) A 、0、-A (B) -A 、0、A (C) 0、A 、0 (D) 0、-A 、04. 两个相干波源S 1和S 2, 相距L=20m, 在相同时刻, 两波源的振动均通过其平衡位置, 但振动的速度方向相反, 设波速u=600m/s, 频率ν=100Hz, 试求在S 1和S 2间的连线上因干涉产生最弱点的所有位置(距S 1的距离).解: 已知φ1–φ2=π, 设S1为原点,在S 1和S 2连线间任取一点P ,其坐标为x∙∙xS 2∙S 1 L=20m L –xPxLx x L x r -=--=∆2)(r ∆--=∆λπϕϕϕ221)2(2L x --=λππ)(6100600m u===νλxx 32326)220(3ππππππ-++=-⨯+=x 3235ππ-=干涉减弱条件 πϕ)12(+=∆k πππ)12(3235+=-k x 即 得 ),2,1,0(31 ±±=-=k k x 因200≤≤x 即 20310≤-≤k 解得 31319≤≤-k 所以,1 ,2 ,3 ,4 ,5 ,6------=k )(1 , 4 , 7 , 10 , 13 , 16 , 19 m x =∴。

大学物理第十章波动学习题答案

大学物理第十章波动学习题答案

第十章 波动学习题10-1 有一平面简谐波0.02cos20030x y t π⎛⎫=- ⎪⎝⎭,x ,y 的单位为m ,t 的单位为s 。

(1)求其振幅、频率、波速和波长;(2)求x=0.1m 处质点的初相位。

解:(1)A=0.02m ,v=ω/2π=200π/2π=100s -1,u=30m/s ,λ=u/v=0.3m(2)02000.1200230303x πππφ⨯=-=-=- 10-2 一横波沿绳子传播时的波动方程为()0.05cos 104y t x ππ=-,x ,y 的单位为m ,t 的单位为s 。

(1)求其振幅、频率、波长和波速;(2)求绳子上各质点振动的最大速度和最大加速度;(3)求x=0.2m 处的质点在t=1s 时的相位,它是原点处质点在哪一时刻的相位?(4)分别画出t=1s ,1.25s ,1.5s 时的波形曲线。

解:(1)A=0.05m ,v=ω/2π=10π/2π=5s -1,λ=0.5m ,u=λv=2.5m/s(2)m A ω=v ,2m a A ω= (3)1041040.29.2t x φπππππ=-=-⨯= 10-3 一平面简谐波()x πt y π2-10sin 05.0=,x ,y 的单位为m ,t 的单位为s 。

(1)求其频率、周期、波长和波速;(2)说明x =0时方程的意义,并作图表示。

解:(1)v=ω/2π=10π/2π=5s -1,T=1/v=0.2s ,λ=1m ,u=λv=5m/s(2)0.05sin10y πt = 原点处质点的振动方程10-4 波源作简谐运动,振动方程为()m cos240100.43πt y -⨯=,它所形成的波形以30m·s -1的速度沿一直线传播。

(1)求波的周期及波长;(2)写出波动方程。

解:(1)T=2π/ω=2π/240π=1/120s ,λ=uT=30/120=0.25m(2)()34.010cos240m 30x y πt -⎛⎫=⨯- ⎪⎝⎭10-5 如图所示,一平面简谐波在介质中以速度u=20m/s 沿x 轴负方向传播,已知a 点的振动方程为y a =3cos4πt ,t 的单位为s ,y 的单位为m 。

大学物理波动篇机械波复习题及答案课件

大学物理波动篇机械波复习题及答案课件
如图所示, 两列平面简谐相干横波在两
种不同的媒质中传播, 在分界面上的 P 点
相遇, 频率n = 200Hz, 振幅A1=A2=2.00 10-
2m, S2 的位相比 S1 落后 /2。在媒质1中
波速 u1= 800 m s-1, 在媒质2中波速 u2=
1000 m s-1 , S1P=r1=4.00m,
静止的点。求两波的波长和两波源间最 小位相差。
o
S1
S2
x
d
29
解: 设S1 和 S2的振动初位相分别为 1 和 2在 x1点两波引起的振动位相差
2 2 d x1/ 1 2 x1 / 2k 1
2 1 2 d 2 x1/ 2k 1 (1)
在x2点两波引起的振动位相差
2 2 d x2/ 1 2 x2 / 2k 3
波分别通过图中的 o1和 o2 点,通过 o1 点 的简谐波在 M1M2 平面反射后,与通过 o2 点的简谐波在 P 点相遇,假定波在M1M2平 面反射时有半波损失,o1 和 o2 两点的振动
方程为,y10=Acos(2t) 和 y20=Acos(2t) , 且 o1m+mp=16,o2P = 6 (为波长) 求:
(A)波速为C/B; (B)周期为 1/B;
(C)波长为C/2 ; (D)圆频率为 B。
[]
5
5.一平面简谐波沿正方相传播, t=0 时刻的
波形如图所示, 则 P 处质点的振动在 t=0 时
刻的旋转矢量图是
y
u
A
x
o
P
( A)
o
x
A
(B)
o
x
A
(C ) A o
x
A
(D)

力学第二版习题答案第十章

力学第二版习题答案第十章

第十章波动基本知识小结⒈平面简谐波方程 )c o s ()(c o s kx t A t A y V xωω==;v V T v k T λπλπω====,/1,2,2。

⒉弹性波的波速仅取决媒质性质:弹性体中横波的波速ρ/N V =,弹性体中纵波的波速ρ/Y V =,流体中纵波波速ρ/k V =,绳波波速ρ/T V =。

⒊波的平均能量密度2221A ρωε=,波的平均能流密度 VA I 2221ρω=。

⒋波由波密射向波疏媒质,在边界处,反射波与入射波相位相同;波由波疏射向波密媒质,在边界处,反射波比入射波相位落后π,相当损失半个波长;例如:在自由端无半波损失,在固定端有半波损失。

⒌振动方向相同、频率相同、位相差恒定的二列波叫相干波,相干波叠加叫波的干涉。

⒍振幅相同、传播方向相反的两列相干波叠加产生驻波现象;驻波方程 t x A y ωλπcos cos 22=;波节两边质元振动相位相反,两个波节之间质元振动相位相同;相邻波节或相邻波腹间距离为λ/2,相邻波腹波节间距离为λ/4。

⒎多普勒公式:v v SV V V V --=0',在运用此公式时,以波速V 为正方向,从而确定V 0、V S 的正负。

10.2.1 频率在20至20000Hz 的弹性波能使人耳产生听到声音的感觉。

0ºC 时,空气中的声速为331.5m/s,求这两种频率声波的波长。

解:mv V v V v V 58.16/,/,205.33111≈===∴=λλλ mv V 3221058.1620/5.331/-⨯≈==λ10.2.2 一平面简谐声波的振幅A=0.001m ,频率为1483Hz ,在20ºC 的水中传播,写出其波方程。

解:查表可知,波在20ºC 的水中传播,其波速V=1483m/s.设o-x 轴沿波传播方向,x 表示各体元平衡位置坐标,y 表示各体元相对平衡位置的位移,并取原点处体元的初相为零,则:)22966cos(001.0)(2cos x t t v A y V xπππ-=-=10.2.3 已知平面简谐波的振幅A=0.1cm,波长1m,周期为10-2s,写出波方程(最简形式).又距波源9m 和10m 两波面上的相位差是多少?解:取坐标原点处体元初相为零,o-x 轴沿波传播方向,则波方程的最简形式为)100(2cos 10)(2cos )(cos 3x t A t A y xT t V x -=-=-=-ππωλ πππ2)10100(2)9100(2=---=∆Φt t10.2.4 写出振幅为A,频率v =f ,波速为V=C,沿o-x 轴正向传播的平面简谐波方程.波源在原点o,且当t=0时,波源的振动状态是位移为零,速度沿o-x 轴正方向。

