四川大学化工原理流体力学实验报告
化工原理流体综合实验报告(DOC)
流体综合实验实验目的1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图;2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图;3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作;离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
1.扬程H的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:(1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有(1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m;ρ——流体密度,kg/m3 ;g——重力加速度m/s2;p 1、p2——分别为泵进、出口的真空度和表压,Pa;H1、H2——分别为泵进、出口的真空度和表压对应的压头,m;u 1、u2——分别为泵进、出口的流速,m/s;z 1、z2——分别为真空表、压力表的安装高度,m。
由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。
2.轴功率N的测量与计算N=N电×k (W)(1-3)其中,N电为电功率表显示值,k代表电机传动效率,可取k=0.953.效率η的计算泵的效率η是泵的有效功率Ne与轴功率N的比值。
有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
泵的有效功率Ne可用下式计算:N e=HQρg (1-4)故泵效率为(1-5)四、实验步骤及注意事项(一)实验步骤:1.实验准备:(1)实验用水准备:清洗水箱,并加装实验用水。
流体力学综合实训报告总结
本次流体力学综合实训旨在通过实际操作和理论学习的结合,使我对流体力学的基本原理、基本方法及实验技能有更深入的理解和掌握。
通过实训,我能够提高自己的动手能力、实验技能和综合运用知识解决实际问题的能力。
二、实训内容1. 流体力学基本实验(1)流体流速分布测量实验通过实验,我学习了流速分布的测量方法,掌握了流速分布曲线的绘制技巧。
实验结果表明,流速分布曲线呈现出明显的抛物线形状,符合流体力学的基本理论。
(2)流量测量实验在流量测量实验中,我学习了流量计的使用方法,掌握了不同流量计的优缺点。
通过实验,我了解了流量测量在工程实践中的应用,提高了自己的实际操作能力。
(3)伯努利方程实验通过伯努利方程实验,我加深了对伯努利方程的理解,学会了如何运用伯努利方程解决实际问题。
实验结果表明,伯努利方程在流体力学中具有广泛的应用价值。
2. 流体力学综合实验(1)管道摩擦系数测定实验在管道摩擦系数测定实验中,我学习了管道摩擦系数的测量方法,掌握了不同管道的摩擦系数。
实验结果表明,管道摩擦系数与管道材料、粗糙度等因素有关。
(2)弯管流量测量实验弯管流量测量实验使我了解了弯管对流体流动的影响,学会了如何测量弯管流量。
实验结果表明,弯管流量与弯管角度、管道直径等因素有关。
(3)流体阻力实验流体阻力实验使我掌握了流体阻力系数的测量方法,了解了流体阻力系数与流体特性、管道形状等因素的关系。
实验结果表明,流体阻力系数在工程实践中具有重要的应用价值。
1. 实验技能提高通过本次实训,我掌握了流体力学基本实验和综合实验的操作方法,提高了自己的实验技能。
在实验过程中,我学会了如何使用实验仪器、如何观察实验现象、如何分析实验数据,为今后从事相关领域的工作奠定了基础。
2. 理论知识深化在实训过程中,我结合实验现象对流体力学的基本原理进行了深入思考,使我对流体力学的基本理论有了更深刻的理解。
同时,通过实验数据的分析,我对流体力学的基本方法有了更全面的掌握。
化工原理含实验报告(3篇)
第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。
2. 通过实验验证理论知识,提高实验技能。
3. 熟悉化工原理实验装置的操作方法,培养动手能力。
4. 学会运用实验数据进行分析,提高数据处理能力。
二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。
1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。
实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。
阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。
实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。
实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。
2. 将水从高位水槽引入粗糙管,调节流量,记录压差。
3. 改变流量,重复步骤1和2,得到一系列数据。
4. 根据数据计算摩擦系数和局部阻力系数。
实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。
2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。
2. 了解板式塔的结构,观察塔板上汽-液接触状况。
3. 测定全回流时的全塔效率及单板效率。
4. 测定部分回流时的全塔效率。
5. 测定全塔的浓度分布。
6. 测定塔釜再沸器的沸腾给热系数。
实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。
精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。
