X射线衍射和小角X射线散射详解
小角X射线散射
精品文档
长周期小角散射花样和对应的微细(wēixì) 组织
高分子共混多相区,片晶和非晶堆积层可以形成 长周期,即使是同种聚合物,在样品中存在不同 物相的相间分布(fēnbù),也可以形成长周期,这 些长周期是比晶体周期更大的微细组织,在理想 情况它的点阵是与片层方向垂直的一维点阵。如 果片层组织的取向是随机的,衍射环各处的强度 是均匀的;如果有择优取向,衍射环上会出现强 度集中区。
精品文档
聚乙烯的衍射(yǎnshè)花样(非晶和结 晶)
精品文档
丝蛋白(dànbái)的衍射花样(非晶 部分 结晶)
精品文档
等规立构聚丙烯X-射线(shèxiàn) 图
精品文档
常见聚合物的 X 射线衍射(yǎnshè)
曲线
精品文档
聚乙烯
典型两相结构聚合物 晶态衍射锐峰和非晶态漫射宽峰共存 高密度聚乙烯比低密度聚乙烯的晶态锐射强,除
精品文档
聚对苯二甲酰庚二胺的X射线衍射(yǎnshè)图,仅仅存在子午线
方向的衍射(yǎnshè),即(00l)衍射(yǎnshè)尖锐,说明高聚物具有
纵向有序性。
精品文档
随着高聚物拉伸(lā shēn)倍数的增加(取向度增加),衍射圆弧向赤 道线或子午线汇集成衍射斑点 向赤道线集中的只有(hk0)反射, 向子午线集中的只有(00l)反射
精品文档
具有清晰圆环,为结晶性好的高聚物衍射(yǎnshè)图,如聚 甲醛、聚丙烯、聚乙烯等属此类型。
精品文档
取向(qǔ xiànɡ)高聚物
非晶高聚物的弥散环集中(jízhōng)在赤道线上,形成两个弥 散斑点,如聚苯乙烯属此类型。
x射线小角散射和衍射区别
小角x射线衍射缩写是SAXD,小角x射线散射的缩写是SAXS,二者的原理还是有很大的区别的。
衍射对应的是周期性结构引起的相干,而散射对应的是电子密度的波动。
小角X射线衍射:
X-射线照射到晶体上发生相干散射(存在位相关系)的物理现象叫衍射,即使发生在低角度也是衍射。
例如,某相的d值为31.5A,相应衍射角为2.80°(Cu-Kα),如果该相有很高的结晶度,31.5A峰还是十分尖锐的。
薄膜也能产生取决于薄膜厚度与薄膜微观结构的、集中在小角范围内的X射线衍射。
在这些情况下,样品的小角X射线散射强度主要来自样品的衍射,称之为小角X射线衍射。
对这类样品,人们关心的是其最大的d值或者是薄膜厚度与结构,必须研究其小角X 射线衍射。
小角衍射,一般应用于测定超大晶面间距或薄膜厚度以及薄膜的微观周期结构、周期排列的孔分布等问题;
小角X射线散射:
X-射线照射到超细粉末颗粒(粒径小于几百埃,不管其是晶体还是非晶体)也会发生相干散射现象,也发生在低角度区。
但是在实验方法、由微细颗粒产生的相干散射图的特征与上述的由超大晶面间距或薄膜产生的小角X射线衍射图的特征完全不同。
这就是小角X射线散射。
小角散射则是应用于测定超细粉体或疏松多孔材料孔分布的有关性质。
小角散射得到的结构信息有两类,一个是微颗粒信息,一个是长周期信息。
与原子尺度和小分子晶体点阵相比较,可以认为这些是结构的“大尺度”信息。
因此小角散射方法主要有这两方面的应用:一个是测量微颗粒形状、大小及其分布,另一个是测量样品长周期,并通过衍射强度分析,进行有关的结构分析。
小角X射线散射
1: 2 : 3 : 4
由此表明:PI球状微区在空间中以简单立方晶格或 立方密堆砌规则地排列。
用空心箭头表注的峰是孤立 球粒子内的散射干涉。根据各散射 峰位由下式计算球粒的半径R:
hR 4 R / sin mix,i 5.765, 9.100, 12.320,
i =1, 2, 3,…
平均半径R=12.7nm。
三. 谱 图 分 析
散射矢量
h 4 sin
h或q(nm-1)
图3.1 实测SAXS谱图(PP)
长周期(L)如何计算? (1) Lorentz校正:h2I(h)对h作图
(2) 2Lsin
谱图分析例子1——嵌段共聚物
图3.2 苯乙烯(PS)和异戊二烯(PI)二嵌段共聚物的电镜照片
当PI的含量小于22wt%时,PI呈球状微区分布在PS基体中;当PI的含量 为22~39wt%时,PI呈圆柱状微区分散在PS基体;当PI和PB的含量为39~ 60wt%时,两者呈层状交替微区。球状、圆柱状和层状微区在空间中有规则 地排列,具有长程有序。
谱图分析例子2——取向与形变
图3.4 苯乙烯(含量为18.5wt%)与异戊二烯嵌段共聚物的散射曲线
(a)未拉伸状态时的曲线;(b)拉伸比为2.0时的曲线。
拉伸后一级散射峰移向小角一侧,但二级峰和三级峰位置保持不 变。由此表明:一级峰是粒子间散射引起的散射峰,长周期增大。二 级峰和三级峰是粒子内的一级和二级散射峰。
