结构力学第六章力法

合集下载

结构力学(二)_ 力法(七)_

结构力学(二)_  力法(七)_
(1) 建立实际位移状态和虚拟力状态。 (2) 作出两种状态的内力图。
或写出结构受力的方程。 (3) 用积分法或图乘法计算位移。
3.位移计算公式
yluo@
KP
MMP ds EI
AyC EI
§6 超静定结构位移计算
例6.1 求图示结构B支座的转角。
解:(1)建立两种状态。
(2)作出两种状态的弯矩图
(2)选取图示基本结构
(3)建立基本方程
2111XX11
12 22
X2 X2
1c 2c
0 0
基本结构 (基本体系)
(4)求系数与自由项
11 l3 /12EI
22 l / EI
1c l/2 yluo@
12 0 2c
(5)解方程 X1 6EI / l2 X2 EI / l
yluo@
二、支座移动时超静定结构受力分析
1.用力法分析超静定结构受支座移动影响, 其原理、方法与受荷载作用下完全相同。
⑴ 力法基本结构与荷载作用下相同; ⑵ 建立方程的条件:位移协调。即
基本结构的位移=原结构的位移 注意:等式右边不一定为0。 ⑶ 基本结构上的位移为多余未知力X引起的 位移和支座移动引起的位移之和。
yluo@
§6 超静定结构位移计算 一、静定结构位移计算回顾 二、超静定结构位移计算 三、虚拟状态的选取 四、例题
yluo@
§6 超静定结构位移计算
一、静定结构的位移计算
1.位移计算原理 变形体虚功原理。
2.位移计算步骤
⑴建立实际位移状态和虚拟力状态。 ⑵作出两种状态的内力图。
Structural Mechanics
西南交通大学 土木工程学院
yluo@

朱慈勉结构力学力法

朱慈勉结构力学力法

6.46 EA
kN
(
)
2 5 m 1 15
2 5 m 1 15
C2E 4.A 23kNm
θD
6.46kN EA
1 m 1 1 m 1 35 35
例6-12 求图示组合结构C点的竖向位移ΔC和AD与BD杆间的相对转角
ΔθD。忽略受弯杆的轴向变形。 已知AD和BD杆:EA EI m2
2次超静定
9
选取基本结构为切断竖杆:
X 1h
t0
1 EA
1 kl
§6-7超静定结构的位移计算
F E N F N d A s k 0 F G Q F Q d A s M E M d I s F R c
1)载作用下的位移计算
F N F Nd P s EA
k 0F G Q F Qd P A s
M M P ds EI
求超静定结构因温度改变、支座移动产生的位移时, 若选原结构建立虚拟力状态,计算将会更简单。
EI, l,t0 ,Δt

M、Q、N
EMIht、ENAt0、G kQA
P=1

T 2 1 1 R *c W 21
c M * E M I h t d s N * E N A t0 d s Q * G kd Q
2次超静定
9
解:⑴ 确定超静定次数;
⑵ 用力法求解, 并作M图和FN图; ⑶ 选取基本结构为铰结体系求位移;
⑷ 求AD杆与BD间的相对转角:
⑸ 施加单位荷载并求各杆轴力:
D
FN1FN l EA
1 m 1
35m 25m 1 1 .8 9 k N 1 .3 4 k N 3 5
E A 1 5
1 m 1 35
b h

结构力学第六章 力法

结构力学第六章 力法
34
四、n次超静定结构的力法典型方程
i1X1 i2 X 2 in X n iP 0(i 1、2、、n)
符号意义同前。 求解内力(作内力图)的公式:
M M1X1 M2X2 Mn Xn M P
FQ FQ1X1 FQ2 X2 FQn Xn FQP
FN FN1 X1 FN 2 X 2 FNn X n FNP 作内力图可以延用第三章的作法:由M→FQ→FN。
通常做法:拆除原结构的所有多余约束,代之 以多余力X,而得到静定结构。
规则: 1)去掉或切断一根链杆,相当于去掉一个约束; 2)去掉一个简单铰,相当于去掉两个约束; 3)去掉一个固定支座或切断一根梁式杆,相当于去 掉三个约束; 4)在梁式杆上加一个简单铰,相当于去掉一个约束。
10
例: a)
X1
X2
37
2、列 力法方程
1211XX11
12 X 2 22 X 2
1P 2P
0 0
(B 0) (C 0)
讨论方程和系数的物理意义。
q
A
D
Δ1P B
C
A
X1=1
δ11 δ21
D
B
C
A
δ12
X2=1 δ22
D
B C
38
位移方程(力法方程)
ΔφB=0 ——B左右截面相对转角等于零。 ΔφC=0 —— C左右截面相对转角等于零。
d)
原结构
X2
X1
X1
X2
n=2
13
e)
原结构
X1 X1 n=1
f)
原结构
n=3
X1
X3
X2
特别注意:不要把原结
构拆成几何可变体系。此

