旋风除尘器试验报告

旋风除尘器试验报告
旋风除尘器试验报告

旋风除尘器性能测定

组员:戚锎1020320215

朱鹏志1020320219

彭文林1020320220

汪超1020320222

谢显宇1020320224

肖林峰1020320226

杨合详1020320235

向强1020320134

杨斌1020320126

欧琳1020320102 指导老师:赵素芬

旋风除尘器性能测定实验

一、实验目的

1、了解除尘器性能测定实验台的结构及工作原理,掌握除尘器性能测试的基本方法。

2、了解除尘器运行工况及其效率和阻力的影响。

3、掌握旋风除尘器的除尘机理以及使用方法。

4、测定旋风除尘器处理风量、压力损失和除尘效率

二、实验原理

如图所示为一个旋风除尘器,废气从(1)进入,然后经过(4)旋风除尘器作用除去粉尘颗粒,再从出气口排出净化后的气体。经过旋风除尘器除去的粉尘颗粒由(5)灰斗收集。

旋风除尘器除沉机理是使含尘气流作旋转运动,借助于离心力降

尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。废气在旋风除尘器中的运动如下图所示

1.气体流速的测定:本实验用毕托管和微压计测定管道中各测点

的动压Pd,从而可求得气体的流速。由于气体流速在风管断面上的分布式不均匀的,可在同一断面上进行多点测量,求出该断面的平均流速。毕托管所测得的断面Φ90mm,故可以分为两环。微压计测出动压平均值,相应的空气流速为

式中Pd——测得的平均动压值,ρ——空气密度kg/m3,

2.风量的测定:根据断面的气流速度确定风量Q=A

3.除尘器压力损失测定:除尘器的压力损失(Hz)即除尘器入排

风侧的全能量差,依下式求出:

4.旋风除尘器的除尘效率:η=x100%

—入口处粉尘浓度,

---进口处粉尘浓度,

三、实验仪器

毕托管、倾斜式微压计、尺子、双头粉尘采样器、MD-1型粉尘度分析仪、离心通风机、DFS-3型多功能防尘实验装置、DKS-3型多功能空气动力学实验装置、滤膜、万分之一天平等。

四、实验步骤

1.进气量测定:先用尺子测量进气口的直径,算出进气口的面积。

2.将倾斜式微压计连接到预定位置,把微压计放在平整的工作台上,

缓慢调节底座下3个调节螺钉,使多向阀“+”对齐1号接嘴。;3.使水准器的气泡位于中心位置。用橡胶管的一端接到1号接嘴上,

另一端接压力源加压(或吹),使测量管内乙醇上升到顶端,反复几次,直到测量管内不见气泡且零位保持稳定为止

4.正压力测量:将多向阀“+”对齐1号接嘴,用橡胶管把2号接

嘴与测量管支架上端接嘴连接,被测正压力的接头与1号接嘴相连。

5.负压力测量:保持正压力测量时的多向阀的位置及橡胶管的连通

方式,被测负压力的接头与3号接嘴连接。

6.用双头粉尘采样器测出除尘器入口处与出口处的粉尘浓度,求得

总除尘效率η。

①滤膜的准备:从干燥皿中取出待用滤膜五片(备用滤膜要事先放在干燥皿内

干燥),用摄子取下两面衬纸,用万分之一天平分别称重(滤膜初重,(35-45毫克左右),在实验记录上记好每片滤膜初重,将称好的滤膜用滤膜夹夹好,放入编号的虑膜盒内,备用。

②将滤膜连夹放入采样头内拧紧,按图1连接采样管路。

③开动采样器,调节流量计到20-30毫升(流量根据发尘浓度、采样时间确定,

在采样过程中始终保持此采样流量)。

④开动实验装置风机。开动发尘器,调节发尘量(使滤膜的粉尘采集量在1-20

毫克),同时开始计时(用秒表)。

⑤采样15-20分钟末关闭发样器→关闭采样器→关闭风机。

7.取出滤膜,称量并记录数据。

8.样片制作:将实验二采样后滤膜的尘粒刮少数至载破片上。滴一

小滴酒精,再用一块干净的载破片将溶液来回推移几次,尘粒在溶液中均匀分布后,盖上盖玻片。

9.目镜测微尺的标定:物镜测微尺长1MM,其分成100等分,每个

小刻度为10μm,图3所示。

将物镜测微尺放在显微镜载物台上,在600倍下将目镜测微尺和物镜测微尺左侧的零刻度线对齐后,在右测找出二尺的另一重合线(图3中目镜尺第18线),根据刻度示值,即可按下式算出目镜测微尺一个刻度应量的尺寸。

10.测定:

①将样片固定在载物台上,调整焦距旋钮使物镜到最低位置(不接触样片为限)。

②观察样片,轻轻将镜筒上移,到镜下粉尘粒子的边缘清楚为止。

③根据实际需要将粉尘径范围划分为几个粒径区间。本实验采用;<2μ;2-5μ;5-10μ;10-20μ;>20μ五个区间,见图4。

④用目镜测微尺量取尘粒大小,(量取粉尘定向径)。检测时凡在刻度尺覆盖范围内的尘粒要逐一计测,用粒子计数器记录每一粒级粒子的颗粒数。填入实验记录。每个样片计测总粒数不应少于300粒。如刻度尺覆盖的粒数不足300粒,可向一

个方向移动样片,继续计测。达到粒数为止。

⑤大颗粒粒子由于出现次数较少,易造成测定误差,可多测几个定面积视野再取其平均值。

⑥记录数据

五、实验数据与处理

进气口半径d 为110mm,面积A=9.5X10-3 m2 ,Sina=0.2 ,出气口面积与进气口相等。

K P全P静P动V Q 进气口0.6 13 6 7 4.66 0.045 出气口0.8 218 210 8 4.66 0.045

实验次数项目P进P出△P

1 101204.7 100114 1090.7

2 101212 100116 1096

品均值101208.35 100115 1093.35

Q1=10L/min Q2=25L/min

序号

入口处粉尘质量g 出口处粉尘质量g 除尘效率

滤膜质量滤膜

质量

粉尘质

滤膜质

滤膜

质量

粉尘

质量

1

0.0726 0.0748 0.0022 0.0743 0.0745 0.0002 91% 2 0.0710 0.0725 0.0015 0.0726 0.0728 0.0002 87% 平均值0.00185 0.0002 89% 旋风除尘器的除尘效率:η=89% p=11%

粒径分布

<2 2-5 5-10 10-20 >20

进口处0 20 96 94 80

出口处0 15 12 3 0

分级效率为

<2 2-5 5-10 10-20 >20

质量分布进

0 696 28272 221389 83734 出

0 522 3535.2 7062.6 0

分级效率0 91.75% 98.62% 99.6% 100%

假定粉尘密度为1,<2取粒径为2,2-5取2.5,5-10取7.5,10-20取15,>20取20.

