武汉大学计算机学院2016-2017数字信号处理试题(含答案)

合集下载

数字信号处理试卷及参考答案

数字信号处理试卷及参考答案

一、 填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是 ,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至 为线性卷积结果。

2. DFT 是利用nkN W 的 、 和 三个固有特性来实现FFT 快速运算的。

3. IIR 数字滤波器设计指标一般由 、 、 和 等四项组成。

4. FIR 数字滤波器有 和 两种设计方法,其结构有 、和 等多种结构。

二、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。

( )2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。

( )3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。

( )4. 冲激响应不变法不适于设计数字带阻滤波器。

( )5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。

( )6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。

( )7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。

( )8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。

( )三、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?四、 IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。

1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。

数字信号处理考试试题及答案

数字信号处理考试试题及答案

数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。

2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。

3、若有限长序列x(n)的长度为N,h(n )的长度为M ,则其卷积和的长度L 为 N+M—1。

4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率-离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样.6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x (n )一定绝对可和。

7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 。

8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。

9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高.10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器。

11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器.12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等。

14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法.15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。

二、选择题(20分,每空2分)1。

大学《数字信号处理》课程考试试卷(含答案)

大学《数字信号处理》课程考试试卷(含答案)

某大学《数字信号处理》课程考试试卷适应专业: 考试日期:考试时间:120分钟 考试形式:闭卷 试卷总分:100分 一、考虑下面4个8点序列,其中 0≤n ≤7,判断哪些序列的8点DFT 是实数,那些序列的8点DFT 是虚数,说明理由。

(本题12分) (1) x 1[n ]={-1, -1, -1, 0, 0, 0, -1, -1}, (2) x 2[n ]={-1, -1, 0, 0, 0, 0, 1, 1}, (3) x 3[n ]={0, -1, -1, 0, 0, 0, 1, 1}, (4) x 4[n ]={0, -1, -1, 0, 0, 0, -1, -1},二、数字序列 x(n)如图所示. 画出下列每个序列时域序列:(本题10分) (1) x(n-2); (2)x(3-n);(3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);三、已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H 试确定该系统H(z)的收敛域和脉冲响应h[n]。

(本题10分) 四、设x(n)是一个10点的有限序列 x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(本题12分)(1) X(0), (2) X(5), (3) ∑=90)(k k X ,(4)∑=-95/2)(k k j k X e π五、x(n)和h(n)是如下给定的有限序列x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n);(2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?(14分)六、用窗函数设计FIR 滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。

数字信号处理试卷及答案

数字信号处理试卷及答案

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。

A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。

A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。

答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。

答案:DFT三、简答题1. 简述数字滤波器的基本原理。

答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。

它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。

2. 解释什么是窗函数,并说明其在信号处理中的作用。

答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。

在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。

四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。

答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。

2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。

答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。

答案:数字信号处理在现代通信系统中扮演着至关重要的角色。

数字信号处理的技术考试试卷(附答案)

数字信号处理的技术考试试卷(附答案)

数字信号处理的技术考试试卷(附答案)数字信号处理的技术考试试卷(附答案)选择题(10分)1. 数字信号处理是指将连续时间信号转换为离散时间信号,并利用数字计算机进行处理。

这种描述表明数字信号处理主要涉及哪两个领域?- [ ] A. 数学和物理- [ ] B. 物理和电子工程- [x] C. 信号处理和计算机科学- [ ] D. 电子工程和计算机科学2. 数字滤波是数字信号处理的重要内容,其主要作用是:- [ ] A. 改变信号的频率- [x] B. 改变信号的幅度响应- [ ] C. 改变信号的采样率- [ ] D. 改变信号的量化级别3. 在离散时间信号处理中,离散傅里叶变换(Discrete Fourier Transform, DFT)和快速傅里叶变换(Fast Fourier Transform, FFT)有何区别?- [ ] A. DFT和FFT是完全相同的概念- [x] B. DFT是FFT的一种特殊实现- [ ] C. FFT是DFT的一种特殊实现- [ ] D. DFT和FFT无法比较4. 信号的采样率决定了信号的带宽,下面哪个说法是正确的?- [ ] A. 采样率越高,信号带宽越小- [ ] B. 采样率越低,信号带宽越小- [x] C. 采样率越高,信号带宽越大- [ ] D. 采样率与信号带宽无关5. 数字信号处理常用的滤波器包括:- [x] A. 低通滤波器- [x] B. 高通滤波器- [x] C. 带通滤波器- [x] D. 带阻滤波器简答题(20分)1. 简述离散傅里叶变换(DFT)的定义和计算公式。

