2第二章 冲裁
冲压工艺学(冲裁)
概括计算原则如下: 概括计算原则如下:
1、 依据 落料 —— 由凹模决定 冲孔 —— 由凸模决定 2、考虑磨损问题 落料时, 落料时,凹模为工件的最小尺寸 冲孔时, 冲孔时,凸模为工件的最大尺寸 3、制模精度 模具精度比零件的精度高2 模具精度比零件的精度高2 ~ 3级,即: 1/3) δ模 =(1/4 ~ 1/3)△件
§2-1 冲裁变形机理
一、冲裁变形过程 二、冲裁力与凸模行程之间的关系曲线 冲裁件( 三、冲裁件(孔)的冲切断面
一、冲裁变形过程
1、弹性变形阶段:材料内压力达到弹性极 弹性变形阶段: 限小于屈服极限。 限小于屈服极限。 特点:挤入部位形成圆角,材料略微弯曲。 特点:挤入部位形成圆角,材料略微弯曲。 ---形成圆角带 形成圆角带。 ---形成圆角带。
§2-2 冲裁间隙值的确定
冲裁间隙: 冲裁间隙:凸凹模刃口工作部分同位尺寸 差称为冲裁间隙(Z) (Z)。 差称为冲裁间隙(Z)。 最小合理间隙值用于设计制造模具, 最小合理间隙值用于设计制造模具,最大 合理间隙用于控制模具寿命。 合理间隙用于控制模具寿命。因此目前 模具制造难点之一就是保证合理均匀的 模具间隙。 模具间隙。 实际间隙是模具制造完成后使用一段时间 后实际度量间隙值。 后实际度量间隙值。
1、理论计算法
Z/2=(tZ/2=(t-h0)*tgβ => Z=2t(1Z=2t(1-h0/t)tgβ
令 K= 2(1-h0/t)tgβ 2(1得: Z = Kt 其中K 其中K值与材料有关
β h0
dp Z/2 Dd t
断裂时剪切深度; h0: 断裂时剪切深度; 刃口尖点连线与垂线之间的夹角; β:刃口尖点连线与垂线之间的夹角; 由于测试技术的限制, 由于测试技术的限制,h0与β之值还不 能准确测定,所以大多采用—— 能准确测定,所以大多采用 经验确定间隙的方法
第二章 冲裁模的典型结构(二部分)
图2.8.4 凸模长度的确定
4.凸模承压能力和失稳弯曲极限长度校核 (1) 凸模承载能力的校核
非圆形凸模:
F min F p
σ
圆形凸模:
d
m in
4tτ
σ
(2)凸模失稳弯曲极限长度
根据模具结构的特点,可分为无导向装置和有导向装置凸
模的校验(如图2.8.5)
圆形凸模:
非圆形凸模:
30d 2 l max
Fp
l max 135
I Fp
图2.8.5 有、无导向的凸模结构
5.凸模护套(如图2.8.6)
6.凸模固定方式 平面尺寸比较大的凸模,可直接用销钉和螺栓固定
(如图2.8.7)
中小凸模多用台肩吊装或铆接固定(如图2.8.8)
黏结固定(如图2.8.9)
快换结构(如图2.8.10)
图2.8.6 凸模护套
图2.8.7 大凸模的固定
图 2.8.8 中小凸模的固定方式
a)环氧树脂浇注固定; b)低熔点合金浇注固定; c)无机粘结剂固定 图 2.8.9
2.凸模长度的确定(如图2.8.4) 固定卸料和导料板:
L h1 h2 h3 (15 ~ 20)mm
3.凸模材料 形状简单寿命要求不高的凸模选用T8A、T10A等材料;形
状复杂且寿命要求较高的凸模选用Cr12、Cr12MoV等制造;对 于高寿命、高耐磨性的凸模选用硬质合金。
ቤተ መጻሕፍቲ ባይዱ
图2.8.3 标准圆形凸模
2.8.1冲模零件的分类和标准化
1.模具零件的分类