六、实验结果及注意事项

实验结果:

1、结果求得处理风量为0.045m3/h

2、该旋风除尘器压力损失为1093.35Pa

3、该旋风除尘器除尘效率为89%

实验注意事项:

.在测量的过程中注意将倾斜微压计摆放好,保持微压计水平。.旋风除尘器灰斗不要出现露风现象;

.注意用电安全,实验完成后要检查电源是否断开。

七、实验小结

本次实验由于准备不够充分,实验细节没有设计完善,导致实验过程中实验对实验是掌握欠缺。实验中特别是双头采样器测粉尘密度两次实验数据偏小太多预计是双头采样器堵塞。

通过本次实验,我们对旋风除尘器除尘机理有更深的了解,对除尘装置效率的测定方法也有一定的掌握,基本上达到了实验要求。

附录1 微压计使用方法

YYT-2000 倾斜式微压计(以下简称微压计)用于测量不溶于乙醇的微小压力气体的表压和差压。它可以测量正压、负压和差压。其倾斜角度可以变更,主要由底座、介质容器、测量管、弧型支架、零位调节器、多向阀、水准器等组成。

底座下装有三个调水准螺钉;测量管由无色透明的玻璃管制作,在其长度方向上, 均匀刻有250mm 以上的毫米分度格;测量管可以在弧型支架的槽中来回调节其倾斜角

度。弧型支架上标有5 档倾斜常数k(0.2、0.3、0.4、0.6、0.8),用于测量5 档压

力范围的气体。多向阀上部可作60°的旋转运动,顶面黑色标牌上标有“+,→”符号,下部侧壁上装有标号为1、2、3 的三个接嘴,根据它们的特定组合就可进行压力

测量。

YYT-2000 倾斜式微压计具体使用操作步骤:

①准备工作

a.打开包装箱盖,旋下包装箱底上的(固定微压计)2 个M10×1 大螺钉,取出微

压计,然后,在底座上旋上3 个水准螺钉(配件);

b.调水平:把微压计放在平整的工作台上,缓慢调节底座下3 个调节螺钉,使多

向阀上“+”对齐1 号接嘴。使水准器的气泡位于中心位置;

c.调配介质密度:将无水乙醇倒入500ml 量筒内,再把满量程为800~900(kg/m

3

的密度计放入乙醇中,然后,根据需要添加蒸馏水少许(同时要搅拌)使密度计浮起,

注意观察当乙醇液面指到密度计的810(kg/m

3

〕的刻线时,即达到要求;

d.冲洗:用调好的乙醇,从充液口灌入容器,对容器、测量管、接嘴进行冲洗,

然后倒出乙醇;

e.调零位:将测量管置于倾斜常数在0.8 上,零位调节器旋至接近最高端。将乙

醇再重新灌入容器中,使乙醇到达测量管的零位附近,盖好充液盖。用橡胶管的一端接

到1 号接嘴上,另一端接压力源加压(或吹),使测量管内乙醇上升到顶端,反复几次,直到测量管内不见气泡且零位保持稳定为止;

②压力测量

用倾斜测量管的长支杆反面的锥型头螺钉将该测量管预置在弧形支架相应的倾斜

常数上。对于未知气体压力的测试,应选用倾斜常数为K=0.8 档,然后,根据实际压力再调整K 值。对于不同的K 值要重新进行调零。

a.正压力测量:将多向阀上“+”对齐1 号接嘴,用橡胶管把2 号接嘴与测量管支

架上端接嘴连接,被测正压力的接头与1 号接嘴相连。

b.负压力测量:保持正压力测量时的多向阀的位置及橡胶管的连通方式,被测负压力的接头与3 号接嘴连接。

c.差压测量:保持正压力测量时的多向阀的位置及橡胶管的连通方式,被测高压力的接头与1 号接嘴连接,被测低压力的接头与3 号接嘴连接。

③压力计算方法

a.在某一倾斜常数(K)时的压力值,应按下式进行计算:

P 1 =9.8 LK(Pa)

式中:L——玻璃测量管液柱长度(mm)

K——倾斜常数(0.2、0.3、0.4、0.6、0.8)

b.为了保证测试精度,在调配乙醇时,应使其在标准温度时的密度为810(kg/m〕。

④注意事项:

a.乙醇备份:因工作环境温度的变化,微压计容器内的乙醇密度也变化。为此,在

调配好乙醇时,另外准备一个密封容器,把该密度的乙醇灌入此密封容器中保存,并且与微压计处于同一环境温度中。当工作环境温度有较明显的变化时,把测出的密封

容器中的乙醇密度(d1)就作为实际密度来进行换算。

b.搬动微压计应握住底座,切勿提拿弧形支架或测量管支架。

c.微压计调零位时,若旋钮已旋到最低位置仍不能使液面升到玻璃管测量管零位, 说明容器内乙醇太少,若旋钮已旋到最高位置液面仍超过玻璃管零位,说明容器内乙醇过多。

d.若短期内间隔使用微压计,为避免乙醇蒸发,每次使用后应将多向阀上箭头“→”对齐2 号(中间位置的)接嘴。

e.如较长时间不用,应清洁处理后,将微压计放入包装箱内。

f.接嘴的确认:逆时针旋转多向阀到底,箭头“→”所指的为2 号(中间位置的)接嘴。顺时针旋转多向阀到底“+”号所对的为1 号接嘴。

g.为了保证测量的准确性,对于不同的K 值要重新进行调零后再测试。

附录2 双头采样器:

(1)采样时,展开“三脚架”将仪器主机置于其上面,旋紧“三角架”上固定螺钉。其高度在0.7~1.7m之内可根据需要进行调节,以操作者平视“转子流量计”刻度为最宜。

(2)将2个“采样头”装好采样滤膜,安装在背板两个“采样头座”上,旋紧即可。

(3)流量调节,首先要设置流量调节,时间1分钟。打开背板直流开关,电机瞬时启动,待“数码管”全部为零停止时,按“加”键,使“数码管”为1,然后按“采样”键,泵开始工作,旋开“流量调节阀”,将流量调到所需流量,亦可用流量调节阀进行微调,调节仪器侧面流量调节旋钮,到1分钟后,会自动停机。

(4)设置,按下“加”键不松开,直到调到所需时间为止,松开即停。

(5)按下“采样”键,采样开始,直到设置采样时间下降为零时,采样自动停止。中途如需停止采样,再次将“采样”键按下即可停止。

旋风除尘器的设计与计算

一、实习目的 1、进一步了解旋风除尘器的有关计算 2、熟悉用CAD画效果图 3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素; 二、设计题目 设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。已知条件为:处理气量Q=1300m3/h,粉尘密度ρp=1960kg/m3,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表: 设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。 提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。 三、旋风除尘器的工作原理 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 (2)尘粒的运动:

切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2特点 (1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。 (2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。 (3)XLT 旋风除尘器的主要特点 (4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。可用于10μm 以上颗粒的去除,符合此题的题设条件。 1.3影响旋风除尘器除尘效率的因素 (1)入口风速 由临界计算式知,入口风速增大,c d 降低,因而除尘效率提高。但是风速过大,压力损失也明显增大 (2)除尘器的结构尺寸 其他条件相同,筒体直径愈小,尘粒所受的离心力愈大,除尘效率愈大。筒体高度对除尘效率影响不明显,适当增大锥体长度,有利于提高除尘效率。减小排气管直径,有利于提高除尘效率。 (3)粉尘粒径和密度 大粒子离心力大,捕集效率高,粒子密度愈小,越难分离,本题中<5m μ的粒子质量频率约25%,所以导致除尘效率变低,以至于达不到除尘标准。 (4)灰斗气密性 若气密性不好,漏入空气,会把已经落入灰斗的粉尘重新带走,降低了除尘效率。 四、设计计算 1旋风除尘器各部分尺寸的确定 1.1形式的选择 根据国家规定的粉尘排放标准、粉尘的性质、允许的阻力和制造条件、经济性合理选择旋风除尘器的形式,选通用型旋风除尘器。 1.2 确定进口风速 设:风速u=20m/s 1.3 确定旋风除尘器的尺寸 (1)进气口面积A 的确定 进气口截面一般为长方形,尺寸为高度H 和宽度B ,根据处理气量Q 和进气速度u 可得 u Q A =

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

旋风除尘器电除尘器课程设计

旋风除尘器电除尘器课 程设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

目录一.设计内容 (3) 1.设计基础资料 (3) 2.设计要求 (3) 二.设计计算 (3) 1.集气罩设计 (3) 2.风量计算 (4) 3.旋风除尘器设计选型 (4) 4.旋风除尘器效率计算 (7) 5.二级除尘器设计选型 (8) 6.管道设计计算 (12) 7.风机和电机的选择 (17) 8.排气烟囱的设计 (18) 三.心得体会与总结 (19) 参考文献 (20) 附图 (21) 题目:水泥厂配料车间粉尘污染治理工程(课程)设计一.设计内容 1. 设计基础资料 ●计量皮带宽度:450mm ●配料皮带宽度:700mm ●皮带转换落差:500mm

●设粉尘收集后,粉尘浓度为2000mg/m3,粉尘的粒径分布如下表. 2. 设计要求 ●排放浓度小于50 mg/m3 ●设计二级除尘系统,第一级为旋风除尘器,第二级为电除尘器或者袋式除尘器. ●计算旋风除尘器的分级除尘效率和除尘系统的总效率. ●选择风机和电机 ●绘制除尘系统平面布置图 ●绘制除尘器本体结构图 ●编制设计说明书 二.设计计算 1.集气罩设计 集气罩的设计原则: ①改善排放粉尘有害物的工艺和环境,尽量减少粉尘排放及危害。 ②集气罩尽量靠近污染源并将其包围起来。 ③决定集气罩的安装位置和排气方向。 ④决定开口周围的环境条件。 ⑤防止集气罩周围的紊流。 ⑥决定控制风速。

本设计采用密闭集气罩,密闭罩设计的注意事项:密闭罩应力求密闭,尽量减少罩上的孔洞和缝隙;密闭罩的设置应不妨碍操作和便于检修;应注意罩内气流的运动特点。 搅拌机上方采用整体密闭集气罩,尺寸φ2000×500(高度)mm 。 传送带上方采用局部密闭集气罩,尺寸1210×1210mm 。 2.风量计算 对于整体集气罩,取断面风速为s 对于局部集气罩,取断面风速为s 总风量 /s 5.748m 0.73260.67826Q 2Q Q 3 21=?+?=+= 3.旋风除尘器的设计选型 1) 设计选型 一级除尘系统采用旋风除尘器,其特点是旋风除尘器没有运动部件,制作、管理十分方便;处理相同风量的情况下体积小,价格便宜;作为预除尘器使用时,可以立式安装,亦可以卧式安装,使用方便;处理大风量是便于多台联合使用,效率阻力不受影响,但是也存在着除尘效率不高,磨损严重的问题。 普通除尘器是由进风管、筒体、锥体和排气管组成。含尘气体进入除尘器后,沿外壁由上而下做旋转运动,同时少量气体沿径向运动到中心区域。当旋转气流的大部分到达锥体底部后,转而向上沿轴心旋转,最后经排出管排出。 旋风除尘器净化气量应与实际需要处理的含尘气体量一致。选择除尘器直径时应尽量小些;旋风除尘器入口风速要保持18—23m/s ;选择除尘器时,要根据工况考虑阻力损失及结构形式,尽可能减少动力消耗减少,便于制造维护;结构密闭要好,确保不漏风。