2. 什么是信号的量化?请说明量化的过程。

3. 简述数字信号处理的应用领域。

4. 请解释什么是数字滤波器的频率响应。

5. 快速傅里叶变换(FFT)和傅里叶级数的关系是什么?编程题(70分)请使用Python语言完成以下程序编写题。

1. 编写一个函数`calculate_average`,输入一个由整数组成的列表作为参数,函数应返回列表中所有整数的平均值。

数字信号处理及答案

数字信号处理及答案

《数字信号处理》考试试卷(附答案)一、填空(每空 2 分 共20分)1.连续时间信号与数字信号的区别是:连续时间信号时间上是连续的,除了在若干个不连续点外,在任何时刻都有定义,数字信号的自变量不能连续取值,仅在一些离散时刻有定义,并且幅值也离散化㈠。

2.因果系统的单位冲激响应h (n )应满足的条件是:h(n)=0,当n<0时㈡。

3.线性移不变系统的输出与该系统的单位冲激响应以及该系统的输入之间存在关系式为:()()*()()()m y n x n h n x m h n m ∞=-∞==-∑,其中x(n)为系统的输入,y(n)为系统的输出,h(n)w 为系统的单位冲激响应。

㈢。

4.若离散信号x (n )和h (n )的长度分别为L 、M ,那么用圆周卷积)()()(n h n x n y N O=代替线性卷积)()(n x n y l =*h (n)的条件是:1N L M ≥+-㈣。

5.如果用采样频率f s = 1000 Hz 对模拟信号x a (t ) 进行采样,那么相应的折叠频率应为 500 Hz ㈤,奈奎斯特率(Nyquist )为1000Hz ㈥。

6.N 点FFT 所需乘法(复数乘法)次数为2N ㈦。

7.最小相位延迟系统的逆系统一定是最小相位延迟系统㈧。

8.一般来说,傅立叶变换具有4形式㈨。

9.FIR 线性相位滤波器有4 种类型㈩。

二、叙述题(每小题 10 分 共30分) 1.简述FIR 滤波器的窗函数设计步骤。

答:(1)根据实际问题所提出的要求来确定频率响应函数()j d H e ω;(2.5分)(2)利用公式1()()2j j d d h n H e e d πωωπωπ-=⎰来求取()d h n ; (2.5分)(3)根据过渡带宽及阻带最小衰减的要求,查表选定窗的形状及N 的大小;(2.5分)(4)计算()()(),0,1,...1d h n h n w n n N ==-,便得到所要设计的FRI 滤波器。

(完整)数字信号处理试卷及答案,推荐文档

(完整)数字信号处理试卷及答案,推荐文档

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理试卷及答案

数字信号处理试卷及答案

数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。

–[ ] B. 采样频率必须是信号最高频率的两倍。

–[ ] C. 采样频率必须是信号最高频率的四倍。

–[ ] D. 采样频率必须大于信号最高频率的两倍。

2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。

–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。

–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。

–[ ] D. DFT和DTFT是完全相同的。

3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。

–[ ] B. 抽样频率必须是信号最高频率的两倍。

–[ ] C. 抽样频率必须是信号最高频率的四倍。

–[ ] D. 信号频率必须是抽样频率的两倍。

5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。

–[ ] B. 具有无限阶。

–[ ] C. 比其他类型的滤波器更加陡峭。

–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。

…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。

2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。

{精品}数字信号处理习题集(附答案)

{精品}数字信号处理习题集(附答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a )如果kHz Trad n h 101,8)(截止于,求整个系统的截止频率。