第10章 波动习题解答

第10章 波动习题解答


2
2
15 15 . 5
5 5 . 5
(2)距波源为16.0m和17.0m的两质点间相位差
16 ,17 (100 t 16 or : 2

2
) (100 t 17

2
)


x,
x 17 16 1 m ,
则( C )
(A)波长为100m; (C)周期为 解:y
1 3 s
(B)波速为10m/s; (D)波沿x轴正方向传播
x u )]

A cos[ ( t
6
T 2
y 0 . 05 cos[ 6 ( t
x 100
)]


1 3
s
u 100 m / s
uT 33 . 3 m
第十章
波动
习题解答
1
第十章 习题
10-1 图(a)表示t=0 时的简谐波的波形图,波沿x轴正
方向传播,图(b)为一质点的振动曲线. 则图(a)中所
表示的x=0处质点振动的初相位与图(b)所表示的振动
的初相位分别为(D )
y A cos(t ) v A sin( t )

(A)均为零
(D) 2 与
y 0
y
2
(B) 均为 2
u
x
y 0
(C) 均为
(E) 2 与

y
2

2
v 0 2
O
(a)
v 0 2
O
(b)
t
2
10-2 机械波的表达式为

大学物理课后习题及答案 波动

大学物理课后习题及答案 波动

第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。

(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。

画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。

14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。

将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。

比较法思路清晰、求解简便,是一种常用的解题方法。

(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。

例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。

介质不变,彼速保持恒定。

(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。

而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。

解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(--⋅-=s m x t s m y π 与一般表达式()[]0cos ϕω+-=x t A y 比较,可得0,5.2,20.001=⋅==-ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0---⋅-⋅-==s m x t s s m dt dy v ππ 则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(--=ππ()[]x m m y 125cos )20.0(--=ππ 波形图如图14-1(a )所示。

大学物理参考答案(白少民)第10章 波动学基础

大学物理参考答案(白少民)第10章 波动学基础
450。已知波速为 15cm/s,试求波的频率和波长。 解:波长可看成是沿波射线相位差 2π 的两点间的距离,则由题知其波长为
3.5 u 15 = 28 cm , 进而可求得波的频率为 ν = = = 0.54 Hz π /4 λ 28 10.14 证 明 y = A cos( kx −ω t ) 可 写 成 下 列 形 式 : y = A cos k ( x − u t ) , x x 1 x y = A cos 2π ( − ν t ) , y = A cos 2π ( − ) ,以及 y = A cos ω( − t ) 。 λ T u λ ω 2πν t ) = k ( x − ut ) 证明 : kx − ω t = k ( x − t ) = k ( x − k 2π / λ 所以波函数可写为: y = A cos k ( x − ut ) 2π x x x − 2πν t = 2π ( −νt ) ,则波函数还可写为 y = A cos 2π ( −ν t ) 又 kx − ω t = λ λ λ 1 x t 由ν = 则还可得: y = A cos 2π ( − ) T λ T k x x kx − ω t = ω( x − t ) = ω( − t ) ,则波函数还可写为 y = A cos ω( − t ) ω u u 10.15 波源 做 简谐振动,位移与时间的关系为 y = ( 4.00 ×10 −3 ) cos 240π t m ,它所 激发的波以 30.0m/s 的速率沿一直线传播。求波的周期和波长,并写出波函数。 解:由波源的振动方程 y = ( 4.00 ×10 −3 ) cos 240πt m 知振动角频率 ω = 240π . 而波的频率就等于波源的振动频率,所以波的频率和周期分别为 ω 1 1 ν= = 120 Hz , T = = = 8.33 ×10 −3 s ν 120 2π u 30.0 = 0.25 m 进一步计算波长为 λ = = ν 120 x x −3 )m 最后可写出波函数为 y = A cos ω(t − ) = ( 4.00 ×10 ) cos 240π (t − u 30 10.16 沿 绳子 行进的 横 波波函数为 y =10 cos(0.01π x − 2π t ) ,式中长度的 单 位是 cm,时间的单位是 s。试求:(1)波的振幅、 频率、传播速率和波长;(2)绳上某质点的最 大横向振动速率。 解:(1)由 y = 10 cos(0.01π x − 2π t ) = 10 cos 2π (t − 5.0 ×10 −3 x ) 知: ω 2π ν= = = 1 Hz ; 波 长 振 幅 A = 10cm = 0.1m ; 频 率 2π 2π

《理论力学》第10-11章习题参考解答

《理论力学》第10-11章习题参考解答

1 2
(1 3
G1 g
r 2 ) 2
(G1
G2 )
r 2
求得:
3g(G1 G2 ) r(G1 3G2 )
,
vB
r
3(G1 G2 )gr (G1 3G2 )
②分析AB杆各点的加速度,由基点法得:
aB
aA
aAn
aB A
将矢量方程在铅垂方向投影得:
0
a
n A
aBA
所以:
AB
aBA L
aAn L
《理论力学》第10章习题参考解答
FD
解:已知:
T 10(s), n 2 4 (rad / s) 60
①分析OA的受力,有:
F 3.5 FD 1.5
FD
7 3
F
②取轮子为研究对象,动力学方程为:
(1 2
mr2 )
Fs r
FS
FD f
7Ff 3
求得: 14Ff 3mr
因为角加速度为常数,所以轮子作匀减速运动,则有:
G2 g
aC
FB
L 2
FAy
L 2
(1 12
G2 g
L2 ) AB
解方程得:
FB
G2 (G1 2G2 ) G1 3G2
vB
AB aC
aB
aB A
aCn aB A
C
FB
G2
vA aA aAn FAy FAx
r 2 L
3g(G1 G2 ) (G1 3G2 )L
③分析AB杆各点的加速度,由基点法得: aC aCn aA aAn aCA
将矢量方程在铅垂方向投影得:
aC
a
n A
aC A

振动、波动练习题及答案

振动、波动练习题及答案

振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm。

周期T=2s。

其平衡位置取作坐标原点。

若t=0 时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为()。

A 1sB 2sC 4sD 2s332.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0 时刻的波形如图所示,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图示一简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平面简谐波,波线上两 点振动的相位差为 3 ,则这两点相距( )A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中, ( )。

A 它的动能转换成势能B它的势能转换成动C 它从相邻的一段质元获得能量其能量逐渐增大Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:()。

A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为()。

A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。

A λB 3 λ/4C λ/2D λ /49.在同一媒质中两列相干的平面简谐波的强度之比I1I 4是,则两列波的振幅之比是:()A A1 4 BA1 2 CA1 16 DA11A2 A2 A2 A2 410.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。