实验一旋风除尘器

实验一旋风除尘器、袋式除尘性能实验 一旋风除尘器 1.1实验目的 1.了解旋风除尘器的常用结构型式和性能特点。 2.掌握旋风除尘器的基本原理及基本操作方法。 3.掌握用质量法计算除尘器的除尘效率。 1.2实验原理 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置。气流作旋转运动时,尘粒在离心力作用下逐步移向外壁,到达外壁的尘粒在气流和重力作用下沿壁面落入灰斗。 1.3设备及用具 1.旋风除尘器:湖南长沙长风教具厂生产; 2.托盘天平; 3.锯木屑或米糠; 4.电源插线板 实验装置如图所示 1.4实验步骤 1.用托盘天平称出发尘量(Gf); 2.同时启动风机和发尘搅拌器,进行除尘,记下除尘所需要的时间 (T); 3.除尘结束后,称出被捕集的粉尘量 (Gs);

4.计算除尘器的除尘效率: %100?=f s G G η 1.5思考题 1、画出旋风除尘器除尘原理示意图; 2、简述旋风除尘器主要应用领域及处理何种含尘废气。 二 袋式除尘器 2.1实验目的 1. 通过本实验,进一步提高对袋式除尘器的结构形式和除尘机理的认识。 2. 掌握袋式除尘器基本操作方法。 2.2实验原理 含尘气流从下部进入圆筒形滤袋,在通过滤料的孔隙时,粉尘被捕集于滤料上, 透过滤料的清洁气体由排出口排出。沉积在滤料上的粉尘,通过逆气流清灰的方式, 从滤料表面脱落,落入灰斗。 2.3设备及用具 1.袋式除尘器:湖南长沙长风教具厂生产 2.木屑或米糠 3.电源插线板 实验装置如图所示

2.4实验流程 1. 过滤除尘 关闭阀门T1、打开阀门T2,如下图所示,前后两个双开开关扭至双开位置,两布袋同时过滤,净化后的气体从上部管道排出。 2. 左清灰右过滤 关闭阀门T2、打开阀门T1,正面双开开关旋向右边关位置、后面的双开开关旋向左边关位置,则左边布袋清灰、右边布袋过滤,净化后的气体从上部管道排出。 3.左过滤右清灰 关闭阀门T2、打开阀门T1,正面双开开关旋向左边关位置、后面的双开开关旋向右边关位置,左边布袋过滤,右边布袋清灰,净化后气体从上部管道排出。 2.5实验报告要求 1.画出过滤除尘、左清灰右过滤和左过滤右清灰三个流程工作示意图。 2.影响袋式除尘效率的因素主要有哪些?

《旋风除尘器》课程设计要点

引言 引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。 1

大气课程设计 2 第一章旋风除尘器的除尘机理及性能 1.1 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、

旋风除尘器性能测试实验三

旋风除尘器性能测试 一、实验目的和意义 旋风除尘器是最常用的除尘装置,它是利用设备结构形状及流体自身动力促使含尘气流高速旋转从而实现气固分离的一种中效除尘设备。通过本实验,使学生了解旋风除尘器除尘过程,掌握旋风除尘器性能测定的主要内容和方法,较全面了解影响旋风除尘器性能的主要因素,掌握旋风除尘器入口风速与阻力、全效率、分级效率之间的关系以及入口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响。 二、实验原理 1.空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P=l.0132l05Pa,T=273K)来表示的。为了便于比较和应用,通常要将实际测定烟气状态参数,换算为标准状态下空气的参数。 烟气状态参数包括空气的温度、密度、相对湿度和大气压力。 烟气的温度和相对湿度可用干湿球温度计直接测的;大气压力由大气压力计测得;干烟气密度由下式计算: 式中:ρg一烟气密度,kg/m3; p—大气压力,Pa; T—烟气温度,K。 实验过程中,要求烟气相对湿度不大于75%。

2. 除尘器处理风量的测定和计算 测量烟气流量的仪器利用S型毕托管和倾斜压力计。 S型毕托管使用于含尘浓度较大的烟道中。毕托管是由两根不锈钢管组成,测端作成方向相反的两个相互平行的开口,如图3-1所示,测定时,一个开口面向气流,测得全压,另一个背向气流,测得静压;两者之间便是动压。 图3-1 毕托管的构造示意图 1-开口;2-接橡皮管 由于背向气流的开口上吸力影响,所得静压与实际值有一定误差,因而事先要加以校正,方法是与标准风速管在气流速度为2~60m/s的气流中进行比较,S型毕托管和标准风速管测得的速度值之比,称为毕托管的校正系数。当流速在 5~30m/s的范围内,其校正系数值约为0.84。S型毕托管可在厚壁烟道中使用,且开口较大,不易被尘粒堵住。 当干烟气组分同空气近似,露点温度在35~55?C之间,烟气绝对压力在 0.99~1.032105Pa时,可用下列公式计算烟气人口流速:

旋风除尘器性能测定(精)

实验一旋风除尘器性能测定 一、实验意义和目的 通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器人口风速与阻力、全效率、分级效率之间的关系以及人口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件. 二、实验原理 (一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。下面说明不同形状烟道采样点的布置。 1.圆形烟道 采样点分布如图1(a)。将烟道的断面划分为适当数目的等面积同心圆环,各采样点均在等面积的中心在线,所分的等面积圆环数由烟道的直径大小而定。 2.矩形烟道 将烟道断面分为等面积的矩形小块,各块中心即采样点,见图1(b)。不同面积矩形烟道等面积小块数见表1。 表1 矩形烟道的分块和测点数 3.拱形烟道 分别按圆形烟道和矩形烟道采样点布置原则,见图1(c)。 (a)圆形烟道(b)矩形烟道(c)拱形烟道