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件
根据对称结构的受力特征,在对称或反对称荷载作用下,可以取半结构 计算,另外半结构的内力可通过对称或反对称镜像得到。
半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11

144 EI
,
1 p

1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向

13X 3 23X 3

1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0

结构力学课后答案-第6章--力法

结构力学课后答案-第6章--力法

习题6-1试确定图示结构的超静定次数。

(a)(b)(c)(d)(e)(f)(g)所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定II去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定I II 刚片I与大地组成静定结构,刚片II只需通过一根链杆和一个铰与I连接即可,故为4次超静定(h)6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?6-3试用力法计算图示超静定梁,并绘出M 、F Q 图。

(a)解:上图=l1M pM 01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EI l F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61F PA2l 3l 3B2EIEIC题目有错误,为可变体系。

+pF p lF 32X 1=1M 图p Q X Q Q +=11p F 21⊕p F 21(b)解:基本结构为:l1M 3l l2M l F p 21pM l F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδp M X M X M M ++=2211pQ X Q X Q Q ++=22116-4试用力法计算图示结构,并绘其内力图。

(a)l2l 2l2lABCD EI =常数F Pl 2E FQ 图F PX 1X 2F P解:基本结构为:1M pM 01111=∆+p X δpM X M M +=11(b)解:基本结构为:EI=常数qACEDB4a 2a4a4a20kN/m3m6m6mAEI 1.75EIB CD 20kN/mX 1166810810计算1M ,由对称性知,可考虑半结构。

结构力学——力法

结构力学——力法
X1 = 9ql / 20, X 2 = 3ql / 40
X1 X2
ql 2 / 40 M
∆1 = 0 ∆ 2 = 0 δ11 ⋅ X1 + δ12 ⋅ X2 + ∆1P = 0 δ21 ⋅ X1 +δ22 ⋅ X2 + ∆2P = 0
q
X1 = −3ql / 20, X 2 = −ql 2 / 40
将未知问题转化为 已知问题, 已知问题,通过消除已 知问题和原问题的差别, 知问题和原问题的差别, 使未知问题得以解决。 使未知问题得以解决。 这是科学研究的 基本方法之一。 基本方法之一。
二.力法的基本体系与基本未知量 力法的基本体系与基本未知量 超静定次数: 超静定次数: 多余约束个数.
若一个结构有N个多余约束,则称其为N次超静定结构. . 几次超静定结构? 几次超静定结构
X
= 3 ql / 8 ( ↑ )
⋅ X
+ M
P
ql
2
/ 2
l
MP
M1
力法步骤: 力法步骤: 1.确定基本体系 4.求出系数和自由项 确定基本体系 求出系数和自由项 2.写出位移条件 力法方程 写出位移条件,力法方程 5.解力法方程 写出位移条件 解力法方程 3.作单位弯矩图 荷载弯矩图 6.叠加法作弯矩图 作单位弯矩图,荷载弯矩图 作单位弯矩图 荷载弯矩图; 叠加法作弯矩图 练习 P EI l EI l 作弯矩图. 作弯矩图
M1
3 Pl 8 5 Pl 8
=0 δ 11 = 4l / 3EI ∆1P = − Pl 3 / 2 EI
X 1 = 3 P / 8(↑)
M = M1 ⋅ X 1 + M P
P
MP

