二维相关光谱解读
二维相关红外光谱及其应用解读

二维相关红外光谱及其应用1 引言二维相关光谱是一种实验设计与数据处理相结合的分析技术。
对于每一种样品体系,需要根据研究目的,设计合适的实验方案,通过对样品施加特定的微扰(包括机械拉伸力、温度、压力、浓度、磁场、光照等),诱导光谱信号产生动态变化,对一系列的动态谱图进行相关分析计算,便得到二维相关谱图(图1)。
二维相关谱图反映的是样本中各种组成成份或者微观结构单元相应于外界微扰的变化情况,以及这些变化之间相互的联系。
目前应用最广泛的是以温度为变量的二维相关红外光谱技术。
2 二维相关光谱的特性二维相关光谱可用三维立体图或二维等高线图进行可视化显示,便于直观地对二维信息进行解析。
在二维相关光谱的等高线图中,z坐标轴值用x-y平面中的等高线表示。
同步相关光谱代表两个动态红外信号之间的协同程度,它是关于主对角线对称的。
相关峰在对角线和非对角线区域均会出现。
在对角线上有一组峰,它是动态红外信号自身相关而得到的,所以称为自动峰。
自动峰总是正峰,它的强度代表外扰引起的变化程度。
强的自动峰对应于动态谱中强度变化较大的区域,而保持不变的区域则显示出非常小或没有自动峰,这与微观环境对官能团运动的影响是密切相关的。
在二维相关图中(见图1),以圆圈的个数代表Φ(ν1,ν2)的绝对值。
在坐标(A,A),(B,B),(C,C)和(D,D)处的自动峰分别具有2,1,4和2个圆圈,表明(C,C)处的自动峰最强,而(B,B)处的自动峰最弱。
二维同步相关光谱中位于主对角线以外的峰叫做交叉峰,它显示扰动发生过程中ν1和ν2处的强度变化的相关变化。
为了便于观察自动峰和交叉峰的强度的相关变化,可以构造一个相关正方形,把对角线上的自动峰和两侧的交叉峰连贯起来。
所以A和C,B和D是同步相关的(图1a)。
交叉峰的符号既可为正也可为负。
如果发生在ν1和ν2处的强度变化是同一方向的,那么Φ(ν1,ν2)为正;反之,如果发生在ν1和ν2处的强度变化是沿着相反方向的,那么Φ(ν1,ν2)为负。
二维相关近红外光谱及其应用

·综述与专论 ·
2007 年第 31 卷 第 7 期 第 304 页
本页已使用福昕阅读器进行编辑。 福昕软件(C)2005-2009,版权所有, 仅供 30试4 用 2。007 , Vol . 31 , No. 7
由于吸收信息的分布范围广谱峰宽同一近红外谱区常有不同分子多种基团的谱峰重叠在一起严重的谱峰重叠是近红外光谱分析不同于常规分析的一个难点二维相关近红外光谱指对体系在受扰动过程中的近红外光谱进行相关性分析得到光谱的二维尺度信息包括同步和异步相关光谱析体系施加一个外部微扰则体系会产生一系列动态变化运用相关分析对该过程中的近红外谱图进行处理得到的二维相关近红外谱图可以提高重叠的近红外信号的分辨能力观察到在一维近红外光谱中无法观察到的信息
异步相关光谱是某一光谱和另一光谱经 Hilbert 变换信号相关性分析的结果 ,因此异步相关光谱关 于对角线反对称 ,没有自相关峰 。它代表了两个不 同波数处测得的吸收强度变化次序或变化的不同步 特征 ,仅当光谱强度变化信号的傅里叶频率成分不 同位相时才会出现 ,这一特点在区分不同光谱来源 或不同组分形成的重叠峰时特别有效 。
二维相关光谱的概念很早就在核磁共振分析领 域提出 。二维核磁谱是用多脉冲激发核自旋 ,采集 时间域上原子核自旋弛豫过程中的衰减信号 ,经过 傅里叶变换而获得 。但是 ,该分析方法直到近十几 年才被应用到分子振动光谱中 ,其原因在于光谱采 集时间尺度上存在极大差异 。因为分子振动的弛豫 时间比核自旋的弛豫时间要小若干个数量级 ,通常 的光谱仪根本无法在这么短的时间内激发分子振动 并采集它在弛豫过程中的信号 ,所以分子振动光谱 无法跟核磁共振一样采用多脉冲激发的方式获得二 维相关光谱[1] ,因此二维相关光谱很长时间内未渗
二维红外光谱

二维红外光谱
二维红外光谱(2D IR spectroscopy)是一种用于分析化学体系中分子间相互作用的新型光谱技术。
它为研究特定分子组成的分子组合体(例如蛋白质)提供了全新的思路,能够更快、更准确地显示出蛋白质内部的结构特征和功能信息。
二维红外光谱是一种在光谱分析中应用非常广泛的技术,可以用来对大分子的结构进行精确分析。
它通过测量分子频率和强度之间的关系,来揭示大分子结构的信息,从而帮助科学家们更好地理解大分子的内部结构。
二维红外光谱所涉及到的原理主要是红外振动,它是由分子中的键和受力点的振动所引起的。
当分子被一个外部的电磁场所作用时,它将会产生一种称为“红外振动”的效应,即分子中的原子根据电磁场的作用,在各自的方向上产生振动。
该振动有一个固定的频率,而这个频率是由分子结构所决定的,因此,通过测量红外振动的频率,就可以获得分子结构的信息。
二维红外光谱也可以称为“时域分辨红外光谱”,它可以用来实现对大分子结构的连续测量,其基本原理是:利用一个相关的激光场,在两个不同的时间点上测量红外振动的强度,从而实现对大分子的连续测量。
二维红外光谱的应用非常广泛,它可以用来研究大分子的结构特征,以及分子之间的相互作用,还可以用来研究蛋白质的结构,从而有助于更好地了解蛋白质内部的结构特征和功能信息。
此外,这种技术还可以用来研究其它大分子的结构,例如核酸分子,以及大分子复合体,这有助于更好地理解这些分子的结构和功能,从而有助于研究许多生物体系。
总之,二维红外光谱是一种研究大分子结构和功能的重要工具,可以用来实现对大分子的精确测量,从而有助于更好地理解蛋白质和其他大分子的结构和功能。
二维傅里叶红外光谱

二维傅里叶红外光谱
二维傅里叶红外光谱是一种非线性光谱技术,它结合了傅里叶变换和红外光谱技术。
在传统的红外光谱技术中,通过扫描一条红外光谱曲线来获取样品的信息。
然而,这种方法只提供了分子中振动模式的简单图像,而不提供关于这些模式如何相互作用的信息。
二维傅里叶红外光谱通过在时间和频率域中收集信息来获得更丰富的信息。
在2D-IR实验中,首先使用一系列光脉冲来激发分子的振动模式,然后测量样品反应的时间和频率响应。
通过对这些响应进行傅里叶变换,可以获得2D-IR光谱图。
2D-IR光谱图通常由两个轴组成,将垂直轴称为“频率1轴”,将水平轴称为“频率2轴”。
亮点表示相应的模式之间存在振动耦合。
二维傅里叶红外光谱是一种非常强大的分子结构表征工具,它提供了比传统红外光谱更详细的信息。
二维谱解析示例(包括红外,紫外,核磁二维谱,质谱)

王晓晗 2010014605 植物化学作业
7
141
128
123
15 29
53
53
29
15
123 128 129 141
O O
HO
O
HO
O
CH3
CH3
CH3
或
CH3
第八步、绝对构型的确定 根据圆二色谱和计算化学的知识对其绝对构型进行判断。(未要求)
王晓晗 2010014605 植物化学作业
141
128
123
15 29
53
29
15
53
123 128 129 141
王晓晗 2010014605 植物化学作业
4
第六步,COSY 图谱的解析 首先在氢谱上标出与之相连的碳原子的化学位移值。 COSY 图谱是 3JH-C、2JH-C 耦合的图谱。因此我们根据所给的图谱每一个氢型号对应与
之发生耦合的碳信号逐个进行分析。
王晓晗 2010014605 植物化学作业
5
如图
158
129
45 201
53
123 29
O
15
4、 在化学位移值为 6.05 与之相连的碳原子的化学位移值为 123,是一个与双键相连的次甲 基,分别于化学位移值为 29(甲基碳)、45(季碳)、53(为与甲基相连的次甲基)148 (双键相连的次甲基)、158(与双键相连的季碳原子)、181(羰基碳)所对应的碳原子 发生耦合。因此这个甲基上的氢原子与这些碳原子隔了 2 个或者 3 个化学键。
第七步、ROESY 图谱的解析 这个化合物有两个手性碳,可能有四种构型。
O
HO
O
HO
二维激光位移 光谱 -回复

二维激光位移光谱-回复什么是二维激光位移光谱?二维激光位移光谱是一种用于测量物体表面形变或位移的技术。
它基于可见光激光器产生的相干光束,通过测量光在物体表面的反射或散射后的光谱特性来计算物体的形变或位移。
为什么需要二维激光位移光谱?在工程和科学领域,准确测量物体的形变或位移对于设计、维护和研究都至关重要。
传统的位移测量方法如应变片或电阻应变计通常需要物体表面与传感器直接接触,但这可能会影响测量结果,尤其是在高温、高压或振动环境下。
而二维激光位移光谱技术可以实现对物体表面位移的无接触、非破坏性测量。
二维激光位移光谱的原理是什么?二维激光位移光谱利用激光器发射一束可见光激光束,经过光学设备聚焦到物体表面,在物体表面产生一小点光斑。
当物体发生形变或位移时,物体表面的反射或散射光在频谱上会发生变化。
通过使用一台高速光谱仪收集光谱信号,并对信号进行处理,可以得到一张二维图像,图像中的每一个像素点代表物体表面上对应位置的位移值。
这样,就可以获得物体表面位移的全场分布图像。
如何进行二维激光位移光谱测量?首先,需要准备一台可见光激光器、一台高速光谱仪、一套光学设备和一个数据采集系统。
将激光器安装在合适的位置,使其能够发射一束稳定的激光束。
接着,使用光学设备将激光束聚焦到物体表面,确保光斑的大小适当,以便能够覆盖到要测量的区域。
然后,使用高速光谱仪收集光谱信号。
通过调整光谱仪的参数,如采样速度、光谱范围等,确保能够获得准确的光谱信号。
在数据采集过程中,可以选择扫描整个物体表面,或者只在感兴趣区域进行测量。
接下来,对收集到的光谱信号进行处理。
首先,将光谱信号进行傅里叶变换,将其转换为频谱图像。
然后,对频谱图像进行滤波、峰值检测等处理,以提取出位移信息。
最后,根据处理后的数据,生成二维位移光谱图像。
通过对位移光谱图像的分析,可以得到物体表面位移的全场分布情况,并可以对数据进行进一步处理和分析。
二维激光位移光谱有哪些应用领域?二维激光位移光谱技术在许多领域具有广泛的应用。
二维相关光谱横纵坐标