2. 模具标准化,就是将模具的许多零件的形状和尺寸以及各
种典型组合和典型结构按统一结构形式及尺寸,实行标准化和 系列化并组织专业化生产,以充分满足用户选用,象普通工具 一样在市场上销售和选购。
第二章 第八节 精密冲裁方法
第八节精密冲裁方法用普通冲裁所得到的工件,剪切面上有塌角、断裂面和毛刺,还带有明显的锥度,表面粗糙度仪为R a 值12.5~6.3μm,同时制件尺寸精度较低,一般为ITl0~ITll,在通常情况下,已能满足零件的技术要求。
当要求冲裁件的剪切面作为工作表面或配合表面时,采用一般冲裁工艺不能满足零件的技术要求,这时,必须采用提高冲裁件质量和精度的精密冲裁方法。
精密冲裁是通过改进模具来提高制件精度,改善断面质量的。
其尺寸精度可达IT8~IT9(级),断面030或更佳。
精密冲裁主要有整修、光洁冲裁、负间粗糙度Ra值为1.6~0.4μm,断面垂直度可。
达89/隙冲裁、小间隙圆角刃口冲裁、上下冲裁、对向凹模冲裁、精冲等。
一、精密冲裁的几种工艺方二、见表2-39表2—39精密冲裁的几种工艺二、精冲(齿圈压板冲裁)目前齿圈压板精冲方法使用较为广泛,其模具的结构型式可分为活动凸模式(图2一35)和固定凸模式(图2—36)。
而且还可把精冲工序与其它成形工序(如弯曲、挤压、压印等)合在一起进行复合或连续冲压,从而大大提高生产率和降低生产成本。
图2—35活动凸模式精冲模图2—36固定凸模式精冲模1—压力托杆2传力杆3一冲孔凸模4一顶杆1—顶杆2—齿圈压板3—凹模4—冲孔凸模5—托板6—传力杆7—活寨8—压味工作台5—压力机工作台6—反压力活塞7—传力杆9—凸模底板l0—下模座1l—齿圈压板8—凹模座9—坯料10—凸凹模11—传力杆12—凸凹模13—凹模14—推板l5—上摸座12—凸模座13—床身14—滑块15—活塞l6—压床滑块17—压力柱18—活塞16—油压1.精冲的主要特点1)在冲裁过程中,由于有齿圈压板强力压边,顶件板和冲裁凸模的共同作用,并在间隙很小而凹模刃口带圆角的情况下,从而使坯料的变形区处于强烈三向压应力状态,提高了材料的塑性,抑制了剪切过程中裂纹的产生,使得冲裁件的断面质量和尺寸精度都有所提高。
精冲的变形过程见图2—37,根据精冲工艺要求,精冲设备应是能够提供三种加压压力(冲裁力、齿圈压力、顶出器反压力)的、导向精度要求高的专用精冲压力机。
第二章 冲裁工艺及冲裁模设计 复习题答案2
第二章冲裁工艺及冲裁模设计复习题答案一、填空题1. 冲裁既可以直接冲制成品零件,又可以为其他成形工序制备毛坯。
2. 从广义来说,利用冲模使材料相互之间分离的工序叫冲裁。
它包括冲孔、落料、切断、修边、等工序。
但一般来说,冲裁工艺主要是指冲孔和落料工序。
3.冲裁根据变形机理的不同,可分为普通冲裁和精密冲裁。
4.冲裁变形过程大致可分为弹性变形、塑性变形、断裂分离三个阶段。
5.冲裁件的切断面由圆角带、光亮带、剪裂带、毛刺四个部分组成。
6.圆角带是由于冲裁过程中刃口附近的材料被牵连拉入变形的结果。
7.光亮带是紧挨圆角带并与板面垂直的光亮部分,它是在塑性变形过程中凸模与凹模挤压切入材料,使其受到切应力和挤压应力的作用而形成的。
8.冲裁毛刺是在刃口附近的側面上材料出现微裂纹时形成的。
9.塑性差的材料,断裂倾向严重,剪裂带增宽,而光亮带所占比例较少,毛刺和圆角带大;反之,塑性好的材料,光亮带所占比例较大。