实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。
2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。
3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。
4. 绘制浓度分布曲线。
实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。
四川大学化工原理流体力学实验报告
qHρg
qHρ 9.81 1000
qHρ 102
三、实验流程图
球阀 1
转
子 流
球阀 2
量
计
球阀 3
闸阀 2
闸阀 1
水箱
真空压力表 离心泵
压力表
四、实验操作步骤
流体力学实验流程示意图
1、求 λ 与 Re 的关系曲线
1) 根据现场实验装置,理清流程,检查设备的完好性,熟悉各仪表的使用方法。
2) 打开控制柜面上的总电源开关,按下仪表开关,检查无误后按下水泵开关。
式中:N — —离心泵轴功率, kW;
传 — —机械传动效率,近似 值取为0.95;
N电 — —电动机的输入功率, 由功率表测定。
3
四川大学化工原理流体力学实验报告
(4)离心泵效率η的 测定:泵的效率是指理 论功率与轴功率的比值 ,即
η
Nt N
而理论功率N t是离心泵对流体所做的 有效功率,即
Nt
3. 测定在一定转速下离心泵的特性曲线。
二、实验原理
1、求 与 Re 的关系曲线
流体在管道内流动时,由于实际流体有粘性,其在管内流动时存在摩擦阻力,必然会引起
流体能量损耗,此损耗能量分为直管阻力损失与局部阻力损失。流1 体在水平直管内作稳态流2
动(如图 1 所示)时的阻力损失可根据伯努利方程求得。
以管中心线为基准面,在 1、2 截面间列伯努利方程:
p1
g
u
2 1
2g
Z1 H
p2 g
u
2 2
2g
Z2
Hf
因p1 p 大气压 - p真,p 2 p 大气压 p 表,Z2 - Z1 0.2,所以水经离心泵所
化工原理第一次实验报告-流体力学试验-可编辑-格式正确-有数据处理
本科生实验报告题目流体力学实验学院化学工程学院专业学生姓名学号年级指导教师二Ο一九年十月十七日1.实验目的(1)测定水在管道内流动的直管阻力,绘制λ与Re的关系曲线。
(2)测定一定转速下,离心泵的特性曲线。
(3)比较同一流体在不同管径和不同材质管道内流动时的阻力变化。
(4)熟悉流量、压差、温度等化工仪表的使用。
2.实验原理(1)流体在管道内流动时,由于实际流体有黏性,其在管内流动时存在内摩擦力,必然会引起流体的能量损耗,此能量损耗分为直管阻力和局部阻力。
流体在直管内流动时的能量损耗为直管阻力,此直观阻力根据伯努利方程求得。
图2-1 流体在1、2截面间稳定流动Figure 2-1 Fluid flows steadily between sections 1 and 2 以管中心线水平面为基准面,在1-1、2-2界面间列伯努利方程p1ρ+u12+g z1=p2ρ+u22+gz2+h f(2-1)因为u1=u2,z1=z2,故流体在等直径管1-1、2-2两界面间的直管阻力为h f=p1-p2ρ=∆pρ(2-2)∆p由压差变送器测定; u=Q/A, Q用涡轮流量计测定;ρ和μ通过双金属温度计测定流体的温度从而查表确定流体以流速u通过管内径为d、长度为l的一段管道时,其直管阻力为h f=λ∙ld ∙u22(2-3)而雷诺数Re=dμρμ(2-4) 由此可见,摩擦系数与流体流动类型,管壁粗糙度等因素有关。
由因次分析法整理,可以得到摩擦系数的表达式λ=φ(Re,εd)(2-5)流体在管内层流和湍流的摩擦系数和雷诺图的关系可以分别用(2-6)和(2-7)两个公式来表达λ=64Re(2-6)λ=0.1(εd +68Re)0.23(2-7)(2)离心泵的特性:可以用泵在一定条件下,扬程H与流量Q v,轴功率N与Q v,效率η与Q v 之间的关系来表达,将这三条曲线画在同一直角坐标系中,得到三条曲线,则为泵的特性曲线。
流体力学综合实验报告
式中:
; ——离心泵出、进口表压(Pa);
——离心泵进、出口管内流速(m/s);
——离心泵进、出口压力表处离基准面的高度(m);
——离心泵扬程( );
——流体密度( )
③轴功率 N:离心泵的轴功率 N(kW)是指泵轴所消耗的电功率,实验采用
功率表测定电机输入功率后,按下式进行计算
式中:N——离心泵轴功率(kW); ——机械传动效率,近似取为; ——电动机的输入有效功率,由功率表测定。
四川大学
化工原理实验报告
学院 化学工程学院 专业 化学工程与工艺 班号
学号
实验日期 年 月 日
姓名 指导老师
一.实验名称
流体力学综合实验
二.实验目的
测定流体在管道内流动时的直管阻力损失,作出 与 Re 的关系曲线。 观察水在管道内的流动类型。 测定在一定转速下离心泵的特性曲线。 标定孔板流量计,绘制 Co 与 Re 的关系曲线。 熟悉流量、压差、温度等化够不够仪表的使用。
, 轴功
率与流量
,效率与流量
三条曲线形式表示。若将扬程
H、轴功率 N 和效率 对流量 之间的关系分别绘制在同一直角坐标上所得的
三条曲线,即为离心泵的特性曲线,如图二所示。
①流量 :离心泵输送的流量 由涡轮流量计测定。
②扬程 H:扬程是指离心泵对单位重量的液体所提供的外加能量。以离心
泵入口管中心线的水平面为基准面,离心泵入口真空压力表处为 1-1 截面,出 口压力表处为 2-2 截面,在 1-1 截面和 2-2 截面之间列出伯努利方程式,确定 流体经离心泵所增加的能量( )此能量称为扬程 H,其计算式为
查得 24 时水的物性参数:
,
入口压力 ,出口压力
流体力学实验报告
附加:实验前用实验报告纸写好预习报告,预习报告包括下方实验内容中的:实验目的、实验内容、数据记录及整理(表格一定要画),报告只写“能量方程实验”!“雷诺实验”暂时不写能量方程实验一、实验目的1.观察流体流经能量方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对能量方程的理解。