大学物理第四版课后习题及答案波动

大学物理第四版课后习题及答案波动

第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ;1求波得振幅、波速、频率及波长;2求绳上质点振动时得最大速度;3分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷;画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同;14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ分析1已知波动方程又称波函数求波动的特征量波速u 、频率ν、振幅A 及彼长 等,通常采用比较法;将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播;比较法思路清晰、求解简便,是一种常用的解题方法;2讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别;例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度也称相位的传播速度、波形的传播速度或能量的传播速度,其大小由介质的性质决定;介质不变,彼速保持恒定;3将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图;而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图;解1将已知波动方程表示为()()[]115.25.2cos )20.0(--⋅-=s m x t s m y π 与一般表达式()[]0cos ϕω+-=u x t A y 比较,可得0,5.2,20.001=⋅==-ϕs m u m A则 m v u Hz v 0.2,25.12====λπω2绳上质点的振动速度()()()[]1115.25.2sin 5.0---⋅-⋅-==s m x t s s m dt dy v ππ 则1max 57.1-⋅=s m v3 t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(--=ππ()[]x m m y 125cos )20.0(--=ππ波形图如图14-1a 所示;x =1.0m 处质点的运动方程为()t s m y 15.2cos )20.0(--=π 振动图线如图14-1b 所示;波形图与振动图虽在图形上相似,但却有着本质的区别前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的时间变化的情况;14-2 波源作简谐运动,其运动方程为t s m y )240cos()100.4(13--⨯=π,它所形成得波形以30m/s 的速度沿一直线传播;1求波的周期及波长;2写出波的方程;14-2 t s m y )240cos()100.4(13--⨯=π分析 已知彼源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式()0cos ϕω+=t A y 进行比较,求出振幅地角频率ω及初相0ϕ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y 中相应的三个物理量是相同的;再利用题中已知的波速U 及公式T /22ππνω==和uT =λ即可求解;解1由已知的运动方程可知,质点振动的角频率1240-=s πω;根据分析中所述,波的周期就是振动的周期,故有s T 31033.8/2-⨯==ωπ波长为m uT 25.0==λ2将已知的波源运动方程与简谐运动方程的一般形式比较后可得0240100.4013==⨯=--ϕπω,,s m A故以波源为原点,沿X 轴正向传播的波的波动方程为()[]])8()240cos[()100.4(cos 1130x m t s m u x t A y ----⨯=+-=ππϕω14-3 以知以波动方程为])2()10sin[()05.0(11x m t s m y ---=π;1求波长、频率、波速和周期;2说明x=0时方程的意义,并作图表示;14-3])2()10sin[()05.0(11x m t s m y ---=π分析采用比较法;将题给的波动方程改写成波动方程的余弦函数形式,比较可得角频率;、波速U,从而求出波长、频率等;当x 确定时波动方程即为质点的运动方程)(t y y =; 解1将题给的波动方程改写为]2/)5/)(10sin[()05.0(11πππ-⋅-=--s m x t s m y 与()[]0cos ϕω+-=u x t A y 比较后可得波速 角频率110-=s πω,故有m uT s T Hz 14.32.0/10.52/======λνπων,,2由分析知x=0时,方程表示位于坐标原点的质点的运动方程图13—4;]2/)10cos[()05.0(1ππ-=-t s m y14-4 波源作简谐振动,周期为,若该振动以100m/s 的速度传播,设t=0时,波源处的质点经平衡位置向正方向运动,求:1距离波源15.0m 和5.0m 两处质点的运动方程和初相;2距离波源16.0m 和17.0m 两处质点的相位差;14-4分析1根据题意先设法写出波动方程,然后代人确定点处的坐标,即得到质点的运动方程;并可求得振动的初相;2波的传播也可以看成是相位的传播;由波长A 的物理含意,可知波线上任两点间的相位差为λπϕ/2x ∆=∆;解1由题给条件 T = s,u =100 m ·s -l,可得m uT s T 2100/21====-λππω;当t =0时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为)或2/3(2/0ππϕ-=;若以波源为坐标原点,则波动方程为]2/)100/)(100cos[(11ππ-⋅-=--s m x t s A y距波源为 x 1=和 x 2=处质点的运动方程分别为]5.15)100cos[(11ππ-=-t s A y]5.5)100cos[(12ππ-=-t s A y它们的初相分别为πϕπϕ5.55.152010-=-=和若波源初相取2/30πϕ=,则初相πλπϕϕϕ=-=-=∆/)(21221x x ,;2距波源 16.0 m 和 17.0 m 两点间的相位差πλπϕϕϕ=-=-=∆/)(22121x x14-5 波源作简谐振动,周期为×10-2s,以它经平衡位置向正方向运动时为时间起点,若此振动以u=400m/s 的速度沿直线传播;求:1距离波源8.0m 处质点P 的运动方程和初相;2距离波源9.0m 和10.0m 处两点的相位差;14-5解分析同上题;在确知角频率1200/2-==s T ππω、波速1400-⋅=s m u 和初相)或2/(2/30ππϕ-=的条件下,波动方程 ]2/3)400/)(200cos[(11ππ+⋅-=--s m x t s A y位于 x P = m 处,质点 P 的运动方程为]2/5)(200cos[(1ππ-=-t s A y p该质点振动的初相2/50πϕ-=P ;而距波源 m 和 m 两点的相位差为2//)(2/)(21212ππλπϕ=-=-=∆uT x x x x如果波源初相取2/0πϕ-=,则波动方程为]2/9)(200cos[(1ππ-=-t s A y质点P 振动的初相也变为2/90πϕ-=P ,但波线上任两点间的相位差并不改变;14-6 有一平面简谐波在介质中传播,波速u=100m/s,波线上右侧距波源O 坐标原点为75.0m 处的一点P 的运动方程为]2/)2cos[()30.0(1ππ+=-t s m y p ;求1波向x 轴正方向传播时的波动方程;2波向x 轴负方向传播时的波动方程;14-6]2/)2cos[()30.0(1ππ+=-t s m y p分析在已知波线上某点运动方程的条件下,建立波动方程时常采用下面两种方法:1先写出以波源O 为原点的波动方程的一般形式,然后利用已知点P 的运动方程来确定该波动方程中各量,从而建立所求波动方程;2建立以点P 为原点的波动方程,由它来确定波源点O 的运动方程,从而可得出以波源点O 为原点的波动方程;解11设以波源为原点O,沿X 轴正向传播的波动方程为()[]0cos ϕω+-=u x t A y将 u =100 m ·s -‘代人,且取x 二75 m 得点 P 的运动方程为()[]075.0cos ϕω+-=s t A y p与题意中点 P 的运动方程比较可得 A =、12-=s πω、πϕ20=;则所求波动方程为)]100/)(2cos[()30.0(11--⋅-=s m x t s m y p π2当沿X 轴负向传播时,波动方程为()[]0cos ϕω++=u x t A y将 x =75 m 、1100-=ms u 代人后,与题给点 P 的运动方程比较得A = 、12-=s πω、πϕ-=0,则所求波动方程为])100/)(2cos[()30.0(11ππ-⋅+=--s m x t s m y解21如图14一6a 