图1 烟道采样点分布图 (二)空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P =l.013?l05Pa ,T =273K )来表示的。空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。 烟气状态参数包括空气的温度、密度、相对湿度和大气压力。 烟气的温度和相对湿度可用干湿球温度计直接测的;大气压力由大气压力计测得;干烟气密度由下式计算: T P T R P g ?=?= 287ρ (1) 式中:ρg 一一烟气密度,kg/m ; P —一大气压力,Pa ; T —一烟气温度,K 。 实验过程中,要求烟气相对湿度不大于75%。 (三)除尘器处理风量的测定和计算 1.烟气进口流速的计算 测量烟气流量的仪器利用S 型毕托管和倾斜压力计。 S 型毕托管使用于含尘浓度较大的烟道中。毕托管是由两根不锈钢管组成,测端作成方向相反的两个相互平行的开口,如图2所示,测定时,一个开口面向气流,测得全压,另一个背向气流,测得静压;两者之间便是动压。 图2 毕托管的构造示意图 1-开口;2-接橡皮管 由于背向气流的开口上吸力影响,所得静压与实际值有一定误差,因而事先要加以校正,方法是与标准风速管在气流速度为2~60m/s 的气流中进行比较,S 型毕托管和标准风速管测得的速度值之比,称为毕托管的校正系数。当流速在5~30m/s 的范围内,其校正系数值约为0.84。S 型毕托管可在厚壁烟道中使用,且开口较大,不易被尘粒堵住。 当干烟气组分同空气近似,露点温度在35~55?C 之间,烟气绝对压力在0.99~1.03?105Pa 时,可用下列公式计算烟气人口流速: P T K v p 1 77.2= (2) 式中:K p ——毕托管的校正系数,K p =0.84; T ——烟气底部温度,?C ; P ——各动压方根平均值,Pa ; n P P P P n +???++= 21 (3)

旋风除尘器设计计算

1.1、工作原理 ⑴气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成; 气流沿外壁由上向下旋转运动:外涡旋; 少量气体沿径向运动到中心区域; 旋转气流在锥体底部转而向上沿轴心旋转:内涡旋; 气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度 图1 ⑵尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗; 上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2、影响旋风器性能的因素 ⑴二次效应-被捕集粒子的重新进入气流 在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。 ⑵比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加, 一般取排出管直径d e= (0.6?0.8) D ;

特征长度(natural length)-亚历山大公式: D21/3 I = 2.3 d e ( ) A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于I,筒体和锥体的总高度以 不大于5倍的筒体直径为宜。 ⑶运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意、。在不漏风的情况下进行正常排灰 ⑷烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 ⑸操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善; 入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降; 效率最高时的入口速度,一般在10-25m/s范围。 2、设计方案的确定 根据含尘浓度、粒度分布、密度等烟气特征及除尘要求、允许的阻力和制造条件等因素选择适宜的处理方式,然后进行计算,核对。如果所选的方式符合标准并且除尘效率高和阻力要求,就证明所选的方案是可行的,否则需要重新选取新的方案设计。直到符合标准为止。 3、工艺设计计算 3.1、选择旋风除尘器的型式 选XLP/B型旁路式旋风除尘器 3.2、选择旋风除尘器的入口风速 一般进口的气速为12 ~25m/s。取进口速度=15m/s。 3.3、计算入口面积A 已知烟气的流量Q=2000m3/h,v=l5m/s 则入口面积A= Q/3600v = 0.037m2 3.4、入口高度a、宽度b的计算 查几种旋风除尘器的主要尺寸比例表得: 入口宽度b=£=0.136m

旋风+布袋除尘器(技术协议)

中节能(烟台)生物质热电工程 带有前置旋风除尘器的布袋除尘器 技术协议 ; 买方:中节能(烟台)生物质热电有限公司 卖方:山东环冠科技有限公司 2 010年9月 ,

目录 1 总则 (2) 2 运行环境条件 (2) 3 设计条件 (3) 4技术要求 (4) 5质量保证及性能试验 (14) 6 技术服务 (16) 7供货范围 (18) 8油漆、包装、运输 (21) 9技术资料交付 (23)

1 总则 本技术协议仅适用于中节能(烟台)生物质热电工程的2台75t/h秸秆CFB锅炉所配的两台带有前置旋风除尘器的布袋除尘器,它包括除尘器的功能设计、结构、性能、安装和试验等方面的技术要求。 本技术协议提出的是最低限度的要求,并未对一切细节作出规定,也未充分引述有关标准和规范的条文,卖方保证提供符合本技术协议和有关最新工业标准的产品。 在商务合同签订生效之后,买方有权提出因规范标准和规程发生变化而产生的一些补充要求,具体项目由买、卖双方共同商定。 本技术协议所使用的标准如遇与卖方所执行的标准不一致时,以较高标准执行。 如买方有除本技术协议以外的其他要求,应以书面形式提出,经买方、卖方双方讨论、确认后,作为本技术规范的补充,与本技术协议具有等同的法律效力。 卖方对布袋除尘器成套系统设备(含辅助系统与设备)负有全责,即包括分包(或采购)的产品。分包(或采购)的产品制造商应事先征得买方的认可。 2 运行环境条件 设备的运行环境条件 厂址:栖霞市吕家黄口 该区域属半岛内陆性气候,年平均气温℃,最冷为一月份,最低温度℃,月平均气温℃,最热七月份,最高温度℃,月平均气温℃。年平均降雨量为830mm,年平均降水天数天,多集中在7-8月份,日最大降雨量为mm(1979年7月31日),1985年降雨量最大,年降雨量达mm。年平均无霜期207天,初霜在10月底,终霜在来年3月底,历年最大冻土深度为50㎝,绝对湿度历年平均为毫巴,相对湿度平均值为66%,年平均蒸发量为mm。平均年日照小时数为2680小时,日照百分率为61%,常年主导风向夏季为南风,冬季为东北风,基本风压值为50㎏/㎡。 工作条件 安装地点:炉后,室外 3 设计条件 配套前置旋风除尘器的布袋除尘器装设在锅炉尾部,用于去除锅炉烟气