2.掌握一种测量流体流速的方法。
二、实验内容1.测出能量方程实验管的四个断面四组测压管的液柱高度,并利用计量水箱和秒表测定流量。
2.根据测试数据和计算结果,绘出某一流量下的各种水头线,并运用能量方程进行分析,解释各测点各种能头的变化规律。
三、实验设备综合实验台:由下水箱、水泵、阀、上水箱、有机玻璃管路、测压计、计量水箱等组成,如图1所示。
图1 综合实验台示意图四、实验步骤1.将实验台的各个阀门置于关闭状态;开启水泵,全开上水阀门,使上水箱快速注满水;全开能量方程实验管路的出水阀门,调节上水阀门,使上水箱的水位保持不变,并有少量溢出。
2.关闭能量方程实验管路的出水阀门,此时能量方程试验管的四个断面四组测压管的液柱应位于同一高度,此为起始总水头,记入数据表中。
3.调节能量方程实验管路的出水阀门至某一开度(工况1),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。
4.改变能量方程实验管路的出水阀门的开度(工况2),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。
5.整理实验数据。
五、注意事项数据测定必须待流体流动稳定时方可读数。
六、数据记录及整理1.实验数据记录计量水箱底面积A(cm2):表1 流量测定数据记录及整理表2.实验数据整理 (1) 体积流量:()tAh h Q 12-=m 3/s注意:式中h 1、h 2的单位为m ,A 的单位为m 2,t 的单位为s 。
(2) 速度水头h ∆=总压水头-测压管水头能量损失=前后断面总压水头之差(3) 平均流速:24dQU π= m/s轴心流速:h g V ∆=2 m/s注意:式中Q 的单位为m 3/s ,d 的单位为m ,h ∆的单位为m 。
川大学化工原理流体力学实验报告
16
230
12
165
8
116
4
58
曲线
序号
1 2 3 4 5 6 7 8 9 10 11 12 13
流量 qv (m3 / h)
30Hz 离心泵数据记录
真空表 P1(Pa)
-2200 -2000 -1800 -1200
200 0 100 1000 1500 1800 1800 2000
压力表 P2 (Pa)
1、求 与 Re 的关系曲线
实验结果:由关系曲线可以看出,钢管层流实验中,雷诺数 Re 与摩擦阻力系数 在双 对数坐标中呈线性关系,摩擦阻力系数 只与流动类型有关,且随雷诺数 Re 的增加而减小, 而与管壁粗糙度无关;在铜管湍流与钢管湍流实验中,摩擦阻力系数 随雷诺数 Re 增加而 趋于一个定值,此时流体进入完全阻力平方区,摩擦阻力系数 仅与管壁的相对粗糙度有关,
71000
798
9
0
76000
758
10
-100
80000
725
11
0
82000
682
12
-100
89000
653
13
150
90000
626
14
180
100000
585
15
200
110000
528
六、典型计算
1、 求 λ 与 Re 的关系曲线 以铜管湍流的第一组数据为例计算
时, 以管中心线为基准面,在 1、2 截面间列伯努利方程
化工原理实验报告
流体力学综合实验
姓名: 学号: 班级号: 实验日期:实验成绩:
流体力学综合实验
一、 实验目的: 1. 测定流体在管道内流动时的直管阻力损失,作出 2. 观察水在管道内的流动类型。 3. 测定在一定转速下离心泵的特性曲线。
化工原理实验-流体力学
即可在毫米方格坐标纸上画出Q H,Q N (轴),Q 的关系。
三、实验步骤
1. Re 的关系实验 (1) 检查设备,启动离心泵排除管道内以及压差计内的空气 5分钟,据所测内容调节管道。 (2) 调节流量,从大到小测量,8个点;记录R(水)和R(水银), 即可算出压降值和流量值。 2. 离心泵的特性曲线实验 将3管全开,从大到小调节,测表压,流量,功率,共8组 数据。
水
又因为V ARm , 测得水银柱的R,查孔板校正曲线可得V,即可计算出u
u2 l hf R' (水柱高度差) g 2 d Wf
Re du
即可在双对数坐标纸上画出 Re的关系。
1. 在1-1’截面和2-2‘截面列柏努利方程
u P u Z1g 1 Z1g 2 2 W f 2 2 P 1
2 2
因为Z1 Z 2 , u1 u2
所以Wf P P2 1 P R'g ( 水 - 空 ) R'g
水
又因为V ARm , 测得水银柱的R,查孔板校正曲线可得V,即可计算出u
u2 l hf R' (水柱高度差) g 2 d Wf
Q N (轴),N (轴) N电 电 传 0.96) (
Q , N t (实际 ) N (轴) H V g N (轴)
即可在毫米方格坐标纸上画出Q H,Q N (轴),Q 的关系。
2. 在1-1’截面和2-2’截面列柏努利方程
P u P u Z1 1 1 H Z 2 2 2 h f 12 (主要是出口阻力损失) g 2 g g 2 g
四川大学化工原理流体力学实验报告
四川大学化工原理流体力学实验报告化工原理实验报告流体力学综合实验姓名:学号:班级号:实验日期:2016实验成绩:流体力学综合实验一、实验目的:1.测定流体在管道内流动时的直管阻力损失,作出λ与Re的关系曲线。
2.观察水在管道内的流动类型。
3.测定在一定转速下离心泵的特性曲线。
二、实验原理1、求λ与Re的关系曲线流体在管道内流动时,由于实际流体有粘性,其在管内流动时存在摩擦阻力,必然会引起流体能量损耗,此损耗能量分为直管阻力损失和局部阻力损失。
流体在水平直管内作稳态流动(如图1所示)时的阻力损失可根据伯努利方程求得。
以管中心线为基准面,在1、2截面间列伯努利方程:图1流体在1、2截面间稳定流动因u1=u2,z1=z2,故流体在等直径管的1、2两截面间的阻力损失为流体流经直管时的摩擦系数与阻力损失之间的关系可由范宁公式求得,其表达式为由上面两式得:而由此可见,摩擦系数与流体流动类型、管壁粗糙度等因素有关。