二维相关光谱横纵坐标二维相关光谱横纵坐标是指在二维相关光谱分析中,所使用的自变量和因变量。
二维相关光谱是一种光谱分析的方法,它通过对不同波长的光进行反射、散射或透射观测,得到样品的光谱信息。
这种光谱信息可以用于分析样品的成分、结构和性质等。
为了能够对样品的光谱进行定量分析和解释,我们需要对二维相关光谱的横纵坐标有一定的了解。
二维相关光谱的横坐标通常表示波数或波长。
波数是波长的倒数,它的单位是cm-1。
波数可以用于刻画光的频率,它与样品分子的振动和转动有关。
波数越大,对应的波长越短,说明光的频率越高。
在二维相关光谱中,波数通常用于表示横轴,因为它可以反应样品的振动和转动信息,有助于对样品的结构和性质进行分析。
二维相关光谱的纵坐标通常表示吸光度、透射率或散射率等。
吸光度是样品吸收光能的能力,它与样品的浓度和光通过样品的路径有关。
透射率是光通过样品后剩余的光能与入射光能之比,它可以用来刻画样品对光的透过程度。
散射率是样品对光进行散射的能力,它与样品的粒径和形态有关。
在二维相关光谱中,纵轴的单位通常是无量纲的,因为它是通过比值来表示吸光度、透射率或散射率等。
纵坐标的选择取决于所检测的光谱特征和所研究的样品性质。
除了横坐标和纵坐标的物理性质,二维相关光谱的横纵坐标还可以表示样品的其他属性。
例如,在拉曼光谱中,横坐标通常表示样品的振动频率,纵坐标表示样品的拉曼散射强度。
拉曼光谱是一种非常灵敏的光谱方法,可以用于分析样品的成分和结构信息。
在红外光谱中,横坐标通常是波数,纵坐标可以是吸光度、透射率或散射率等物理量。
总之,在二维相关光谱分析中,横纵坐标的选择取决于所研究的样品类型和所关注的光谱特征。
横坐标通常表示样品的某种物理性质,如振动、转动或散射频率等,纵坐标可以表示样品的吸光度、透射率或散射率等物理量。
这些选取的横纵坐标能够在二维相关光谱中反映样品的结构、成分和性质等信息,为光谱分析提供有力的支持。
通过对二维相关光谱的横纵坐标进行适当的选择和解读,可以更深入地理解光谱分析中的各种现象和规律,为科研和工程应用提供更全面和准确的光谱数据。
10-红外光谱二维相关

1 ~ y (ν 1 )Τ ~ y (ν 2 ) Φ (ν 1 ,ν 2 ) = m −1
异步相关强度的计算(一)
• 对于异步相关强度的数值计算方法较多,其中最简单有效的方 法,是通过Hilbert变换得到 。
1 m ~ ~ Ψ (ν 1 ,ν 2 ) = y ( ν ) ⋅ z j (ν 2 ) ∑ j 1 m − 1 j =1
�
其中,
~ z j (v 2 ) = ∑ N jk ⋅ ~ y k (ν 2 )
k =1
m
�
而Njk对应于Hilbert-Noda转换矩阵中的第 j行k列元素
⎧ 0 ⎪ N jk = ⎨ 1 ⎪ ⎩π (k − j )
j=k
其他情况
异步相关强度的计算(二)
• 则异步相关强度由下式给出:
1 ~ Ψ (ν 1 ,ν 2 ) = y (ν 1 )Τ N~ y (ν 2 ) m −1
•
•
二维相关异步谱的解释
• 二维异步相关谱仍呈正方形,但无对 角线峰,仅有对角线外的峰,即交叉 峰。异步相关谱中的交叉峰表明与它 相应的两个红外吸收的偶极跃迁矩的 重定向行为是独立的,因此这种 “相关 峰”正好说明与这两个吸收相对应的官 能团没有相互连接、相互作用的 “ 相 关”。 异步相关谱也有正、负号之分,它反 映了所对应的两个偶极跃迁矩重定向 的相对快慢。一个正的交叉峰说明在 v1 处的光谱强度的变化比在 v2 处的变 化提前发生,而负的交叉峰则恰恰相 反,说明在 v2 处的光谱强度的变化比 在v1处的变化提前发生。
3600
3400 cm-1
3分子。由于被激发的分子 的驰豫过程慢于红外光谱的时标,因而可用前述的时间分 辨技术,检测动态过程,经处理得到二维红外光谱。
二维红外光谱