10.增大冲裁件光亮带宽度的主要途径为:减小冲裁间隙、用压板压紧凹模面上的材料、对凸模下面的材料用顶板施加反向压力,此外,还要合理选择塔边、注意润滑等。
11.减小塌角、毛刺和翘曲的主要方法有:尽可能采用合理间隙的下限值,保持模具刃口的锋利、合理选择塔边值、采用压料板和顶板等措施。
12.冲裁凸模和凹模之间的间隙,不仅对冲裁件的质量有极重要的影响,而且还影响模具寿命、冲裁力、卸料力和推件力等。
13.冲裁间隙过小时,将增大卸料力、推件力、冲裁力以及缩短模具寿命。
14.合理间隙冲裁时,上下刃口处所产生的剪裂纹基本能重合,光亮带约占板厚的1/2~1/3左右,切断面的塌角、毛刺和斜度均较小,完全可以满足一般冲裁件的要求。
15.间隙过小时,出现的毛刺比合理间隙时的毛刺高一些,但易去除,而且断面的斜度和塌角小,在冲裁件的切断面上形成二次光亮带。
16.冲裁间隙越大,冲裁件断面光亮带区域越小,毛刺越大;断面上出现二次光亮带是因间隙太小而引起的。
第二章 第五节 冲裁件的工艺性
第五节冲裁件的工艺性冲裁件的工艺性,是指冲裁件对冲压工艺的适应性。
冲裁件的工艺性对冲裁件质量、材料经济利用、生产率、模具制造及使用寿命等都有很大影响。
因此,在设计中应尽可能提高其工艺性。
冲裁件的工艺性主要包括以下几个方面。
一、冲裁件的形状和尺寸1)冲裁件形状应尽可能设计成简单、对称,使排样时废料最少,见图2—17。
2)冲裁件的外形和内孔应尽量避免尖锐的角,在各直线或曲线连接处,除少、无废料排样或采用镶拼模结构外,都应有适当的圆角相连,其半径R的最小值见表2—17。
图2—17少废料冲裁的排样表2—17冲裁件圆角半径R的最小值3)冲裁件的凸出悬臂和凹槽宽度不宜过小,其合理数值可参考表2—184)冲孔时,孔径比翼过小。
其最小孔径与孔的形状、材料的力学性能、材料的厚度等有关。
见表2—19、表2—20。
表2—18冲裁件的凸出悬臂和凹槽的最小宽度b表2—19无导向凸模冲孔的最小尺寸表2—20采用凸模护套冲孔的最小尺寸5)冲裁件的孔与孔之间,孔与边缘之间的距离不应过小,其许可值见图2-18。
当孔边缘与制件边缘不平行时应不小于t,平行时应不小于1.5t。
冲裁件的最小孔边距图2—18 最小孔边距6) 端头圆弧尺寸的腰鼓形冲压件,,如若采用两侧无废料排样,如图2-19所式,R=2b时,当条料出现正偏差就会使两端产生台阶(图2-19b )因而最好取R >2∆+b (图2-19c )。
7)在弯曲件或拉深件上冲孔时,其孔壁与工件壁之间应保持一定的距离(图2-20),若距离太小,冲孔时会使凸模受水平推力而折断。
c图2-19 工件两端弧形与宽度的关系图2-20 弯曲件或拉深件的冲孔位置二、冲裁件的精度与粗糙度1)冲裁件内外形的经济度不高欲IT11级。
一般要求落料件精度最好低欲IT10级,冲孔件最好低于IT9级。
具体数值可参考表2-21、表2-22、表2-23。
2)冲裁件断面的表面粗糙度和允许的毛刺高度可见表2-24、表2-25、表2-26。
第2章-冲裁工艺
B类尺寸,随凹模磨损,尺寸↓:
C类尺寸,随凹模磨损,尺寸不变:
34
2.3 冲裁模刃口尺寸计算
3)冲孔
第 2 章
冲
冲孔件
裁
工
艺
A类尺寸,随凸模磨损,尺寸↑:
B类尺寸,随凸模磨损,尺寸↓: C类尺寸,随凸模磨损,尺寸不变:
冲孔凸模刃口轮廓