由因此分析法整理可形象地表示为式中:-----------直管阻力损失,J/kg;------------摩擦阻力系数;----------直管长度和管内径,m;---------流体流经直管的压降,Pa;-----------流体的密度,kg/m3;-----------流体黏度,Pa.s;-----------流体在管内的流速,m/s;流体在一段水平等管径管内流动时,测出一定流量下流体流经这段管路所产生的压降,即可算得。
两截面压差由差压传感器测得;流量由涡轮流量计测得,其值除以管道截面积即可求得流体平均流速。
在已知管径和平均流速的情况下,测定流体温度,确定流体的密度和黏度,则可求出雷诺数,从而关联出流体流过水平直管的摩擦系数与雷诺数的关系曲线图。
2、求离心泵的特性曲线三、实验流程图流体力学实验流程示意图转子流量计离心泵压力表真空压力表水箱闸阀1闸阀2球阀3球阀2球阀1涡轮流量计孔板流量计∅35×2钢管∅35×2钢管∅35×2铜管∅10×2钢管四、实验操作步骤1、求λ与Re的关系曲线1)根据现场实验装置,理清流程,检查设备的完好性,熟悉各仪表的使用方法。
四川大学化工原理实验报告
竭诚为您提供优质文档/双击可除四川大学化工原理实验报告篇一:xxxx学院化工原理实验报告贵州理工学院化工原理实验报告学院:化学工程学院专业:化工职教班级:化职131 篇二:化工原理实验报告张资源与环境工程学院精馏分离实训报告姓名:张x学号:xxxxxxxxx专业:应用化工班级:xxx指导教师:张xx20XX年12月日24目录1.精馏实验1.1精馏的原理1.1.1精馏的分类1.1.2精馏的计算方法1.1.2.1概述1.1.3理论塔板数的计算方法1.1.3.1图算法1.1.3.2捷算法1.1.3.3严格计算法1.2实验目的1.3实验原理1.4实验材料1.5实验过程1.6实验结果2.总结1.精馏实验精馏是一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。
1.1精馏的原理双组分混合液的分离是最简单的精馏操作。
典型的精馏设备是连续精馏装置,包括精馏塔、再沸器、冷凝器等。
精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸气得到部分冷凝,部分凝液作为回流液返回塔底,其余馏出液是塔顶产品。
位于塔底的再沸器使液体部分汽化,蒸气沿塔上升,余下的液体作为塔底产品。
进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。
在整个精馏塔中,汽液两相逆流接触,进行相际传质。
液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。
对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。
进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。
两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。
当使n组分混合液较完全地分离而取得n个高纯度单组分产品时,须有n-1个塔。
化工原理设计实验报告(3篇)
第1篇实验名称:化工原理设计实验学生姓名: [您的姓名]学号: [您的学号]实验日期: [实验日期]实验地点: [实验地点]一、实验目的1. 通过实验,加深对化工原理中基本概念和理论的理解。
2. 培养独立设计、分析和解决问题的能力。
3. 熟悉化工实验的基本操作和数据处理方法。
二、实验原理本实验旨在设计一个简单的化工流程,通过理论计算和实验验证,分析该流程的性能。
实验流程主要包括以下部分:1. 原料处理:将原料进行处理,使其达到所需的物理和化学性质。
2. 反应过程:将处理后的原料进行化学反应,生成目标产物。
3. 分离纯化:将反应产物进行分离和纯化,得到高纯度的目标产物。
4. 产品回收:对分离纯化过程中产生的废液和废气进行回收处理。
三、实验内容1. 原料处理:根据实验要求,选择合适的原料,并进行预处理,如干燥、粉碎等。
2. 反应过程:根据实验原理,设计反应条件,如温度、压力、反应时间等,并进行实验验证。
3. 分离纯化:根据反应产物的性质,选择合适的分离纯化方法,如蒸馏、结晶、萃取等,并进行实验验证。
4. 产品回收:对分离纯化过程中产生的废液和废气进行回收处理,如蒸发浓缩、吸附、生物处理等。
四、实验步骤1. 原料处理:- 对原料进行干燥,使其水分达到实验要求。
- 对干燥后的原料进行粉碎,使其粒度达到实验要求。
2. 反应过程:- 根据实验原理,确定反应条件,如温度、压力、反应时间等。
- 将预处理后的原料加入反应器,按照设定的反应条件进行反应。
- 在反应过程中,监测反应温度、压力等参数,确保反应顺利进行。
3. 分离纯化:- 根据反应产物的性质,选择合适的分离纯化方法,如蒸馏、结晶、萃取等。
- 对反应产物进行分离纯化,得到高纯度的目标产物。
4. 产品回收:- 对分离纯化过程中产生的废液和废气进行回收处理,如蒸发浓缩、吸附、生物处理等。
五、实验结果与分析1. 原料处理:- 干燥后的原料水分达到实验要求。
- 粉碎后的原料粒度达到实验要求。
流体力学的实验报告
流体力学的实验报告流体力学的实验报告引言:流体力学是研究流体运动及其力学性质的学科,广泛应用于工程、物理学、地质学等领域。
本实验旨在通过一系列实验,探究流体在不同条件下的性质和行为,以加深对流体力学的理解。
实验一:流体静力学实验在这个实验中,我们使用了一个U型管,通过调节管内液体的高度,观察液体在管内的压力变化。
实验结果表明,液体的压力与液柱的高度成正比,且与液体的密度和重力加速度有关。
这一实验验证了流体静力学的基本原理,即压力在静止的液体中是均匀的。
实验二:流体动力学实验在这个实验中,我们使用了一个水平旋转的圆筒,将水注入圆筒内,然后通过旋转圆筒,观察水的运动情况。
实验结果表明,水在旋转圆筒中呈现出旋涡状的流动,且流速随着距离圆筒中心的距离增加而增加。
这一实验验证了流体动力学的基本原理,即在旋转系统中,流体的速度随着距离中心的距离而改变。
实验三:流体黏性实验在这个实验中,我们使用了一个粘度计,测量了不同液体的粘度。