导读 二维红外光谱是目前超快时间分辨光谱中的一个重要前沿领域.二维红外光谱的特点是,在概念上深受二维核磁共振谱的启发,由于二维核磁技术在解析复杂分子结构方面所取得的极大成功,势必激起人们对二维红外光谱在解析结构方面的期望.而这种期望必然是推动二维红外光谱发展的持续动力.在原理和技术上,二维红外光谱是不折不扣的超快时间分辨非线性光学,将频域测量变为时域扫描的相干测量,最后通过二维傅里叶变换获取二维红外频域光谱信息.二维红外光谱不仅能够给出分子的振动光谱,更重要的是能够给出各种振动模式间的耦合及布居数的弛豫.对振动耦合常数的测量,可望解析出分子的空间结构.与核磁共振技术相比,核磁共振信号的耦合是空间局域的,由此可通过对分子局域结构的解析而获得大分子的空间结构信息.然而分子振动模式间的耦合是离域的,分子越大,耦合程度越复杂,导致二维红外光谱相对于二维核磁共振谱在解析分子结构方面的先天不足.尽管如此,前者的时间分辨率达飞秒量级,后者仅为纳秒量级.可以预测,如果能够在二维红外光谱的应用中充分做到扬长避短,定能在超快动力学研究中发挥巨大的潜力.新的技术昭示着新的希望,除时间分辨X射线衍射结构解析技术外,国际上将二维红外光谱和超快时间分辨电子衍射技术作为重要的超快时间分辨结构解析手段在努力发展,研究人员也在各自的阵线向学术顶峰发起冲击,就看谁能够率先突破,力拔头筹.由于该领域技术上的难度及人才的匮乏,国内只有个别研究小组开始这一领域的研究.为了使国内同行能够快速、准确地领会二维红外光谱的精髓及关键技术,郑俊荣教授接受本刊邀请,结合自己的研究成果,深入浅出地介绍了二维红外光谱的原理、方法、应用实例及该方法的局限性.由于缺乏感性认识,外语技术词汇往往是阻碍非母语读者快速进入新领域的绊脚石,作为本文的读者和受益者,我对郑俊荣教授的热忱之心深表敬意,同时也希望更多的海外学者加入到这一行列中来.(中国科学院物理研究所 翁羽翔)二维红外光谱郑俊荣(莱斯大学化学系 休斯敦 得克萨斯 美国 77005)摘 要 文章对二维红外光谱的历史、实验设备、方法原理、具体应用进行了简要的介绍,并对它的前景进行了展望.二维红外光谱是一种通过多束超快(10-15s(1fs)—10-12s(1ps)、中红外(400—4000cm-1)激光对分子的化学键的振动模式进行顺序激发,从而获得关于分子动态及静态结构信息的方法.它的原理非常类似于二维核磁共振,但要快上大约6个数量级.现在它已经开始被应用于研究平衡态下快速的分子变化,分子间相互作用(如氢键,偶极-偶极相互作用等)在常温液体里的动态变化,水氢键网络的演变过程,小分子、多肽和蛋白的静态或瞬间结构变化.关键词 二维红外光谱,超快,动态变化,氢键,静态和瞬态结构2D IR spectroscopyZHEN GJ un2Rong(Chemistry Department,Rice University Houston,T X,US A77005)Abstract The paper briefly introduces the history,principles,experimental setups,applications,and perspec2 tives of two dimensional infrared spectroscopy(2D IR).The2D IR technique obtains both static and dynamic mo2 lecular information through exciting molecular vibrations with ultrafast Mid2IR lasers.It is an IR analogue of two dimensional NMR,but six orders of magnitude faster.It has been widely applied to studies of molecular interac2 tions,hydrogen bond dynamics,fast chemical exchanges,static and transient structures of peptides and proteins.More applications would be expected in the near future.K eyw ords 2D IR spectroscopy,ultrafast,dynamics,hydrogen bond,static and transient structure 2009-02-04收到 Email:jz8@1 引言1.1 什么是二维红外光谱?二维红外光谱有两个定义:一个是Isao Noda在1989年提出的对一系列相关的一维红外光谱图(普通的红外光谱图)进行分析,并希望从分析中得到分子内或分子间化学键振动模式之间的相互关系的数学方法[1];另外一个是本文要讨论的,就是用直接的实验手段来探测化学键振动模式之间的相互关系[2—17].在现代的大多数化学实验室里,核磁共振和红外光谱大概是最常用的分子结构分析手段.核磁共振是通过检测原子核自旋的频率来获得分子结构信息,而红外光谱是通过化学键的振动频率来确定分子结构.这两者的一维谱图的x轴一般是频率,y轴是信号强度.核磁共振还有二维的谱图,即x轴和y轴都是频率,z轴是强度[18].这二维(x,y)的频率直接提供了关于原子核与原子核之间的相互关系,并提供了很多一维的方法得不到的结构与动态的信息,从而为解析复杂分子结构(如蛋白质)打下了坚实的技术基础.同样道理,红外光谱也应该有类似的二维技术来阐明振动模式与振动模式之间的关系.这样的一种技术就是二维红外光谱.一维红外光谱比一维核磁共振要早发展几十年,但是二维红外却比二维核磁共振晚了二三十年.主要原因是二维红外所需要的超快光源比二维核磁共振的射频源要晚发展.二维红外的前身———两色红外泵浦实验在20世纪90年代就已经发展了[19—22].真正意义上的第一次二维红外实验是在2000年发表的[5].这个最早出现的二维红外实验提供的是频率分辨率很差的绝对值谱图.而能提供真正吸收谱图的二维红外技术是在3年后出现的[6].此后,二维红外技术开始广泛用于研究化学问题[3,4,13,23].下面我用一个简单的例子来帮助定性地理解何为二维红外光谱.自然界里大多数分子都是多原子分子,也就是说,大多数分子有多于两个的振动模式(简振模式数=3n-6或3n-5(线性分子),n为原子数).事实上,红外谱图里的峰通常比这个式子给出的还多,因为分子振动不但能在基态与第一激发态之间跃迁,还能在第一到第二激发态之间,或者跨越不只一个能级跃迁.还有费米共振(偶然简并)也会产生更多的峰出来[24,25].).如果我们把每一个振动模式看成一根弹簧,那么,一个分子就是一串联在一起的不同大小的弹簧.如果我们想知道一个分子的结构,也就是说,如果我们想知道这些弹簧的大小以及它们是如何被串起来的,从原理上讲,我们只需知道这些弹簧(或振动模式)的振动频率就可以了,因为v=12πkm,(1) v是频率,k是力学常数,m是折合质量,而力学常数和折合质量是跟弹簧(或化学键)的大小和相对位置紧密相关.这就是一维红外光谱检测分子结构的原理.然而,振动频率跟结构(特别是化学键间的相对位置)之间的关系并不是很直截了当.这就造成了在事实上很难单凭一张一维红外谱图就能推出整个分子的结构.新的技术,尤其是那些能直接提供关于化学键之间(或振动模式之间)相互作用的信息的方法,显得很有必要.二维红外光谱就是这样的一种技术.那么,二维红外光谱是怎么样提供这些信息的呢?1.2 二维红外光谱有什么用?1.2.1 解析分子结构,基于分子振动模式间的耦合和能量传递让我们回到那个弹簧模型去回答这个问题.想象一下,如果我们拉伸一串弹簧中的一根,然后松手,这根弹簧就将开始以一定的频率振动.接着,其他的一些弹簧也将开始以它们固有的频率振动起来,这是因为那根被拉伸的弹簧将它的振动能量传给了其他的弹簧.在整个过程中,我们会观测到两类振动频率:一类是那根被拉伸的弹簧的初始振动频率(ωτ,一个);另外一类是能量传递后的其他弹簧振动的频率(ωm,多个).如果我们把实验观测结果画成图:初始振动频率(ωτ)为x轴,最后测得的振动频率(ωm)为y轴,每个振动的振幅为z轴,那么我们就会得到一张典型的二维红外光谱图(当我们把一根弹簧看作是一个分子振动模式的时候).如果我们把每一根弹簧都拉伸一下,然后分别测量拉伸后的振动频率分布,那么我们就会得到一张完全的二维谱图.其中x轴上的频率分布跟一维红外测得的频率是一模一样的,因为一维红外只测初始振动频率.如果我们再测一下随着能量传递时间而变化的频率分布,那么我们就能得知振动能量是如何在这一串弹簧中传递的.以上所描述的过程在分子的世界里也同样发生,只不过对于分子,我们不用手,而是用红外光去“拉伸”使它振动起来.如上所述,二维红外光谱除了能提供一般一维红外能提供的分子振动频率的信息以外,还能提供关于分子振动能量是如何在分子内传递的信息.这样,我们多了另外一种信息(跟一维红外相比)去解析分子的结构.在这里,有一个问题必须回答.众所周知,核磁共振能解析的分子结构精细度比红外高多了.为什么我们还需要发展红外光谱?有两个主要原因:第一,比较笼统地说,它们的适应对象,操作难易程度,成本高低不太一样;第二,两者的时间分辨率不一样.根据测不准原理,能量分辨率高的,时间分辨率就小.红外光谱所用的能量是在红外范围,而核磁共振用的是射频.射频的能量比红外小了大约6个数量级.也就是说,核磁共振能确定的能量精度要比红外光谱高出6个数量级.因此,在时间方面,红外光谱应该比核磁共振快6个数量级.现在核磁共振所用的脉冲宽度大约是几个微秒,而红外的脉冲能达到几十个飞秒.在自然界里,尤其是在生物体系里,相当多的分子有不只一个构像,这些构像在不停地交换着,从而完成一些重要的生理过程.很多交换的时间要远远快于一个微秒,如乙烷碳-碳单键的旋转.对于这些快速交换的构像,核磁共振所测得的是一个平均值(由其时间分辨率限制).而红外光谱,尤其是二维技术,却具备了能够直接把这些构像区分开来的能力.当然,如果用线性分析方法加上一些假设,核磁共振也能在一定误差范围内间接地解出快速交换的构像[26].1.2.2 测量快速分子动态变化,基于振动频率的变化以上所介绍的是二维红外测量分子结构的原理.这个技术还有至少两个其他方面的应用.一个是用于测快速分子动态变化,另一个是用于测分子间相互作用.下面分别简单介绍原理.这里还是用弹簧模型来说明问题.如果我们把一根弹簧泡在油里,然后拉伸让它振动,并现时观测记录振动频率.当弹簧仍在振动时,我们迅速把油吹干.这时候振动频率将发生改变(可能是变快了).在这个事件中,如果我们想知道什么时候油被吹干,我们只需要知道什么时候振动频率发生了改变.同样道理适用于分子体系.当分子的环境(如溶剂分子的运动)或者结构发生变化,它的某些振动频率将随着改变.观测这些振动频率的改变就能得到分子动态变化的信息.二维红外能直接测得初始频率及随反应时间而变化的最终频率.这里有一个假设:环境变化所诱导的频率的变化的过程要远远快于环境变化本身.这个假设在事实上是成立的.一般情况下,分子反应要慢于1p s,而振动频率的变化过程要快于100f s[27,28].1.2.3 分子间相互作用,基于分子间振动能量传递当两根弹簧连在一起时,振动能量能在这两者之间传递.当它们不连在一起但靠得很近时,振动能量也能在两者之间互相流动.分子振动也一样,分子间能量的传递与分子间的距离、相对取向和作用力有直接关系.二维红外能够直接测得分子间振动能量传递,从而得到有关分子间相互作用的信息.下面将从原理和设备上介绍如何在实验上实现二维红外的测量,然后用实例介绍它在以上三个方面的应用.2 原理像一维红外一样,二维红外也是测量随频率而变的光的强度.一维红外测量的是一维频率上的光强I(ωτ),它对光源没有时间分辨的要求,因此,它可以用黑体辐射产生的连续光做光源.二维红外测量的是在二维频率上随反应时间而变化的信号强度I(ωτ,ωm,T w).这里要求时间分辨率要快于反应时间.另外,如上所述,二维红外所提供的信息全部来自于振动的激发.如果振动的激发衰减到零,信号也就消失了.这就决定了二维红外所能测得的动态变化过程(如反应、能量传递)的时间域必须与振动的寿命相当.在室温凝聚态物质中,绝大多数的化学键的振动寿命只有几个皮秒,最长的也很少有超过1ns.因此,实验上所用的光源必须是脉冲的,而且必须比振动的寿命还要短.另外,我们需要知道两维频率(激发/吸收ωτ和检测/发射ωm)的信息.这是无法通过一般线性光学(如吸收谱)的技术来得知的.通常三阶的非线性光学技术,如光子回声(p hoton echo)和泵/浦(p ump/p robe),可以提供二维频率的信息[8,29].根据扰动理论(pert urbation t heory),三阶的非线型光学信号可以简单写成以下方程式[30—32]:S(τ,T w,t3)∝A×B(τ.T w,t3)×e±iωττ×e±iωm t3,(2)A和B是与频率无关的参数,ωτ是激发频率,τ是激发后的相干时间(coherence time),ωm是发射频率, t3是发射相干时间,T w是反应时间(pop ulation time).相位的正负号(±)由相位匹配(p hase match,入射光束的矢量和)决定.对时间域上的数据S(τ,T w,t3)做傅里叶变换:S(ωτ,ωm,T w)=∫∞dτ∫∞d t3exp( iωm t3 iωττ)×S(τ,T w,t3),(3)我们便得到二维频率的信息.那么,我们是如何得到亚皮秒的红外激光光源,如何得到时间域上的数据,如何对数据进行傅里叶分析的呢?3 实验3.1 光源现阶段世界上大部分实验室所用的亚皮秒的红外激光光源都是以掺钛蓝宝石(Ti/sapp hire)激光为基础而组装起来的.基本装置如图1所示.它包括三大部分:(1)振荡器(Ti/sapp hire oscillator)及其泵光源(连续光,532nm);(2)再生放大器(Ti/sap2 p hire regenerative amplifier)及其泵光源(脉冲~150ns,532nm);(3)光学参数放大器(optical para2 metric amplifier,OPA).一般振荡器每12ns(重复频率~76M Hz)产生一束以800nm为中心、频宽为10—100nm(可调)的光束(傅里叶变换极限为几个到100多个f s).每束光的能量大约是6.6nJ (以0.5W输出功率计算).这样的光重复频率太快,单束光能量太低.我们必须用再生放大器把重复频率降下来(通常降到1000Hz,可调),并提高单束光的能量(通常能到1mJ).现在商业化的再生放大器可以常规地以1000Hz的频率产生大于3.5W小于40f s的800nm的激光了.虽然这样的光已经可以足够强和足够快地去做三阶非线性光学实验,但是,它的波长是在可见和近红外区,而不是我们想要的中红外区.因此,我们必须用光学参数放大器把再生放大器的800nm输出光的波长调到中红外区.它一般是利用两种非线性光学晶体来达到目的: (1)BBO晶体把800nm光变成两束近红外光(~1.2nm和~2nm);(2)Ag GaS2晶体把这两束近红外光差频(DF G)得到中红外光.这样的装置能产生几个到上百个μJ的40—200f s的中红外光(~3—13μm).3.2 二维红外光谱仪器现在所有的二维红外技术都基于三阶非线性光学方法.各种技术之间的不同点在于如何做傅里叶变换.一般而言,有两种办法可以做傅里叶变换从而得到频率:一种是仪器傅里叶变换,即用仪器(如光栅或标准具(etalon))来分光而得到频率;另一种是数学傅里叶变换,即是扫描时间得到相干图样,然后用数学的方法对相干图样进行变换得到频率.这两种方法都在二维红外技术中得到应用.因为二维红外需要两次傅里叶变换来得到二维频率,所以,从理图1 二维红外所需的超快红外光源装置图论上讲,应该有四种变换组合去得到一张二维红外图谱.由于仪器变换要比数学变换快很多,目前只流行两种变换组合的方法:(1)ωτ和ωm都由仪器变换得到;(2)数学变换得到ωτ,仪器变换得到ωm.我们可以估算一下两者的快慢(只考虑一次变换).激光的重复频率是1000Hz.一般一个数据点需要大概100个光脉冲(具体数目由信噪比决定),即需要0.1s.数学傅里叶变换要求点与点之间要小于半个光周期(6.7f s,4μm的光).一般实验室采取3f s的时间距离来采集相干图样.一般振动模式的相干时间(dep hasing time)约为1p s.因此,一般相干图样扫描时间长度大约为3p s.一张完整的相干图样就需要100s的时间.假设仪器变换的分辨率是2cm-1,一张谱图的频率范围是200cm-1,那么,得到一张谱图的时间就是10s.它比数学变换快了10倍.这里需要指出来的是,在二维红外里,一般光源的频宽只有200—300cm-1,这就决定了一张相干图样只能包括这么宽的频率范围.如果超快光源能够像一维红外那样覆盖4000cm-1,那么数学变换将更有优势.既然在目前情况下,仪器变换要比数学变换快上10倍以上,为什么大多数组还是用数学变换的方法来得到ωτ呢?这是因为仪器变换要受到测不准原理的限制:如果我们想得到高的频率分辨率,那么时间分辨率将会变差.具体来说,如果ωτ的分辨率是10cm-1,那么激发的时间分辨就只有2个p s左右.数学变换就没有这个问题,因为它是直接用宽频的超快光直接激发样品.这里有个小佯谬.光源的频宽与脉冲时间确实由测不准原理决定,但二维红外的频率与时间的分辨率并不一定是来自同一出处.仪器变换是直接把光源频率变窄,这自然让光源的脉冲变慢,而数学变换没有改变光源的任何性质.因此它有光源本身的时间分辨率.数学变换的频率分辨率来自于后来的数学处理.这是它可以同时拥有好的频率与时间分辨率的原因.另外,一维频率ωm是光与样品作用后的信号的频率,检测它已经不涉及到时间分辨的问题,所以收集数据快速的仪器变换方法(光栅分光)被普遍采用.下面分别介绍目前最主要的两种二维红外的实验装置.3.2.1 ωτ和ωm都由仪器变换得到:窄泵宽浦的泵浦方法(narrow2p ump/broad2probe)这种方法是在两色红外泵浦实验发展起来的[13,19,21,22,33—35].实验装置比较简单,操作起来也很方便.它所用的光源基本上跟上面介绍的一样.实验上,从光学参数放大器出来的光被分为两束(能量比为~20:1),能量小的一束作为探测光(p robe),能量大的一束进入标准具.这个标准具的作用是在大的频率范围里任意挑出一小部分频率.它是由两片半透镜和压电片组成,并通过控制压电片的厚度(随电压而变)来控制通过光的波长并微调光的频宽.通过光的频宽一般先设计好.通过相干器件后,红外光就从宽频的超快光(~150cm-1,100f s)变成了窄频的皮秒光(~15cm-1,1.5p s).这个皮秒光和那束宽频的探测光先后跟样品作用.它们之间的时间延迟(也就是反应时间T w)是由机械延迟线控制它们之间的光程差来实现的.好的延迟线的精度能达到10nm,即0.03f s.如果用光密物质做延迟,精度能更高.皮秒光作为泵光对样品进行激发.宽频的探测光随后探测分子振动被激发后的情况.经过样品后,探测光通过光栅分光,然后由红外检测器检测光强度.比较有泵光和没有泵光的通过样品的探测光的谱图,我们便得知分子振动的激发是如何演化的,从而得知有关分子结构和动态变化的信息.在这种二维红外实验里,ωτ是通过扫描皮秒光的频率(改变加在压电片上的电压)得到的,而ωm是由光栅分光宽频探测光得到的.如果有条件的话,可以用1p s的光学参数放大器代替标准具.这样泵光的频率范围就不会受到宽频光频率的限制,二维频率从而可以独立分开.这样的设备会有更广泛的应用.3.2.2 数学变换得到ωτ,仪器变换得到ωm:相干方法(coherence)这个方法能同时得到小于2cm-1的频率分辨率和快于50f s的时间分辨率.这是上面介绍的泵浦技术无法达到的.当然,代价也是很昂贵的:费时,设置繁复,操作困难,数据处理复杂.具体的装置[32,36]如图2所示:从光学参数放大器(见图1)出来的红外光被分为5束.其中3束作为激发光与样品先后作用,一束作为指示光为确定信号的方向提供帮助,最后一束作为定域振荡器(local oscillator,LO)与信号相干(起到放大和确定光子回声信号相位的作用).LO和信号一起被送进光栅分光,分光后由MCT点阵红外检测器测光强.CH为斩波器.图2 相干方法二维红外光谱仪实验的示意图如图3所示.三束激发光从不同方向与样品先后作用.经过这三次作用,一束信号“光子回声”,从特定的方向(三束激发光的矢量和:k echo =k2+k3-k1)产生出来.信号接着跟LO混合并进入光栅分光,最后被点阵检测器检测.在这个实验中,一共有3个时间延迟:第一束与第二束激发光之间的时间差τ;第二束与第三束激发光之间的时间差T w;信号与LO之间的时间差.扫描τ并做数学傅里叶变换,便会得到ωτ,扫描T w(反应时间),就会提供动态信息.在原理上讲,如果扫描信号与LO之间的时间差并做数学傅里叶变换,便会得到ωm.但是,在实验上,我们并不是这样做的.我们固定信号与LO之间的时间差(通常设为零),然后让光栅来对信号与LO同时进行傅里叶变换.也就是说,(3)式里的t3实际上是光在光栅里的相干时间.这里有几个问题必须指出来.第一,为什么我们需要LO?有两个主要原因:一个是放大作用.红外检测器的背景噪音比较大,而三阶的光学信号很小,直接把信号送进检测器有可能让信号淹没在噪音中.用比信号大100倍以上的LO来与信号相干叠加,能有效地减小噪音的影响.另一个原因是LO能帮助检测信号的相位,从而使数学傅里叶变换得到ωτ成为可能.MCT红图3 实验示意图外检测器只测光强,不测相位.如果我们直接把信号输入检测器,扫描第一束与第二束激发光之间的时间差τ,只会得到一根衰减曲线,而不是一个相干图样.如果我们把信号根LO 叠加起来再送到检测器里,那么我们将测得两者叠加后的光强(I s ):I s =│E LO +S ech o │2=│E LO │2│+2R e [E 3LO・S ech o ]+│S ech o │2=│E LO │2+2│E LO │×│S ech o │×cos (ωττ)×cos (ωm t 3)+│S ech o │2.(4)其中│E LO │2是LO 的光强,是个常数,由斩波器除掉.│S echo │2是信号的强度.它比其他两项小很多.因此,实际上只有中间那一项是我们真正测得的有用的信息,它包括了所有我们想知道的东西:两个频率ωτ,ωm 和随反应时间(T w )而变的信号│S echo │.接下来的工作就是傅里叶变换.第二,一次傅里叶变换产生一个实部(吸收谱,图4中的实线)和一个虚部(扩散谱,图4中的虚线).实部是我们所需要的,二维红外需要两次傅里叶变换.对于从一个相位匹配方向(如光子回声,k echo =k 2+k 3-k 1)出来的信号进行两次变换,我们是永远不可能得到纯吸收谱的,如下面方程所示.光子回声的信号能被表达为S echo (τ,T w ,t 3)∝A ×B (τ,T w ,t 3)×e i ωττ×e -i ωm t 3,(5)对(5)式做两次傅里叶变换,我们得到S echo (ωτ,ωm ,T w )=∫∞dτ∫∞d t 3exp (i ωm t 3-i ωττ)×S echo (τ,T w ,t 3)=[R (ωτ)-I (ωτ)i ]×[R (ωm )+I (ωm )i ]=[R (ωτ)R (ωm )+I (ωτ)I (ωm )]-i [I (ωτ)R (ωm )-R (ωτ)I (ωm )],(6)其中R 和I 分别为实部和虚部.由(6)式可以看出,两次傅里叶变换的结果是:无论是虚部或者实部,都是一次变换的虚部和实部的叠加.这样叠加的图谱频率分辨率低,线性通常被扭曲.早期的图谱通常都是这样的[5].如果我们对另外一个相位匹配方向(如反光子回声,k n =-k 2+k 3+k 1)出来的信号S n (τ,T w ,t 3)进行两次变换,那么我们将得到方程(8)式.S n (τ,T w ,t 3)∝A ×B (τ,T w ,t 3)×e -i ωττ×e -iωm t 3(7)S n (ωτ,ωm ,T w )=∫∞d τ∫∞d t 3exp (i ωm t 3+iωττ)×S ech o (τ,T w ,t 3)=[R (ωτ)+I (ωτ)i ]×[R (ωm )I (ωm )i ]=[R (ωτ)R (ωm )-I (ωτ)I (ωm )]+i [I (ωτ)R (ωm )+R (ωτ)I (ωm )].(8)考察(6)式和(8)式的实部,我们发现它们只差一个符号.如果把这两个实部加起来,我们将得到Re (S n (ωτ,ωm ,T w ))+Re (S echo (ωτ,ωm ,T w ))=2R (ωτ)R (ωm ).(9)(9)式告诉我们,二维红外纯吸收谱能够通过叠加两种信号而获得.这里有一个假设:光子回声与反光子回声的信号一样大.实际上,这两种信号并不一样大.回声的信号总比反回声大一点.因此,数据处理必须人为地加进一个幅度参数.以上双信号叠加去除扩散谱的方法可以用图4形象地表示.这种去除扩散谱的方法是从二维核磁共振、二维可见光谱到二维红外光谱一步步地发展起来的[6,18,37].图4 双信号叠加去除扩散谱第三,在实验上,由于多种不确定因素,我们无法100%精确地确定τ和t 3.根据时间转移原理(time shift t heorem )[18],在傅里叶变换中,时间的不确定必然会导致相位的不确定:FT{S (τ-Δτ,t 3-Δt 3)}=e -i ωτΔτ-i ωm Δt 3S (ωτ,T w ,ωm ).(10)相位的不确定会把图谱完全扭曲.因此,我们必须人为地对傅里叶变换后的数据加以处理,结果如下:S 2DIR (ωτ,T w ,ωm )=Re (C ×S n (ωτ,T w ,ωm )×e i ωτΔn τ+i ωm Δnt 3+i ωτωm Δ2n +…)+Re (S echo (ωτ,T w ,ωm )×e i ωτΔe τ+i ωm Δet 3+i ωτωm Δ2e +…),(11)其中C ,Δn τ,Δnt 3,Δ2n ,Δe τ,Δet 3,Δ2e …是人为加进去的可调参数.在实验上,C 可以用两种信号绝对值之比来确定,并且我们可以让Δn τ=-Δe τ,Δnt 3=Δet 3,Δ2n=Δ2e .具体做法是在实验上先固定三束激发光在空。
二维相关谱图(课堂PPT)