结构力学第六章力法

结构力学第六章力法

弯矩图可按悬臂梁画出
M X1 M 1 M P
§6-4 力法计算超静定桁架和组合结构
一 超静定桁架
F Ni l ii EA F N i F N jl ij EA F N i FN P l iP EA
2
桁架各杆只产生轴力,系数
典型方程: 11 X 1 1P 0
9 17 FP , X 2 FP 80 40
叠加原理求弯矩: M X 1 M 1 X 2 M 2 M P
3FPL/40 3FPL/40
FP 9FP/80
23FP/40 FNDC
FQDC 3FPL/80 FQBD
FQCD FNDA
FQBD=-9FP/80
FNBD=-23FP/40
FQDC=3FP/40+FP/2=23FP/40
2 P 3P 0
11 X 1 1P 0 22 X 2 23 X 3 0 X X 0 33 3 32 2
11 X 1 1P 0 X 2 X 3 0
反对称荷载作用下, 沿对称轴截面上正对称内力为0 例: FP FP/2 FP/2 FP/2
1)一般任意荷载作用下
11 X 1 12 X 2 13 X 3 1P 0 21 X 1 22 X 2 23 X 3 2 P 0 X X X 0 33 3 3P 31 1 32 2
11 X 1 1P 0 22 X 2 23 X 3 2 P 0 X X 0 33 3 3P 32 2
M FN
超静定结构的内力分布与梁式杆和二力杆的相对刚度有关。 链杆EA大,M图接近与连续梁,链杆EA小,M图接近与简支梁。 例: 中间支杆的刚度系数为k,求结点B的竖向位移?EI=C

结构力学--力法 ppt课件

结构力学--力法 ppt课件

1 EI
l2
2
2l 3
3lE3I
3 ql 8
X
1
3 8
ql
14
2. 力法求解的基本步骤 ① 选取基本未知量 ② 建立力法基本方程
③ 求解系数δ11和自由项△1P
④ 解方程,求基本未知量 ⑤ 作内力图
15
3. 思考与练习
q
MA
F xA
A
B
F yA
F yB
选择不同的多余约束力作为基本未知量,
力法的基本体系?
第6章 力 法
1
目录
§6-1 超静定结构和超静定次数 §6-2 力法的基本概念 §6-3 力法解超静定刚架和排架 §6-4 力法解超静定桁架和组合结构 §6-5 力法解对称结构 §6-6 力法解两铰拱 §6-7 力法解无铰拱 §6-8 支座移动和温度改变时的力法分析 §6-9 超静定结构位移的计算 §6-10 超静定结构计算的校核 §6-11 用求解器进行力法计算 §6-12 小结
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数 学体系的建构,由微单元体(高等数学中的微分体)入手分析,简化 模型通常是无骨架的连续介质,其力法基本未知量一般是“应力”, 方程形式通常是微分方程。
➢如果一个问题中既有力的未知量,也有位移的未知量,力的部分考虑 位移约束和变形协调,位移的部分考虑力的平衡,这样一种分析方案 称为混合法。
Strucural Analysis

结构力学第6章力法

结构力学第6章力法

结构力学第6章力法力法(也叫统一力法)是一种简化结构分析和计算的方法,通过将结构的内力和力的作用点集中在一些特定的位置,从而简化结构计算的复杂性。

力法在结构力学中有很广泛的应用,特别是在求解复杂结构的内力分布和变形方程时非常有用。

力法的基本原理是将结构的内力分布看作是由一系列基本力的叠加形成的。

这些基本力包括拉力、压力、剪力和弯矩等。

通过对这些基本力的作用点和大小进行合理的选取,可以将结构的内力分布近似为一个简单的形式,从而方便地进行计算。

力法的具体步骤如下:1.选择合适的基本力系统:根据结构的受力情况,选择适合的基本力系统,一般包括平行力、共点力、算术力和等效力等。

2.确定基本力的作用点和大小:通过结构的受力平衡条件和变形方程,确定基本力的作用点和大小,一般可以通过静力平衡方程或者变形方程进行计算。

3.将基本力作用在结构上:将确定的基本力作用在结构上,这些基本力可以是集中力也可以是分布力,根据具体情况进行选择。

4.分析结构的受力和变形:应用力学的基本原理和公式,分析结构的受力和变形情况,求解结构的内力和位移等参数。

5.进行计算和分析:根据步骤4中得到的结果,进行计算和分析,比较计算结果与实际情况的差异,进行调整和修正。

力法的优点是计算简单、直观,尤其适用于计算结构的内力和变形情况;缺点是只能得到局部的内力情况,无法得到整体的受力情况。

在结构力学中,力法的应用非常广泛。

例如,可以利用力法求解悬臂梁的内力分布和变形情况,以及桁架和刚架的受力情况等。

同时,力法还可以用于计算复杂结构的等效荷载,简化结构的计算过程。

总结起来,力法是一种通过将结构的内力和力的作用点集中在一些特定的位置,从而简化结构计算的方法。

通过选择合适的基本力系统,确定基本力的作用点和大小,将基本力作用在结构上,进行受力和变形分析,最终得到结构的内力和变形情况。

力法在结构力学中有很广泛的应用,对于求解复杂结构的内力分布和变形方程非常有用。

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第六章【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第六章【圣才出品】