(b )对于kHzT201,重复(a )的计算。

采样(T )nh nx tx ny D/A理想低通T cty 解(a )因为当0)(8je H rad 时,在数—模变换中)(1)(1)(Tj X T j X Te Y a a j所以)(n h 得截止频率8c对应于模拟信号的角频率c为8T c因此HzTf cc6251612由于最后一级的低通滤波器的截止频率为T,因此对T8没有影响,故整个系统的截止频率由)(je H 决定,是625Hz 。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题(每题2分,共20分)1. 数字信号处理中,离散时间信号的数学表示通常采用______。

A. 连续时间函数B. 离散时间序列C. 连续时间序列D. 离散时间函数答案:B2. 在数字信号处理中,采样定理是由谁提出的?A. 傅里叶B. 拉普拉斯C. 香农D. 牛顿答案:C3. 下列哪一项不是数字滤波器的类型?A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 线性滤波器答案:D4. 数字信号处理中,傅里叶变换的离散形式称为______。

A. 傅里叶级数B. 傅里叶变换C. 离散傅里叶变换(DFT)D. 快速傅里叶变换(FFT)答案:C5. 在数字信号处理中,频域分析通常使用______。

A. 时域信号B. 频域信号C. 频谱D. 波形答案:C二、填空题(每题2分,共20分)1. 数字信号处理中,对连续信号进行采样后得到的信号称为______。

答案:离散时间信号2. 离散时间信号的傅里叶变换是______的推广。

答案:连续时间信号的傅里叶变换3. 数字滤波器的系数决定了滤波器的______特性。

答案:频率响应4. 在数字信号处理中,信号的采样频率必须大于信号最高频率的______倍。

答案:25. 快速傅里叶变换(FFT)是一种高效的算法,用于计算______。

答案:离散傅里叶变换(DFT)三、简答题(每题10分,共30分)1. 简述数字信号处理与模拟信号处理的主要区别。

答案:数字信号处理涉及离散时间信号,而模拟信号处理涉及连续时间信号。

数字信号处理使用数字计算机进行信号处理,模拟信号处理则使用模拟电路。

2. 解释什么是采样定理,并说明其重要性。

答案:采样定理指出,为了能够无失真地从其样本重构一个带限信号,采样频率必须大于信号最高频率的两倍。

这一定理的重要性在于它为信号的数字化提供了理论基础。

3. 描述离散傅里叶变换(DFT)与快速傅里叶变换(FFT)之间的关系。

答案:离散傅里叶变换是将时域信号转换到频域的数学工具,而快速傅里叶变换是一种高效计算DFT的算法。

数字信号处理试卷及详细答案(三套)要点

数字信号处理试卷及详细答案(三套)要点
用双线性变换法将一模拟滤波器映射为数字滤波器时模拟频率与数字频率之间的映射变换关系为7当线性相位fir数字滤波器满足偶对称条件时其单位冲激响应8请写出三种常用低通原型模拟滤波器巴特沃什滤波器一个信号序列如果能做序列的傅里叶变换dtft也就能对其做dft变换
数字信号处理试卷答案
完整版 一、填空题: (每空 1 分,共 18 分)
y (n) 3 y( n 1) 2 y(n 2) x(n) 2 x(n 1) 系统初始状态为 y( 1) 1, y( 2) 2 ,系统激励为 x(n) (3)n u(n) ,
(╳)
试求:( 1)系统函数 H ( z) ,系统频率响应 H (e j ) 。
( 2)系统的零输入响应 yzi (n) 、零状态响应 y zs (n) 和全响应 y( n) 。
3、 一个信号序列,如果能做序列的傅里叶变换(
DTFT ),也就能对其做 DFT 变换。(╳)
4、 用双线性变换法进行设计 IIR 数字滤波器时, 预畸并不能消除变换中产生的所有频率点的非
线性畸变。
(√)
5、 阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。 三、( 15 分)、已知某离散时间系统的差分方程为
2
2
y( k )
y zi ( k)
yzs ( k)
9 [
12(2 ) k
2
15 (3) k ] (k ) 2
四 、回答以下问题:
( 1) 画出按 时域抽取 N 4 点 基 2FFT 的信号流图。
( 2) 利用流图计算 4 点序列 x(n) (2,1,3,4) ( n 0,1,2,3)的 DFT 。
( 3) 试写出利用 FFT 计算 IFFT 的步骤。
1 2z 1