二. 基本原理
图2.1 计算结晶度的分峰图(XRD)
图2.2 半结晶聚合物的形态结构模型
聚丙烯的实测图
示意图
图2.3 半结晶聚合物的SAXS和XRD图
理想两相体系
准理想两相体系
A相分散在B相中,两相互不相溶,具有微观的相分离,无过渡层。
X射线普通衍射和小角度衍射的区别
X射线普通衍射和小角度衍射有何区别概述小角度X射线衍射和普通X射线衍射,这是X射线衍射的两个应用方向。
它们的英文名称分别是Small Angle X-ray Scattering (SAXS,X射线小角度衍射)和Wide Angle X-ray Scattering (WAXS,X射线广角衍射)。
无论中子衍射、电子衍射还是X 射线衍射,其原理都能用布拉格定律来解释,具体的应用场合则因为入射射线的本质和被检测样品的本质不同而有所区别。
从布拉格方程:2dsinq=nl我们可以看到这里有三个变量:入射线经过样品时的光程差D(对于一般晶体材料,主要由面间距d决定;对于胶体颗粒,主要由颗粒电子密度起伏决定);入射角度q和入射射线的波长l。
电子衍射和普通X射线衍射的区别在于入射线本质不同;普通X射线衍射和小角度X射线衍射在于样品对光程差的贡献不同。
2. X射线衍射与电子衍射要区分小角度X射线衍射和普通X射线衍射,我们可以先考察X射线衍射和电子衍射的区别。
用厄瓦尔德倒易球描述的二者的衍射机理如图1所示。
图1a表明电子波长特别小使得倒易球截得的倒易点阵为二维阵列,而所有参与衍射的晶面与电子束的夹角基本都在2°以内,或者说基本平行。
例如金的晶胞参数为a=0.4078nm,200KV下的电子波长为0.00251nm,计算得金密排面(111)的衍射角q=0.205°。
图1b表明X射线波长与晶体的晶胞尺寸相当,一个衍射角度一般只能激发一个晶面的衍射。
为了让所有晶面参与衍射,就必须让倒易球和倒易点阵相互旋转,从而获得大角度范围的衍射谱图。
3. SAXS与WAXS现在固定X射线波长不变,均为CuKa=0.154nm,设想如果被检测的样品不是粉晶样品,也不是大块单晶(例如单晶衬底和金属),而是晶胞巨大的无机化合物、高分子乃至生物分子这样的具有胶体尺度的样品,常规X射线衍射能获得怎样的谱图和分析出怎样的结论呢?胶体尺度的样品具有如下两个性质:一是统计上各向同性,二是长程无序。
第四章X射线衍射与散射详解
朱诚身
第四章:X射线衍射与散射
X射线衍射法概述
X射线分析法原理 广角X射线衍射法 多晶X射线衍射在高聚物中的应用 小角X射线散射法 X射线法应用
第一节 X射线衍射法概述
一. X射线的发现 1895年,W.K.Rontgen(1845—1923)发现 了X-Ray。1906年,英国物理学家巴克拉(1874— 1944)确定了不同金属都有自己特征的X-Ray。1912 年,Max ue(劳厄)发现X-Ray在晶体中的干涉现 象。1913年提出布拉格(Bragg)方程,用于晶体结 构分析。不久在20年代即开始应用于聚合物的结构测 定,最大分子确立的基础之一。
二. X射线的性质
1 .波长范围:0.001~10nm,对高分子有用的是 0.05~0.25nm,最有用的是CuKα线,入=0.1542nm, 与聚合物微晶单胞0.2~2nm相当。
2 . X-Ray的产生 X-射线管效率: E=1.1×10-9 Z V 上面的“E”—效率,“Z”—原子序数,“V” —电压。 电能的0.2%转变为X-Ray,绝大部分变成热,帮阳 极靶须导 热良好,同时水冷。 3 .连续X-Ray和特征X-Ray (1)连续(白色)X-Ray:由于极大数量的电子射到阳 极时穿透阳极物质深浅程度不同,动能降低多少不一, 产生各种波长的X-Ray。
3.典型聚集态衍射谱图的特征 衍射谱图是记录仪上绘出的衍 射强度(I)与衍射角(2θ)的关 系图。右图中:a 表示晶态试样衍 射,特征是衍射峰尖锐,基线缓平。 同一样品,微晶的择优取向只影响 峰的相对强度。图b为固态非晶试 样散射,呈现为一个(或两个)相 当宽化的“隆峰”。图c与d是半晶 样品的谱图。C有尖锐峰,且被隆 拱起,表明试样中晶态与非晶态 “两相”差别明显;d呈现为隆峰 之上有突出峰,但不尖锐,这表明 试样中晶相很不完整。 四种典型聚集态衍射谱图的特征示意图
小角X射线散射简介
小角X射线散射
小角 X射线散射(Small-Angle X-ray Scattering)是一种用 于纳米结构材料的可靠而且经济的无损分析方法。SAXS能 够给出1-100纳米范围内的颗粒尺度和尺度分布以及液体、 粉末和块材的形貌和取向分布等方面的信息。