35
2.3 冲裁模刃口尺寸计算
4)总之
第
2
第
2
非圆形工件x值
圆形工件x值
材料
章
厚度
1
0.75
0.5
0.75
0.5
t/mm
工 件 公 差 Δ/mm
冲
裁
1 <0.16 0.17~0.35 ≥0.36 <0.16 ≥0.16
工
1~2 <0.20 0.21~0.41 ≥0.42 <0.20 ≥0.20
艺
2~4 <0.24 0.25~0.49 ≥0.50 <0.24 ≥0.24
1、冲裁时的力态分析
第 普通冲裁示意图
2
模具工作部分有两个基
章
本特征:
冲
凸、凹模有锋利刃口
裁
凸、凹模有间隙
工
C - 单面间隙
艺
Z - 双面间隙
冲裁板料受力图
6
2.1 冲裁工艺分析
第
2
变形区位置
章
冲
裁
工
艺
变形区的应力状态
7
2.1 冲裁工艺分析
2、冲裁变形过程
第
2
1)弹性变形阶段
第2章 冲裁工艺
第
2.1 冲裁工艺分析
冲裁工艺设计
第二章 冲裁工艺与冲裁模设计
一、冲裁件的工艺性分析
1.冲裁件的结构工艺性(续) (3) 冲裁件上凸出的悬臂和凹槽不能过窄、过长; (4) 冲裁件的孔边距与孔间距不能过小; (5) 在弯曲件或拉深件上冲孔时,孔壁与工件直壁应保持一定距 离。
第二章 冲裁工艺与冲裁模设计
第七节 冲裁的工艺设计
一、冲裁件的工艺性分析
复合模冲裁的工件精度高 级进模冲裁的工件精度较低 单工序模冲裁的工件精度最低
第二章 冲裁工艺与冲裁模设计
第七节 冲裁的工艺设计
二、冲裁工艺方案的确定
1.冲裁工序的组合
(3)根据对冲裁件尺寸形状的适应性来确定
(4)根据模具制造安装调整的难易和成本的高低来确定 (5)根据操作是否方便与安全来确定
第二章 冲裁工艺与冲裁模设计
医疗
图标元素
第七节 冲裁的工艺设计
二、冲裁工艺方案的确定
2、冲裁顺序的安排
(1)级进冲裁顺序的安排
1)先冲孔或冲缺口,最后落料或切断,将冲裁件与条料分离。 2)采用定距侧刃时,定距侧刃切边工序安排与首次冲孔同时进 行,以便控制送料进距。
(2)多工序冲裁件用单工序冲裁时的顺序安排
1)先落料使坯料与条料分离,再冲孔或冲缺口。 2)冲裁大小不同、相距较近的孔时,为减少孔的变形,应先冲 大孔后冲小孔。
(1) 冲裁件的经济公差等级不高于IT11级,一般要求落料件 公差等级最好低于IT10级,冲孔件最好低于IT9级。 (2) 冲裁件的断面粗糙度与材料塑性、材料厚度、冲裁模间 隙、刃口锐钝以及冲模结构等有关。当冲裁厚度为2mm以下的 金属板料时,其断面粗糙度Ra一般可达12.5~3.2μm。
第二章 冲裁工艺与冲裁模设计
第二章 冲裁工艺与冲裁模设计
第二章 冲裁
尺寸精度影响因素 一般冲裁件能达到的尺寸精度比模具的精度
1. 模具制造精度 低一到三级。
2. 材料性质及模具结构 冲裁件会发生回弹现象,从而影响 其精度,较软的材料弹性变形小,冲裁后回弹小,精度较高, 在模具上增加压板料和顶件器会减小回弹值,提高冲件精度。
3. 冲裁间隙 间隙适当时,材料在较纯的剪应力下分离,间隙 较大时,材料除受到剪切外,还产生较大的拉伸应力与弯曲变 形,冲孔件会大于凸模尺寸,落料件会小于凹模尺寸;间隙较 小时,材料会受到较大的挤压作用,冲孔件会小于凸模尺寸, 落料件会大于凹模尺寸。
3 使凸、凹模沿封闭轮廓线冲裁,提高零件质量和模具寿命。
