新课标必修一函数的单调性的教学设计

合集下载

新人教课标版高中数学必修1《函数的单调性》教案设计

新人教课标版高中数学必修1《函数的单调性》教案设计

课题:§1.3.1函数的单调性教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及其几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程: 一、引入课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:1.f(x) = x○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .2.f(x) = -2x+1○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 3.f(x) = x 2○1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . 二、新课教学(一)函数单调性定义1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数(increasing function ).思考:仿照增函数的定义说出减函数的定义.(学生活动) 注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2).2.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(即指出函数f(x)在给定的区间D 上的单调性). (二)典型例题例1.(教材P 34例1)根据函数图象说明函数的单调性. 解:(略)巩固练习:课本P 38练习第1、2题例2.(教材P 34例2)根据函数单调性定义证明函数的单调性. 解:(略) 巩固练习:○1 课本P 38练习第3题; ○2 证明函数xx y 1+=在(1,+∞)上为增函数. 例3.借助计算机作出函数y =-x 2 +2 | x | + 3的图象并指出它的的单调区间. 解:(略)思考:画出反比例函数xy 1=的图象. ○1 这个函数的定义域是什么? ○2 它在定义域I 上的单调性怎样?证明你的结论. 说明:本例可利用几何画板、函数图象生成软件等作出函数图象. 三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差→ 变 形 → 定 号 → 下结论 四、作业布置1. 书面作业:课本P 45 习题1.3(A 组) 第1- 5题.2. 提高作业:设f(x)是定义在R 上的增函数,f(xy)=f(x)+f(y),○1 求f(0)、f(1)的值; ○2 若f(3)=1,求不等式f(x)+f(x-2)>1的解集. 课题:§1.3.1函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义; (2)学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一、引入课题画出下列函数的图象,并根据图象解答下列问题:○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f(2)32)(+-=x x f ]2,1[-∈x (3)12)(2++=x x x f(4)12)(2++=x x x f ]2,2[-∈x二、新课教学(一)函数最大(小)值定义 1.最大值 一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值(Maximum Value ). 思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.(学生活动)注意:○1函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).2.利用函数单调性的判断函数的最大(小)值的方法 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); (二)典型例题例1.(教材P 36例3)利用二次函数的性质确定函数的最大(小)值. 解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为 25cm 的圆形木头锯成矩形木料,如果矩形一边长为x ,面积为y试将y 表示成x 的函数,并画出 函数的大致图象,并判断怎样锯 才能使得截面面积最大? 例2.(新题讲解)旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:25欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住房率为)%102055(⋅+x,于是得 y =150·)160(x -·)%102055(⋅+x.由于)%102055(⋅+x≤1,可知0≤x ≤90. 因此问题转化为:当0≤x ≤90时,求y 的最大值的问题. 将y 的两边同除以一个常数0.75,得y 1=-x 2+50x +17600.由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 例3.(教材P 37例4)求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式. 巩固练习:(教材P 38练习4) 三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差→ 变 形 → 定 号 → 下结论 四、作业布置3. 书面作业:课本P 45 习题1.3(A 组) 第6、7、8题.提高作业:快艇和轮船分别从A 地和C 地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h 和15 km/h ,已知AC=150km ,经过多少时间后,快艇和轮船之间的距离最短?ABC。

高中数学1.3函数的单调性教学设计新人教A版必修1

高中数学1.3函数的单调性教学设计新人教A版必修1

《函数单调性》教学设计基于函数单调性概念是高中教材中方式化程度较强,先生较难理解和要让先生充分了解概念后面所蕴涵的数学思想的主张,笔者以“数学本原性成绩驱动”数学概念教学为指点理念,在对函数单调性概念在高中教材中的地位和作用进行详细分析的基础上进行了新的教学设计及课堂实录。

◆教材分析教材的地位和作用《函数的单调性》是《高中数学人教A版》(必修1)第一章1.31节的内容。

它既是在先生学过函数概念等知识后的延续和拓展,又是后面研讨指数函数、对数函数、三角函数等各类函数的单调性的基础,在全部高中数学中起着承上启下的作用。

研讨函数单调性的过程表现了数学的数形结合和归纳转化的思想方法,反映了从特殊到普通的数学归纳思想方式,这对培养先生的创新认识、发展先生的思想能力,掌握数学的思想方法具有严重意义。