所示,取点P 为坐标原点O ’,沿O ’x 轴向右的方向为正方向;根据分析,当波沿该正方向传播时,由点P 的运动方程,可得出以O ’即点P 为原点的波动方程为]5.0)100/)(2cos[()30.0(11ππ+⋅-=--s m x t s m y将 x=-75 m 代入上式,可得点 O 的运动方程为t s m y O )2cos()30.0(1-=π由此可写出以点O 为坐标原点的波动方程为)]100/)(2cos[()30.0(11--⋅-=s m x t s m y π2当波沿河X 轴负方向传播时;如图14-6b 所示,仍先写出以O ’即点P 为原点的波动方程]5.0)100/)(2cos[()30.0(11ππ+⋅+=--s m x t s m y将 x=-75 m 代人上式,可得点 O 的运动方程为])2cos[()30.0(1ππ-=-t s m y O则以点O 为原点的波动方程为])100/)(2cos[()30.0(11ππ-⋅+=--s m x t s m y讨论对于平面简谐波来说,如果已知波线上一点的运动方程,求另外一点的运动方程,也可用下述方法来处理:波的传播是振动状态的传播,波线上各点包括原点都是重复波源质点的振动状态,只是初相位不同而已;在已知某点初相平0的前提下,根据两点间的相位差λπϕϕϕ/2'00x ∆=-=∆,即可确定未知点的初相中小14-7 图14-7为平面简谐波在t=0时的波形图,设此简谐波的频率为250Hz,且此时图中质点P 的运动方向向上;求:1该波的波动方程;2在距原点O 为7.5m 处质点的运动方程与t=0时该点的振动速度;14-7分析1从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径;具体步骤为:1.从波形图得出波长'λ、振幅A 和波速λν=u ;2.根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转关量法确定其初相0ϕ;2在波动方程确定后,即可得到波线上距原点O 为X 处的运动方程y =yt,及该质点的振动速度v =dy /d t;解1从图 15- 8中得知,波的振幅 A = 0.10 m,波长m 0.20=λ,则波速13100.5-⋅⨯==s m u λν;根据t =0时点P 向上运动,可知彼沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动;利用旋转矢量法可得其初相3/0πϕ=;故波动方程为()[]]3/)5000/)(500cos[()10.0(cos 110ππϕω+⋅+==++=--s m x t s m u x t A y2距原点 O 为x=7.5 m 处质点的运动方程为]12/13)500cos[()10.0(1ππ+=-t s m yt=0时该点的振动速度为1106.4012/13sin )50()/(--=⋅=⋅-==s m s m dt dy v t ππ14-8 平面简谐波以波速u=0.5m/s 沿Ox 轴负方向传播,在t=2s 时的波形图如图14-8a 所示;求原点的运动方程;14-8分析上题已经指出,从波形图中可知振幅A 、波长λ和频率ν;由于图14-8a 是t =2s 时刻的波形曲线,因此确定 t = 0时原点处质点的初相就成为本题求解的难点;求t =0时的初相有多种方法;下面介绍波形平移法、波的传播可以形象地描述为波形的传播;由于波是沿 Ox 轴负向传播的,所以可将 t =2 s 时的波形沿Ox 轴正向平移m s s m uT x 0.12)50.0(1=⨯⋅==∆-,即得到t=0时的波形图14-8b,再根据此时点O 的状态,用旋转关量法确定其初相位;解由图 15- 9a 得知彼长m 0.2=λ,振幅 A= 0.5 m;角频率15.0/2-==s u πλπω;按分析中所述,从图15—9b 可知t=0时,原点处的质点位于平衡位置;并由旋转矢量图14-8C 得到2/0πϕ=,则所求运动方程为]5.0)5.0cos[()50.0(1ππ+=-t s m y14-9 一平面简谐波,波长为12m,沿Ox 轴负方向传播,图14-9a 所示为x=1.0m 处质点的振动曲线,求此波的波动方程;14-9分析该题可利用振动曲线来获取波动的特征量,从而建立波动方程;求解的关键是如何根据图14-9a 写出它所对应的运动方程;较简便的方法是旋转矢量法参见题13-10; 解 由图14-9b 可知质点振动的振幅A =0.40 m,t =0时位于 x =1.0m 的质点在A /2处并向Oy 轴正向移动;据此作出相应的旋转矢量图14-9b,从图中可知30πϕ-=';又由图 14-9a 可知,t =5 s 时,质点第一次回到平衡位置,由图14-9b 可看出65πω=t ,因而得角频率16-=s πω;由上述特征量可写出x =处质点的运动方程为]3)6cos[()40.0(1ππ+=-t s m y 采用题14-6中的方法,将波速10.12-⋅===s m T u πλωλ代人波动方程的一般形式])(cos[0ϕω++=u x t A y 中,并与上述x =1.0m 处的运动方程作比较,可得20πϕ-=,则波动方程为()⎪⎭⎫ ⎝⎛-⋅+=--20.1)6(cos )40.0(11ππs m x t s m y14-10 图14-10中I 是t=0时的波形图,II 是t=时的波形图,已知T>,写出波动方程的表达式;14-10分析 已知波动方程的形式为])(2cos[0ϕλπ+-=x T t A y从如图15—11所示的t =0时的波形曲线Ⅰ,可知彼的振幅A 和波长λ,利用旋转矢量法可确定原点处质点的初相0ϕ;因此,确定波的周期就成为了解题的关键;从题给条件来看,周期T 只能从两个不同时刻的波形曲线之间的联系来得到;为此,可以从下面两个不同的角度来分析;l 由曲线Ⅰ可知,在 tzo 时,原点处的质点处在平衡位置且向 Oy 轴负向运动,而曲线Ⅱ则表明,经过0;1s 后,该质点已运动到 Oy 轴上的一A 处;因此,可列方程s T kT 1.04=+,在一般情形下,k= 0, 1,2,…这就是说,质点在 0;1 s 内,可以经历 k 个周期振动后再回到A 处,故有)25.0()1.0(+=k s T ;2从波形的移动来分析;因波沿Ox 轴正方向传播,波形曲线Ⅱ可视为曲线Ⅰ向右手移了T t t u x ∆=∆=∆λ;由图可知,4λλ+=∆k x ,故有T t k ∆=+λλλ4,同样也得)25.0()1.0(+=k s T ;应当注意,k 的取值由题给条件 T >所决定;解 从图中可知波长m 0.2=λ,振幅A =0.10 m;由波形曲线Ⅰ得知在t=0时,原点处质点位于平衡位置且向 Oy 轴负向运动,利用旋转矢量法可得2/0πϕ=;根据上面的分析,周期为⋅⋅⋅=+=,2,1,0,)25.0()1.0(k k s T由题意知 T >,故上式成立的条件为,可得 T =;这样,波动方程可写成()()ππ5.00.24.02cos )10.0(+-=m x s t m y14-11 平面简谐波的波动方程为])2()4cos[()08.0(11x m t s m y ---=ππ;求1t=时波源及距波源0.10m 两处的相位;2离波源0.80m 处及0.30m 两处的相位;14-11()[]x m t s m y 112)4(cos )08.0(---=ππ解1将t =和x=0代人题给波动方程,可得波源处的相位πϕ4.81=将t =和x = m 代人题给波动方程,得 m 处的相位为πϕ2.82=从波动方程可知波长;这样, m 与 m 两点间的相位差πλπλ=∆⋅=∆x 214-12 为了保持波源的振动不变,需要消耗的功率;若波源发出的是球面波设介质不吸收波的能量;求距离波源5.0m 和10.0m 处的能流密度;14-12分析波的传播伴随着能量的传播;由于波源在单位时间内提供的能量恒定,且介质不吸收能量,敌对于球面波而言,单位时间内通过任意半径的球面的能量即平均能流相同,都等于波源消耗的功率户;而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度 P I =;解由分析可知,半径户处的能疏密度为 24r P I π=当 r 1=5;0 m 、r 2= m 时,分别有222111027.14--⋅⨯==m W r P I π232221018.34--⋅⨯==m W r P I π14-13 有一波在介质中传播,其波速u=×103m/s,振幅A=×10-4m,频率ν=×103Hz;若介质的密度为ρ=×102kg/m 3,求:1该波的能流密度;21min 内垂直通过×10-4m 2的总能量;14-1313100.1-⋅⨯=s m uHz v m A 34100.1,100.1⨯=⨯=-32100.8-⋅⨯=m kg ρ24100.4m -⨯解1由能流密度I 的表达式得25222221058.1221-⋅⨯===m W v uA uA I ρπωρ 2在时间间隔s t 60=∆内垂直通过面积 S 的能量为J t IS t P W 31079.3⨯=∆⋅=∆⋅=14-14 如图14-14所示,两振动方向相同的平面简谐波波源分别位于A 