旋风除尘器设计h

韶关学院 《大气污染控制工程》课程设计任务书 化学与环境工程学院 2011级环境工程专业 题目旋风除尘器系统的设计 起止日期:2014年5月21日至2014年5月28日学生姓名:学号: 指导教师:梁凯 教研室主任:年月日审查 系主任:年月日批准

设计题目(题目来自网络) 设计要求:根据设计参数设计出使用的旋风除尘器。

目录 1、前言 (5) 1.1、工作原理 (5) 1.2、影响旋风器性能的因素 (6) 2、旋风除尘器的特点 (7) 3、旋风除尘器型号选择 (7) 4、选择XLP/B型旋风除尘器的理由 (7) 5、工艺设计计算 (7) 5.1、除尘效率 (7) 5.2、压力损失 (7) 5.3、其他部件的尺寸 (7) 6、除尘效率计算及校核 (7) 6.1、除尘效率计算 (7) 6.2、除尘效率校核 (7) 7、课程设计心得 (10)

1、前言 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1、工作原理 旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。 图1

旋风除尘器试验报告

旋风除尘器性能测定 组员:戚锎1020320215 朱鹏志1020320219 彭文林1020320220 汪超1020320222 谢显宇1020320224 肖林峰1020320226 杨合详1020320235 向强1020320134 杨斌1020320126 欧琳1020320102 指导老师:赵素芬

旋风除尘器性能测定实验 一、实验目的 1、了解除尘器性能测定实验台的结构及工作原理,掌握除尘器性能测试的基本方法。 2、了解除尘器运行工况及其效率和阻力的影响。 3、掌握旋风除尘器的除尘机理以及使用方法。 4、测定旋风除尘器处理风量、压力损失和除尘效率 二、实验原理 如图所示为一个旋风除尘器,废气从(1)进入,然后经过(4)旋风除尘器作用除去粉尘颗粒,再从出气口排出净化后的气体。经过旋风除尘器除去的粉尘颗粒由(5)灰斗收集。 旋风除尘器除沉机理是使含尘气流作旋转运动,借助于离心力降

尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。废气在旋风除尘器中的运动如下图所示 1.气体流速的测定:本实验用毕托管和微压计测定管道中各测点 的动压Pd,从而可求得气体的流速。由于气体流速在风管断面上的分布式不均匀的,可在同一断面上进行多点测量,求出该断面的平均流速。毕托管所测得的断面Φ90mm,故可以分为两环。微压计测出动压平均值,相应的空气流速为 式中Pd——测得的平均动压值,ρ——空气密度kg/m3, 2.风量的测定:根据断面的气流速度确定风量Q=A 3.除尘器压力损失测定:除尘器的压力损失(Hz)即除尘器入排 风侧的全能量差,依下式求出:

旋风除尘器设计

设计项目:旋风除尘器的设计 设计者姓名: 班级: 座号: 完成时间: 2013.11。06 一、设计题目 某工厂一台锅炉,风量10000立方米∕小时,烟气温度573℃,粉尘密度4。5克∕立方米,烟尘密度2000千克∕立方米,573K时空气粘度u=2。9*10—5pa经测试,粉尘粒径分布如表1所示。要求经除尘装置后粉尘排放浓度为0。8克∕立方米,压力损失ΔP不大于2000Pa,v=23m/s. 烟尘粒度分布 根据以上数据设计一旋风除尘器

二、选取旋风除尘器理由及选择的型号 1。其他除尘器的特点 (1)重力沉降室是使含尘气流中的尘粒借助重力作用自然沉降来达到净化气体的目的的装置。这种装置具有结构简单、造价低、施工容易(可以用砖砌或用钢板焊制)、维护管理方便、阻力小(一般50—150Pa)等优点,但由于它体积大,除尘效率低(一般只有40%—50%),适于捕集大于μ粉尘粒子,故一般只用于多级除尘系统中的第一级除尘。 50m (2)惯性除尘器是利用尘粒在运动中惯性力大于气体惯性力的作用,将尘粒从含尘气体中分离出来的设备.这种除尘器结构简单、阻力较小、但除尘效率较低,一般常用于一级除尘。惯性除尘器用于净化密度和粒径μ以上的粗尘粒)的金属或矿物性粉尘,具有较高的除较大(捕集10-20m 尘效率。对于黏结性和纤维性粉尘,因其易堵塞,故不宜采用。 (3)电除尘器是含尘气体在通过高压电场进行电离的过程中,是尘粒荷电,并在电场力的作用下使尘粒趁机在集尘板上,将尘粒从含尘气体中分离出来的一种除尘设备.其与其他除尘器的根本区别在于,分离力直接作用在粒子上,因此具有耗能小、气流阻力小的特点。其主要优点有压力损失小、处理烟气量大、耗能低、对粉尘具有很高的捕集效率和可在高温或强腐蚀性气体下操作。但其缺点为一次性投资大、安装精度要求高和需要调节比电阻。 (4)湿式除尘器是使含尘气体与液体密切接触,利用水滴和颗粒的惯性碰撞及其他作用捕集颗粒或使粒径增大的装置。它具有结构简单、造价低、占地面积小、操作及维修方便和净化效率高等优点,能处理高温、

旋风除尘器性能测定实验

旋风除尘器性能测定 一、实验目的 通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器人口风速与阻力、全效率、分级效率之间的关系以及人口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件. 二、实验原理 (一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。 (二)空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P=l.013?l05Pa,T=273K)来表示的。空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。 烟气状态参数包括空气的温度、密度、相对湿度和大气压力。 (三)除尘器处理风量 风量计算、流速计算 (四)除尘器进、出口浓度计算 (五)除尘效率计算 三、实验装置、流程和仪器 (一)实验装置、流程 含尘气体通过旋风除尘器将粉尘从气体中分离,净化后的气体由风机经过排气管排入大气。所需含尘气体浓度由发尘装置配置。 (二)仪器 分析天平分度值0.0001g l台托盘天平分度值1g l台四.实验方法和步骤 1.用托盘天平称出发尘量(G j),分别为150g和300g两组。 2.控制气流的阀门为全开状态,通过发尘装置均匀地加人发尘量(Gj),记下发尘时间(τ),计算出除尘器入口气体的含尘浓度(Cj)。时间分别为3min 和5min。