SAXS的优势:
a. 研究溶液中的微粒;
b. 动态过程研究;管示意图
X射线与物质的作用
X射线的物理基础
入设X射线 与物质相互 作用
荧光X射线 电子
散射X射线
光电子
光电效应
俄歇电子 ——俄歇效应
反冲电子 非相干
康普顿效应
相干 X射线衍射(XRD)
衍射角度:4-170°
由晶格点阵产生的相干散射
样品
小角X射线散射(SAXS) 散射角: 0-4° 由电子密度变化引起的散射
小角X射线散射简介
小角X射线散射
主要内容
• X射线物理基础 • 小角X射线散射技术简介 • 应用举例
X射线物理基础
光源
X射线管——固定靶→转靶(提高8倍) 玻璃X射线管
——灯丝在玻璃熔接时无法准确定位
陶瓷X射线管
——陶瓷可以精确机加工,灯丝位置可准 确定位。
同步辐射X射线
相对论粒子在磁场中偏转时沿切线方向发射电磁波 ——功率高,平行度好,造价昂贵
小角x射线散射sollerslits需要足够高的入射强度样品要尽量的薄以得到较好的散射强度可用于液体分散凝胶粉末等方面的研究小角x射线散射gisaxsx射线以很小的角度接近全反射掠射到样品上gisaxs小角x射线散射小角x射线散射新技术简介histar?使用二维探测器避免了零维和一维探测器在数据采集时产生的数据误差并除去了对样品限制性初始假定的必要
X射线小角度衍射ppt课件
四、SAXS的实物举例
1.实物S3-MICRO:
烧伤病人 的治疗 通常是 取烧伤 病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
2.S3-MICRO的工艺参数:
烧伤病人 的治疗 通常是 取烧伤 病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
2.发展历史
• 自20世纪30年代发现小角X射线散射现象 以来,它已成为材料几何结构表征的有效手 段之一。
• 历史上,SAXS发展缓慢,主要是因为小角相 机的装配操作麻烦,还受X射线强度的限制, 曝光时间(特别是稀溶液)很长。
• 20世纪70年代以后,随着同步辐射(SR)装 置的建立,以同步辐射为X射线源的小角散 射(SR-SAXS)平台成了小角X射线散射实 验的主要基地。
一、SAXS的概述
1.概念 当X射线照到试样上,如果试样内部存在纳
米尺寸的密度不均匀区(1-100nm),则会在 入射X射线束周围2-5°的小角度范围内出现 散射X射线.称为X射线小角度散射,英文为
Small Angle X-ray Scattering,简称SAXS.
烧伤病人 的治疗 通常是 取烧伤 病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
• SAXS对试样的适用范围较宽,可以是液体、固体、晶体、 非晶体或它们之间的混合体,也可以是包留物和多孔性材 料等。
• SAXS可以研究高聚物的动态过程,如熔体到晶体的转变过 程。
• 当研究生物体的微结构时,SAXS可以对活体或动态过程进 行研究。
小角X射线散射简介
引起小角X射 线散射的几 种主要情况
.
7
SAXS的几种实现方式
小角X射线散射
同步辐射小角X射线散射仪
集成于多功能X射线衍射系统中
单独的小角X射线散射平台
实验室自组装
.
8
准直系统
小角X射线散射
传统的准直系统主要有:
四狭缝准直系统
针孔准直系统
Kratky 狭缝准直系统
无限长准直系统 等
但是为了使X射线的发散度减小,平行度增加, 通常令狭缝尽量的小,然而这样却使通量降低, 散射信息减弱,给小角X射线散射带来困难。
小角X射线散射技术简介 Small Angle X-ray Scattering
XX 凝聚态物理
.
1
小角X射线散射
主要内容
• X射线物理基础 • 小角X射线散射技术简介 • 应用举例
.
2
X射线物理基础
光源
X射线管——固定靶→转靶(提高8倍)
玻璃X射线管
——灯丝在玻璃熔接时无法准确定位
陶瓷X射线管
•在样品颗粒不对称或 表现有择优取向的情 况下分析样品
•HI-STAR探测器是一 种真正意义上的具有 光子计数能力的无噪 实时二维探测器
.
15
Nanography
新型小角X射线散射技术简介
Nanography 可以得到样品 具有µm量级 SAXS分辨率 的实空间图像。
.
16
分析软件
新型小角X射线散射技术简介
Nanofit •交互式图形界面 •非线性,最小平方分 析
.
17
金属纳米颗粒散射曲线
应用举例
.
18
金属纳米颗Leabharlann 散射曲线应用举例.