、B 两点;设它们的相位相同,且频率均为ν=30Hz,波速u=0.50m/s,求在点P 处两列波的相位差;14-14 v=30Hz150.0-⋅=s m u分析在均匀介质中,两列波相遇时的相位差ϕ∆,一般由两部分组成,即它们的初相差B A ϕϕ-和由它们的波程差而引起的相位差λπr ∆2;本题因B =ϕϕA ,故它们的相位差只取决于波程差;解在图14-14的APB ∆中,由余弦定理可得m AB AP AB AP BP 94.230cos 222=︒⋅-+=两列波在点P 处的波程差为BP AP r -=∆,则相位差为ππλπϕ2.722=∆=∆⋅=∆u r v r14-15 两波在同一细绳上传播,它们的方程分别为])4[()cos()06.0(111t s x m m y ---=ππ和])4[()cos()06.0(112t s x m m y --+=ππ;1证明这细绳是作驻波式振动,并求节点和波腹的位置;2波腹处的振幅有多大 在x=1.2m 处,振幅多大14-15分析只需证明这两列波会成后具有驻波方程 的形式即可;由驻波方程可确定波腹、波节的位置和任意位置处的振幅;解l 将已知两波动方程分别改写为可见它们的振幅 A 二0;06 m,周期 T 二0;5 s 频率;二2 Hi,波长八二2 m;在波线上任取一点P,它距原点为P;则该点的合运动方程为k 式与驻波方程具有相同形式,因此,这就是驻波的运动方程由得波节位置的坐标为由得波腹位置的坐标为门驻波振幅,在波腹处A ’二ZA 二0;12 m ;在x 二0;12 m 处,振幅为()()[]t s x m m y 1114cos )06.0(---=ππ()()[]t s x m m y 1124cos )06.0(--+=ππ ()()vt x A y πλπ2cos 2cos 2=()m x s t m y 25.2cos )06.0(1-=π()m x s t m y 25.02cos )06.0(2+=πt s x m ts x m y y y P P P P )4cos(2cos )12.0()4cos()cos()12.0(1121--⎪⎭⎫ ⎝⎛==+=πλπππ02cos 2=⎪⎭⎫ ⎝⎛λπP x A ⋅⋅⋅±±=+=+=,2,1,0,)5.0(4)12(k m k k x P λm A x A P 12.022cos 2==⎪⎭⎫ ⎝⎛λπ ⋅⋅⋅±±===,2,1,0,2k km k x P λ12.02,2cos 2=='⎪⎭⎫ ⎝⎛='A A x A A P λπ ()m m x A A P 097.012.0cos 12.02cos 2==⎪⎭⎫ ⎝⎛='πλπ14-16 一弦上的驻波方程式为t s x m m y )550cos()6.1cos()100.3(112---⨯=ππ;1若将此驻波看成是由传播方向相反,振幅及波速均相同的两列相干波叠加而成的,求它们的振幅及波速;2求相邻波节之间的距离;3求t=×10-3s 时位于x=0.625m 处质点的振动速度;14-16分析1采用比较法;将本题所给的驻波方程,与驻波方程的一般形式相比较即可求得振幅、波速等;2由波节位置的表达式可得相邻波节的距离;3质点的振动速度可按速度定义V一如Nz 求得;解1将已知驻波方程 y =3; 0 X 10-2 m cos; 6; ml -coos550;s 一小与驻波方程的一般形式 y = ZAcos2;x /八;2;yi 作比较,可得两列波的振幅 A = 1; 5 X 10-‘ m,波长八二 1; 25 m,频率 v 二 275 Hi,则波速 u 一如 2343;8 in ·SI2相邻波节间的距离为3在 t 二 3; 0 X 10-3 s 时,位于 x = 0; 625 m 处质点的振动速度为()()t s x m m y 112550cos 6.1cos )100.3(---⨯=ππs t 3100.3-⨯=dt dy v =()()t s x m m y 112550cos 6.1cos )100.3(---⨯=ππ ()()vt x A y πλπ2cos 2cos 2=m A 2105.1-⨯=18.343-⋅==s m v u λ625.024)12(4]1)1(2[1==+-++=-=∆+λλλk k x x x k ks t 3100.3-⨯=()()()11112.46550sin 6.1cos 5.16----⋅-=⋅-==s m t s x m s m dt dy v πππ14-17 一平面简谐波的频率为500Hz,在空气中ρ=1.3kg/m 3以u=340m/s 的速度传播,到达人耳时,振幅约为A=×10-6m;试求波在耳中的平均能量密度和声强;14-17解波在耳中的平均能量密度声强就是声波的能疏密度,即这个声强略大于繁忙街道上的噪声,使人耳已感到不适应;一般正常谈话的声强约为 1; 0 X 10-6 W ·m -2左右26222221042.6221--⋅⨯===m J v A A ρπωρϖ 231018.2--⋅⨯==m W u I ϖ26100.1--⋅⨯m W14-18 面积为1.0m 2的窗户开向街道,街中噪声在窗户的声强级为80dB;问有多少声功率传入窗内14-18分析首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系;声强是声波的能流密度I,而声强级L 是描述介质中不同声波强弱的物理量;它们之间的关系为 L 一体I /IO,其中 IO 二 1; 0 X 10-’2 W ·0-‘为规定声强;L 的单位是贝尔B,但常用的单位是分贝dB,且IB =10 dB;声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P=IS;解根据分析,由L =igI / IO 可得声强为则传入窗户的声功率为)0lg(I I L =010I I L =2120100.1--⋅⨯=m W IW S I IS P L 40100.110-⨯===14-19 若在同一介质中传播的、频率分别为1200Hz 和400Hz 的两声波有相同的振幅;求:1它们的强度之比;2两声波的声强级差;14-19解1因声强I =puA ‘;‘/2,则两声波声强之比2因声强级L 一回对几,则两声波声强级差为222ωρuA I =9222121==ωωI I ()0lg I I L =()()()dB B I I I I I I L 54.9954.0lg lg lg 210201===-=∆14-20 一警车以25m/s 的速度在静止的空气中行驶,假设车上警笛的频率为800Hz;求:1静止站在路边的人听到警车驶近和离去时的警笛声波频率;2如果警车追赶一辆速度为15m/s 的客车,则客车上的人听到的警笛声波的频率是多少设空气中的声速u=330m/s14-20分析由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果;在处理这类问题时,不仅要分清观察者相对介质空气是静止还是运动,同时也要分清声源的运动状态;解1根据多普勒频率公式,当声源警车以速度 vs =25 m ·s -‘运动时,静止于路边的观察者所接收到的频率为警车驶近观察者时,式中Vs 前取“-”号,故有警车驶离观察者时,式中Vs 前取“+”号,故有2声源警车与客车上的观察者作同向运动时,观察者收到的频率为SS v u u v v s m v ='⋅=-125 Hz v u u v v S6.8651=-=' Hz v u u vv S 7.7432=+=' Hz v u v u v v S2.82603=--='14-21 如图14-21所示;一振动频率为ν=510Hz 的振源在S 点以速度v 向墙壁接近,观察者在点P 处测得拍音频率ν′=3Hz,求振源移动得速度;声速为330m/s14-21分析位于点P 的观察者测得的拍音是振源S 直接传送和经墙壁反射后传递的两列波相遇叠加而形成的;由于振源运动,接收频率;l 、12均与振源速度;有关;根据多普勒效应频率公式和拍频的定义,可解得振源的速度;解根据多普勒效应,位于点P 的人直接接收到声源的频率; l 和经墙反射后收到的频率 分别为由拍额的定义有将数据代入上式并整理,可解得vu u v v v u u v v -=+=21, ⎪⎭⎫ ⎝⎛+--=-='v u v u uv v v v 1121 10.1-⋅≈s m v14-22 目前普及型晶体管收音机的中波灵敏度指平均电场强度E 约为×10-3V/m;设收音机能清楚的收听到×103km 远处某电台的广播,该台的发射是各向同性的以球面形式发射,并且电磁波在传播时没有损耗,问该台的发射功率至少有多大14-22HE r A AS P 0024μεπ==⋅=292001065.2--⋅⨯===m W E H E S μεW S r P 42103.34⨯=⋅=π14-23 一气体激光器发射的光强可达×1018W/m 2,计算其对应的电场强度和磁场强度的振幅; 14-23()1101001075.42-⋅⨯==m V I E m εμ18001026.1-⋅⨯==m A E H m m εμ。