函数的单调性是函数的四个基本性质之一,在比较几个数的大小、对函数作定性分析(求函数的值域、最值,求函数解析式的参数范围、绘函数图象)和与不等式等其它知识的综合运用上都有广泛的运用;同时在这一节中利用函数图象来研讨函数性质的数形结合的思想将贯穿于我们全部高中数学教学。

教材的重点与难点教学重点:(1)领会函数单调性概念,体验函数单调性的方式化过程,深化理解函数单调性的本质,并明确单调性是一个局部概念;(2)函数单调性概念的运用教学难点:打破抽象,深化理解函数单调性方式化的概念。

◆教学目标分析根据新课标的要求和教学内容的结构特点,根据先生学习认知的心思规律和本质教育的要求,结合先生的理论程度,本节课教学目标如下:知识目标:(1)从本质上理解函数单调性概念;(2)运用方式化的函数单调性概念进行判断与运用。

能力目标:(1)培养先生的观察能力,分析归纳能力,领会归纳转化的思想方法。

(2)使先生体验和理解从特殊到普通的数学归纳推理思想方式。

(3)培养先生从具体到抽象的能力。

情感目标:(1)培养先生自动探求、不畏困难、敢于创新的认识和精神。

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。

教学内容:(1) 引入函数单调性的概念。

(2) 讲解函数单调增和单调减的定义。

(3) 举例说明函数单调性的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。

(2) 采用提问法,引导学生思考函数单调性的含义和应用。

教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。

(2) 讲解函数单调增和单调减的定义,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。

(4) 总结函数单调性的应用,如解不等式、求最值等。

1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。

教学内容:(1) 讲解函数单调性的传递性。

(2) 讲解函数单调性的同增异减性质。

(3) 举例说明函数单调性性质的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的性质。

(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。

教学步骤:(1) 讲解函数单调性的传递性,举例说明。

(2) 讲解函数单调性的同增异减性质,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。

(4) 总结函数单调性性质的应用,如解不等式、求最值等。

第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。

教学内容:(1) 讲解导数与函数单调性的关系。

(2) 讲解利用导数判断函数单调性的方法。

(3) 举例说明利用导数判断函数单调性的应用。

教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。

(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。

教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。

(2) 讲解利用导数判断函数单调性的方法,举例说明。

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。

2. 学会利用单调性判断函数的性质,如极值、最值等。

3. 能够运用单调性解决实际问题,如求函数的极值、最值等。

二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。

2. 单调性的判断方法及应用。

3. 实际问题中的单调性应用。

三、教学重点与难点:1. 函数单调性的概念及判断方法。

2. 单调性在实际问题中的应用。

四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。

2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。

3. 互动教学法:提问、讨论,激发学生的思考。

五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。

2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。

3. 举例:分析具体函数的单调性,让学生学会判断。

4. 练习:布置练习题,让学生巩固单调性的判断方法。

5. 案例分析:分析实际问题,引导学生运用单调性解决问题。

6. 总结:回顾本节课的内容,强调单调性的重要性。

7. 作业布置:布置课后作业,巩固所学内容。

六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。

2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。

3. 案例分析:评估学生在实际问题中运用单调性的能力。

七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。

2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。

八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。

2. 课件:制作课件,辅助教学,提高课堂效果。

3. 练习题:准备练习题,巩固所学内容。

4. 实际问题案例:收集实际问题案例,用于教学实践。

九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。

高中新课程数学(新课标人教B版)必修一213《函数的单调性》教案

高中新课程数学(新课标人教B版)必修一213《函数的单调性》教案

2.1.3 函数的单调性 教案教学目标:理解函数的单调性教学重点:函数单调性的概念和判定教学过程:1、过对函数x y 2=、x y 3-=、x y 1=及2x y =的观察提出有关函数单调性的问题.2、阅读教材明确单调递增、单调递减和单调区间的概念例题讲解:例1.如图是定义在闭区间[-5,5]上的函数)(x f y =的图象,根据图象说出)(x f y =的单调区间,及在每一单调区间上,)(x f y =是增函数还是减函数。