数字信号处理考试试卷(附答案)

数字信号处理考试试卷(附答案)

数字信号处理考试试卷(附答案)一、 填空题(每题2分,共10题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是时域离散信号,再进行幅度量化后就是数字信号。

2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为)]()([21)(*n x n x n x e -+=。

3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。

4、)()(5241n R x n R x ==,只有当循环卷积长度L 8≥时,二者的循环卷积等于线性卷计。

5、用来计算N =16点DFT ,直接计算需要_________(N 2 =16×16=256)次复乘法,采用基2FFT 算法,需要________(NN 2log 2=8×4=32)次复乘法,运算效率为___(NNNN N 222log 2log 2==32÷4=8) 6、FFT 利用(knN W 的对称性,周期性和特殊值减少乘法运算次数),(将较大N 点DFT 分解为若干小点DFT 的组合)来减少运算量 7、数字信号处理的三种基本运算是:(乘法,加法,单位延迟)8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性(关于πω=奇对称)相位有何特性?(A 类线性相位ωωωθ5.221)(-=--=N ) 9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 N 条反馈支路。

10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是11.0<ks e(取s T 1.0=)。

二、 选择题(每题3分,共6题)1、 )63()(π-=n j en x ,该序列是A 。

数字信号处理习题集(附答案)

数字信号处理习题集(附答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

《数字信号处理》习题及答案

《数字信号处理》习题及答案

《数字信号处理》习题及答案试题1一、境空题(本题满分30分,共含4道小堰,短空2分)1.两个有限长序列x:(n),04n433和Xz(n),04n436,做线性卷积后结果的长度是jp,若对这两个序列做64点圆周卷积,则圆周卷积结果中n江至生为线性卷积结果。

2. DFT是利用町:的对称性、可约性和周期性一三个固有特性来实现FFT快速运算的。

3. HR数字波波器设计指标一般由M、巴q、之和9」等四项组成。

(巴。

町33)4.FIR一字疹豉器有窗函数法和频率抽样设计法两种设计方法,茸结构有横截型(卷枳型/直接型)、级联型和频率抽样型(线性相位型)等多种结构。

二、判断题(本题满分16分,共含8道小踞,每小跪2分,正确打V,错误打x)1.相同的Z变换表达式一定对应相同的时间序列。

(X)2. Chirps变换的频率采样点数M可以不等于时域采样点数N。

(V)3.按频率抽取基2 FFT首先将序列x(n)分成奇数序列和偶数序列。

(X )4.冲激响应不变法不适于设计数字带阻波波器。

(J)5.双线性变换法的模拟角频率。

与数字角频率3成线性关系。

(X)6.巴特天思波波器的幅度特性必在一个频带中(通常或阻带)具有等波纹特性。

(X)7.只有FIR波波器才能做到线性相位,对于HR滤波器做不到线性相位。

(X)8.在只要求相同的幅频特性时,用IIR速波器实现其阶数一定低于FIR阶数。

(J)三、综合题若x(n)={3,2,1,2,1,2},0<n<5,1)求序列x(n)的 6 点DFT,X(k)=?2)若G(© =。

尸7{g(〃)]=开左),试确定6点序列g(n)二?3)若丫(n)=x(n)⑨x(n),求y(n)=?<丫伏)= £、(〃/『2分<-0=3 + 2冏 + W;k+ 2%” + 甲J + 2 甲产解:1) =3 + 2%*+犷;*+2%务-町以-2咛上2分= 3+4 cos—+2 cos-i^- + 2(-1)*3 3= [11,22-122] 0<*<5, 2 分, 5g(w) = ZD尸7P『丫(切=£ X3 严/讦广=£ X(kW^2)k2)“0 E= x(”2) = {32L2J02<n<lJ,G) = xS)*M〃) = -m) = {9,12,10,16,15,20,14,894,4}3)sy(ri)= 2>(m)x((” 泄))9&(3={13,16,10,1615,20,14,8,} 0<n<9习题2一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