第10章 振动与波动(习题与答案)

第10章  振动与波动(习题与答案)

第10章 振动与波动一. 基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。

2. 掌握振幅、周期、频率、相位等概念的物理意义。

3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。

4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。

5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。

6. 理解机械波产生的条件。

7. 掌握描述简谐波的各物理量的物理意义及其相互关系。

8. 了解波的能量传播特征及能流、能流密度等概念。

9. 理解惠更斯原理和波的叠加原理。

掌握波的相干条件。

能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。

10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。

二. 内容提要1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为x tx 222d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即)cos(ϕ+ω=t A x由它可导出物体的振动速度 )sin(ϕ+ωω-=t A v 物体的振动加速度 )cos(ϕ+ωω-=t A a 23. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即2v ω+=2020x A4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。

周期与频率互为倒数,即ν=1T 或 T1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。

t=0时的相位称为初相,它由谐振动的初始条件决定,即0x v ω-=ϕtan应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

振动和波动计算题及答案

振动和波动计算题及答案

振动和波动计算题1..一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6cm 处速度是24cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为,则t A x ωcos =t A ωωsin -=v (1)在x = 6 cm ,v = 24 cm/s 状态下有 t ωcos 126=t ωωsin 1224-=解得 ,∴ s 2分3/4=ω72.2s 2/3/2=π=π=ωT (2) 设对应于v =12 cm/s 的时刻为t 2,则由 t A ωωsin -=v 得 ,2sin )3/4(1212t ω⨯⨯-=解上式得1875.0sin 2-=t ω相应的位移为 cm3分8.10sin 1cos 222±=-±==t A t A x ωω2. 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然 后由静止释放并开始计时.求 (1) 物体的振动方程;(2) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(3) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间. 解: k = f/x =200 N/m , rad/s2分07.7/≈=m k ω (1) 选平衡位置为原点,x 轴指向下方(如图所示), t = 0时, x 0 = 10A cos φ ,v 0 = 0 = -A ωsin φ. 解以上二式得 A = 10 cm ,φ = 0. 2分∴ 振动方程x = 0.1 cos(7.07t ) (SI) 1分 (2) 物体在平衡位置上方5 cm 时,弹簧对物体的拉力 f = m (g -a ),而a = -ω2x = 2.5 m/s 2 ∴ f =4 (9.8-3分(3) 设t 1时刻物体在平衡位置,此时x = 0,即 0 = A cos ω t 1或cos ω t 1 = 0. ∵ 此时物体向上运动, v < 0 ∴ ω t 1 = π/2, t 1= π/2ω1分再设t 2时物体在平衡位置上方5 cm 处,此时x = -5,即-5 = A cos ω t 1,cos ω t 1 =-1/23. 一质点作简谐振动,其振动方程为 (SI))4131cos(100.62π-π⨯=-t x(1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少?解:(1) 势能 总能量 221kx W P =221kA E =由题意,, m 2分4/2122kA kx =21024.42-⨯±=±=A x (2) 周期 T = 2π/ω = 6 s从平衡位置运动到 的最短时间 ∆t 为 T /8.2A x ±=∴ ∆t = 0.75 s .3分4. 一质点作简谐振动,其振动方程为x = 0.24 (SI),试用旋转矢量法求出)3121cos(π+πt 质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .解:旋转矢量如图所示. 图3分由振动方程可得, 1分π21=ωπ=∆31φ s1分667.0/=∆=∆ωφt 5. 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为的位置向平衡位置运动时,第二个物体也2/A 经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.解:依题意画出旋转矢量图.3分由图可知两简谐振动的位相差为. 2分π216. 一简谐振动的振动曲线如图所示.求振动方程.解:(1) 设振动方程为)cos(φω+=t A x 由曲线可知 A = 10 cm , t = 0,,φcos 1050=-=x 0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得-(SI))3/22cos(100π+=ω则有,∴ ω = 5 π/122分2/33/22π=π+ω故所求振动方程为 (SI)1分)3/212/5cos(1.0π+π=t x 7. 一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程. 解: x 2 = 3×10-2 sin(4t - π/6) = 3×10-2cos(4t - π/6- π/2) = 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示.图2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3.2分合振动方程为 x = 2×10-2cos(4t + π/3) (SI)1分8. 两个同方向的简谐振动的振动方程分别为x 1 = 4×10-2cos2π (SI), x 2 = 3×10-2cos2π (SI) )81(+t 41(+t 求合振动方程.解:由题意 x 1 = 4×10-2cos (SI))42(π+πtx 2 =3×10-2cos (SI))22(π+πt 按合成振动公式代入已知量,可得合振幅及初相为m22210)4/2/cos(2434-⨯π-π++=A = 6.48×10-2 m 2分=1.12 rad2分)2/cos(3)4/cos(4)2/sin(3)4/sin(4arctgπ+ππ+π=φ合振动方程为x = 6.48×10-2 cos(2πt +1.12) (SI) 1分9. 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为)2cos(φν+π=t A y 由图可知,t = t '时1分0)2cos(=+'π=φνt A y1分0)2sin(2d /d <+'ππ-=φννt A t y 所以 ,2分2/2π=+'πφνt t 'π-π=νφ221x = 0处的振动方程为1分]21)(2cos[π+'-π=t t A y νxO ωωπ/3-2π/3A1A2A xu Ot =t ′y(2) 该波的表达式为3分]21)/(2cos[π+-'-π=u x t t A y ν10. 一列平面简谐波在媒质中以波速u = 5 m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示.(1) 求解并画出x = 25 m 处质元的振动曲线.(2) 求解并画出t = 3 s 时的波形曲线.解:(1) 原点O 处质元的振动方程为, (SI)2分)2121cos(1022π-π⨯=-t y 波的表达式为, (SI)2分)21)5/(21cos(1022π--π⨯=-x t yx = 25 m 处质元的振动方程为, (SI))321cos(1022π-π⨯=-t y 振动曲线见图 (a)2分(2) t = 3 s 时的波形曲线方程, (SI)2分)10/cos(1022x y π-π⨯=-波形曲线见图2分2×11. 已知一平面简谐波的表达式为 (SI) )37.0125cos(25.0x t y -= (1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程; (2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.解:(1) x 1 = 10 m 的振动方程为(SI) 1分)7.3125cos(25.010-==t y xx 2 = 25 m 的振动方程为(SI)1分)25.9125cos(25.025-==t y x (2) x 2与x 1两点间相位差∆φ = φ2 - φ1 = -5.55 rad 1分(3) x 1点在t = 4 s 时的振动位移y = 0.25cos(125×4-3.7) m= 0.249 m2分12. 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为 (SI).t y π⨯=-4cos 1032(1)以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.t (s)O -2×10-21y (m)234(a)ABxu解:(1) 坐标为x 点的振动相位为 2分)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π=波的表达式为 (SI) 2分)]20/([4cos 1032x t y +π⨯=-(2) 以B 点为坐标原点,则坐标为x 点的振动相位为(SI) 2分]205[4-+π='+x t t φω波的表达式为(SI)2分])20(4cos[1032π-+π⨯=-xt y 13. 一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程.(3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为,0cos 0==φA y0sin 0<-=φωA v 所以π=21φ波的表达式为4分]21)/(cos[π+-=u x t A y ωω(2) 处振动方程为 8/λ=x1分]21)8/2(cos[π+π-=λλωt A y )4/cos(π+=t A ω 的振动方程为8/3λ=x1分]218/32cos[π+-=λλπωt A y )4/cos(π-=t A ω(3))21/2sin(/d d π+π--=λωωx t A t y t = 0,处质点振动速度8/λ=x1分]21)8/2sin[(/d d π+π--=λλωA t y 2/2ωA -= t = 0,处质点振动速度8/3λ=x1分]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =14. 如图,一平面简谐波沿Ox 轴传播,波动表达式为 (SI),])/(2cos[φλν+-π=x t A y 求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.xuO yOP解:(1) 振动方程}]/)([2cos{φλν+--π=L t A y P2分])/(2cos[φλν++π=L t A (2) 速度表达式 2分])/(2sin[2φλνπν++π-=L t A P v 加速度表达式1分])/(2cos[422φλνν++ππ-=L t A a P 15. 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程(SI) 3分)22cos(06.00π+π=ty )cos(06.0π+π=t (2) 波动表达式3分])/(cos[06.0π+-π=u x t y(SI) ])21(cos[06.0π+-π=x t (3) 波长 m2分4==uT λ16. 如图所示,一平面简谐波沿Ox 轴的负方向传播,波速大小为u ,若P 处介质质点的振动方程为 ,求 )cos(φω+=t A y P(1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些点的位置.解:(1) O 处质点的振动方程为2分](cos[0φω++=uLt A y (2) 波动表达式为 2分])(cos[φω+++=uLx t A y (3)x = -L ± k( k = 1,2,3,…) 1分ωuπ217.如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为 ,求 )cos(φω+=t A y P (1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.解:(1) O 处质点振动方程2分])(cos[0φω++=uLt A y (2) 波动表达式 2分])(cos[φω+--=uLx t A y (3) (k = 0,1,2,3,…) 1分ωuk L x L x π±=±=218. 图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 (1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式.解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点,φcos 0A =,φωsin 00A -=<v 故2分π-=21φ又t = 2 s ,O 处质点位移为)214cos(2/π-π=νA A 所以, ν = 1/16 Hz 2分振动方π-π=π-21441ν程为(SI) 1分)218/cos(0π-π=t A y(2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式(SI) 3分]2116016(2cos[π-+π=x t A y 19. 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差]2[]2[1112λφλφx x d π---π-π+=)12(K 即①2分π+=-π--)12(22)(112K x d λφφ在x 2点两波引起的振动相位差]2[]2[2122λφλφx x d π---π-π+=)32(K 即②3分π+=-π--)32(22)(212K x d λφφ②-①得π=-π2/)(412λx x m2分6)(212=-=x x λ由①2分π+=-π+π+=-)52(22)12(112K x d K λφφ当K = -2、-3时相位差最小1分π±=-12φφ20. 两波在一很长的弦线上传播,其表达式分别为:(SI))244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=-求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 对比可得:)/(2cos λνx t A y -π= ν = 4 Hz , λ = 1.50 m , 各1分波速 u = λν = 6.00 m/s 1分(2) 节点位置)21(3/4π+π±=πn x m , n = 0,1,2,3, … 3分)21(3+±=n x (3) 波腹位置π±=πn x 3/4 m , n = 0,1,2,3, …2分 4/3n x ±=21. 设入射波的表达式为 ,在x = 0处发生反射,反射点为一固定)(2cos 1Ttx A y +π=λ端.设反射时无能量损失,求 (1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 3分])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y +=3分)21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置:, 2分π=π+πn x 21/2λ, n = 1, 2, 3, 4,… λ)21(21-=n x波节位置:2分π+π=π+π2121/2n x λ, n = 1, 2, 3, 4,…λn x 21=22. 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,= 3λ /4, = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运OP DP 动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为2分])/(2cos[1φλν+-π=x t A y 则反射波的表达式是2分](2cos[2π++-+-π=φλνxDP OP t A y 合成波表达式(驻波)为2分)2cos()/2cos(2φνλ+ππ=t x A y 在t = 0时,x = 0处的质点y 0 = 0, ,0)/(0<∂∂t y 故得2分π=21φ因此,D 点处的合成振动方程是2分22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 323. 如图,一角频率为ω ,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4(λ为该波波长);设反射波不衰减,求: (1) 入射波与反射波的表达式;; (2) P 点的振动方程.解:设O 处振动方程为)cos(0φω+=t A y 当t = 0时,y 0 = 0,v 0 < 0,∴π=21φ∴)21cos(0π+=t A y ω2分故入射波表达式为2分)22cos(x t A y λωπ-π+=在O ′处入射波引起的振动方程为)4722cos(1λλω⋅π-π+=t A y )cos(π-=t A ω由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴ 2分)cos(1π+π-='t A y ωt A ωcos =反射波表达式 )](2cos[x O O t A y -'π-='λω)]47(2cos[x t A -π-=λλω2分]22cos[π+π+=x t A λω合成波为 y y y '+=22cos[π+π-=x t A λω22cos[π+π++x t A λω 2分)2cos(2cos 2π+π=t x A ωλ将P 点坐标 代入上述方程得P 点的振动方程λλλ234147=-=x2分2cos(2π+-=t A y ω。