Fourier transform
Y~1( )
~y (n 1 , t )
e i t dt
Y~2*( )
~y(n 2 , t)
eit dt
2D correlation spectra
1
F(n1,n2 ) i Y(n1,n2 ) (Tmax Tmin )
0
Y~1( ) Y~2*( )
Applied Spectroscopy, vol. 54, no. 7, July, 2000. (Special issue on generalized 2D correlation spectroscopy)
2020/4/27
Y. Ozaki and I. Noda, Eds. Two-Dimensional Correlation Spectroscopy, AIP Conference proceedings 503, AIP: Melville, 2000.
d
F(n1, n2) synchronous spectrum Y(n1, n2) asynchronous spectrum
2020/4/27
9
Practical Computational Method
Discrete spectral sampling
~y j
(n
)
y
j
(n
) 0
y(n
• DOP aliphatic chains move asynchronously (independently)
with respect to PS phenyl rings
21
2020/4/27
Remola Model of Plasticization
二维红外光谱

导读 二维红外光谱是目前超快时间分辨光谱中的一个重要前沿领域.二维红外光谱的特点是,在概念上深受二维核磁共振谱的启发,由于二维核磁技术在解析复杂分子结构方面所取得的极大成功,势必激起人们对二维红外光谱在解析结构方面的期望.而这种期望必然是推动二维红外光谱发展的持续动力.在原理和技术上,二维红外光谱是不折不扣的超快时间分辨非线性光学,将频域测量变为时域扫描的相干测量,最后通过二维傅里叶变换获取二维红外频域光谱信息.二维红外光谱不仅能够给出分子的振动光谱,更重要的是能够给出各种振动模式间的耦合及布居数的弛豫.对振动耦合常数的测量,可望解析出分子的空间结构.与核磁共振技术相比,核磁共振信号的耦合是空间局域的,由此可通过对分子局域结构的解析而获得大分子的空间结构信息.然而分子振动模式间的耦合是离域的,分子越大,耦合程度越复杂,导致二维红外光谱相对于二维核磁共振谱在解析分子结构方面的先天不足.尽管如此,前者的时间分辨率达飞秒量级,后者仅为纳秒量级.可以预测,如果能够在二维红外光谱的应用中充分做到扬长避短,定能在超快动力学研究中发挥巨大的潜力.新的技术昭示着新的希望,除时间分辨X射线衍射结构解析技术外,国际上将二维红外光谱和超快时间分辨电子衍射技术作为重要的超快时间分辨结构解析手段在努力发展,研究人员也在各自的阵线向学术顶峰发起冲击,就看谁能够率先突破,力拔头筹.由于该领域技术上的难度及人才的匮乏,国内只有个别研究小组开始这一领域的研究.为了使国内同行能够快速、准确地领会二维红外光谱的精髓及关键技术,郑俊荣教授接受本刊邀请,结合自己的研究成果,深入浅出地介绍了二维红外光谱的原理、方法、应用实例及该方法的局限性.由于缺乏感性认识,外语技术词汇往往是阻碍非母语读者快速进入新领域的绊脚石,作为本文的读者和受益者,我对郑俊荣教授的热忱之心深表敬意,同时也希望更多的海外学者加入到这一行列中来.(中国科学院物理研究所 翁羽翔)二维红外光谱郑俊荣(莱斯大学化学系 休斯敦 得克萨斯 美国 77005)摘 要 文章对二维红外光谱的历史、实验设备、方法原理、具体应用进行了简要的介绍,并对它的前景进行了展望.二维红外光谱是一种通过多束超快(10-15s(1fs)—10-12s(1ps)、中红外(400—4000cm-1)激光对分子的化学键的振动模式进行顺序激发,从而获得关于分子动态及静态结构信息的方法.它的原理非常类似于二维核磁共振,但要快上大约6个数量级.现在它已经开始被应用于研究平衡态下快速的分子变化,分子间相互作用(如氢键,偶极-偶极相互作用等)在常温液体里的动态变化,水氢键网络的演变过程,小分子、多肽和蛋白的静态或瞬间结构变化.关键词 二维红外光谱,超快,动态变化,氢键,静态和瞬态结构2D IR spectroscopyZHEN GJ un2Rong(Chemistry Department,Rice University Houston,T X,US A77005)Abstract The paper briefly introduces the history,principles,experimental setups,applications,and perspec2 tives of two dimensional infrared spectroscopy(2D IR).The2D IR technique obtains both static and dynamic mo2 lecular information through exciting molecular vibrations with ultrafast Mid2IR lasers.It is an IR analogue of two dimensional NMR,but six orders of magnitude faster.It has been widely applied to studies of molecular interac2 tions,hydrogen bond dynamics,fast chemical exchanges,static and transient structures of peptides and proteins.More applications would be expected in the near future.K eyw ords 2D IR spectroscopy,ultrafast,dynamics,hydrogen bond,static and transient structure 2009-02-04收到 Email:jz8@1 引言1.1 什么是二维红外光谱?二维红外光谱有两个定义:一个是Isao Noda在1989年提出的对一系列相关的一维红外光谱图(普通的红外光谱图)进行分析,并希望从分析中得到分子内或分子间化学键振动模式之间的相互关系的数学方法[1];另外一个是本文要讨论的,就是用直接的实验手段来探测化学键振动模式之间的相互关系[2—17].在现代的大多数化学实验室里,核磁共振和红外光谱大概是最常用的分子结构分析手段.核磁共振是通过检测原子核自旋的频率来获得分子结构信息,而红外光谱是通过化学键的振动频率来确定分子结构.这两者的一维谱图的x轴一般是频率,y轴是信号强度.核磁共振还有二维的谱图,即x轴和y轴都是频率,z轴是强度[18].这二维(x,y)的频率直接提供了关于原子核与原子核之间的相互关系,并提供了很多一维的方法得不到的结构与动态的信息,从而为解析复杂分子结构(如蛋白质)打下了坚实的技术基础.同样道理,红外光谱也应该有类似的二维技术来阐明振动模式与振动模式之间的关系.这样的一种技术就是二维红外光谱.一维红外光谱比一维核磁共振要早发展几十年,但是二维红外却比二维核磁共振晚了二三十年.主要原因是二维红外所需要的超快光源比二维核磁共振的射频源要晚发展.二维红外的前身———两色红外泵浦实验在20世纪90年代就已经发展了[19—22].真正意义上的第一次二维红外实验是在2000年发表的[5].这个最早出现的二维红外实验提供的是频率分辨率很差的绝对值谱图.而能提供真正吸收谱图的二维红外技术是在3年后出现的[6].此后,二维红外技术开始广泛用于研究化学问题[3,4,13,23].下面我用一个简单的例子来帮助定性地理解何为二维红外光谱.自然界里大多数分子都是多原子分子,也就是说,大多数分子有多于两个的振动模式(简振模式数=3n-6或3n-5(线性分子),n为原子数).事实上,红外谱图里的峰通常比这个式子给出的还多,因为分子振动不但能在基态与第一激发态之间跃迁,还能在第一到第二激发态之间,或者跨越不只一个能级跃迁.还有费米共振(偶然简并)也会产生更多的峰出来[24,25].).如果我们把每一个振动模式看成一根弹簧,那么,一个分子就是一串联在一起的不同大小的弹簧.如果我们想知道一个分子的结构,也就是说,如果我们想知道这些弹簧的大小以及它们是如何被串起来的,从原理上讲,我们只需知道这些弹簧(或振动模式)的振动频率就可以了,因为v=12πkm,(1) v是频率,k是力学常数,m是折合质量,而力学常数和折合质量是跟弹簧(或化学键)的大小和相对位置紧密相关.这就是一维红外光谱检测分子结构的原理.然而,振动频率跟结构(特别是化学键间的相对位置)之间的关系并不是很直截了当.这就造成了在事实上很难单凭一张一维红外谱图就能推出整个分子的结构.新的技术,尤其是那些能直接提供关于化学键之间(或振动模式之间)相互作用的信息的方法,显得很有必要.二维红外光谱就是这样的一种技术.那么,二维红外光谱是怎么样提供这些信息的呢?1.2 二维红外光谱有什么用?1.2.1 解析分子结构,基于分子振动模式间的耦合和能量传递让我们回到那个弹簧模型去回答这个问题.想象一下,如果我们拉伸一串弹簧中的一根,然后松手,这根弹簧就将开始以一定的频率振动.接着,其他的一些弹簧也将开始以它们固有的频率振动起来,这是因为那根被拉伸的弹簧将它的振动能量传给了其他的弹簧.在整个过程中,我们会观测到两类振动频率:一类是那根被拉伸的弹簧的初始振动频率(ωτ,一个);另外一类是能量传递后的其他弹簧振动的频率(ωm,多个).如果我们把实验观测结果画成图:初始振动频率(ωτ)为x轴,最后测得的振动频率(ωm)为y轴,每个振动的振幅为z轴,那么我们就会得到一张典型的二维红外光谱图(当我们把一根弹簧看作是一个分子振动模式的时候).如果我们把每一根弹簧都拉伸一下,然后分别测量拉伸后的振动频率分布,那么我们就会得到一张完全的二维谱图.其中x轴上的频率分布跟一维红外测得的频率是一模一样的,因为一维红外只测初始振动频率.如果我们再测一下随着能量传递时间而变化的频率分布,那么我们就能得知振动能量是如何在这一串弹簧中传递的.以上所描述的过程在分子的世界里也同样发生,只不过对于分子,我们不用手,而是用红外光去“拉伸”使它振动起来.如上所述,二维红外光谱除了能提供一般一维红外能提供的分子振动频率的信息以外,还能提供关于分子振动能量是如何在分子内传递的信息.这样,我们多了另外一种信息(跟一维红外相比)去解析分子的结构.在这里,有一个问题必须回答.众所周知,核磁共振能解析的分子结构精细度比红外高多了.为什么我们还需要发展红外光谱?有两个主要原因:第一,比较笼统地说,它们的适应对象,操作难易程度,成本高低不太一样;第二,两者的时间分辨率不一样.根据测不准原理,能量分辨率高的,时间分辨率就小.红外光谱所用的能量是在红外范围,而核磁共振用的是射频.射频的能量比红外小了大约6个数量级.也就是说,核磁共振能确定的能量精度要比红外光谱高出6个数量级.因此,在时间方面,红外光谱应该比核磁共振快6个数量级.现在核磁共振所用的脉冲宽度大约是几个微秒,而红外的脉冲能达到几十个飞秒.在自然界里,尤其是在生物体系里,相当多的分子有不只一个构像,这些构像在不停地交换着,从而完成一些重要的生理过程.很多交换的时间要远远快于一个微秒,如乙烷碳-碳单键的旋转.对于这些快速交换的构像,核磁共振所测得的是一个平均值(由其时间分辨率限制).而红外光谱,尤其是二维技术,却具备了能够直接把这些构像区分开来的能力.当然,如果用线性分析方法加上一些假设,核磁共振也能在一定误差范围内间接地解出快速交换的构像[26].1.2.2 测量快速分子动态变化,基于振动频率的变化以上所介绍的是二维红外测量分子结构的原理.这个技术还有至少两个其他方面的应用.一个是用于测快速分子动态变化,另一个是用于测分子间相互作用.下面分别简单介绍原理.这里还是用弹簧模型来说明问题.如果我们把一根弹簧泡在油里,然后拉伸让它振动,并现时观测记录振动频率.当弹簧仍在振动时,我们迅速把油吹干.这时候振动频率将发生改变(可能是变快了).在这个事件中,如果我们想知道什么时候油被吹干,我们只需要知道什么时候振动频率发生了改变.同样道理适用于分子体系.当分子的环境(如溶剂分子的运动)或者结构发生变化,它的某些振动频率将随着改变.观测这些振动频率的改变就能得到分子动态变化的信息.二维红外能直接测得初始频率及随反应时间而变化的最终频率.这里有一个假设:环境变化所诱导的频率的变化的过程要远远快于环境变化本身.这个假设在事实上是成立的.一般情况下,分子反应要慢于1p s,而振动频率的变化过程要快于100f s[27,28].1.2.3 分子间相互作用,基于分子间振动能量传递当两根弹簧连在一起时,振动能量能在这两者之间传递.当它们不连在一起但靠得很近时,振动能量也能在两者之间互相流动.分子振动也一样,分子间能量的传递与分子间的距离、相对取向和作用力有直接关系.二维红外能够直接测得分子间振动能量传递,从而得到有关分子间相互作用的信息.下面将从原理和设备上介绍如何在实验上实现二维红外的测量,然后用实例介绍它在以上三个方面的应用.2 原理像一维红外一样,二维红外也是测量随频率而变的光的强度.一维红外测量的是一维频率上的光强I(ωτ),它对光源没有时间分辨的要求,因此,它可以用黑体辐射产生的连续光做光源.二维红外测量的是在二维频率上随反应时间而变化的信号强度I(ωτ,ωm,T w).这里要求时间分辨率要快于反应时间.另外,如上所述,二维红外所提供的信息全部来自于振动的激发.如果振动的激发衰减到零,信号也就消失了.这就决定了二维红外所能测得的动态变化过程(如反应、能量传递)的时间域必须与振动的寿命相当.在室温凝聚态物质中,绝大多数的化学键的振动寿命只有几个皮秒,最长的也很少有超过1ns.因此,实验上所用的光源必须是脉冲的,而且必须比振动的寿命还要短.