实验结果表明,液体的粘度与其分子间相互作用力、温度和压力有关。
较高的粘度意味着液体的黏性较大,流动较困难。
这一实验验证了流体黏性的基本原理,即液体的黏度与流体内部分子的相互作用有关。
实验四:流体流速实验在这个实验中,我们使用了一个流速计,测量了液体在不同管道中的流速。
实验结果表明,管道的直径、液体的黏度和施加的压力差都会影响流体的流速。
较大的管道直径、较小的黏度和较大的压力差都会导致流体的流速增加。
这一实验验证了流体流速的基本原理,即流体在管道中的流速与管道的几何形状和施加的压力差有关。
结论:通过以上实验,我们深入了解了流体力学的基本原理和实际应用。
流体力学在工程领域中有着广泛的应用,例如水力学、气体力学、液压学等。
深入研究流体力学的原理和实验,有助于我们更好地理解和应用流体力学的知识,为工程设计和实际应用提供科学依据。
流体力学实验报告
伯努利实验报告一、实验目的观察流体流经伯努利方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对伯努利方程的理解。
二、实验原理伯努利方程w h gvg p z g v g p z ++ρ+=+ρ+2222222111其中w h 为管路横截面1至横截面2的能量损失,包括局部能量损失与沿程能量损失。
本实验中可以通过测压管指示4个位置的静水头和总水头,两两比较静水头的大小,并用伯努利方程解释静水头差异的原因。
如图所示,四个测压点位置从左至右标记为1、2、3、4,每个测压点连接2根测压管,分别指示静水头(gp z ρ+)和总水头(g v g p z 22++ρ),方便进行原理分析。
图3 伯努利实验管2点与1点相比,位置水头一致,但是由于管径增加,流速减小,因此2点速度水头减小,若不计能量损失,导致压强水头增加。
3点与1点相比,位置水头、速度水头均一致,但是由于能量损失,导致3点压强水头减小。
4点与3点相比,速度水头一致,位置水头减小,导致压强水头增加,但是由于能量损失原因,压强水头增加幅度有所降低,静水头降低。
在实验过程当中,同学们可以随意选取两点,分析其水头变化的原因。
三、实验数据记录四、实验数据处理(1)流量大小(2)各测点静水头与总水头的高度差(总水头-静水头)五、实验分析与讨论(1)选择两测点,比较能量损失与总水头的大小关系,并计算能量损失占总水头的百分比。
(2)哪个测点总水头与静水头的差值最小,试分析原因。
(3)在实验过程中,为何需要事先把测压管上端阀门全都打开?(4)测压皮管测量总水头,若皮管最边缘的铜管开口没有与伯努利管轴线垂直,则测量出来的总水头比真实数值偏大还是偏小?为什么?六、实验中出现的问题汇总并思考如何避免这些问题文丘里实验报告一、实验目的掌握文丘里流量计测量管道流量的原理。
二、实验原理文丘里流量计原理如图所示管道中,1和2为两测点,其中测点2处横截面直径明显减小,假设1点横截面静压强为p 1,流速为v 1,直径为d 1;测点2横截面静压强为p 2,流速为v 2,直径为d 2。
流体力学实验报告
流体力学实验报告目录1. 流体力学实验报告1.1 引言1.1.1 实验背景1.1.2 实验目的1.2 实验方法1.3 实验结果1.4 结论1.5 参考文献1. 引言1.1 实验背景在流体力学的研究领域中,流体的运动行为是一个重要的研究对象。
流体可以是液体或气体,其运动规律受到流体的性质和外界条件的影响。
通过进行流体力学实验,可以更好地理解流体的运动规律和特性。
1.2 实验目的本次实验旨在通过观察、测量和分析流体在不同条件下的运动状态,探索流体的流动规律,了解流体力学相关理论在实际中的应用,提高实验操作技能。
2. 实验方法在实验中,我们首先搭建好流体力学实验平台,准备好实验所需的流体、仪器和设备。
然后根据实验步骤逐步进行实验操作,记录实验数据,并进行数据分析。
最后根据实验结果得出结论。
3. 实验结果通过实验我们观察到在不同流体条件下,流体的运动状态呈现出不同的特性。
通过测量和记录实验数据,我们得出了流体在不同条件下的流速、流量等参数,并进行了数据分析。
实验结果显示,流体在不同条件下表现出各具特点的运动规律。
4. 结论根据实验结果和数据分析,我们得出了结论:流体的运动状态受到流体的性质和外界条件的影响,不同的流体在不同条件下呈现出不同的运动规律。
通过实验我们对流体力学有了更深入的理解,为进一步研究和应用流体力学提供了有益的参考。
5. 参考文献[参考文献1] 作者1. 标题1. 期刊名1,年份1,卷(期)1: 页码1.[参考文献2] 作者2. 标题2. 期刊名2,年份2,卷(期)2: 页码2.。
化工原理实验报告格式
六、典型计算(以一组实验数据为例,写出详细的计算过程)并作图
雷诺数Re~摩擦系数 图
离心泵特性曲线图
序号
热流体流量
V/(m3/s) 定性温度t定
/(︒C)
热流体密度
ρ/(Kg/m3)
热流体比热
C P/(J/Kg)
热流体导热系数
λ/(W/m.K)
传热面积
A/m2
平均温差
∆ t m/(︒C)
1 2 3 4 5 6 7 8
序号传热速率
Q/(W)
传热系数
K/(W/m2.K)
给热系数
h1/(W/m2.K)
Re Nu
1
2
3
4
5
6
7
8
雷诺数Re与努塞尔数Nu图
设备号: ; 物料体系: ;绝干物料量: ;
湿物料起始量: ; 干燥面积: ; 序号 湿物料量 G/g
分段时间 /s
累计时间
t/s
干基湿含量 X (g 湿份量/g 绝干物料量) 干燥速率 u/(Kg/m 2.s) 1 2 3 4
5
6 7 8 9 10 11 12 13 14 15 16 17 18
六. 典型计算(以一组实验数据为例,写出详细的计算过程)并作图
t~X 图
X~u 图。
实验一 流体力学综合实验实验报告
实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳2.测定直管摩擦系数λ与e R 关系曲线及局部阻力系数ζ 3、 了解离心泵的构造,熟悉其操作与调节方法 4、 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力与局部阻力两种。