数字信号处理试卷及答案

数字信号处理试卷及答案

A一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。

A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列B.右边序列C.左边序列D.双边序列 二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x(n)和y(n),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和 四种。

三、1)(-≤≥⎩⎨⎧-=n n b a n x nn求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。

数字信号处理试卷及详细答案(三套)要点

数字信号处理试卷及详细答案(三套)要点

数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。

2、 双边序列z 变换的收敛域形状为 圆环或空集 。

3、 某序列的DFT 表达式为∑-==10)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。

4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为2,2121-=-=z z ;系统的稳定性为 不稳定 。

系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。

5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。

6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。

用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2TΩ=ω。

7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。

8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。

二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。

武汉大学数字信号处理历年期末试卷

武汉大学数字信号处理历年期末试卷

6
h ( n ) (5 分),10 点圆周卷积
○ 和
y 10
(
n
)
x(n)
10
h ( n ) (5 分)。
答案: y[ n ] [ 0 ,1, 2 , 4 ,1,1, 3 ]
y [ n ] [ 3 , 1, 2 , 4 , 1, 1] 6
y [ n ] [ 0 , 1, 2 , 4 , 1, 1, 3, 0 , 0 , 0 ] 10
图1
二、LTI 系统(15 分)
k
试分别求出累加器 y[ k ] x[ n ] 和 M 点滑动平均系统 y[ k ]
1
M 1
x[ k n ] 的单位脉冲
n
M n 0
响应,并判断它们的稳定性和因果性。
三、DFT(15 分) (a)考虑一个长度为 N 的序列 x[ n ] ,x[ n ], 0 n N 1 ,其 N 点离散傅立叶变换为 X [ k ] ,
y[ n ] ( 0 .4 ) n u [ n ] 0 .3 ( 0 .4 ) n 1 u [ n 1]
(a) (b) (c) (d)
确定这个系统的传输函数。 确定描述这个系统的差分方程。 生成系统的直接型实现。 确定该系统的封闭形式的冲激响应。
2
(4 分)
(c). n 2 2 n u n ; (6 分)
九、(24 分)求 Z 反变换
(a).
利用长除法(幂级数展开法)计算 Z 反变换:X z
3 z 1
1 3 z 1 2
,
z 3 ;
(b).计算 Z 反变换: X z
z2
, z 4;
4 z z 1
4
(c).
计算
Z 反变换:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉大学2016-2017学年第二学期课程考试试卷(A 卷)《数字信号处理》课程(闭卷) 专业:信息安全 、计算机科学与技术、网络空间安全年级: 班级: 姓名: 学号: 总分:一、填空题(每小题3分,共15分)1、付立叶级数:若x(t)是以T 为周期的函数,则付氏变换可以用付立叶级数表示为: ,物理含义为: 。

2、采样信号的频域表示(采样脉冲是以T 为周期)为: ,该表达式的物理意义为: 。

3、在Matlab 中,函数 可以产生一个包含N 个零的行向量,在给定的区间上可以用这个函数产生)(n δ。

4、在Matlab 中,可以利用函数 计算序列的离散时间傅立叶变换在给定的离散频率点上的抽样值。

5、IIR 滤波器的设计方法,一般分为 、 和 这三种。

二、简答题(每小题7分,共35分)1、简要叙述采样定理。

2、简要叙述数字信号处理的一般过程。

3、离散傅氏变换DFT 的定义。

4、简要给出冲击函数的定义、性质和推广性质。

5、简要分析FFT 的计算量和算法特点。

三、设系统为D n Cx n y +=)()(,判断它是不是线性系统。

(5分)四、已知一长度为16的有限长序列 )25.0sin()(n n x π=,试利用Matlab计算序列)(n x 的16点和512点DFT 。

(10分)五、已知某LTI 离散系统的系统函数为:11111)(-----=az z a z H 其中,a 为实数。

(1) 试判断a 值在什么范围内时该系统是因果稳定系统?(2)证明该系统是一个全通系统(即频率响应的幅度特性为一常数)?(10分)六、现有一频谱分析FFT 处理器。