力学习题-第10章波动(含答案)

力学习题-第10章波动(含答案)

第十章波动单元测验题一、选择题1.一正弦横波沿一弦线自左向右传播,传播速度为80cm/s ,观察弦上某点的运动,发现该点在做振幅为2cm 、频率为10Hz 的简谐振动。

若取该点为坐标x 的原点,当t =0时,该点位于y =0处,且具有向y 正方向运动的速度.则此波的运动学方程为A.cm 8-10(2cos[0.2=x t y πB.cm )]8+10(2cos[0.2=x t y πC.cm 41-8-10(2cos[0.2=x t y πD.cm )]41+8-10(2cos[0.2=x t y π答案:C 解:1808cm 10υλν==⨯=;T =0.1s 由已知可得坐标原点的振动方程:()2cos 2.0cos()0.1t y A t πωϕϕ=-=-()2sin 40sin()0.1t y A t πωωϕπϕ=--=-- 初始条件:0t =时,0y =,00>=t dtdy 则cos 0ϕ=,sin()0ϕ-<,可知2πϕ=所以振动方程为:41-10(2cos[0.2=t y π则波的运动学方程为:}]41-)0--(10[2cos{0.2=υπx t y 整理得:)]41-8-10(2cos[0.2=x t y π2.设入射波的方程为y =0.2cos(πt –1.5πx +0.4π),波在x =0处反射,则A.如果x =0处为固定端,则x =0处为波腹B.如果x =0处为自由端,则x =0处为波节C.如果x =0处为固定端,则x =2/3处为波节D.如果x =0处为自由端,则x =2/3处为波节答案:C解:已知入射波为:0.2cos( 1.50.4)y t x πππ=-+入(1)自由端无半波损失,则反射波为:0.2cos( 1.50.4)y t x πππ=++反合成驻波为:0.4cos(1.5)cos(0.4)y y y x t πππ=+=+入反当0=x 时,05.1=x π,0.4cos(1.5)0.4mA x A π===则0=x 处为波腹,同样可求得x =2/3处为波腹,故B 、D 错(2)固定端有半波损失,反射波:0.2cos( 1.50.4)y t x ππππ=+++反合成驻波为:0.4cos(1.50.5)cos(0.1)y y y x t ππππ=+=+-入反当0=x 时,πππ5.05.05.1=+x ,()0.4cos 1.50.50A x ππ=+=。

大学物理 第十章 波动部分习题

大学物理 第十章 波动部分习题

第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。

振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。

2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。

ux ω表示x 处的质点比原点处的质点所落后的相位。

4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。

简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。

5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。

6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。

驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。

7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。

工程力学,第10章,答案

工程力学,第10章,答案

5-1d 作图示杆的轴力图。

解:方法一:截面法(自请您自己完成)方法二:悬臂法。

根据杆件的平衡求出杆右端的约束反力为40kN 。

(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为“固定端”,指向“手固定端”的力引起负的轴力,反之引起正的轴力)。

(1)因为轴力等于截面一侧所有外力的代数和:N F F=∑一侧。

故:110()N F kN =-压2102010()N F kN =-+=拉340()N F kN =拉(或3-10+20+30=40()N F kN =拉)方法三:动点轨迹方法从左到右画轴力图,凡是向左的力轴力图向上突变(轴力值增大),向右的力轴力图向下突变(轴力值变小),即左上右下,突变之值是该处集中力的大小,轴力图从零开始最后回归到零。

方法三5-2 悬臂吊车如图所示,斜杆AB 直径d=20mm 。

Q=15kN 。

当小车移到A 点时,求AB 横截面上的应力。

解:(1)当小车移到A 点时AB 、AC 两杆均成为二力杆。

设AB 、AC 两杆均为拉杆,取销钉为研究对象,受力如图(b )所示,列平衡方程求F AB 。

0sin 015038.65kN()y AB AB AB F F Q F F α=→-=→=→=∑ ,故AB 为拉杆。

(2)求AB 横截面上的应力二力杆AB 的轴力即为销钉施与其上的外力大小,故38.65kN NAB AB F F ==。

3238.6510Pa 123MPa 0.024N AB ABF A σπ⨯===⨯F 1(b)题5-45-4 已知题5-4图中结构的横梁AB 为刚体,①、②两杆的材料相同,许用应力均为[]160MPa σ=,杆①的横截面积A 1=20cm 2,杆②的横截面积A 2=12cm 2。

试求图示结构的许可荷载[P]。

解:(1)研究AB 杆受力如图(b )所示,求①、②两拉杆施与AB 杆的反力F 1、F 2与外力P 的关系。

第10章 波动学基础 习题答案

第10章 波动学基础 习题答案

, 周期是T。 y A cos t 2
2 , ,3 2 ,2
(1)这四点与振源的振动相位差各位多少?
(2)这四点的初相位各为多少?
0 , 2 , , 3 2
(3)这四点开始运动的时刻比振源落后多少?
T 4 , T2 ,3 T 4 , T
10-14 两相干波源分别在P,Q两处,它们相距 3 2 ,发 出频率为


2 πx y 0 . 03 cos 1 . 6 x cos 550 t m 0.03cos cos 550 t 1 . 25 1 . 25
10-5 在平面简谐波的波射线上,A,B,C,D 各点距离波
4振动方程
、波长为
的相干波。R为PQ连线上的一
点,求下列两种情况下,两波在R点的合振幅。(1)设两
波源有相同的初相位;(2)两波源的初相位差为 3 2