解:函数)(x f y =的单调区间有[)[)[)[]53,3,1,1,2,2,5---,其中)(x f y =在区间[)2,5-, [)3,1上是减函数,在区间[)[]5,3,1,2-上是增函数。

注意:1 单调区间的书写2 各单调区间之间的关系以上是通过观察图象的方法来说明函数在某一区间的单调性,是一种比较粗略的方法,那么,对于任给函数,我们怎样根据增减函数的定义来证明它的单调性呢? 例2。

证明函数23)(+=x x f 在R 上是增函数。

证明:设21,x x 是R 上的任意两个实数,且21x x <,则 021<-=∆x x x ,03)(3)23()23()()(212121<∆=-=+-+=-=∆x x x x x x f x f y所以,23)(+=x x f 在R 上是增函数。

例3.函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,求实数a 的取值范围. 解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数.当≠时,对称轴=,若>时,由>≤,得<≤.a 0x a 0a 0 3a 10a 131212a aa--⎧⎨⎪⎩⎪ x y0 -5 x y -5 5若a <0时,无解.∴a 的取值范围是0≤a ≤1.例4.证明函数x x f 1)(=在),0(+∞上是减函数。

证明:设21,x x 是),0(+∞上的任意两个实数,且21x x <,则021<-=∆x x x2112212111)()(x x x x x x x f x f y -=-=-=∆ 由),0(,21+∞∈x x ,得021>x x ,且012>∆-=-x x x于是0>∆y所以,xx f 1)(=在),0(+∞上是减函数。

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:引言1.1 教学目标了解函数单调性的概念及其在数学中的重要性。

理解单调性对解决实际问题的重要作用。

1.2 教学内容介绍函数单调性的概念。

通过实际例子说明单调性在解决实际问题中的应用。

1.3 教学方法使用多媒体演示和实际例子来讲解函数单调性的概念。

引导学生通过思考和讨论来理解单调性的重要性。

1.4 教学评估通过课堂提问和小组讨论来评估学生对函数单调性的理解程度。

第二章:函数单调性的定义与性质2.1 教学目标理解函数单调性的定义及其性质。

学会判断函数的单调性。

2.2 教学内容介绍函数单调性的定义。

讲解函数单调性的性质,如单调递增和单调递减。

2.3 教学方法使用数学定义和示例来解释函数单调性的概念。

引导学生通过自主学习和小组讨论来掌握函数单调性的性质。

2.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性定义和性质的理解程度。

第三章:函数单调性的应用3.1 教学目标学会使用函数单调性解决实际问题。

理解函数单调性在数学和其他领域中的应用。

3.2 教学内容介绍函数单调性在解决实际问题中的应用。

讲解函数单调性在其他领域中的应用,如经济学和物理学。

3.3 教学方法使用实际例子和应用问题来展示函数单调性的使用。

引导学生通过思考和讨论来理解函数单调性在实际问题中的应用。

3.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性应用的理解程度。

第四章:函数单调性的证明4.1 教学目标学会使用数学方法证明函数的单调性。

理解证明函数单调性的重要性和方法。

4.2 教学内容介绍证明函数单调性的方法和技巧。

讲解不同类型的函数单调性证明。

4.3 教学方法使用示例和练习来讲解证明函数单调性的方法。

引导学生通过自主学习和小组讨论来掌握证明函数单调性的技巧。

4.4 教学评估通过课堂练习和小组讨论来评估学生对证明函数单调性的理解程度。

5.1 教学目标拓展对函数单调性的深入理解。

5.2 教学内容介绍函数单调性的进一步研究和发展。

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。

最新人教版高中数学必修一函数的单调性优质教案

最新人教版高中数学必修一函数的单调性优质教案

1.3.1(1)函数的单调性(教学设计)教学目标(一)知识与技能目标学生通过经历观察、归纳、总结、证明等数学活动能够:1、理解增函数、减函数的概念及函数单调性的定义2、会根据函数的图像判断函数的单调性3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数(二)过程目标1、培养学生利用数学语言对概念进行概括的能力2、学生利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感、态度和价值观1、通过本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯2、通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心教学重点:函数单调性的定义及单调性判断和证明一、复习回顾,新课引入1、函数与映射的定义。