假设要求频率分辨率为Hz F 5≤。

信号的最高频率成分KHz f 25.1max ≤。

试求:(1) 采样时间间隔T ;(2) 1次记录时间长p t ;(3) 信号记录长度N 。

(15分)七、用双线性变换法设计一个3阶Butterworth 数字低通滤波器。

其截止频率Hz f c 400=,系统采样频率为:KHz f s 2.1=。

(10分)(附注:3阶Butterworth 模拟原型低通滤波器1)(2)(2)(1)(23+++=c c c s s s s H ωωω )武汉大学2016-2017学年第二学期课程考试试卷(A 卷)答案《数字信号处理》课程(闭卷)专业:信息安全 、计算机科学与技术、网络空间安全年级: 班级: 姓名: 学号: 总分:一、填空题(每小题3分,共15分)1、付立叶级数:若x(t)是以T 为周期的函数,则付氏变换可以用付立叶级数表示为:s m t jm m f T e C t x s ππωω22 )(s ==•=∑∞-∞= 其中 ⎰--•=22)(1T T s dt e t x C t jm T m ω 为付氏级数系数s ω 为基波角频率物理含义:若函数x(t)表示周期信号,t —时间、T —周期, 则C m 表示信号的离散频谱,f —频率、ω—角频率(fπω2=)2、采样信号的频域表示(采样脉冲是以T 为周期)为:∑⎰∞-∞=∞∞---=•=n s t j p n X T dt e t x )(1 )()(X p ωωωω 该表达式的物理意义为:时域中的连续信号经单位脉冲取样后,在频域中产生周期性函数,其周期等于取样角频率。

3、在Matlab 中,函数 zeros(1,N) 可以产生一个包含N 个零的行向量,在给定的区间上可以用这个函数产生)(n δ。

4、在Matlab 中,可以利用函数 freqz 计算序列的离散时间傅立叶变换在给定的离散频率点上的抽样值。

5、IIR滤波器的设计方法,一般分为、和这三种。

(1)以模拟滤波器函数为基础的变换法;(2)直接设计法:根据另、极点对系统特性的影响,调整另极点位置满足系统特性。

然后由另、极点值求得得H(z)。

(3)最优化设计法:(计算机辅助设计)在某种最小化误差准则下,建立差分方程系数a k、b i对理想特性的逼近方程,使用迭代方法解方程组得到最佳逼近系统。

由于此方法计算量大,需要借助于计算机进行设计。

二、简答题(每小题7分,共35分)1、简要叙述采样定理。

答:如连续时间信号(模拟信号)是有限带宽信号,当采样频率 f s 大于等于信号的最高频率成分 f max的两倍( f s≥ 2f max),则从采样信号(离散时间信号)可以完全恢复原信号(模拟信号)2、简要叙述数字信号处理的一般过程。

答:数字信号处理的一般过程的说明。

(1)在自然界中大量的信号是模拟信号,所以数字信号处理系统一般输入为模拟信号 x a(t)。

(2)模拟信号x a(t)经过抽样处理得到离散信号x a(n),再经A/D 量化得数字信号x(n),输入数字处理单元。

(3)经数字处理单元输入数字信号x(n)变换成输出数字信号y(n) 。

(4)输出数字信号y(n) 经过D/A 变换和平滑滤波得模拟信号y a (t)输出。

(5)因为系统中输入、输出信号之间的变换是由数字处理单元完成,所以该系统是数字信号处理系统。

3、离散傅氏变换DFT 的定义。

答:对于有限长序列⎩⎨⎧≤≤=n N-n n x n x 010 )()(其余 定义: 离散傅立叶变换:10 DFT(x (n)))()(10N-k W n x k X N n kn ≤≤==∑-=反变换 10 ))((IDFT )(1)(10N-n k X Wk X N n x N k kn ≤≤==∑-=- 其中:N j e W π2-= 称为旋转因子。