直管阻力就是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1)局部阻力主要就是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2)管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m; d ——直管内径,m;u ——管内平均流速,1s m -⋅;g ——重力加速度,9、812s m -⋅p ∆——直管阻力引起的压强降,Pa;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ与Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5)式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅; 2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头与流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7)式中:e N ——泵的有效功率,K w;N ——电机的输入功率,由功率表测出,K w ;Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
化工原理实验报告小结(3篇)
第1篇随着化工行业的快速发展,化工原理实验在培养学生的实践能力、创新思维和工程素养方面发挥着重要作用。
本文将总结化工原理实验的学习过程,对实验中的关键知识点和操作方法进行梳理,并对实验成果进行分析。
一、实验目的与意义化工原理实验旨在通过实际操作,帮助学生掌握化工过程中涉及的流体力学、传热、传质等基本原理,提高学生的实验技能和工程素养。
通过实验,学生可以加深对理论知识的应用,培养严谨的科学态度和良好的实验习惯。
二、实验内容与方法1. 流体流动阻力测定实验:本实验通过测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,以及流体在不同流量流经全开闸阀时的局部阻力系数,了解流体流动中能量损失的变化规律。
2. 流化床干燥实验:通过实验,掌握流化床干燥器的基本流程及操作方法,测定流化床床层压降与气速的关系曲线,分析物料含水量及床层温度随时间的变化关系,确定临界含水量及恒速阶段的传值系数和降速阶段的比例系数。
3. 精馏实验:通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,绘制x-y图,用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
三、实验结果与分析1. 流体流动阻力测定实验:实验结果表明,摩擦系数与雷诺数Re之间存在一定的关系,符合经验公式描述。
局部阻力系数与流量和阀门开启度有关。
2. 流化床干燥实验:实验结果显示,物料含水量及床层温度随时间呈非线性变化,临界含水量和恒速阶段的传值系数、降速阶段的比例系数均符合实验预期。
3. 精馏实验:实验数据表明,全塔效率及单板效率与理论塔板数密切相关,全回流时的全塔效率较高,而部分回流时的全塔效率相对较低。
四、实验心得与体会1. 实验过程中,严谨的操作态度和细致的观察力至关重要。
只有认真对待每一个实验步骤,才能保证实验结果的准确性。
2. 实验过程中,遇到问题要及时分析原因,寻求解决办法。
这有助于提高学生的分析问题和解决问题的能力。
流体力学综合实验-四川理工化工原理实验
ζ
0.108836714 0.109424468 0.110648255 0.110615548 0.113634466 0.120055521 0.189167342 0
计算参考公式: 计算参考公式:
hf=gR1 hf'=gR2 V=(1902.2294×h-1378.08747)/1000000m3 (h为计量槽高度差,根据回归方程可求得: y=Bx-A,A=1378.08747 B=1902.2294) Vs=V/A u=Vs/A (A为管径) λ=2dhf/(l*u2) (l为方程距);ζ=2hf'/u2 Re=duρ/μ
Re
1.08E+05 1.01E+05 8.96E+04 8.12E+04 7.07E+04 5.93E+04 3.62E+04 0.00E+00
C0
0.61789 0.61762 0.61878 0.61765 0.61756 0.62675 0.67891 0.00000
VS(m3)
0.003951028 0.003682882 0.003281186 0.002971085 0.002588901 0.002171932 0.001324767 0
Ne
415.77337 442.66912 441.19188 432.30551 407.8746 365.60066 232.43214 0
hf'
0.85347 0.74556 0.59841 0.4905 0.38259 0.28449 0.16677 0
49.31% 55.40% 58.72% 62.02% 62.16% 59.74% 50.27% 0.00%
(完整版)化工原理实验报告_管路设计与安装
管路设计与安装一、实验目的及基本要求1.实验目的(1)综合运用流体力学基本原理与操作技能,设计并安装“流量计校核”与“突然扩大、缩小局部阻力系数的测定”两个实验装置;(2) 掌握常用工具的使用方法,学习管路的组装、试压、冲洗及拆除操作方法;(3) 学习管路系统的运行测试及停车方法。
2.对化工管路装拆的基本要求:(1) 化工管路布置的一般要求:在管路布置及安装时,主要考虑安装、检修、操作的方便及安全,同时尽可能减少基建费用,并根据生产的特点、设备的布置、材料的性质等加以综合考虑。