2、函数的常用表示方法3、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:①随x的增大,y的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性?4、作出下列函数的图象:(1)y=x ; (2)y=x 2;二、师生互动,新课讲解:观察函数y=x 与y=x 2的图象,当x 逐渐增大时,y 的变化情况如何?可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).区间D 叫做函数的增区间。

3.1.2函数的单调性+教学设计2023-2024学年高一上学期数学人教B版(2019)必修第一册

3.1.2函数的单调性+教学设计2023-2024学年高一上学期数学人教B版(2019)必修第一册

教学设计课程基本信息课题 3.1.2 函数的单调性教学目标1.理解单调函数、单调区间的概念,并能根据函数的图象指出单调性、写出单调区间,能运用函数的单调性定义证明简单函数的单调性;2.让学生体验数学知识的发生发展过程,在体验函数单调性概念符号化的建构过程中掌握数学的认知策略;3.培养学生分析、综合能力,理性描述生活中的增长、递减现象,提升核心素养.教学内容教学重点:掌握函数单调性的概念教学难点:利用函数单调的定义证明具体函数的单调性.教学过程1.情境引入:见到大家我很高兴,先和同学们分享三段“小曲儿”:1 2 3 4 5 6 7•1•17 6 5 4 3 2 1 1 5 3 5 1 5 3 5来到这里我很高兴天气变的越来越冷添加衣服添加衣服问题1:你能描述上述三段小曲音调的变化规律吗?答:分别为上升、下降、有升有降。

问题2:你能根据上述的变化规律分别给出一个函数吗?并在直角坐标系中绘制相应的函数图象.【设计意图】:创设“音调→图象”的问题情境,让学生用简单的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做使教学过程富有情趣,激发学生的学习热情。

函数图象的变化趋势有三种情况:①在整个定义域上呈上升趋势;②在整个定义域上呈下降趋势;③定义域被划分成若干区间,在每个区间的上升(或下降)趋势是确定的,这三种情况和三段小曲相对应.2.温故知新:问题3:观察绘制的函数的图象(实际教学中可根据学生绘制的图象定),你能指出图象变化的趋势吗?观察得到:随着x值的增大,函数的函数图象有的呈逐渐上升的趋势,有的呈逐渐下降的趋势,有的在一个区间内呈上升的趋势,在另一区间内呈逐渐下降的趋势.问题 4:“图象呈逐渐上升趋势”这句话初中是如何描述的?y 时,我们知道,当x<0 时,函数值y随x的增大而减小,当例如,初中研究2xx>0 时,函数值y随x 的增大而增大.回忆初中对函数单调性的描述性定义:图象呈逐渐上升趋势⇔函数值y随x的增大而增大图象呈逐渐下降趋势⇔函数值y 随x的增大而减小函数的这种性质称为函数的单调性.有的同学认为图像的上升或者下降趋势通过观察即可得出,又何必用函数值y随x的变化而变化呢?下面我们看这样一个函数图像这条直线,看起来是和x轴平行的,但通过取点发现,是呈上升趋势的。

函数单调性优秀教案

函数单调性优秀教案

函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。

为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。

在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

他是高中数学中相当重要的一个基础知识点。

是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。

函数的单调性教学设计

函数的单调性教学设计

函数的单调性教学设计一、教材分析《函数单调性》是高中数学新教材必修一第二章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

二、学习目标分析知识与技能:1、通过生活中的例子帮助学生理解增函数、减函数及其几何意义。

2、学会应用函数的图象理解和研究函数的单调性及其几何意义。

过程与方法:1、通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。

2、通过探究与活动,使学生明白考虑问题要细致,说理要明确。

情感与态度:1、通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。

2、通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。

三、教学重难点重点:函数单调性概念的理解及应用难点:函数单调性的判定及证明关键:增函数与减函数的概念的理解四、教法分析为了实现本节课的教学目标,在教法上我采取了:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.五、学法分析在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。