3.力法典型方程
从一次超静定结构的力法分析到二次超静定结构的力法分析,可以发现一定的规律,那
么具有 n 次超静定结构的力法典型方程归纳如下:
11X1 12 X 2 1n X n 1P 0
21 X1
22 X 2 2n X n
2P
0
n1X1 n2 X 2 nn X n nP 0

表 6-1-5 力法解超静定桁架和组合结构
7 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
8 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台

五、力法解对称结构(表 6-1-6) 表 6-1-6 力法解对称结构

七、超静定结构位移的计算(见表 6-1-8) 表 6-1-8 超静定结构位移的计算
14 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台

八、超静定结构计算的校核(表 6-1-9)
表 6-1-9 超静定结构计算的校核
6.2 课后习题详解 6-1 试确定下列图 6-2-1 所示结构的超静定次数。
16 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 6-2-2 6-2 试用力法计算下列图 6-2-3 所示结构,作 M、FQ 图。除图 6-2-3(b)为变截面 外,其余各图 EI=常数。
17 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
15 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 6-2-1 解:(a)如图 6-2-2(a)所示,铰结点左右两段分别去掉 1 根单链杆,超静定次数为 2; (b)如图 6-2-2(b)所示,每个正方形内去掉 1 根斜杆,两个单链支座任意去掉其 中 1 个,共计 7 根单链杆,超静定次数为 7; (c)如图 6-2-2(c)所示,去掉 1 根链杆和 1 个铰支,超静定次数为 3; (d)如图 6-2-2(d)所示,去掉 3 根链杆,超静定次数为 3; (e)如图 6-2-2(e)所示,去掉 2 个铰支,超静定次数为 4; (f)如图 6-2-2(f)所示,去掉 2 根链杆,超静定次数为 2; (g)如图 6-2-2(g)所示,去掉 2 个铰支和切断 1 根杆,超静定次数为 7; (h)如图 6-2-2(h)所示,去掉 4 个链杆和切断位于中间区间的 2 根杆,超静定次 数为 10;

龙驭球《结构力学》(第2版)笔记和课后习题(含考研真题)详解-第六章至第七章(圣才出品)

龙驭球《结构力学》(第2版)笔记和课后习题(含考研真题)详解-第六章至第七章(圣才出品)

式中 ij 、 ip 分别表示 j 方向的单位力或荷载单独作用下,基本体系沿 i 方向的相应位
移(见图 6-7abc)
图 6-7
求解方程(6-2)中 X 1, X 2 即可得出结构的内力图。
(2)多次超静定 根据二次超静定结构的计算方法,可以推论出:n 次超静定结构,就有 n 个力法方程, 求解即可得到 n 个基本未知量,从而计算出最终的内力图。
1 / 141
圣才电子书

二、力法的基本概念
十万种考研考证电子书、题库视频学习平台
1.基本思路
将超定结构的计算转化为静定结构的计算。
力法中三个基本概念是解题的关键。
(1)力法的基本未知量
如图 6-1 中,所示,把 B 点看成多余约束,用未知力代替多余约束,只要计算出多余
圣才电子书 十万种考研考证电子书、题库视频学习平台

①选取基本体系(去掉结构的多余约束得到静定的基本结构,并用多余未知力代替相应 的多余约束);
②列出力法方程(根据基本结构在多余未知力和荷载共同作用下,沿多余未知力方向的 位移应与结构在荷载作用下的位移相协调,从而建立力法方程);
③求系数和自由项(作出基本结构的单位力图和荷载内力图,用图乘法,计算系数和自 由项);
④求多余未知力(将计算结果代入力法方程中,从而求得多余未知力); ⑤作内力图(求出多余未知力后,根据平衡条件绘出原结构的内力图)。 (2)力法最大的一个优点是它的物理概念非常明确,容易理解,而且适用于各种结构, 通用性很大。对于超静定次数较少的结构,用力法来求解是很方便的;但如果超静定次数多, 用力法求解时,计算工作量就会很大,此时宜采用其它更为合适的计算方法,比如:位移法, 下章会详细介绍。 (3)力法的典型方程表示结构的变形协调条件,它的形式很有规则,不论结构的形式 如何,荷载或其它外来因素如何,典型方程的形式总是不变的。不过对不同类型的结构,如 刚架、桁架、拱等,在计算位移时会有所不同。