另外,我们需要知道两维频率(激发/吸收ωτ和检测/发射ωm)的信息.这是无法通过一般线性光学(如吸收谱)的技术来得知的.通常三阶的非线性光学技术,如光子回声(p hoton echo)和泵/浦(p ump/p robe),可以提供二维频率的信息[8,29].根据扰动理论(pert urbation t heory),三阶的非线型光学信号可以简单写成以下方程式[30—32]:S(τ,T w,t3)∝A×B(τ.T w,t3)×e±iωττ×e±iωm t3,(2)A和B是与频率无关的参数,ωτ是激发频率,τ是激发后的相干时间(coherence time),ωm是发射频率, t3是发射相干时间,T w是反应时间(pop ulation time).相位的正负号(±)由相位匹配(p hase match,入射光束的矢量和)决定.对时间域上的数据S(τ,T w,t3)做傅里叶变换:S(ωτ,ωm,T w)=∫∞dτ∫∞d t3exp( iωm t3 iωττ)×S(τ,T w,t3),(3)我们便得到二维频率的信息.那么,我们是如何得到亚皮秒的红外激光光源,如何得到时间域上的数据,如何对数据进行傅里叶分析的呢?3 实验3.1 光源现阶段世界上大部分实验室所用的亚皮秒的红外激光光源都是以掺钛蓝宝石(Ti/sapp hire)激光为基础而组装起来的.基本装置如图1所示.它包括三大部分:(1)振荡器(Ti/sapp hire oscillator)及其泵光源(连续光,532nm);(2)再生放大器(Ti/sap2 p hire regenerative amplifier)及其泵光源(脉冲~150ns,532nm);(3)光学参数放大器(optical para2 metric amplifier,OPA).一般振荡器每12ns(重复频率~76M Hz)产生一束以800nm为中心、频宽为10—100nm(可调)的光束(傅里叶变换极限为几个到100多个f s).每束光的能量大约是6.6nJ (以0.5W输出功率计算).这样的光重复频率太快,单束光能量太低.我们必须用再生放大器把重复频率降下来(通常降到1000Hz,可调),并提高单束光的能量(通常能到1mJ).现在商业化的再生放大器可以常规地以1000Hz的频率产生大于3.5W小于40f s的800nm的激光了.虽然这样的光已经可以足够强和足够快地去做三阶非线性光学实验,但是,它的波长是在可见和近红外区,而不是我们想要的中红外区.因此,我们必须用光学参数放大器把再生放大器的800nm输出光的波长调到中红外区.它一般是利用两种非线性光学晶体来达到目的: (1)BBO晶体把800nm光变成两束近红外光(~1.2nm和~2nm);(2)Ag GaS2晶体把这两束近红外光差频(DF G)得到中红外光.这样的装置能产生几个到上百个μJ的40—200f s的中红外光(~3—13μm).3.2 二维红外光谱仪器现在所有的二维红外技术都基于三阶非线性光学方法.各种技术之间的不同点在于如何做傅里叶变换.一般而言,有两种办法可以做傅里叶变换从而得到频率:一种是仪器傅里叶变换,即用仪器(如光栅或标准具(etalon))来分光而得到频率;另一种是数学傅里叶变换,即是扫描时间得到相干图样,然后用数学的方法对相干图样进行变换得到频率.这两种方法都在二维红外技术中得到应用.因为二维红外需要两次傅里叶变换来得到二维频率,所以,从理图1 二维红外所需的超快红外光源装置图论上讲,应该有四种变换组合去得到一张二维红外图谱.由于仪器变换要比数学变换快很多,目前只流行两种变换组合的方法:(1)ωτ和ωm都由仪器变换得到;(2)数学变换得到ωτ,仪器变换得到ωm.我们可以估算一下两者的快慢(只考虑一次变换).激光的重复频率是1000Hz.一般一个数据点需要大概100个光脉冲(具体数目由信噪比决定),即需要0.1s.数学傅里叶变换要求点与点之间要小于半个光周期(6.7f s,4μm的光).一般实验室采取3f s的时间距离来采集相干图样.一般振动模式的相干时间(dep hasing time)约为1p s.因此,一般相干图样扫描时间长度大约为3p s.一张完整的相干图样就需要100s的时间.假设仪器变换的分辨率是2cm-1,一张谱图的频率范围是200cm-1,那么,得到一张谱图的时间就是10s.它比数学变换快了10倍.这里需要指出来的是,在二维红外里,一般光源的频宽只有200—300cm-1,这就决定了一张相干图样只能包括这么宽的频率范围.如果超快光源能够像一维红外那样覆盖4000cm-1,那么数学变换将更有优势.既然在目前情况下,仪器变换要比数学变换快上10倍以上,为什么大多数组还是用数学变换的方法来得到ωτ呢?这是因为仪器变换要受到测不准原理的限制:如果我们想得到高的频率分辨率,那么时间分辨率将会变差.具体来说,如果ωτ的分辨率是10cm-1,那么激发的时间分辨就只有2个p s左右.数学变换就没有这个问题,因为它是直接用宽频的超快光直接激发样品.这里有个小佯谬.光源的频宽与脉冲时间确实由测不准原理决定,但二维红外的频率与时间的分辨率并不一定是来自同一出处.仪器变换是直接把光源频率变窄,这自然让光源的脉冲变慢,而数学变换没有改变光源的任何性质.因此它有光源本身的时间分辨率.数学变换的频率分辨率来自于后来的数学处理.这是它可以同时拥有好的频率与时间分辨率的原因.另外,一维频率ωm是光与样品作用后的信号的频率,检测它已经不涉及到时间分辨的问题,所以收集数据快速的仪器变换方法(光栅分光)被普遍采用.下面分别介绍目前最主要的两种二维红外的实验装置.3.2.1 ωτ和ωm都由仪器变换得到:窄泵宽浦的泵浦方法(narrow2p ump/broad2probe)这种方法是在两色红外泵浦实验发展起来的[13,19,21,22,33—35].实验装置比较简单,操作起来也很方便.它所用的光源基本上跟上面介绍的一样.实验上,从光学参数放大器出来的光被分为两束(能量比为~20:1),能量小的一束作为探测光(p robe),能量大的一束进入标准具.这个标准具的作用是在大的频率范围里任意挑出一小部分频率.它是由两片半透镜和压电片组成,并通过控制压电片的厚度(随电压而变)来控制通过光的波长并微调光的频宽.通过光的频宽一般先设计好.通过相干器件后,红外光就从宽频的超快光(~150cm-1,100f s)变成了窄频的皮秒光(~15cm-1,1.5p s).这个皮秒光和那束宽频的探测光先后跟样品作用.它们之间的时间延迟(也就是反应时间T w)是由机械延迟线控制它们之间的光程差来实现的.好的延迟线的精度能达到10nm,即0.03f s.如果用光密物质做延迟,精度能更高.皮秒光作为泵光对样品进行激发.宽频的探测光随后探测分子振动被激发后的情况.经过样品后,探测光通过光栅分光,然后由红外检测器检测光强度.比较有泵光和没有泵光的通过样品的探测光的谱图,我们便得知分子振动的激发是如何演化的,从而得知有关分子结构和动态变化的信息.在这种二维红外实验里,ωτ是通过扫描皮秒光的频率(改变加在压电片上的电压)得到的,而ωm是由光栅分光宽频探测光得到的.如果有条件的话,可以用1p s的光学参数放大器代替标准具.这样泵光的频率范围就不会受到宽频光频率的限制,二维频率从而可以独立分开.这样的设备会有更广泛的应用.3.2.2 数学变换得到ωτ,仪器变换得到ωm:相干方法(coherence)这个方法能同时得到小于2cm-1的频率分辨率和快于50f s的时间分辨率.这是上面介绍的泵浦技术无法达到的.当然,代价也是很昂贵的:费时,设置繁复,操作困难,数据处理复杂.具体的装置[32,36]如图2所示:从光学参数放大器(见图1)出来的红外光被分为5束.其中3束作为激发光与样品先后作用,一束作为指示光为确定信号的方向提供帮助,最后一束作为定域振荡器(local oscillator,LO)与信号相干(起到放大和确定光子回声信号相位的作用).LO和信号一起被送进光栅分光,分光后由MCT点阵红外检测器测光强.CH为斩波器.图2 相干方法二维红外光谱仪实验的示意图如图3所示.三束激发光从不同方向与样品先后作用.经过这三次作用,一束信号“光子回声”,从特定的方向(三束激发光的矢量和:k echo =k2+k3-k1)产生出来.信号接着跟LO混合并进入光栅分光,最后被点阵检测器检测.在这个实验中,一共有3个时间延迟:第一束与第二束激发光之间的时间差τ;第二束与第三束激发光之间的时间差T w;信号与LO之间的时间差.扫描τ并做数学傅里叶变换,便会得到ωτ,扫描T w(反应时间),就会提供动态信息.在原理上讲,如果扫描信号与LO之间的时间差并做数学傅里叶变换,便会得到ωm.但是,在实验上,我们并不是这样做的.我们固定信号与LO之间的时间差(通常设为零),然后让光栅来对信号与LO同时进行傅里叶变换.也就是说,(3)式里的t3实际上是光在光栅里的相干时间.这里有几个问题必须指出来.第一,为什么我们需要LO?有两个主要原因:一个是放大作用.红外检测器的背景噪音比较大,而三阶的光学信号很小,直接把信号送进检测器有可能让信号淹没在噪音中.用比信号大100倍以上的LO来与信号相干叠加,能有效地减小噪音的影响.另一个原因是LO能帮助检测信号的相位,从而使数学傅里叶变换得到ωτ成为可能.MCT红图3 实验示意图外检测器只测光强,不测相位.如果我们直接把信号输入检测器,扫描第一束与第二束激发光之间的时间差τ,只会得到一根衰减曲线,而不是一个相干图样.如果我们把信号根LO 叠加起来再送到检测器里,那么我们将测得两者叠加后的光强(I s ):I s =│E LO +S ech o │2=│E LO │2│+2R e [E 3LO・S ech o ]+│S ech o │2=│E LO │2+2│E LO │×│S ech o │×cos (ωττ)×cos (ωm t 3)+│S ech o │2.(4)其中│E LO │2是LO 的光强,是个常数,由斩波器除掉.│S echo │2是信号的强度.它比其他两项小很多.因此,实际上只有中间那一项是我们真正测得的有用的信息,它包括了所有我们想知道的东西:两个频率ωτ,ωm 和随反应时间(T w )而变的信号│S echo │.接下来的工作就是傅里叶变换.第二,一次傅里叶变换产生一个实部(吸收谱,图4中的实线)和一个虚部(扩散谱,图4中的虚线).实部是我们所需要的,二维红外需要两次傅里叶变换.对于从一个相位匹配方向(如光子回声,k echo =k 2+k 3-k 1)出来的信号进行两次变换,我们是永远不可能得到纯吸收谱的,如下面方程所示.光子回声的信号能被表达为S echo (τ,T w ,t 3)∝A ×B (τ,T w ,t 3)×e i ωττ×e -i ωm t 3,(5)对(5)式做两次傅里叶变换,我们得到S echo (ωτ,ωm ,T w )=∫∞dτ∫∞d t 3exp (i ωm t 3-i ωττ)×S echo (τ,T w ,t 3)=[R (ωτ)-I (ωτ)i ]×[R (ωm )+I (ωm )i ]=[R (ωτ)R (ωm )+I (ωτ)I (ωm )]-i [I (ωτ)R (ωm )-R (ωτ)I (ωm )],(6)其中R 和I 分别为实部和虚部.由(6)式可以看出,两次傅里叶变换的结果是:无论是虚部或者实部,都是一次变换的虚部和实部的叠加.这样叠加的图谱频率分辨率低,线性通常被扭曲.早期的图谱通常都是这样的[5].如果我们对另外一个相位匹配方向(如反光子回声,k n =-k 2+k 3+k 1)出来的信号S n (τ,T w ,t 3)进行两次变换,那么我们将得到方程(8)式.S n (τ,T w ,t 3)∝A ×B (τ,T w ,t 3)×e -i ωττ×e -iωm t 3(7)S n (ωτ,ωm ,T w )=∫∞d τ∫∞d t 3exp (i ωm t 3+iωττ)×S ech o (τ,T w ,t 3)=[R (ωτ)+I (ωτ)i ]×[R (ωm )I (ωm )i ]=[R (ωτ)R (ωm )-I (ωτ)I (ωm )]+i [I (ωτ)R (ωm )+R (ωτ)I (ωm )].(8)考察(6)式和(8)式的实部,我们发现它们只差一个符号.如果把这两个实部加起来,我们将得到Re (S n (ωτ,ωm ,T w ))+Re (S echo (ωτ,ωm ,T w ))=2R (ωτ)R (ωm ).(9)(9)式告诉我们,二维红外纯吸收谱能够通过叠加两种信号而获得.这里有一个假设:光子回声与反光子回声的信号一样大.实际上,这两种信号并不一样大.回声的信号总比反回声大一点.因此,数据处理必须人为地加进一个幅度参数.以上双信号叠加去除扩散谱的方法可以用图4形象地表示.这种去除扩散谱的方法是从二维核磁共振、二维可见光谱到二维红外光谱一步步地发展起来的[6,18,37].图4 双信号叠加去除扩散谱第三,在实验上,由于多种不确定因素,我们无法100%精确地确定τ和t 3.根据时间转移原理(time shift t heorem )[18],在傅里叶变换中,时间的不确定必然会导致相位的不确定:FT{S (τ-Δτ,t 3-Δt 3)}=e -i ωτΔτ-i ωm Δt 3S (ωτ,T w ,ωm ).(10)相位的不确定会把图谱完全扭曲.因此,我们必须人为地对傅里叶变换后的数据加以处理,结果如下:S 2DIR (ωτ,T w ,ωm )=Re (C ×S n (ωτ,T w ,ωm )×e i ωτΔn τ+i ωm Δnt 3+i ωτωm Δ2n +…)+Re (S echo (ωτ,T w ,ωm )×e i ωτΔe τ+i ωm Δet 3+i ωτωm Δ2e +…),(11)其中C ,Δn τ,Δnt 3,Δ2n ,Δe τ,Δet 3,Δ2e …是人为加进去的可调参数.在实验上,C 可以用两种信号绝对值之比来确定,并且我们可以让Δn τ=-Δe τ,Δnt 3=Δet 3,Δ2n=Δ2e .具体做法是在实验上先固定三束激发光在空。
二维材料的圆偏振拉曼光谱研究