X射线普通衍射和小角度衍射有何区别
2. X射线衍射与电子衍射
要区分小角度X射线衍射和普通X射线衍射,我们可以先考察X射线衍射和电子衍射的区别。用厄瓦尔德倒易球描述的二者的衍射机理如图1所示。图1a表明电子波长特别小使得倒易球截得的倒易点阵为二维阵列,而所有参与衍射的晶面与电子束的夹角基本都在2°以内,或者说基本平行。例如金的晶胞参数为a=0.4078nm,200KV下的电子波长为0.00251nm,计算得金密排面(111)的衍射角q=0.205°。图1b表明X射线波长与晶体的晶胞尺寸相当,一个衍射角度一般只能激发一个晶面的衍射。为了让所有晶面参与衍射,就必须让倒易球和倒易点阵相互旋转,从而获得大角度范围的衍射谱图。
.X射线普通衍射和小角度衍射有何区别
概述
小角度X射线衍射和普通X射线衍射,这是X射线衍射的两个应用方向。它们的英文名称分别是Small Angle X-ray Scattering (SAXS,X射线小角度衍射)和Wide Angle X-ray Scattering (WAXS,X射线广角衍射)。无论中子衍射、电子衍射还是X射线衍射,其原理都能用布拉格定律来解释,具体的应用场合则因为入射射线的本质和被检测样品的本质不同而有所区别。
不知道上述问题这样回答能否差强人意,后文给出SAXS的一点介绍以为参考。
4. 附加内容:SAXS
已经知道当入射角非常小的时候,X射线相干散射变得非常微弱,胶体颗粒对X射线散射可以这样想象:样品中的电子与入射X射线频率发生共振并发出二次相干波,发生小角度散射。
我们先考察单个小颗粒散射现象。假设图2a中的小颗粒内部两个电子具有散射角2q和一个波长的光程差。该颗粒所有电子在2q方向的光程差涵盖任一位相,总体衍射强度将为零。如果减小散射角2q,则各散射波将趋于同位相而互相加强,散射最强将发生在0度,然后按统计规律递减,如图2c中的曲线1所示。
小角X射线散射
a. 研究溶液中的微粒;
b. 动态过程研究; c. 研究高分子材料;
百分数等参数,而TEM方法往往 很难得到这些参量的准确结果, 因为不是全部颗粒都可以由 TEM观察到,即使在一个视场范 围内也有未被显示出的颗粒存 在;
d. 电子显微镜方法不能确定颗粒 g. 小角X射线散射方法制样方便. 内部密闭的微孔,SAXS可以; e. 小角X射线散射可以得到样品 的统计平均信息; f. 小角X射线散射可以准确地确 定两相间比内表面和颗粒体积
第四章 小角X射线散射
课程主要内容
• 小角X射线散射基础理论 • 小角X射线散射研究的几种常见体系 • 小角X射线散射系统简介
X射线物理基础
光源
X射线管——固定靶→转靶(提高8倍) 玻璃X射线管
——灯丝在玻璃熔接时无法准确定位
陶瓷X射线管
——陶瓷可以精确机加工,灯丝位置可准 确定位。
同步辐射X射线
E 2
比表面
• Porod定理主要提示了散射强度随散射角度变化的渐 近行为。 • 它可用于判断散射体系的理想与否,以及计算不变量 Q和比表面SP等结构参数。
Fractal Systems
Characterization of Fractal System
ln[I(h)h-1]
Slope= -
小角X射线散射
当X射线照的试样上,如果试样内部存在纳米尺度的密度 不均匀区域(2-100nm)时,则会在入射X射线束周围 0~4°的小角度范围内出现散射X射线,这种现象称为小角 X射线散射(Small Angle X-ray Scattering,SAXS)。
引起小角X射 线散射的几种 主要情况
不同仪器可能探测的物质结构尺寸范围
小角X射线散射简介(课堂PPT)
9
准直系统
小角X射线散射
Gobel Mirror 线平行汇聚光镜
单色性 高强度 准直光束
抛物线型多层膜,利用不同层面材料的晶面间距值不同, 使所有层面的衍射线变为发散度为0.04°的单色平行光。
Lens 点平行汇聚光镜
电光源的发散光经过Lens的数万条异形光导毛细管后, 将:
a. 研究溶液中的微粒;
b. 动态过程研究;
c. 研究高分子材料;
d. 电子显微镜方法不能确定颗粒内部密闭的微孔,SAXS可以;
e. 小角X射线散射可以得到样品的统计平均信息;
f. 小角X射线散射可以准确地确定两相间比内表面和颗粒体积百分数等
参数,而TEM方法往往很难得到这些参量的准确结果,因为不是全部颗
衍射角度:4-170°
由晶格点阵产生的相干散射
样品
小角X射线散射(SAXS) 散射角: 0-4° 由电子密度变化引起的散射
5
小角X射线散射
小角 X射线散射(Small-Angle X-ray Scattering)是一种用 于纳米结构材料的可靠而且经济的无损分析方法。SAXS能 够给出1-100纳米范围内的颗粒尺度和尺度分布以及液体、 粉末和块材的形貌和取向分布等方面的信息。
•在样品颗粒不对称或 表现有择优取向的情 况下分析样品
•HI-STAR探测器是一 种真正意义上的具有 光子计数能力的无噪 实时二维探测器
15
Nanography
新型小角X射线散射技术简介
Nanography 可以得到样品 具有µm量级 SAXS分辨率 的实空间图像。
16
分析软件
新型小角X射线散射技术简介
小角X射线散射
3.通过下式计算绝对强度(单位:cm-1):