然后通过对函数单调性的概念的学习理解,最终把问题解决。

整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

“函数的单调性”教案

“函数的单调性”教案

“函数的单调性”教案一、教学目标1. 理解函数单调性的概念,掌握判断函数单调性的方法。

2. 能够运用函数单调性解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力,提高学生对函数知识的兴趣。

二、教学内容1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用三、教学重点与难点1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用四、教学方法1. 采用启发式教学,引导学生主动探究函数单调性的定义与性质。

2. 通过例题讲解,让学生掌握判断函数单调性的方法。

3. 结合实际问题,培养学生运用函数单调性解决问题的能力。

五、教学过程1. 导入新课:回顾上一节课的内容,引导学生思考函数的单调性。

2. 讲解函数单调性的定义与性质:详细讲解函数单调性的概念,引导学生理解并掌握函数单调性的性质。

3. 判断函数单调性的方法:讲解如何判断函数的单调性,引导学生通过实例分析来掌握判断方法。

4. 运用函数单调性解决实际问题:给出实际问题,引导学生运用函数单调性进行解决,培养学生的应用能力。

5. 课堂小结:对本节课的内容进行总结,强调函数单调性的重要性。

6. 布置作业:设计具有针对性的作业,巩固学生对函数单调性的理解和掌握。

六、教学评估1. 课堂提问:通过提问了解学生对函数单调性的理解程度,及时发现并解决学生在学习过程中遇到的困惑。

2. 作业批改:重点关注学生对函数单调性概念的掌握和判断方法的运用,及时给予反馈和指导。

3. 课堂练习:设计一些具有代表性的练习题,让学生在课堂上独立完成,检验学生对函数单调性的掌握情况。

七、教学拓展1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。

2. 介绍函数单调性在实际应用中的重要作用,如经济学、物理学等领域。

3. 鼓励学生进行课外阅读,了解函数单调性的更多相关知识,提高学生的知识面。

八、教学反思1. 反思教学过程中的优点和不足,总结经验教训,为今后的教学提供参考。

3.1.2 高中必修一数学教案《函数的单调性》

3.1.2  高中必修一数学教案《函数的单调性》

高中必修一数学教案《函数的单调性》教材分析函数的单调性与最值指的是在初中基础上对函数的单调性的再认识,是利用集合与对应的思想理解函数的定理,从而加深对抽象函数单调性的定义理解,根据定义,证明函数的单调性,理解单调区间以及理解函数最大(小)值的定义并掌握其求法。

因为函数的单调性是初等数学与高等代数学衔接的枢纽,是函数的第一个也是最基本的性质,为研究指数函数、对数函数、幂函数、三角函数以及导函数的内容,对函数定性分析、求极值最值、比较大小、解不等式、判定零点都有重要的作用,所以具有重要的地位。

学情分析本节课的教学对象是高一理科的学生,他们的参与意识强,思维活跃,对于真实情境以及现实生活中的数学问题具有极大的学习兴趣,不过由于年龄和思维原因,看问题容易片面。

在之前的学习中,学生已经掌握了函数的三要素,并且学生初中学过y随x的增大而增大(或减小),这些都有利于学生的理解。

但是本节课的单调性的定义更抽象,对学生而言是一个较大的考验。

教学目标1、理解增函数、减函数、单调区间、单调性等概念;2、掌握增(减)函数的证明和判别,学会运用函数图象理解和研究函数的性质,能利用函数图象划分函数的单调区间。

教学重点形成增减函数的定义。

教学难点在形成增减函数概念的过程中,从函数升降的直观认识,过渡到增减函数的数学符号语言表述;用定义证明函数的单调性。

教学方法讲授法,演示法,讨论法,练习法教学过程一、情境导学我们知道,“记忆”在我们的学习过程中扮演着非常重要的角色,因此有关记忆的规律一直都是人们研究的课题。

德国心理学家艾宾浩斯曾经对记忆保持量进行了系统的实验研究,并给出了类似图3-1-7所示的记忆规律。

如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则不难看出,图3-1-7中,y是x的函数,记这个函数为y = f(x)这个函数反映出记忆具有什么规律?你能从中得到什么启发?二、教学过程1、单调性的定义与证明情境中的函数y = f(x)反映出记忆的如下规律:随着时间间隔x的增大,记忆保持量y将减小。