①化工管路安装时,各种管线应成平行铺设,便于共用管架,要尽量走直线,少拐弯,少交叉,以节约管材,减小阻力,同时力求做到整齐美观;②为便于操作及安装检修,并列管路上的零件与阀门位置应错开安装;③管子安装应横平竖直,水平管其偏差不大于15mm/10m,垂直管其偏差不大于10mm/10m;④管路安装完毕后,应按规定进行强度和严密度试验;⑤管路离地面的高度以便于检修为准,但通过人行道时,最低点离地面不得小于2m。
(2) 常见管件及阀门、流量计的安装要求:①转子流量计是用来测量管系中流体流量的,其安装有严格的要求。
它必须垂直安装在管系中,若有倾斜,会影响测量的准确性,严重时会使转子升不上来。
转子流量计前后各应有相应的直管段,前段应有15~20d 的直管段,后段应有5d 左右的直管段(d 为管子内径),以保证流量的稳定。
②阀门的装拆:截止阀结构简单,易于调节流量,但阻力较大。
安装时,应使流体从阀盘的下部向上流动,目的是减小阻力,开启更省力。
在关闭状态下阀杆、填料函部不与介质接触,以免阀杆等受腐蚀。
闸阀密封性能好,流体阻力小,但不适用输送含有晶体和悬浮溶物的液体管路中。
③活动接头是管系中常见的管件,在闭合管系时,它应是最后安装,拆除管系时,应首先从活动接头动手。
(3) 泵的管路布置总的原则是保证良好的吸入条件与检修方便①为增加泵的允许吸上高度, 吸入管路应尽量短而直,减少阻力, 吸入管路的直径不应小于泵吸入口直径.②在泵的上方不布置管路,有利于泵的检修.3、对指导教师的要求(1) 指导教师对实训重点进行相应的讲解,给学生进行分组;(2) 组织学生观看有关化工管路方面的教学录像,使学生对化工管路有一定感性认识;(3) 每个实训小组根据老师提供的管系图列出设备、管件、仪表等清单,领取相应的材料工具等;(4) 组装管路,各小组根据管系图的要求组装管线;组装时应先定好设备位置,再组装管线,具体来讲,应先定好离心泵、高位槽等,然后进行配管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理实验报告流体力学综合实验姓名:学号:班级号:实验日期:2016.6.12实验成绩:流体力学综合实验一、 实验目的:1. 测定流体在管道内流动时的直管阻力损失,作出λ与Re 的关系曲线。
2. 观察水在管道内的流动类型。
3. 测定在一定转速下离心泵的特性曲线。
二、实验原理1、求 λ 与Re 的关系曲线流体在管道内流动时,由于实际流体有粘性,其在管内流动时存在摩擦阻力,必然会引起流体能量损耗,此损耗能量分为直管阻力损失和局部阻力损失。
流体在水平直管内作稳态流动(如图1所示)时的阻力损失可根据伯努利方程求得。
以管中心线为基准面,在1、2截面间列伯努利方程:因u 1=u 2,z 1=z 2,故流体在等直径管的1、2两截面间的阻力损失为流体流经直管时的摩擦系数与阻力损失之间的关系可由范宁公式求得,其表达式为由上面两式得:而由此可见,摩擦系数与流体流动类型、管壁粗糙度等因素有关。
由因此分析法整理可形象地表示为式中:f h -----------直管阻力损失,J/kg ; λ------------摩擦阻力系数;d l .----------直管长度和管内径,m ; P ∆---------流体流经直管的压降,Pa ; ρ-----------流体的密度,kg/m3;ρPh f ∆=22u d l h f ⋅⋅=λ22u l d P ⋅⋅∆=ρλμρdu =Re )(Re,d f ελ=图1 流体在1、2截面间稳定流动f h gz u p P +++=++222212112gz 2u ρρμ-----------流体黏度,Pa.s ;u -----------流体在管内的流速,m/s ;流体在一段水平等管径管内流动时,测出一定流量下流体流经这段管路所产生的压降,即可算得f h 。
两截面压差由差压传感器测得;流量由涡轮流量计测得,其值除以管道截面积即可求得流体平均流速u 。
在已知管径d 和平均流速u 的情况下,测定流体温度,确定流体的密度ρ和黏度μ,则可求出雷诺数Re ,从而关联出流体流过水平直管的摩擦系数λ与雷诺数Re 的关系曲线图。
2、求离心泵的特性曲线由功率表测定。
—电动机的输入功率,—N ;95.0值取为—机械传动效率,近似—;—离心泵轴功率,—式中:功率。
式来计算轴电机输入功率后,用下本实验采用功率表测定动机传给泵轴的功率。
也是电泵轴所消耗的电功率,的测定:泵轴功率是指)(离心泵的轴功率)3(。
/—流体密度,—;—离心泵扬程,—;/,—离心泵出口管内流速—;口真空度,—离心泵出口表压、进—p ,,0式中:2.02u -p -增加的能量为,所以水经离心泵所2.0Z -Z ,,-因22方程式:此两截面间列出伯努利截面,在2—2表处为截面和离心泵出口压力1—1心泵进口真空泵为以水平地面为基准,离。
,此能量称为扬程)(的能量确定水经离心泵所增加间根据能量守恒定律可和离心泵出口压力表之质是水,则在水箱液面能量。
若泵输送的介重量流体所提供的外加1输送的测定:扬程是指泵每)()扬程2(量。
后面的调节阀来调节流本实验采用涡轮流量计测定,流量,并由涡轮流量计口阀调节离心泵输送的)的测定:通常用泵出/()流量1(离心泵的重要依据。
的适宜操作条件和选用泵的特性曲线是确定泵离心泵的特性曲线。
所得的三条曲线,即为一直角坐标系间的关系分别标绘在同对和、三种曲线来表示。
若将)(效率与流量和)(、轴功率与流量)(与流量泵在一定转速下,扬程离心泵的特性,可用该电传传电322真表2122表真12表大气压2真大气压122221211223321ηηρρρρηηkW N N N kW N m kg O mH H s m u Pa p H H gu g p H p p p p p p H Z gu g p H Z g u g p H O mH kg O mH H h m q Q N H q f q f N q f H f ff v ⋅=≈+++==+==+++=+++===∑∑∑1021000819有效功率,即是离心泵对流体所做的而理论功率N ,即论功率与轴功率的比值测定:泵的效率是指理(4)离心泵效率η的t qHρ.qHρqHρg N NN ηt t =⨯===三、实验流程图四、实验操作步骤1、求 λ 与Re 的关系曲线1) 根据现场实验装置,理清流程,检查设备的完好性,熟悉各仪表的使用方法。