二维材料的圆偏振拉曼光谱研究
二维材料的圆偏振拉曼光谱研究是一种利用圆偏振拉曼光谱技术来研究二维材料的结构、性质和相互作用的方法。
拉曼光谱是一种非侵入性的光谱技术,可以提供关于材料的振动、晶格结构和分子结构等信息。
圆偏振拉曼光谱是在拉曼光谱的基础上加入圆偏振器件的技术,可以研究材料中分子的手性(手性是一种对称性,它表示物体不能通过旋转或移动使其与其镜像重合)。
对于二维材料来说,圆偏振拉曼光谱可以提供关于其晶格结构、层间相互作用和手性的信息。
例如,通过圆偏振拉曼光谱研究可以确定二维材料的晶格取向,判断是否存在层间耦合和层间相互作用。
此外,圆偏振拉曼光谱还可以检测到二维材料的手性,在研究手性材料和手性相互作用时有很大的应用潜力。
圆偏振拉曼光谱研究二维材料的方法通常是在拉曼光谱仪中添加圆偏振器件,如偏振片或波片,以调节入射光的圆偏振态。
然后通过光学显微镜聚焦到二维材料上,并记录被散射的圆偏振拉曼光信号。
通过分析光谱数据,可以提取二维材料的结构和性质信息。
总之,二维材料的圆偏振拉曼光谱研究是一种非常有前景的方法,可以揭示二维材料的结构和相互作用,并在材料科学和纳米技术领域中有重要的应用价值。
二维相关红外光谱及其应用解读