函数单调性优秀教案

函数单调性优秀教案

函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。

为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。

在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

他是高中数学中相当重要的一个基础知识点。

是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。

必修一《函数的单调性》教学设计

必修一《函数的单调性》教学设计

必修一《函数的单调性》教学设计第一篇:必修一《函数的单调性》教学设计必修一《函数的单调性》教学设计必修一《函数的单调性》教学设计本节课是北师大版必修1,§3《函数的单调性》新授课的微课程教学设计。

课程标准:通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义。

教学目标:1.理解函数单调性的定义,掌握其图象特征;2.能够根据函数的图象,读出函数的单调区间;3.会用定义法证明函数的单调性;4.能够判断抽象函数的单调性.教学重点:函数单调性的定义,及单调函数的图象特征。

教学难点:数形结合的数学思想方法在函数单调性中的应用。

教学过程:第1个环节:复习函数单调性的定义。

一般地,设函数f(x)的定义域内的一个区间A上:如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数.如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2).那么就说f(x)在这个区间上是减函数.给出函数单调性的定义,强调定义中的“任意”二字,指出函数的单调性是一个整体的概念,在给定的区间内的所有的均要满足单调性的数学表达式。

【设计意图】对函数单调性的定义进行学习,特别是要领会定义中的“任意”二字。

第2个环节:单调函数的图象特征。

给出3个具体的例子,剖析函数单调性的图象特征。

然后给出一个函数的图象,读出单调递增和单调递减区间,将抽象的定义具体化。

在本环节,要重点突出的两个问题:(1)单调区间区间端点的“开”和“闭”的问题;因为函数的单调性是一个整体的概念,在区间端点讨论单调性是毫无意义的。

但是要注意,如果函数在区间端点处没有定义,则区间端点必须是“开”的,有定义则“可开可闭”。

(2)单调区间不能写成并集的形式。

两个集合的并集相当于是进行集合的运算,结果是一个集合,而显然函数在[0,4]∪[14,24]图象不是一直下降的,所以不能写成并集的形式。

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》教案章节:一、函数单调性的概念教学目标:1. 了解函数单调性的概念;2. 学会判断函数的单调性;3. 能够应用函数单调性解决实际问题。

教学内容:1. 引入函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 引入实例,引导学生思考函数的单调性;2. 给出函数单调性的定义,解释单调递增和单调递减的概念;3. 讲解函数单调性的判断方法,引导学生进行判断;4. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;5. 总结本节课的重点内容,布置作业。

教案章节:二、函数单调性的判断方法教学目标:1. 学会判断函数的单调性;2. 掌握函数单调性的判断方法;3. 能够应用函数单调性解决实际问题。

教学内容:1. 回顾函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 复习函数单调性的概念,引导学生回顾上一节课的内容;2. 讲解函数单调性的判断方法,如导数法、图像法等;3. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;4. 练习判断函数的单调性,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。

教案章节:三、函数单调性与最优化问题教学目标:1. 了解函数单调性与最优化问题的关系;2. 学会应用函数单调性解决最优化问题;3. 能够应用函数单调性解决实际问题。

教学内容:1. 引入函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 引入实例,引导学生思考函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用,如求函数的最大值、最小值等;3. 举例说明函数单调性在实际问题中的应用,如成本最小化问题、收益最大化问题等;4. 练习解决最优化问题,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。