2) 打开控制柜面上的总电源开关,按下仪表开关,检查无误后按下水泵开关。
3) 打开球阀1,调节流量调节闸阀2使管内流量约为10.5h /m 3,逐步减小流量,每次约减少0.5h /m 3,待数据稳定后,记录流量及压差读数,待流量减小到约为4h /m 3后停止实验。
4) 打开球阀2,关闭球阀1,重复步骤(3)。
5) 打开球阀2和最上层钢管的阀,调节转子流量计,使流量为40h L /,逐步减小流量,每次约减少4h L /,待数据稳定后,记录流量及压差读数,待流量减小到约为4h L /时停止实验。
完成直管阻力损失测定。
2、求离心泵的特性曲线1) 根据现场实验装置,理清流程,检查设备的完好性,熟悉各仪表的使用方法。
流体力学实验流程示意图2) 打开控制柜面上的总电源开关,按下仪表开关,先关闭出口阀门,检查无误后按下水泵开关。
3) 打开球阀2,调节流量调节阀1使管内流量,先开至最大,再逐步减小流量,每次约减少1h /m 3,待数据稳定后,记录流量及压差读数,待流量减小到约为4h /m 3后停止实验,记录9-10组数据。
4) 改变频率为35Hz ,重复操作(3),可以测定不同频率下离心泵的特性曲线。
五、实验数据记录 1、设备参数:mm d m L 6管内径:;0.2层流钢管管长:11==; mm d m L 31管内径:;2.1湍流铜管管长:22==; ;31管内径:;2.1湍流钢管管长:33mm d m L ==.31管内径:;)95.0(;2.0离心泵.12孔板孔径:;40;出口管径:50离心泵进口管径:1传传电mm d N N m Z mm d mm d mm D o ==⨯==∆===ηη2、实验数据记录1)求 λ 与Re 的关系曲线铜管湍流 钢管湍流钢管层流2、求离心泵的特性曲线30Hz离心泵数据记录35Hz离心泵数据记录六、典型计算1、 求 λ 与Re 的关系曲线以铜管湍流的第一组数据为例计算T =22℃时,ρ≈997.044kg/m 3 μ≈1.0×10−3Pa ∙s 以管中心线为基准面,在1、2截面间列伯努利方程P 1ρ+u 12+gz 1=P 2ρ+u 22+gz 2+ℎf因u 1=u 2,z 1=z 2,故流体在等径管的1、2两截面间的阻力损失为 ℎf =∆P ρ=3.14∗10001000=3.15J/kgu=q v A=q v π4d 12=8.73600×0.0007548=3.202m/s ;Re =duρμ=0.031×3.202×997.0440.001=98960.27因为ℎf =λ∆Pρ; 所以λ=∆P ρd 1l 2u 2=3.15×0.0311.2×23.2022=0.01587其他计算与此相同。
2、求离心泵的特性曲线铜管湍流湍流铜管:管长L 2=1.2m ;管内径d 2=31mm钢管湍流湍流钢管:管长L3=1.2m;管内径d32=31mm钢管层流层流钢管:管长L1=2m;管内径d1=6mm2、离心泵的特性曲线以第一组数据为例,n=30HzT=23℃时,ρ≈997.044Kg/m3μ≈1.0×10−3Pa∙s以水平地面为基准面,离心泵进口压力表为1-1截面,离心泵出口压力表为2-2截面,在此两截面之间列伯努利方程P1ρg +u12g+z1+H=P2ρg+u22g+z2+∑H f因为∑H f≈0; 所以H=P2−P1ρg +u2−u12g+∆Z∆Z=Z2−Z2=0.2m; 进口直径D=50mm ; 出口直径d=40mmu1=q vA1=q vπ4D2=15.653600×π4×0.052m/s=2.215m/s; u2=q vA2=q vπ4d2=15.653600×π4×0.042m/s=3.458m/s、H=3.647mH2ON=N电∙η电∙η传; η电=0.75; η传=0.95N=694×0.75×0.95=494.5Wη=N tN; N t=qHρg=3.647×15.65×997.044×9.81/3600W=155.26Wη=155.26494.5×100%=31.36%30Hz离心泵的特性曲线35Hz离心泵的特性曲线七、实验结果分析与讨论1、求 λ与Re的关系曲线实验结果:由关系曲线可以看出,钢管层流实验中,雷诺数Re与摩擦阻力系数λ在双对数坐标中呈线性关系,摩擦阻力系数λ只与流动类型有关,且随雷诺数Re的增加而减小,而与管壁粗糙度无关;在铜管湍流与钢管湍流实验中,摩擦阻力系数λ随雷诺数Re增加而趋于一个定值,此时流体进入完全阻力平方区,摩擦阻力系数λ仅与管壁的相对粗糙度有关,与雷诺数的增加无关。
结果分析:实验结果基本与理论相符合,但是也存在误差,如:在钢管层流实验中,在雷诺数在1870~2000范围内,雷诺数Re增大,λ并不随Re增大而减小,反而增大。
产生这种现象可能是因为在Re为1870~2000范围内时已经非常接近于湍流,导致其规律与理论出现偏差。
此外,还有可能是因为设备本身存在的误差,即流量调小至一定程度时,无法保证对流量的精准调节,使结果出现误差。
减小误差的措施:a.在实验正式开始前对设备进行检查,确认设备无漏水等现象再开始实验;b.进行流量调节时,每次应以相同幅度减小c.调节好流量后,应等待3分钟,等读数稳定后再进行读数。
2、离心泵的特性曲线实验结果:有实验数据和曲线图可以看出,扬程随流量的增加而降低,轴功率随流量的增加而升高,效率随流量的增加先升高后降低。
随着转速增大,三者均增大,由实验结果可以看出,基本符合Q v ′Q v =n′n、H′H=(n′n)2、N′N=(n′n)3的速度三角形关系。
结果分析:实验结果与理论规律基本符合,在转速为35Hz时结果较理想,但是在转速为30Hz时,虽然符合基本规律,但是效率明显过低。
造成这种现象的主要原因是转速过低,设备存在的设备误差更大,改善方法是在较高转速下进行实验。
减小误差的方法:a.在实验正式开始前对设备进行检查,确认设备无漏水等现象再开始实验;b.进行流量调节时,每次应以相同幅度减小c.调节好流量后,应等待3分钟,等读数稳定后再进行读数。