结构力学(龙驭球)第6章_力法

结构力学(龙驭球)第6章_力法

C
B 8 kN m
X3
B X1 X2
A
A
精品课件
24
例6-1:试作图示结构的内力图。I1:I2=2:1
1 1 M E 1M I1d s2 8 E 8 I m 131 4 E 4 I m 235 7 E 6 I m 13
1PM E 1M IPds5120 E kIN 1.m 2 精品课件 25
80 X1 = 9 kN
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数 学体系的建构,由微单元体(高等数学中的微分体)入手分析,简化 模型通常是无骨架的连续介质,其力法基本未知量一般是“应力”, 方程形式通常是微分方程。
矩明显增大。
精品课梁件 最大弯矩可进一步减小。
37
§6-5 力法解对称结构 内容回顾
n次超静定结构的力法典型方程:
11X1 12X2 21X1 22X2
n1X1 n2X2
1nXn 1P 0
2nXn
2P
0
nnXn nP 0
精品课件
38
§6-5 力法解对称结构
1. 结构的对称性: 例1:
1. 结构的几何形式和支承情况对某轴对称 2. 杆件的截面和材料性质也对此轴对称(EI等)
➢如果一个问题中既有力的未知量,也有位移的未知量,力的部分考虑
位移约束和变形协调,位移的部分考虑力的平衡,这样一种分析方案
称为混合法。

结构力学 力法

结构力学 力法
11
§6-2 力法基本原理
说明: ii 0 主系数, ij ji 副系数,可正、可负、可零。
iP 自由项,可正、可负、可零。
ii
s
M
2
i ds,
EI
ij
ji
s
MiM EI
j
ds, iP
MiM P ds s EI
X1, X2
进一步说明:
M X1M1 X 2M 2 M P
二、超静定排架
单跨排架 排架
双跨排架
例: 求作图示排架弯矩图。
EA→ ∞
EA→ ∞
EA→ ∞
E1I1
E1I1
E2I2
E2I2
EI
EI
EI
5kN/m 6m 2m
原结构
18
§6-3 超静定刚架和排架
解: ⑴选取基本体系确定基本未知量
⑵建立力法方程
11X1 12 X 2 1P 0
21X1 22 X 2 2P 0
⑴力法求解超静定结构,可以选取多种不同形式的基本结构,无论选取那种
形式的基本结构,也无论是哪种类型的超静定结构,只要超静定次数相同其
力法方程的形式就相同,(不包括含有弹性支承及支移的超静定结构)但力
法方程及方程中的系数和自由项的力学意义不同。
⑵基本结构的合理选取
(a)基本结构必须是几何不变的静定结构。
810 EI
,2P
0
5kN/m
90kN.m
M2图
8
8
MP图
19
§6-3 超静定刚架和排架
⑸解方程
144 EI
X1
108 EI
X2
810 EI
0
108 EI

龙驭球《结构力学Ⅰ》笔记和课后习题(含考研真题)详解(力 法)【圣才出品】

龙驭球《结构力学Ⅰ》笔记和课后习题(含考研真题)详解(力 法)【圣才出品】

第6章力法6.1 复习笔记一、超静定次数的确定——力法的前期工作1.超静定结构的静力平衡特征和几何构造特征(1)静力平衡特征一个结构,如果它的支座反力和各截面的内力不能完全由静力平衡条件唯一地加以确定,就称为超静定结构。

(2)几何构造特征超静定结构是有多余约束的几何不变体系。

2.超静定次数的确定(1)从几何构造看,超静定次数=多余约束的个数。

(2)从静力分析看,超静定次数=未知力个数-平衡方程的个数。

(3)求超静定次数时,应注意以下事项:①撤去一根支杆或切断一根链杆,等于拆掉一个约束;②撤去一个铰支座或撤去一个单铰,等于拆掉两个约束;③撤去一个固定端或切断一个梁式杆,等于拆掉三个约束;④在连续杆中加入一个单铰,等于拆掉一个约束;⑤不要把必要约束拆掉;⑥要把全部多余约束都拆除。

二、力法的基本概念1.力法的基本未知量、基本体系和基本方程 (1)力法的基本未知量把多余未知力的计算问题当作超静定问题的关键问题,把多余未知力当作处于关键地位的未知力——称为力法的基本未知量。