4、简要给出冲击函数的定义、性质和推广性质。

答:5、简要分析FFT 的计算量和算法特点。

答:计算量:复数乘法2log 22N N 次,复数加法 N N 2log 次。

算法特点:(1)以碟形运算为基础进行组合计算,计算因子W K 的指数K 与运算所在的级数和组内位置有关。

冲击函数:⎩⎨⎧=∞≠=0 0 0)(t t t δ 性质:1)(=⎰∞∞-dt t δ 推广:)()()(00t f dt t f t t =-⎰∞∞-δ(2)中间数据的存储,可采用原位存储法。

即每次碟形运算的结果可以存储在原数据的同一个存储单元。

这样在高速硬件实现时,可节省存储器。

(3)输入序列的混序。

因为DFT 输入序列是顺序采样的,所以在计算FFT 之前需要进行序列按混序要求排序。

排序算法很多,较常用的计算混序号的方法有二进制序号反转算法。

三、设系统为D n Cx n y +=)()(,判断它是不是线性系统。

(5分) 解:对于任意两信号序列)(1n x 和)(2n x ,任意常数a ,b 。

有 D n Cx n y +=)()(11 和 D n Cx n y +=)()(22bDn Cbx aD n Cax n by n ay Dn bx n ax C n bx n ax T n y +++=+≠++=+=)()()()()]()([)]()([)(21212121所以系统为非线性系统。

四、已知一长度为16的有限长序列 )25.0sin()(n n x π=,试利用Matlab 计算序列)(n x 的16点和512点DFT 。

(10分)见P97五、已知某LTI 离散系统的系统函数为:11111)(-----=azz a z H 其中,a 为实数。

(2) 试判断a 值在什么范围内时该系统是因果稳定系统?(2)证明该系统是一个全通系统(即频率响应的幅度特性为一常数)?(10分)解:(1)因为:az a z az z a z H --=--=----111111)( 系统极点为a z =。

系统是因果稳定系统,其收敛域应该包括单位圆和无穷远点。

或极点a z =在单位圆内,所以a 应该为:1||0<<a(2) 系统频率响应 ωωωωj j j j aee a e z z H e H -----===11|)()(1 a a a a a e H j 1)sin())cos(1()sin())cos((1|)(|22222=+-+-=ωωωωω,全通系统。

六、现有一频谱分析FFT 处理器。

假设要求频率分辨率为Hz F 5≤。

信号的最高频率成分KHz f 25.1max ≤。

试求:(4) 采样时间间隔T ;(5) 1次记录时间长p t ;(6) 信号记录长度N 。

(15分)解:根据采样定理,系统的采样频率kHz 5.22max =≥f f s 。

(1) 采样时间间隔:ms s f T s 4.0104.0105.21133=⨯=⨯==- (2) 1次记录时间长: s F t p 2.0511===(3) 信号记录长度:点500104.02.03=⨯=≥Tt N p 取点5122==p N 七、用双线性变换法设计一个3阶Butterworth 数字低通滤波器。

其截止频率Hz f c 400=,系统采样频率为:KHz f s 2.1=。

(10分) 解:系统的采样频率kHz 2.1=s f 。

(1) 设计指标的予畸变换: Hz f c 400= 数字滤波器截止频率:32120040022πππ=⨯==Ωs c c f f 模拟原型低通滤波器截止频率:red/s 732.1)()2(≈=Ω=πωtg tg c c(2) 设计模拟原型低通滤波器:(3阶Butterworth )1)(2)(2)(1)(23+++=c c c s s s s H ωωω,代入c ω,计算得: 196.56464.3196.5)(23+++=s s s s H (3)用双线性变换式求得:66.1124.9124.1566.1513311|)()(2323++++++=+-==z z z z z z z z s s H z H (4)整理成标准形式:32123)106.0()583.0()966.0(10638.01914.01914.00638.0)(-----------+++=z z z z z z z H (5)画出实现框图:[略]。

相关文档
最新文档