二维相关红外光谱及其应用1 引言二维相关光谱是一种实验设计与数据处理相结合的分析技术。
对于每一种样品体系,需要根据研究目的,设计合适的实验方案,通过对样品施加特定的微扰(包括机械拉伸力、温度、压力、浓度、磁场、光照等),诱导光谱信号产生动态变化,对一系列的动态谱图进行相关分析计算,便得到二维相关谱图(图1)。
二维相关谱图反映的是样本中各种组成成份或者微观结构单元相应于外界微扰的变化情况,以及这些变化之间相互的联系。
目前应用最广泛的是以温度为变量的二维相关红外光谱技术。
2 二维相关光谱的特性二维相关光谱可用三维立体图或二维等高线图进行可视化显示,便于直观地对二维信息进行解析。
在二维相关光谱的等高线图中,z坐标轴值用x-y平面中的等高线表示。
同步相关光谱代表两个动态红外信号之间的协同程度,它是关于主对角线对称的。
相关峰在对角线和非对角线区域均会出现。
在对角线上有一组峰,它是动态红外信号自身相关而得到的,所以称为自动峰。
自动峰总是正峰,它的强度代表外扰引起的变化程度。
强的自动峰对应于动态谱中强度变化较大的区域,而保持不变的区域则显示出非常小或没有自动峰,这与微观环境对官能团运动的影响是密切相关的。
在二维相关图中(见图1),以圆圈的个数代表Φ(ν1,ν2)的绝对值。
在坐标(A,A),(B,B),(C,C)和(D,D)处的自动峰分别具有2,1,4和2个圆圈,表明(C,C)处的自动峰最强,而(B,B)处的自动峰最弱。
二维同步相关光谱中位于主对角线以外的峰叫做交叉峰,它显示扰动发生过程中ν1和ν2处的强度变化的相关变化。
为了便于观察自动峰和交叉峰的强度的相关变化,可以构造一个相关正方形,把对角线上的自动峰和两侧的交叉峰连贯起来。
所以A和C,B和D是同步相关的(图1a)。
交叉峰的符号既可为正也可为负。
如果发生在ν1和ν2处的强度变化是同一方向的,那么Φ(ν1,ν2)为正;反之,如果发生在ν1和ν2处的强度变化是沿着相反方向的,那么Φ(ν1,ν2)为负。
二维核磁共振谱全解