人教版高中数学必修一《函数的单调性》教学设计

人教版高中数学必修一《函数的单调性》教学设计

本节课的教学过程包括:创设情境,引入课题;归纳探索,形成概念;巩 固提高,深化概念;归纳小结,提高认识 . 具体过程如下:
( 一) 创设情境,引入课题 我们知道,函数是刻画事物变化的工具。下图是某地从
4 月 21 日到 5
月 19 日期间某种疾病每日新增病例的变化统计图。
思考如何用数学语言刻画疫情变化?
-10
-5
10
-2
-4 -6
-8
-10
-5
10
-2
-4
-6
-8
y x2
y x1
y x2
通过学生熟悉的图像,及时引导学生观察,函数图像上点的运动情况,
引导学生能用自然语言描述出,随着 x 增大时图像变化规律。让学生大胆的
去说,老师逐步修正、完善学生的说法,最后给出正确答案。
【设计意图】 以学生们熟悉的函数为切入点,尽量做到从直观入手,顺
类似地分析图象在 y 轴的左侧部分。
【设计意图】 通过启发式提问,实现学生从“图形语言”到 “文字语言”
到 “符号语言”认识函数的单调性,实现“形”到“数”的转换。 通过对以
上问题的分析, 从正、反两方面领会函数单调性。师生共同总结出单调增函
数的定义,并解读定义中的关键词,如:区间内,任意,
当 x1 < x2 时,都有
上是增(或减)函数。
【设计意图】 函数单调性定义产生是本节课的难点,难在:如何使学生
从描述性语言过渡到严谨的数学语言。而对严谨的数学语言的准确理解及正 确应用更是学生薄弱环节,这里通过问题研讨体现了以学生为主体,师生互 动合作的教学新理念。例 1 主要是从图形上判断函数的单调性;例 2 主要对 数形结合,定义法证明函数的单调性的只是巩固与应用 . (四) 判断函数单调性的方法步骤

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

新课标必修一函数的单调性的教学设计(优选.)

新课标必修一函数的单调性的教学设计(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。

课题:函数的单调性教学目标:1.知识与技能(1)通过已学过的函数特别是二次函数,理解函数的单调性概念;(2)学会运用函数图象理解和研究函数的性质;(3)了解数形结合的思想及严密的逻辑推理,培养学生良好的数学思想和数学方法;(4)能够熟练应用定义判断数在某区间上的的单调性.2.过程与方法能够观察研究函数图象的特点,来研究函数的单调性性质.3.情感、态度、价值观:培养学生学习数学的兴趣,体会函数图象的变化规律及蕴含本质教学方法:引导发现法教学重点:函数的单调性.教学难点:利用函数的单调性定义判断、证明函数的单调性.教学程序与环节设计: 1.创设情境 :问题引入2.组织探究:通过几个函数的图象的“上升“和”下降“的整体认识探究函数的单调性的定义及判断函数单调性的方法步骤3.尝试练习:利用函数的图象确定函数的单调区间4.巩固提高:利用函数的单调性定义判断、证明函数的单调性. 5.作业反馈:单调性定义的应用 教学过程: 一、 引入课题 1.在初中,有没有学过函数的增减性?(学过)2(1). f(x) = -x○1从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增大, f(x)的值随着 ________ . (2). f(x) = x 2○1在区间 ____________ 上,f(x)随着x的增大而 ________ .○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ .(3).如何把上述的图象所反映的特征用数学符号语言表示出来?{引导学生探讨,归纳}二、新课教学(一)函数单调性定义1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function).思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) .2.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(即指出函数f(x)在给定的区间D上的单调性).(二)典型例题例1.根据函数图象说明函数的单调性.如图,是定义在区间[]5,5-上的函数()=,根据图象说出函数y f x的单调区间,以及在每一单调区间上,它是增函数还是减函数?Array解:函数()y f x =的单调区间有[)5,2-,[)2,1-,[)1,3,[]3,5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:函数的单调性教学目标:
1.知识与技能
(1)通过已学过的函数特别是二次函数,理解函数的单调性概念;
(2)学会运用函数图象理解和研究函数的性质;
(3)了解数形结合的思想及严密的逻辑推理,培养学生良好的数学思想和数学方法;
(4)能够熟练应用定义判断数在某区间上的的单调性.2.过程与方法能够观察研究函数图象的特点,来研究函数的单调性性质.
3.情感、态度、价值观:培养学生学习数学的兴趣,体会函数图象的变化规律及蕴含本质
教学方法:引导发现法
教学重点:函数的单调性.
教学难点:利用函数的单调性定义判断、证明函数的单调性.
教学程序与环节设计:
1.创设情境 :问题引入
2.组织探究:通过几个函数的图象的“上升“和”下降
“的整体认识探究函数的单调性的定义及判断函数单调性的方法步骤
3.尝试练习:利用函数的图象确定函数的单调区间 4.巩固提高:利用函数的单调性定义判断、证明函数的单调性.
5.作业反馈:单调性定义的应用 教学过程: 一、 引入课题 1.
在初中,有没有学过函数的增减性?(学过)
一些函数的增减性是怎样知道的?(观察图象得出)
2
(1). f(x) = -x