旋风除尘器性能测试实验报告

旋风除尘器性能测试实验报告 篇一:旋风除尘器性能测定实验 旋风除尘器性能测定 一、实验目的 通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器人口风速与阻力、全效率、分级效率之间的关系以及人口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件.二、实验原理(一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。 (二)空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P=l.013?l05Pa,T=273K)来表示的。空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。烟气状态参数包

括空气的温度、密度、相对湿度和大气压力。(三)除尘器处理风量 风量计算、流速计算(四)除尘器进、出口浓度计算(五)除尘效率计算三、实验装置、流程和仪器(一)实验装置、流程 含尘气体通过旋风除尘器将粉尘从气体中分离,净化后的气体由风机经过排气管排入大气。所需含尘气体浓度由发尘装置配置。(二)仪器 分析天平分度值0.0001gl台托盘天平分度值1gl台四.实验方法和步骤 1.用托盘天平称出发尘量(G j),分别为150g和300g 两组。 2.控制气流的阀门为全开状态,通过发尘装置均匀地加人发尘量(Gj),记下发尘时间(?),计算出除尘器入口气体的含尘浓度(Cj)。时间分别为3min和5min。 3.称出收尘量(Gs),计算出除尘器出口气体的含尘浓度(Cz)。4.计算除尘器的全效率(η). 5.改变调节阀开启程度为半开、重复以上实验步骤,确定除尘器各种不同的工况下的性能。以发尘量150g,发尘时间3min时,实验风量为600m3/h和1000m3/h两种条件。 五、实验数据的计算和处理 以除尘器进口气速为横坐标,除尘器全效率为纵坐标,

XLT旋风除尘器 计算及CAD图

目录 一、旋风除尘器的基础知识 (1) 二、计算书 (4) 三、设计心得 (7)

一、旋风除尘器的基础知识 旋风除尘器是利用旋转气流产生的离心力从气流中分离,用来分离粒径大于5~15 以上的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修乖、方便,压力损失中等,动力消耗不大,可用各种材料只、制造,能用于高温、高压及腐蚀性气体并可回收干颗粒物,效率可达80%左右。 1.1 旋风除尘器的工作原理 普通旋风除尘器由简体、锥体和进、排气管等组成。 含尘气体由进口切向进入后,沿筒体内壁由上向下做圆周运动,并有少量气体沿径向运动到中心区内。这股向下旋转的气流大部分到达锥体顶部附近时折转向上,在中心区域旋转上升,最后由排气管排出。这股气流做向上旋转运动时,也同时进行着径向离心运动。气流旋转运动时,尘粒在离心力作用下,逐渐向外壁移动。到达外壁的尘粒,在外旋流的推力和重力的共同作用下,沿器壁落至灰斗中,实现与气流的分离。 此外,当气流从除尘器顶向下高速旋转时,顶部压力下降,使一部分气流带着微细尘粒沿筒体内壁旋转向上,到达顶盖后再沿排气管外壁旋转向下,最后汇入排气管排走。 1.2 旋风除尘器的性能指标 除尘装置性能用技术指标和经济指标来评价。技术指标主要有处

理能力、净化效率和压力损失等;经济指标主要有设备费、运行费和占地面积等。此外,还应考虑装置的安装、操作、检修的难易等因素。 (1)处理能力 除尘装置的处理能力是指除尘装置在单位时间内所能处理的含尘气体的流量,一般以体积流量Q表示。实际运行的净化装置,由于本体漏气等原因,往往装置进口和出口的气体流量不同,因此,用两者的平均值表示处理能力。 (2)净化效率 净化效率是表示除尘装置捕集粉尘效果的重要技术指标,可定义为被捕集的粉尘量与进入装置的总粉尘量之比。 总效率η:总效率是指同一时间内净化装置去除的污染物数量与进入装置的污染物数量之比。 通过率:当净化效率很高时,或为了说明污染物的排放率,有时采用通过率来表示除尘装置的性能。所谓通过率是指未被捕集的粉尘量占进入除尘装置的粉尘总量的百分数。 分级除尘效率:除尘装置的总除尘效率的高低,往往与粉尘粒径大小有很大关系。为了表示除尘效率与粉尘粒径的关系,提出分级除尘效率的概念。分级除尘效率是评定除尘装置性能的重要指标,系指除尘装置对某一粒径dpi或某一粒径间隔dpi至dpi+Δdpi内粉尘的除尘效率,简称分级效率。 (3)压力损失 压力损失时代表装置能耗大小的技术经济指标,是指装置的进口

旋风除尘器课程设计说明书

环境工程专业 课程设计说明书题目:(SZL4-13锅炉除尘系统设计) 姓名: 班级: 学号: 指导教师: 课程名称:大气污染控制 设计时间:

目录 任务书 (3) 摘要 (5) 除尘系统计算 (6) 一、烟气量、烟尘和二氧化硫浓度计算 (6) 二、除尘器选型 (7) 三、除尘器设计计算 (7) 四、烟囱设计 (8) 五、系统阻力计算 (10) 六、风机的计算与选用 (11) 七、系统中烟气温度的变化 (12) 结论 (12) 参考文献 (12)