(2)力法的基本体系和基本结构①含有多余未知力的静定结构,称为力法的“基本体系”; ②去掉多余约束力和荷载后的静定结构,称为力法的“基本结构”。

(3)力法的基本方程11δ——基本结构在单位未知力单独作用下沿1X 方向的位移;1X ——未知力;1P ∆——基本结构在荷载单独作用下沿1X 方向的位移。

2.多次超静定结构的计算 (1)二次超静定结构①图6-1-1(a )为二次超静定结构,取B 点两个支杆为多余约束,用X 1、X 2作为基本未知量代替,则基本体系如图6-1-1(b )所示。

图6-1-1②二次超静定结构的力法基本方程(2)多次超静定——力法典型方程——由荷载产生的沿方向的位移;——由单位力产生的沿方向的位移,常称为柔度系数。

在得到多余未知力的数值之后,超静定结构的内力可根据平衡条件求出,或者根据叠加原理用下式计算三、力法解超静定刚架和排架1.刚架的解法步骤(1)选取基本体系;(2)列出力法方程;(3)求系数和自由项;(4)求多余未知力;(5)作内力图。

《结构力学力法》课件

《结构力学力法》课件
解题步骤
力法的解题步骤包括构建基本体系、选择基本未知量、建 立线性方程组和求解线性方程组等。
力法的应用范围
静定结构和超静定结构的分析
01
力法可以用于分析静定结构和超静定结构的内力和位移,特别
是对于超静定结构的分析具有重要意义。
复杂结构的分析
02
对于复杂结构,如组合结构、多跨连续结构和空间结构等,力
法同样适用,能够提供有效的解决方案。
边界条件和支座反力的处理
03
力法能够方便地处理结构的边界条件和支座反力,使得问题得
到完整的解决。
力法的解题步骤
构建基本体系
首先需要将原结构拆分成若干个基本体系,以便 于应用力法公式。
建立线性方程组
根据力的平衡和变形协调条件,建立线性方程组 ,并求解该方程组以得到位移和内力。
《结构力学力法》ppt课件
目录
• 引言 • 力法的基本原理 • 力法的实际应用 • 力法的扩展知识 • 总结与展望
01
引言
结构力学的重要性
1
结构力学是土木工程学科中的重要分支,是研究 结构在各种力和力矩作用下的响应和行为的学科 。
2
结构力学对于工程结构的稳定性、安全性和经济 性具有重要意义,是工程设计和施工的基础。
缺点总结
力法需要预先设定结构的初始应力状态,有时难以确定。 力法对于非线性问题的处理能力有限,对于高度非线性结构可能需要
采用其他方法。 力法在处理复杂边界条件和连接时可能存在困难,需要特别注意。
力法在未来的应用前景
随着科技的不断进步和应 用需求的不断提高,力法 在未来的应用前景广阔。
随着新材料和新结构的出 现,力法将面临更多的挑 战和机遇。
力法的计算机实现

结构力学[第六章位移法和力矩分配法]课程复习

结构力学[第六章位移法和力矩分配法]课程复习

第六章位移法和力矩分配法一、基本内容及学习要求本章内容包括:位移法的基本概念,位移法基本未知量的确定,位移法的计算步骤和示例,位移法的典型方程,力矩分配法的基本概念,力矩分配法计算连续梁和无结点线位移刚架,超静定结构的受力分析和变形特点等。

重点是位移法的基本原理及用位移法计算刚架,力矩分配法的基本原理和计算方法。

位移法是解算超静定结构的基本方法之一,力矩分配法是由位移法演变出来的常用渐进解法。

通过本章学习应达到:(1)掌握位移法的基本原理,准确判定位移法的基本未知量。

(2)灵活应用等截面单跨超静定梁的转角位移方程[教材式(5—3)~(5—6)]或表5—1,确定各种外因影响下的杆端弯矩和杆端剪力。

(3)熟练掌握位移法计算超静定梁和刚架的方法及步骤。

对照力法典型方程,加深对位移法典型方程的理解。

(4)掌握力矩分配法的计算原理和步骤,会计算连续梁和无结点线位移刚架。

(5)初步了解超静定结构的受力特点和变形性能。

根据不同结构选择合理的计算方法。

二、学习指导(一)位移法的解题思路§6—l以两跨连续梁为例说明了位移法的解题思路:(1)把超静定结构转化为由单跨超静定梁构成的组合体,用后者代替前者计算。

(2)利用单跨梁已知的转角位移方程,应用变形协调条件,建立结点位移与单跨梁杆端内力问的关系。

(3)根据组合体与原结构受力一致应满足的平衡条件,建立以结点位移为基本未知量的位移法方程。

(4)解方程求出结点位移,进而计算单跨梁的杆端内力。

教材§6—3以示例阐明了位移法的计算步骤和实际应用。

此外,教材§6—4介绍了建立位移法方程的另一途径,即首先选取基本结构,然后根据基本结构受力和变形应与原结构一致的条件建立位移法典型方程,求出其系数和自由项,同样解方程求得结点位移并绘出最后弯矩图。