一、1D-NMR 到2D-NMR的技术变化 (一)一维核磁共振谱及脉冲序列 基本脉冲序列 :
3
(二)二维核磁共振谱及基本脉冲序列 基本脉冲序列 :
二维谱实验通常分为 4个阶段:
d
t1
tm
t2
预备期
演化期
混合期
检测期
1、预备期: 预备期在时间轴上通常是一个较长
的时期,使核自旋体系回复到热平衡状态,
H1 H2 H3 H4
—C1 —C2 —C3—C4 —
HMQC(异核多量子相干谱 )的优点脉冲序列较 简单,参数设置容易。反式检测氢维 (f2)分辨 率较高,灵敏度较高。缺点碳维 (f1)分辨率低.
38
90 180 90 90
180
d2 1H:
d2 d3
d2 t1 / 2
180
90
90
t1 / 2 d2 90
2DJ 分解谱中只显示9个点。 5位甲基没有受到偶合,因 此只在F1=0轴上显示单峰。
19
(二)碳、氢异核二维 J分解谱 在异核13C,1H -2D J分解谱中,被测定的核为
13C核,分解谱的 F2轴为13C化学位移δ C,F1轴为1H 与13C的偶合(1JCH)多重峰,为 1/2JCH。
出峰情况是 CH为二重峰, CH2为三重峰, CH3为 四重峰,季碳单峰或不出峰。Fra bibliotek291H:
CPD
90
180
90
90
?
?
t1
13C:
+2 +1
2D- 01INADEQUATE 谱图有两种形式,第一种形 式水,平- 2连F2轴线是表1明3C一的对化偶学合位碳移具,有F1相为同双的量双子量跃子迁跃频迁率, 频率,可以判断它们是直接相连的碳。另一种形 式核,作为F2轴一F对1轴双都峰是出1现3C在的对化角学线位两移侧,对相称互的偶位合置的上碳。 依此类推可以找出化合物中所有 13C原子连接顺 序。
二维核磁谱解析

第二页,讲稿共二十五页哦
核磁共振二维谱的相关峰说 明了这两个频率的相关性.
注意:核磁共振二维谱中会 存在假峰. 判断假峰最简单 的办法就是看相关峰的横 坐标或者纵坐标是否不对 应共振频率,如果相关峰 没有对准氢谱或者碳谱的 峰组位移,那么这个相关 峰就是假峰。
该与c,b两个氢有NOE相关信号。
第十七页,讲稿共二十五页哦
通过羰基对苯环的拉电子作用可以区分1,1`和2,2`的化学位移;但通 过3位置氢与1,1`氢有noe,而与2,2`氢没有noe,通过这一点也可 以区分1,1`和2,2`的化学位移
第十八页,讲稿共二十五页哦
从NOESY 谱可以看到如下NOE 效应:
第三页,讲稿共二十五页哦
3. 2 同核位移相关谱
同核位移相关谱COSY( 或写为H,H-COSY )谱,是最常用的核磁共 振二维谱.
COSY 谱图的轮廓外形为矩形或者正方形(取决于横坐标和纵 坐标的比例),最常见的为矩形. COSY 谱的横坐标(2,F2) 和纵坐 标(1,F1) 方向的投影都是该化合物的氢谱,因此其横坐标和纵坐 际都标注氢谱化学位移. 在COSY 谱的上方(或者再加-个侧面)有对应的 核磁共振氢谱. 氢谱的化学位移数值和COSY 谱的化学位移数值是 一致的. COSY 谱中有-条对角线. 通常的走向是从左下到右上. 对角线 上有若干峰组, 它们和氢谱的峰组完全对应. 对角线上的峰(组)称为 对角线峰或者自动相关峰,它们没有提供相关信息. 在COSY 谱 中还有另外一类峰(组) .它们处于对角线外,称为相关峰或者交叉峰. 每 个相关峰都反应一组耦合信息.
二维光谱同步异步解析

二维光谱同步异步解析
二维光谱同步异步解析是指在进行二维光谱分析时,对时间和频率进行同步或异步的解析方法。
同步解析是指时间和频率的分析是同时进行的,即在二维光谱图中,时间和频率的信息是同时呈现的。
这种方法可以获得光谱随时间变化的详细信息。
异步解析是指时间和频率的分析是分开进行的,即将二维光谱图分解为时间和频率两个分量进行单独的分析。
这种方法主要用于提取时间和频率信息的相关程度,比如频率成分在不同时间段的变化情况。
在实际应用中,同步解析和异步解析可以根据具体需求来选择。
同步解析适用于需要同时获得时间和频率信息的情况,例如研究光谱随时间变化的动态过程。
异步解析适用于需要分别分析时间和频率信息,并研究它们之间的相关性的情况。
二维激光位移 光谱 -回复

二维激光位移光谱-回复题目:二维激光位移光谱技术:理论与应用引言:近年来,随着激光技术和光学器件的不断发展,二维激光位移光谱技术已成为物理学和工程应用领域的一个重要研究方向。
它结合了激光信号处理和光谱分析的优势,能够实现对目标物体的微弱位移信号进行高精度测量和分析,广泛应用于材料科学、力学工程、生物医学等领域。
本文将介绍二维激光位移光谱技术的原理、方法和应用,并展望其未来的发展方向。
第一部分:二维激光位移光谱技术原理1.1 光谱分析基础- 光谱分析的概念和分类- 光谱仪的工作原理和主要构成- 光谱学的相关理论知识1.2 激光原理与信号处理- 激光的产生和特性- 激光信号处理的基本原理- 激光干涉原理及其在位移测量中的应用1.3 二维激光位移光谱技术概述- 二维光谱技术的发展历程- 二维激光位移光谱技术的基本原理和优势第二部分:二维激光位移光谱技术方法2.1 单径向测量方法- 单径向激光光谱测量原理- 单径向二维位移光谱实验方案和步骤- 实测数据处理与分析方法2.2 双径向测量方法- 双径向激光光谱测量原理- 双径向二维位移光谱实验方案和步骤- 实测数据处理与分析方法2.3 多维位移光谱实验方法- 多径向激光光谱测量原理- 多径向二维位移光谱实验方案和步骤- 实测数据处理与分析方法第三部分:二维激光位移光谱技术应用3.1 材料科学领域- 应力应变分布的测量与分析- 变形和疲劳性能的评估与预测- 材料性能优化和质量控制3.2 力学工程领域- 结构体的位移和振动分析- 大型设备和工装的位移监测- 力学系统的故障诊断和预警3.3 生物医学领域- 人体器官和组织的变形分析- 疾病诊断和治疗监测- 医疗器械性能评估与改进第四部分:二维激光位移光谱技术的发展前景与挑战4.1 技术发展前景- 多维位移光谱技术的发展方向- 与其他光学技术的融合与创新4.2 技术挑战和改进方向- 测量精度和分辨率的提高- 仪器设备的容积和实时性改善- 复杂环境下的应用能力拓展结论:二维激光位移光谱技术以其高精度的位移测量能力和多样化的应用领域,为物理学和工程学的研究者提供了丰富的研究方向。
二维相关荧光光谱技术.

第18卷第12期2006年12月化学进展PROGRESSINCHEMISTRYVol.18No.12Dec.,2006二维相关荧光光谱技术余婧武培怡333(复旦大学高分子科学系聚合物分子工程教育部重点实验室上海200433)摘要从发展历史、计算方程、一般规则和特有性质等方面系统地介绍了近年来在二维相关荧光光谱技术方面的方法探索和应用进展。
以不同的外扰方式,如浓度、激发波长、猝灭以及其他外扰方式如pH等分类,举例阐述了二维荧光相关光谱的可操作性及其应用,并与普通一维荧光光谱比较,说明了二维荧光相关光谱技术的优势。
关键词二维相关荧光光谱技术相关分析外扰中图分类号:O657.3文献标识码:A文章编号:()122Two2Jing WuPeiyi33(ofMolecularEngineeringofPolymers,DepartmentofMacromolecularScience, FudanUniversity,Shanghai200433,China)Abstract Thetechniqueandprogressintwo2dimensionalfluorescencecorrelationspectroscopyissyste maticallyintroducedintheaspectsofhistory,mathematicequations,generalregulationandcha racteristicproperties.Theintroductionissortedintherangeofdifferentperturbations,suchasc oncentration,excitationwavelength,fluorescencequenchingandthepH.Thereareseveralexa mplesineachcasehelpingtoillustratetheoperabilityandapplicationofthenewtechnique.Addi tionally,thenewtechniqueisalsocomparedwiththetraditionalone2dimensionalfluorescence spectroscopy,whichindicatestheadvantageofthetwo2dimensionalfluorescencecorrelation spectroscopyclearly.Keywordstwo2dimensionalfluorescencecorrelationspectroscopy;correlationanalysis;perturbation Noda于1986年就二维NMR技术理论提出了[3]1背景介绍1.1历史发展一个概念性的突破,把磁实验中多重射频励磁看作是对体系的一种外部扰动。
二维多光谱

二维多光谱
二维多光谱是一种用于研究化学物质结构和动力学行为的分析技术。
与传统的单维光谱相比,二维多光谱不仅可以提供更丰富的信息,还能够揭示分子之间的相互作用和动态过程。
在二维多光谱中,横轴和纵轴通常表示两个不同的光谱参数,例如激发光频率、发射光频率、光谱强度等。
通过测量样品在不同激发条件下的光谱响应,可以获得一系列二维光谱图,从中可以分析出样品的结构特征、动力学过程以及各种相互作用。
二维多光谱在化学、生物学、材料科学等领域都有广泛的应用,可以用于研究光谱学、动力学过程、能量转移、分子构象等诸多问题。
这项技术的发展为科学研究提供了强大的工具,有助于深入理解物质的性质和行为。