溶液试样:
I
a
(h)
=
W
(T
)
is (h) iw (0)
− −
ir ic
(h) (0)
固体试样:
I
a
(h)
=
W
(T
)
iw
is (0)
(h) − ic
(0)
∫ Q =
∞ 0
I
a
(h)h
2
dh
=2π 2 IeV
<η2
>
< η 2 >= φAφB (ρ A − ρB )276.2718Fe4.1
33.0
Ni
24.6
24.1
Cu
21.2
22.0
Zn
23.2
25.3
H2O SiO2(石英)
976 109.5
8307 1018
(CH=CH)n(Lupolen R)
2547
17975
对于铜靶而言,水或有机溶剂的高分子溶液试样厚度约1mm左右;金属(如钢、
黄铜)试样约10µm;聚合物2mm左右。
2.通过下式归一化(即吸收修正):
(1)Is(h)/μs → is (h)
试样(溶液)
(2)Ir(h)/μr → ir (h)
(溶剂和毛细管)
(3) Iw(h)/μw → iw (h) 取平均值→iw (0) (水和毛细管) (4)Ic (h)/μc → ic(h) 取平均值→ ic (0) (毛细管)
2d sinθ = λ XRD
SAXS
基本原理
理想两相体系
准理想两相体系
A相分散在B相中,两相互不相溶,具有微观的相分离,无过渡层。
9.X射线衍射和散射
1 高聚物的物相分析
1)晶态和非晶态结构研究
分析聚合物是否结晶
非晶态聚合物:X射线衍射为漫 散射的“晕环”,钝峰 晶态聚合物:尖锐峰表明存在结 晶。 既不尖锐也不弥散的“突出峰”显 示有结晶存在,但很不完善。
28
a 晶态试样衍射 b固态非晶散射
c与d是半晶样品的谱图。 c表明试样中晶态与非晶态“两相”差别明显。 d表明试样中晶相很不完整
29
2)识别晶体类型
结晶性聚合物在不同结晶条件下可形成不同 晶型,晶系及晶胞参数不同。 结晶类型识别办法是:
将待定试样谱图与已知晶型谱图比较。看试样谱 图中是否出现已知晶型的各衍射峰。
如聚丙烯α、β、γ、δ四种晶型,它们对聚丙 烯材料的性能影响不同。
30
聚丙烯α、β型晶体
(a)含α型晶体的IPP 衍射图 (b)含β型晶体的IPP 衍射图 (c)鉴定的IPP X射线衍射图
Θ -(入射X射线与原子平面间夹角)布拉格角
Β -纯衍射线增宽(用弧度表示) K -常数,称为晶体形状因子
34
4 取向度的研究
取向常常指分子链与某个参考方向或平面平行的 程度。 分类:晶区链取向,非晶区取向;折叠链取向, 伸直链取向等。 晶区分子链方向一般被定为晶体c轴方向。 用X射线衍射法测得结晶高聚物晶区c轴,实际上 也就直接或间接地表明了晶区分子链取向。 而非晶区、或非晶态高聚物材料中的分子链趋向 则需用其他手段测定。
2/˚
c与d是半晶样品的谱图。C有尖锐峰,且被隆拱起, 表明试样中晶态与非晶态“两相”差别明显; d呈现为隆峰之上有突出峰,但不尖锐,这表明试 24 样中晶相很不完整。
小角X射线散射-个人观点
1:小角X射线散射(Small Angle X-Ray Scattering, SAXS)是研究纳米尺度微结构的重要手段。
根据SAXS理论,只要体系内存在电子密度不均匀(微结构,或散射体),就会在入射X光束附近的小角度范围内产生相干散射,通过对小角X射线散射图或散射曲线的计算和分析即可推导出微结构的形状、大小、分布及含量等信息。
这些微结构可以是孔洞、粒子、缺陷、材料中的晶粒、非晶粒子结构等。
适用的样品可以是气体、液体、固体。
由于X射线具有穿透性,SAXS信号是样品表面和内部众多散射体的统计结果。
相对于其它纳米尺度分析表征手段,如SEM、TEM、AFM而言,SAXS具有结果有统计性、测试快速、无损分析、制样简单、适用范围广等优点。
对于各向同性体系分析起来没多大困难,但是需要进行各种校正,不校正结果会较差。
对于择优取向体系SAXS分析起来还是一个世界性难题。
两千零几年本.zhu有一篇文章就专门提到这个问题,说择优取向体系计算得到的结果非常不可靠,所以他干脆不分析,stribeck也提出同样的问题,他说:“在面对各向异性体系的时候我们就像科学家在1931年面对各向同性体系时一样。
”现在很多人在做SAXS都只是在做小角度的衍射分析,也就是低角度衍射峰位置的分析,而不是真正的散射分析。
可以这么说,散射普遍存在,衍射只在满足布拉格方程时才出现。
可以参考以下书籍孟昭富. 小角X射线散射理论及应用. 1995.O Glatter OK. Small angle x-ray scattering. 1982.小角X射线散射——理论、测试、计算及应用,朱育平,2008Small angle scattering of X-ray, A.Guinier G.Fournet,1955Methods of X-ray and Neutron Scattering in Polymer Sciencestructure analysis by small angle x-ray and neutron scattering,19872:个人观点,不确切一:1)广角X射线衍射(Wide Angle X-ray Diffraction,简称WAXD)测试范围(2θ):5~100O以上。