其实,两种方式本质完全相同,只是建立方程的途径不同而已。

针对图6.1 a所示刚架的计算过程,可做如下扼要对比(表6.1)。

结构力学 力法讲解

结构力学 力法讲解
第六章 力 法
§6-1 超静定结构的组成和超静定次数 §6-2 力法基本原理 §6-3 超静定刚架和排架 §6-4 超静定桁架和组合结构 §6-5 对称结构的利用 §6-8 支座移动温度变化时超静定结构的计算 §6-9 超静定结构的位移计算 §6-10 超静定结构计算的校核
1
§6-1 超静定结构的组成和超静定次数
B Δ1P
Δ2P
11
§6-2 力法基本原理
说明: ii 0 主系数, ij ji 副系数,可正、可负、可零。
iP 自由项,可正、可负、可零。
ii
s
M
2
i ds,
EI

ij
ji

s
MiM EI
j
ds, iP

原结构
n=2
X2 X1
基本结构
X2
基本结构
X1
4
§6-1 超静定结构的组成和超静定次数
X2 X1
X1 X2
n=2
原结构
基本结构
方法:③去掉一个固定支座或切开一个单刚结点,相当于去掉三个约束或联系;
X3
原结构
n=3
X3
X1
基本结构(1) X2
X1
X1
X2
基本结构(2)
5
§6-1 超静定结构的组成和超静定次数
方法:④将单刚结点改成单铰联接,相当于去掉一个转动约束或联系;
原结构
原结构 n=3
X1
X3
X2
X3
X1
X2
基本结构(3)
不要把原结构拆成几何 可变体系。此外,要把 超静定结构的多余约束 全部拆除。
说明:⑴同一超静定结构去掉多余约束的方法很多,相 应的得到的静定基本结构的形式很多,但必须是几何 不变结构。 ⑵力法求解超静定结构的顺序 ①先用变形连续或位移边界条件建立补充方程求解 多余力。②再用平衡方程求其它反力、内力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、 超静定次数的确定
超静定结构中的多余约束数目称为超静定次数
从几何特征来看,从原结构中去掉n个约束,结构就成 为静定的,则原结构即为n次超静定,因此
超静定次数 = 多余约束的个数
(1)
即: 把原结构变成静定结构时所需撤除的约束个数。
从静力特征来看,超静定次数等于根据平衡方程计算未 知力时所缺少的方程的个数,因此
=3×5-5=10
例1:
(b) (a)
框格数k = 2 单铰数h = 2
n = 3×2-2 = 4
框格数k = 4 单铰数h = 6
n = 3×4-6 = 6
框格数k = 7 单铰数h = 0
n = 3×7-0 = 21
框格数k = 5 单铰数h = 7
n = 3×5-7 = 8
七、力法的基本结构
超静定次数 = 多余未知力的个数 = 未知力个数 - 平衡方程的个数 (2)
由(1)式确定结构的超静定次数 ,为“解除多余约束 法”。 即: 在超静定结构上去除多余约束,使它成为几何不 变的静定结构,而所去除的多余约束的数目,就是原结 构的超静定次数。
六、解除多余约束的方法
断一根链杆、去掉一个支杆、将一刚接处改为单铰联 接、将一固定端改为固定铰支座,相当于去掉一个约束。
本章内容
概述 力法的基本结构 力法的基本原理与典型方程 超静定结构在荷载作用下的计算 对称性利用 超静定结构的位移计算 超静定结构在温度变化影响下的计算 超静定结构在支座位移影响下的计算
6.1 概述
一.超静定结构的静力特征和几何特征
几何特征:有多余约束的几何不变体系。 静力特征:仅由静力平衡方程不能求出
1)梁
2)拱 3)桁架
4)刚架
5)组合结构
四.超静定结构的计算方法 1.力法----以多余约束力作为基本未知量。
2.位移法----以结点位移作为基本未知量. 3.混合法----以结点位移和多余约束力作为
基本未知量.
4.力矩分配法----近似计算方法. 5.矩阵位移法----结构矩阵分析法之一.
所有内力和反力.
内力是超静定的,约束有多余的,这就是超静定 结构区别于静定结构的基本特征。
二.超静定结构的性质 1.内力与材料的物理性质、截面的几何形状和尺寸有关。
2.温度变化、支座移动一般会产生内力。
与静定结构相比, 超静定结构的优点为: 1.内力分布均匀 2.抵抗破坏的能力强
三.超静定结构的类型
M 1M 1 dx EI
X1=1
l求矩X图=1,方E1与I向上位l22图移23相l的同虚= 3,拟lE3略单I 去位P=。弯1