颗粒污染物控制课程设计任务书 适用专业 环境工程 一、课程设计题目 某燃煤采暖锅炉房烟气除尘系统的设计 二、课程设计的目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD 绘制工程图、使用技术资料、编写 设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4—13型,共4台(2.8MW ?4) 设计耗煤量:380Kg/h /台 排烟温度:160℃ 烟气密度(标准状态下):1.34 kg /m 3 空气过剩系数:α=1.4 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前的阻力:800 Pa 当地大气压力:97.86 Kpa 冬季室外温度:-20℃ 空气中含水(排标准状态下)10g/kg 烟气其它性质按近似空气计算 煤的工业分析值: Y C =68% Y H =4% Y S =1% Y O =5% Y N =1% Y W =6% Y A =15% Y V =13% 按锅炉大气污染物排放标准(GB13271—2001)中二类一时段标准执行。 四、计划安排 1、资料查询0.5天 2、及设计计算(4.5天) 3、说明书编制及绘图(5天) 五、设计内容和要求 1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算 2、净化系统设计方案的分析确定 3、除尘器的选择和比较 确定除尘器的类型、型号及规格,并确定其主要运行参数。 4、管布置及计算:确定各装置的位置及管道布置 并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力 5、风机及电机的选择设计

旋风除尘器设计方案.doc

设计原始资料: 锅炉型号:DLP2-13即,单锅筒纵置式抛煤机炉,蒸发量2t/h,出口蒸汽压力13MPa 设计耗煤量: 360kg/h( 按学号增加 5) Y Y Y Y Y Y Y 设计煤成分: C=60.5% H =3% O=4% N =1% S =1.5% A =18% W=12%; V Y = 15%;属于中硫烟煤 排烟温度: 165℃ 空气过剩系数= 1.4 飞灰率= 21% 烟气在锅炉出口前阻力650Pa 污染物排放按照锅炉大气污染物排放标准中 2 类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头 10 个。 1.燃烧计算 1.1实际耗空气量的计算 在标准状况下,以1Kg应用煤为基准进行计算,结果见表1-1 。 1Kg 该煤完全燃烧时所需要标准状况下的氧气的体积V o为: V o=(50.4+7.5+0.47-1.25)× 22.4=1279.448 L(1-1) 假设空气中氮氧的摩尔数之比为N/O=3.78,则 1Kg 低硫煤完全燃烧时所需要的空气体积 V k为: V k =( 1+3.78 )× 1279.448=6115.953 L (1-2 )实际消耗的空气体积V k为: V k=1.4 V k=1.4×6115.953=8562.333 L ( 1-3 )

表 1-1 1Kg应用煤的相关计算 质量摩尔数燃烧耗氧量生成气体量生成气体体积成分 ( g)(mol )(mol )( mol)( L ) C 605 50.4 50.4 50.4 1128.96 H 30 15 7.5 15 336 O40 1.25————28 N100.36——0.367.84 S 15 0.47 0.47 0.47 10.528 水分120 6.67————149.408 灰分180———————— 1.2产生烟气量的计算 1Kg 该煤完全燃烧后生成的烟气量 V y =149.408+10.528+7.84+336+1128.96+8562.333=10195.069 L =10.195 m3 ( 1-4 )则,在 160℃时的实际烟气体积为V y为: V y=10.195 ×(160+273.15)=16.17 m3 ( 1-5 )273.15 该锅炉一小时产生的烟气流量Q 为:

旋风除尘器实验(精)

旋风除尘器实验 仿真实验指导书 通风与大气污染 控制工程仿真系列实验 蔡建安林晓飞编著 安徽工业大学

实验6-旋风除尘器实验 一、实验目的 (1).了解除尘器性能试验台的结构及工作原理,掌握除尘器性能测试的基本方法。 (2).了解除尘器运行工况对其效率和阻力的影响。 (3).设定并测量除尘器的处理风量。 (4).测定除尘器阻力与处理风量的关系。 (5).测定除尘器效率与处理风量的关系。 二、实验装置和虚拟设备 除尘器性能测定试验台的结构如下图6-1所示,它主要由测试系统、实验除尘器和发尘装置等三个部分组成。 图6-1 除尘器性能实验装置结构图 1.测试系统 测试系统由进气段、出气段、静压孔、孔板流量计、风机和调节阀等组成。其中:

(1)两静压环分别设在进、出气段上,用以测量两管段的气流静压值和计算出除尘器的阻力(当进、出气管道直径不相等时应用全压进行计算)。为了保证测量的精确性,两静压环的精确性,两静压环离除尘器的进、出口均有一定的距离,并在计算除尘器阻力时还将这两段管路的压头损失扣除。 (2)孔板流量计设在气流比较洁净的出气段上,配以微压计后可测量系统的空气流量。 (3)风量调节阀设在风机出口处,用以调节系统的空气流量。 2.实验除尘器 实验除尘器为一小型离心式除尘器,在其底部设卸灰斗,每次实验结束时可从此处将收集的灰尘取出。取灰时应注意一下两点: (1)每次取灰时,应将灰斗中的灰尘清扫干净,以免剩留。 (2)每次取灰后,应将灰斗的盖板盖严,不得漏风以免使下次测试造成误差。 3.发尘装置 发尘装置为一振动式发尘器,其发尘量可通过调节漏斗的闸板开度进行控制,漏出的粉尘可通过进灰口进入系统。 实验用粉尘可采用滑石粉、双飞粉、煤粉等干燥、松散的颗粒状粉尘。 三、实验原理和工况点参数测量及计算方法 1.风量的设置和调定 根据除尘器的工作特性,本实验在测定除尘器的阻力、除尘效率与风量的关系时,采用的除尘器进口风速范围为10-20m/s ,分4-6个测定点,可根据除尘器中的进口尺寸,计算出不同进口风速下的实验风量Q ,在利用已标定的孔板流量计“压差”-空气流量曲线查出与Q 相对应的压差值,最后利用风量调节阀门调定孔板流量计所配微压计的指示达到该“压差”值。(当室温与标定时差别较大时应进行换算修正或重新标定)。 2.测定除尘器阻力与风量关系 (1)按上述方法调定除尘器某实验风量后,利用进、出口气管段上的静压环和所配的微压计测定并计算出两处之间的静压差f P ?: )(a f p h K P ??=? 式中:K ——微压计比例系数 h ?——微压计读值 )(a p (2)计算在该风量下进、出气管段内的风速d V V 21 、,动压头2 1 d d P P 、和动压差d P ?。

相关文档
最新文档