X射线衍射课件(XRD)
特征X射线光谱
由阴极飞驰来的电子,把原子的内层电子打到外层或者原子 外面,从而在原子的内电子层留有缺席的位置。此时原子处于不稳 定的激发状态,随后便有较高能级上的电子向低能级上的空位跃迁, 填补空位,以使位能下降。电子从高能级向低能级的这种跃迁将以 光子的形式辐射出特征X射线谱。
二、X射线在晶体中的衍射
3.1 晶面指数
z B
M3 A
M2 y
M1 x
二、X射线在晶体中的衍射
3.1 晶面指数 习题:确定晶面指数
Z
AGDF BEDG
CEDF
ACEG
Y
ABC
X
AHC
二、X射线在晶体中的衍射
3.2 晶面间距
d(hkl)是指某一晶
面(hkl)规定的平面族 中两个相邻晶面之间 的垂直距离;
外的短波段相重叠。
一、X射线及其产生原理
3. X射线的Biblioteka 量X射线除了波动性质之外,还呈现为不连续的“量子 流”;
量子能量(Ɛ) 用下列公式表示: Ɛ = hv = h ·c/λ
h-普朗克常数;v-射线的频率 c-光速;λ-波长
一、X射线及其产生原理
4. X射线的产生
使快速移动的电子骤然停止其运动,则电子的动 能一部分可转变为X光能。
具有代表性的基本单元(最小平行六面体)作为点阵的 组成单元,称为晶胞。将晶胞作三维的重复堆砌就构成 了空间点阵。
二、X射线在晶体中的衍射
晶体学基本知识
1 空间点阵和晶胞 直线点阵——分布在同一直线上的点阵
平面点阵——分布在同一平面上的点阵
晶体结构
=
结
空
构 单
+
间 点
X射线普通衍射和小角度衍射的区别
X射线普通衍射和小角度衍射有何区别概述小角度X射线衍射和普通X射线衍射,这是X射线衍射的两个应用方向。
它们的英文名称分别是Small Angle X-ray Scattering (SAXS,X射线小角度衍射)和Wide Angle X-ray Scattering (WAXS,X射线广角衍射)。
无论中子衍射、电子衍射还是X 射线衍射,其原理都能用布拉格定律来解释,具体的应用场合则因为入射射线的本质和被检测样品的本质不同而有所区别。
从布拉格方程:2dsinq=nl我们可以看到这里有三个变量:入射线经过样品时的光程差D(对于一般晶体材料,主要由面间距d决定;对于胶体颗粒,主要由颗粒电子密度起伏决定);入射角度q和入射射线的波长l。
电子衍射和普通X射线衍射的区别在于入射线本质不同;普通X射线衍射和小角度X射线衍射在于样品对光程差的贡献不同。
2. X射线衍射与电子衍射要区分小角度X射线衍射和普通X射线衍射,我们可以先考察X射线衍射和电子衍射的区别。
用厄瓦尔德倒易球描述的二者的衍射机理如图1所示。
图1a表明电子波长特别小使得倒易球截得的倒易点阵为二维阵列,而所有参与衍射的晶面与电子束的夹角基本都在2°以内,或者说基本平行。
例如金的晶胞参数为a=0.4078nm,200KV下的电子波长为0.00251nm,计算得金密排面(111)的衍射角q=0.205°。
图1b表明X射线波长与晶体的晶胞尺寸相当,一个衍射角度一般只能激发一个晶面的衍射。
为了让所有晶面参与衍射,就必须让倒易球和倒易点阵相互旋转,从而获得大角度范围的衍射谱图。
3. SAXS与WAXS现在固定X射线波长不变,均为CuKa=0.154nm,设想如果被检测的样品不是粉晶样品,也不是大块单晶(例如单晶衬底和金属),而是晶胞巨大的无机化合物、高分子乃至生物分子这样的具有胶体尺度的样品,常规X射线衍射能获得怎样的谱图和分析出怎样的结论呢?胶体尺度的样品具有如下两个性质:一是统计上各向同性,二是长程无序。
第四章X射线衍射与散射详解
干涉指数与晶面指数的明显差别是干涉指数中有公 约数,而晶面指数只能是互质的整数,当干涉指数也互 为质数时,它就代表一族真实的晶面,所以干涉指数是
广义的晶面指数。习惯上经常将HKL混为hkl来讨论问题。
我们设d=dˊ/n,布拉格方程可以写成:Fra bibliotek2dsinθ=λ
3 布拉格方程的应用
上述布拉格方程在实验上有两种用途。首先,利用 已知波长的特征X射线,通过测量θ角,可以计算出晶面 间距d。这种工作叫结构分析(structure analysis),是本 书所要论述的主要内容。其次,利用已知晶面间距d的晶 体,通过测量θ角,从而计算出未知X射线的波长。后一 种方法就是X射线光谱学(X-ray spectroscopy)。
2. 反射级数与干涉指数--布拉格方程nλ=2dˊsinθ表示面间 距为dˊ的(hkl)晶面上产生了几级衍射,但衍射线出 来之后,我们关心是光斑的位置而不是级数,级数也 难以判别,故我们可以把布拉格方程改写成下面的形 式 2(dˊ/n)sinθ=λ 这是面间距为1/n的实际上存在或不存在的假想晶 面的一级反射。将这个晶面叫干涉面,其面指数叫干 涉指数,一般用HKL表示根据晶面指数的定义可以得 出干涉指数与晶面指数之间的关系为:H=nh,K=nk, L=nl。
X射线光谱仪原理
4 衍射方向对于一种晶体结构总有相应的晶面间距表达式。将布拉 格方程和晶面间距公式联系起来,就可以得到该晶系的衍射方向 表达式。对于立方晶系可以得到: sin2θ=λ2(h2+k2+l2)/4a2 此式就是晶格常数为a 的{h k l}晶面对波长为λ的X射线的衍射 方向公式。上式表明,衍射方向决定于晶胞的大小与形状。反过 来说,通过测定衍射束的方向,可以测定晶胞的形状和尺寸。至 于原子在晶胞中的位置,要通过分析衍射线的强度才能确定。