δ11
+
×X1 X1=1
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
ql2/2 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
MP
D1P =
M 1M P dx EI
Δ1P
Δ1=δ11X1 + Δ1P=求:
熟练掌握力法基本结构的确定、力法
方程的建立及其物理意义、力法方程中的 系数和自由项的物理意义及其计算。
掌握力法解刚架、排架和桁架,了解 用力法计算其它结构的计算特点,会利用
对称性,掌握半结构的取法
了解超静定结构的位移计算及力法计
算结果的校核,其它因素下的超静定结构 计算。
力法的基本结构:解除超静定结构中的全部多余约束, 得到的静定的几何不变体系。
几点注意:
• 一结构的超静定次数是确定不变的,但去掉多余 约束的方式是多种多样的。
• 在确定超静定次数时,要将内外多余约束全部去 掉。
• 在支座解除一个约束,用一个相应的约束反力来 代替,在结构内部解除约束,用作用力和反作用 力一对力来代替。
X1
X2
X1
X2
X3
X1
X2
撤一个单铰、去掉一个固定铰支座、去掉一个定向支座,
相当于去掉两个约束。
X3
X4
X2
X1
X1
X2
断一根弯杆、去掉一个固定端,去掉三个约束。X1 X3 X1
X2 X3
每个无铰封闭框都有三次超静定 X1 X2
超静定次数=3 × 封闭框数 超静定次数=3×封闭框数-单铰数目
=3×5=15
= X1=-Δ1P / δ11 3ql/8
ql2/8
=或 - E1I M 13按 q= 2l 2M l X 3: 1 4l =M - 8P qEl 4I叠加M图↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
3ql/8
d d 二、iq= i 力法↓M ↓E ↓↓的i ↓2 ↓↓d ↓典 I 型0 s , 方i程= k M ↓↓E ↓i↓M ↓↓↓k ↓ d I B = 0 0 0 s ,D i P = M δE i 1M 1 P d I = δ210 0 0 系数主与系外数因恒无B为关正,,与付基=系本数体Δ基Δ、系BB本VH自的体==ΔΔ系由选21=项取=00X可有2 正关δ1X2=可,1 负自可由为项×零与X1。外+主因系有X数关1=、。1 付
• 只能去掉多余约束,不能去掉必要的约束,不能 将原结构变成瞬变体系或可变体系。
6.2 力法的基本概念
一.力法的基本原理
力法的基本概念 1、超静定结构计算的总原则:
欲求超静定结构先取一个基 本体系,然后让基本体系在受 力方面和变形方面与原结构完 全一样。
力法的特点: 基本未知量——多余未知力; 基本体系——静定结构; 基本方程——位移条件
付系数δik表示基本体系由Xk=1产生的Xi方向上的位移 自由项ΔiP表示基本体系由荷载产生的Xi方向上的位移
n
n
M= MiXi MP FQ= FQiXi FQP
i=1
i=1
n
FN= FNiXi FNP i=1
A
δ22
↓↓↓↓↓↓↓↓
Δ1=Δ11+Δ12+Δ1P=0
Δ2P
δ11X1+ δ12X2+Δ1P=0
+ X2=1
δ21X1+ δ22X2 +Δ2P=0
×X2
Δ1P
含义:基本体系在多余未知力和荷载共同作用下,产生的多余未知
力方向上的位移应等于原结构相应的位移,实质上是位移条件。
主系数δii表示基本体系由Xi=1产生的Xi方向上的位移
(变形协调条件)。
Δ1=δ11X1 + Δ1P=0
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B

RB
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B 当ΔB=Δ1=0
X1 =><RB

δ11
+
×X1 X1=1
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
Δ1P
l,EI
ql2/8
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
M1
l d = 11
相关文档
最新文档