1 从左至右图象上升还是下降
______? ○
2 在区间 ____________ 上,随着x 的增大, f(x)的值随着 ________ . (2). f(x) = x 2

1在区间 ____________ 上,f(x)
随着x的增大而 ________ .
○2在区间 ____________ 上,f(x)的值随
着x的增大而 ________ .
(3).如何把上述的图象所反映的特征用数学符号语言表示出来?{引导学生探讨,归纳}
二、新课教学
(一)函数单调性定义
1.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function).思考:仿照增函数的定义说出减函数的定义.(学生活动)
注意:
○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
○2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) .
2.函数的单调性定义
如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:
3.判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
○1任取x1,x2∈D,且x1<x2;
○2作差f(x1)-f(x2);
○3变形(通常是因式分解和配方);
○4定号(即判断差f(x1)-f(x2)的正负);
○5下结论(即指出函数f(x)在给定的区间D上的单调性).
(二)典型例题
例1.根据函数图象说明函数的单调性.
如图,是定义在区间[]
-上的函数()
5,5
y f x
=,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?
解:函数()y f x =的单调区间有[)5,2-,[)2,1-,[)1,3,
[]3,5。

其中()y f x =
在区间[)5,2-,[)1,3上是减区间,在区间[)2,1-,[]3,5上是增函数。

巩固练习:课本P 36练习第3题
题后小结:以上是通过观察图象的方法来说明函数在某一区间的单调性,是一种比较粗略的方法,那么,对于任给函数,我们怎样根据增减函数的定义来证明它的单调性呢?
例2.根据函数单调性定义证明函数的单调性. 物理学中的玻意耳定律k
p v
=(k 为正常数)告诉我们,对于一定量的气体,当其体积V 减小时,压强P 将增大,试用函数的单调性证明之。

分析:按题义,只要证明k
p v
=在区间(0,+∞)上是减函数即可。

证明:根据单调性的定义,设1v ,2v 是定义域(0,+∞)上的任意两个实数, 且1v <2v ,则21121212
()()v v k k
p v p v k v v v v --=
-=。

由1v ,2v ∈(0,+∞),得12v v >0; 由1v <2v ,得21v v ->0; 又K>0,于是12()()p v p v ->0, 即1()p v >2()p v
所以,函数k p v
=,V ∈(0,+∞)是减函数。

也就是说,当体积
V 减少时,压强P 将增大。

巩固练习:
练习:判断函数 x y 1= 在(0,+∞)上单调性, 并给予证明。

思考:画出反比例函数x
y 1
=的图象. ① 这个函数的定义域是什么?
② 它在定义域上具有单调性吗?为什么?
③请你确定此函数的单调性,并证明你的结论.
说明:本例可利用几何画板、函数图象生成软件等作出函数图象.
题后小结:函数的单调性是在定义域内的某个区间上
的性质,证明过程的第一步任取变量一定
要注意其所在的区间范围。

三、归纳小结,强化思想
函数的单调性一般是先根据图象判断,再利用定义证明.求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:
取值→作差→变形→定号→下结论四、业布置
1.书面作业:课本P43习题1.3(A组)第1- 4题.
2.提高作业:
(1),f(x)=x2-2bx+b在x ∈ ( -∞,1) 上是减函数,求b的取值范围
(2).f(x)=(b-2)x2-2bx+b在x ∈ ( -∞,1] 上是减函数,
求b的取值范围 .
教学过程与操作设计:。

相关文档
最新文档