x射线 微小角度折射
x射线微小角度折射
X射线是一种高能电磁波,具有很强的穿透力和散射能力。
当X射线穿过物质时,会与物质中的原子或分子相互作用,从而产生散射和吸收。
当X射线经过微小角度的折射时,会发生衍射现象。
衍射是指当X射线经过一个小孔或遇到一个小障碍物时,会在其背后产生一系列的衍射斑点。
这些衍射斑点的大小和形状取决于X射线的波长和小孔或障碍物的尺寸。
在X射线衍射实验中,通常使用X射线晶体衍射仪来测量X射线的衍射图案。
晶体衍射仪中通常包含一个X射线源和一个旋转的晶体。
当X射线穿过晶体时,会产生衍射现象,这些衍射斑点的位置和强度可以用来确定晶体的晶体结构和晶格参数。
X射线的微小角度折射和衍射现象在材料科学、物理学、化学等领域都有着广泛的应用。
例如,在材料科学中,X射线衍射可以用来分析材料的晶体结构和晶格参数,从而了解材料的物理性质和化学反应行为。
在医学领域中,X射线衍射也被广泛应用于研究物质的结构和性质,以及诊断和治疗疾病。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SAXS及其应用
X射线的散射现象
晶体中的原子在射入晶体的X射线的作用下 被迫强制振动,形成一个新的X射线源发射 次生X射线。
[X-Ray Diffraction by Macromolecules, p. 15]
广角X射线散射(X射线衍射)
如果被照射试样具有周期性结构(结晶), 则次生X射线会发生干涉现象,该现象被称 为X射线衍射(X-ray Diffraction, XRD )。
X射线衍射需要在广角范围内测定,因此又 被称为广角X射线衍射(Wide-Angle X-ray Scattering, WAXS)。
小角X射线散射
如果被照射试样具有不同电子密度的非周 期性结构,则次生X射线不会发生干涉现象, 该现象被称为漫射X射线衍射(简称散射)。
X射线散射需要在小角度范围内测定,因此 又被称为小角X射线散射(Small-Angle Xray Scattering, SAXS)。
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 153]
粉末衍射图
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 156]
SAXS装置示意图
[Two-Dimensional X-Ray Diffraction, p. 332]
SAXS装置实物照片及剖面图
[Two-Dimensional X-Ray Diffraction, p. 337]
SAXS装置实物俯视图
[Two-Dimensional X-Ray Diffraction, p. 337]
[Methods of Experimental Physics Volume 16 Polymers, Part B Crystal Structure and Morphology, p. 54]
WAXS应用实例之区别结晶和非晶聚合物
衍射峰 弥散峰
WAXS应用实例之鉴别不同晶型
尼龙6的晶型和晶型同属单斜晶系,它们 的区别是型在2=11o有明显的002晶面的 峰;型是拟六方晶系,衍射图上只有一个 锐峰
晶胞的描述—晶面指数
[Physical Chemistry of Macromolecules, 2nd Edition, pp. 500-501]
晶面指数
[Two-Dimensional X-Ray Diffraction, p. 7]
晶面指数及晶面距
[Encyclopedia of Materials Characterization, p. 201]
未取向的结晶聚合物 衍射图案 取向的结晶聚合物衍 射图案
[Methods of Experimental Physics Volume 16 Polymers, Part B Crystal Structure and Morphology, pp. 54 & 55]
WAXS应用实例之取向度测定
冷拉不同倍数的全同聚丙烯薄膜的WAXS 平板照片
聚合物纤维旋转衍射
聚合物纤维经单向拉伸后,可使晶粒有一 定程度的取向,可以将晶粒中的原子面分 成两类,一类垂直于拉伸方向,另一类平 行于拉伸方向,因此就满足了单晶旋转的 条件。
[Methods of Experimental Physics Volume 16 Polymers, Part B Crystal Structure and Morphology, p. 49]
晶体的X射线衍射特征
[Crystal Structure Analysis, 3rd Edition, p. 48]
晶体结构及其晶胞类型
[Methods of Experimental Physics Volume 16: Polymers, Part B Crystal Structure and Morphology, p. 5]
WAXS应用
定性分析WAXS图案可得到如下信息:
(i)试样的形态(结晶或非晶); (ii)结晶的类型; (iii)结晶的大致程度; (iv)晶粒的取向及大致程度。
定量分析WAXS数据可得到如下信息:
(i)晶胞参数; (ii)结晶度; (iii)取向度。
WAXS应用实例之区别结晶和非晶聚合物
衍射环 弥散环
0.3
2.5 5 40 100
结构表征的尺度要求
在广角衍射的角度范围内能测定的晶格间 距为零点几到几纳米。 然而在结晶聚合物中,常常要求测定几纳 米到几十纳米的长周期,这就要求测定角 度缩小到小角范围,也就是说,要在1-2o以 内测定衍射强度或记录衍射花样。
SAXS技术
一般X射线管发出的X射线束宽约1-2o,所 以,小角散射会被淹没在普通广角衍射图 中而观察不到。 系统有特别的要求:
X射线衍射测定
测定X射线衍射的方法主要有两种:一是粉 末法,另一是单晶旋转法。
[Methods of Experimental Physics Volume 16 Polymers, Part B Crystal Structure and Morphology, pp. 53 & 63]
X射线衍射测定之粉末法
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 154]
粉末衍射光锥及条纹摄制
[Introduction to X-Ray Powder Diffractometry, p. 60]
WAXS(XRD)原理
在不同的观测点,从不同的次生源发出的X 线间的光程差通常是不同的。
[X-Ray Diffraction by Macromolecules, p. 16]
WAXS(XRD)原理
由于存在不同的 光程差,因此, 到达不同观测点 的次生X射线可 能相互加强、减 弱,甚至完全抵 消。
晶面指数与晶胞参数
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 9]
Bragg方程
设晶体的晶面距为 d,X射线以与晶面间交 角为 的方向照射,从晶面散射出来的X射 线产生衍射的条件是相邻散射X射线间的光 程差等于波长的整数倍,即满足Bragg方程
x cos n
单晶旋转衍射图案摄制
一种是将相片卷成圆 筒形,样品放在圆筒 形相片的中心,X射线 从一侧射入,这样得 到的衍射图案是许多 平行的层线。 另一种方法是将平整 的照相底片放置在垂 直于X射线入射的方向 上,这样得到的是一 系列的双曲线。
四圆衍射仪
[Crystal Structure Analysis, 3rd Edition, p. 61]
WAXS应用实例之取向度测定
X射线法常用取向指数来表征结晶的取向程 度。例如尼龙6拉伸后,衍射环退化为赤道 弧,在方位角上扫描得峰,求得半峰宽, 定义取向指数(R)
180 W R 100 % 180
SAXS及其应用
根据Bragg方程,衍射角与晶格间距的关系
2 d/nm
30o
3o32’ 1o40’ 13’15” 5’20”
2d sin n
晶体参数解析
当用单色X射线(波长已知)测定时结晶体 时,从实验测得掠射角,进而由Bragg方程 求得晶面间距(即晶胞参数)。
[Methods of Experimental Physics Volume 16 Polymers, Part B Crystal Structure and Morphology, p. 53]
[X-Ray Analysis of Crntals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 265]
粉末衍射平板图案摄制
当单色的X射线通 过晶体粉末时,因 为粉末中包含无数 任意取向的晶体, 所以必然会有一些 晶面距和掠射角满 足Bragg方程。
[Crystal Structure Analysis, 3rd Edition, p. 42]
X射线衍射测定之粉末法
由不同的晶面 衍射得到的X 射线束为锥形, 锥形光束的轴 就是入射X射 线,锥的顶角 等于 4。
WAXS应用实例之测定结晶度
结晶聚合物的WAXS图实际上是结晶和非 晶部分两相贡献的总和,先用分峰技术分 别测算出结晶峰和非晶峰的强度,然后再 计算结晶度。
Ic Xc I c kI a
WAXS应用实例之取向鉴定
未取向的非晶聚合物 衍射图案 取向的非晶聚合物衍 射图案
WAXS应用实例之取向鉴定
[X-Ray Diffraction by Macromolecules, p. 19]
不同光程差的X射线叠加
当光程差等于X射线波 长的整数倍时次生X射 线互相叠加而加强;
当光程差等于半波长 时,次生X射线相互完 全抵消。 只有相互叠加的光波 才能有足够的强度被 观察到。
[Crystal Structure Analysis, 3rd Edition, p. 28]
SAXS应用及其实例
SAXS能用于研 究数纳米到几 十纳米的聚合 物结构,如晶 片尺寸、溶液 中聚合物的回 转半径、共混 物和嵌段共聚 物的层片结构 等。
[Methods of Experimental Physics, Volume 16 Polymers, Part B Crystal Structure and Morphology, p. 165]