P
Q
R
x A co 2 s t (1)P点波:y P 1 x 3 2 y A cos 2 t Q点波: Q 2
相位差为 。 2 ,∴R点合振幅为 A 1 A 2
10-15 两个波在一根很长的绳子上传播,它们的方程为
y 0 . 06 cos x 4 t y 0 . 06 cos x 4 t 2 1
2 x 2 x 0 . 06 cos 4 t y 0 . 06 cos 4 t y 2 1 2 2 2 x y y y 0 . 12 c os 4 t c os 1 2 2
10-16 绳子上的驻波由下式表示
y 0 . 08 cos 2 x cos 50 t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章波动单元测验题
一、选择题
1.一正弦横波沿一弦线自左向右传播,传播速度为80cm/s ,观察弦上某点的运动,发现该点在做振幅为2cm 、频率为10Hz 的简谐振动。

若取该点为坐标x 的原点,当t =0时,该点位于y =0处,且具有向y 正方向运动的速度.则此波的运动学方程为A.
cm 8-10(2cos[0.2=x t y πB.
cm )]8+10(2cos[0.2=x t y πC.
cm 41-8-10(2cos[0.2=x t y πD.cm )]4
1+8-10(2cos[0.2=x t y π答案:C 解:1808cm 10
υλν==⨯=;T =0.1s 由已知可得坐标原点的振动方程:()2cos 2.0cos()0.1t y A t πωϕϕ=-=-()2sin 40sin()0.1t y A t πωωϕπϕ=--=-- 初始条件:0t =时,0y =,00>=t dt
dy 则cos 0ϕ=,sin()0ϕ-<,可知2πϕ=所以振动方程为:41-10(2cos[0.2=t y π则波的运动学方程为:}]4
1-)0--
(10[2cos{0.2=υπx t y 整理得:)]41-8-10(2cos[0.2=x t y π2.设入射波的方程为y =0.2cos(πt –1.5πx +0.4π),波在x =0处反射,则
A.如果x =0处为固定端,则x =0处为波腹
B.如果x =0处为自由端,则x =0处为波节
C.如果x =0处为固定端,则x =2/3处为波节
D.如果x =0处为自由端,则x =2/3处为波节
答案:C
解:已知入射波为:0.2cos( 1.50.4)
y t x πππ=-+入
(1)自由端无半波损失,则反射波为:0.2cos( 1.50.4)
y t x πππ=++反合成驻波为:0.4cos(1.5)cos(0.4)
y y y x t πππ=+=+入反当0=x 时,05.1=x π,0.4cos(1.5)0.4m
A x A π===则0=x 处为波腹,同样可求得x =2/3处为波腹,故
B 、D 错
(2)固定端有半波损失,反射波:0.2cos( 1.50.4)
y t x ππππ=+++反合成驻波为:0.4cos(1.50.5)cos(0.1)
y y y x t ππππ=+=+-入反当0=x 时,πππ5.05.05.1=+x ,()0.4cos 1.50.50A x ππ=+=。

则0=x 处是波节,同理可求得x =2/3处为波节,故A 错、C 对.
3.在绳索上传播的波,其表示式为]3
101.0(2cos[3ππ--=x t y ,式中x 、y 的单位为cm ,t 的单位为s.为在绳索上形成驻波(在x =0处为波节),则应叠加一个什么样的波?A.]32+)10+1.0(
2cos[3=ππx t y 叠B.32+10-1.0(2cos[3=ππx t y 叠C.32-)10+1.0(2cos[3=ππx t y 叠D.32-10-1.0(2cos[3=ππx t y 叠答案:A 解:入射波:3
)101.0(2cos[3ππ--=x t y 入,波向右传播同频率、相反方向传播波的叠加才能形成驻波,所以,叠加的波向左传播,设其表达式为:3cos[2(
)]0.110
t x y πϕ=++叠合成驻波:/3/36cos(
)cos(20)522y y y x t πϕπϕππ+-=+=++入叠0=x 处为波节,则()/32122n ϕππ+=+初相位取[0,2π]之间值,则23ϕπ=叠加波表示式为:]32+)10+1.0(2cos[3=ππx t y 叠4.一波沿x 轴传播,观察到x 轴上两点x 1和x 2处介质的质点均作频率为2.0Hz 的简谐振动,
x 1处振动位相比x 2处落后π/4.已知x 2-x 1=3.0cm.则
A.此波沿x 正方向传播,波长为12cm
B.此波沿x 正方向传播,波长为24cm
C.此波沿x 负方向传播,波长为12cm
D.此波沿x 负方向传播,波长为24cm
答案:D
解:21 3.0cm x x -=,说明21
x x >又知1x 处振动位相比2x 处落后
4π,说明波由2x 处向1x 处传播,即波沿x -方向传播;波长:()21223244
x x ππλϕπ=-=⨯=∆cm 二、填空题
1.普通人耳能听到的最低声音频率为20Hz ,则在25°C 的海水中人耳能听到的最长声音波长为m.(结果保留两位小数)已知声音在25°C 的海水中的传播速度为1531m/s.答案:76.55
解:已知1
T λυυν
==当Hz 20=ν时,1153176.55m 20λ=⨯
=2.由海底的地震所激发的潮浪,称为海啸。

由于大洋的平均深度大约是5km ,而潮浪的水平长度大于5km ,故可认为是一种浅水波。

若海底地震的震中距海岸的距离为100km ,则可估算潮浪传到海岸所需的时间为s.(结果保留整数)
答案:452(允许的答案范围:450~454)
解:浅水波的波速为:υ=3
451.7s
s
t υ====3.设有一简谐横波1.0-05.0(
2cos[05.0=x t y π,其中x 、y 的单位为m ,t 的单位为s.则波速υ=
m/s.
答案:2解:由波函数知,周期T =0.05s ,波长λ=0.1m
2=05
.01.0==T λυm/s 4.一根质量线密度为4×10-3kg/m 的均匀钢丝,被10N 的力所拉紧。

钢丝的一端有一正弦式的横向波扰动,经过0.1s ,此波扰动即传到钢丝的另一端,而扰动源正好经历25个周期,则该波的波长为
m.答案:0.2
解:
已知弦中横波的波速为υ=其中,10N F =,3410kg/m η-=⨯,0.1/1000.001s
T ==
波长0.10.05m 100
T λυ====5.一装置于海底的超声波探测器,发出一束频率为30000Hz 的超声波,被向着探测器驶来的潜艇反射回来,反射波与原来的波合成后,得到频率为241Hz 的拍,设超声波在海水中的波速为1500m/s ,则潜艇的速率为
m/s.
答案:6解:根据多普勒效应,潜艇上观察者收到的频率s
s u u
υνν+'=潜艇反射波频率为R
s u u ννυ''=-,其中u 为超声波在海水中的波速拍频2R s s u υννννυ'∆=-=-联立并代入数据可得:6m /s 2s u νυνν
∆⋅==+∆6.如图,一根线密度为0.15g/cm 的弦线,其一端与一频率为50Hz 的音叉相连,另一端跨过一定滑轮后悬一质量为m 的重物给弦线提供张力,音叉到滑轮间的距离为l =1m .当音叉振动时,为使弦上形成二个波腹,重物的质量m 应为
kg.(结果保留一位小数)答案:3.8(允许的答案范围:3.6~4.0

解:弦的简正模频率公式:η
νT l n n 2=,其中mg T =将已知数据代入可得:2=n 时,kg
8.3=m 三、判断题
1.产生机械波的条件是有波源且波源作简谐振动.
答案:错
2.当波传播时,质元并没有被传播,而是振动状态在传播.
答案:对
3.当波传播时,某时刻介质中某小质元的动能和势能相等.
答案:对
4.当波传播时,某质元的能量密度周期性变化,其周期等于波传播周期.答案:错
5.当两个波在空间同一区域叠加时,振动的强度等于每个波的强度相加.答案:错。

相关文档
最新文档