搭边值的确定: 根据经验定,搭边值不可过小也不可过大,过大浪费材料,过 小起不到搭边作用,还可能被拉入凸凹模间隙中,使模具刃口损坏。
搭边值确定取决于材料种类、厚度、冲裁件大小、轮廓形状等,材 料越厚、硬度越低、冲裁件尺寸越大、形状越复杂,合理搭边值越大。 一般搭边值由经验确定,可以查表。 送料步距: 条料在模具上每次被送进的距离,步距计算公式为: A = D + a1
图2.9 模具间隙
Z 2t (1
h0 t
)tg
(2—4)
上式中: h0——产生裂纹时凸模的压入深度(mm); t ——材料厚度(mm); β —— 最大切应力方向与垂线之间的夹角(裂纹方向角)。
β、 h0与材料性质有关,可以查表得到。
2 查表法
3 经验记忆法
Z = mt
Z:合理冲裁间隙 t: 板料厚度
图2.2 冲裁件塑性变形
三 断裂分离阶段 当板料应力达到抗剪切强度后,凸模继续下压,凸、凹模口 部产生裂纹并不断扩展,当上下裂纹重合时,板料发生分离。当 凸模继续下行时,已分离的板料被推出,完成整个冲裁过程。
第二章 冲裁工艺及冲裁模
圆形凸模
第二章 冲裁工艺及冲裁模
非圆形凸模及其固定 冲小孔凸模及其导向结构
第二章 冲裁工艺及冲裁模
(4)凸模的长度 当采用固定卸料时(如图a):L=h1+h2+h3+h 当采用弹性卸料时(如图a):L=h1+h2+h4
2、凹模 定义:在冲压过程中,与凸模配合直接对冲制件进行分离或成形 的工作零件。
便于操作和实现生产自动化。 缺点:级进模轮廓尺寸较大,制造较复杂,成本较高。 适用:大批量生产小型冲压件。
第二章 冲裁工艺及冲裁模
第二章 冲裁工艺及冲裁模
第二章 冲裁工艺及冲裁模
第二章 冲裁工艺及冲裁模
第八节 冲裁模的部件和零件
第二章 冲裁工艺及冲裁模
一、工作零件 1、凸模 按整体结构分:整体式、护套式和镶拼式; 按截面形状分:圆形和非圆形; 按刃口形式分:平刃和斜刃。 凸模基本结构由两部分组成: 一是工作部分,用于成型冲件; 二是安装部分,用来使凸模正确固定在座上。 凸模的材料:形状简单寿命要求不高的凸模选用T8A、T10A等材料; 形状复杂且寿命要求较高凸模选用Cr12、Cr12MoV等制造 对于高寿命、高耐磨性的凸模选用硬质合金。 凸模的固定方法:
第二章 冲裁工艺及冲裁模
第四节 排样与搭边
一、排样 定义:排样指冲裁件在板料、条料或带料上的布置形式。 1、材料利用率 定义:在冲压生产中,材料利用率是指在一个进料距离内,冲裁件面积与板料
毛坯面积之比,用百分率表示。
A 100%
Bs
式中 ——材料利用率;
A——一个进料距离内冲裁件的实际面积,mm2; B——条料或带料宽度,mm; s——进料距离,mm。
第二章 冲裁工艺及冲裁模
模具设计基础-课件2-2
第二章 冲裁工艺及冲裁模具的设计
第二节 冲裁模设计与有关工艺计算
三、冲裁排样与定位元件(继)
2. 材料利用率的计算 材料利用率:冲裁件的实际面积与所用板料面积的 百分比,它是衡量合理利用材料的经济性指标。 一个步距内的材料利用率:η=× A0 / BS ×100%
第二章 冲裁工艺及冲裁模具的设计
模内顶出所需要的力。
第二章 冲裁工艺及冲裁模具的设计
第二节 冲裁模设计与有关工艺计算
四、冲压力
1.冲裁力的计算
冲裁力:冲裁过程中凸模对板料施加的压力。
用普通平刃口模具冲裁时,冲裁力F一般按下式计算:
F KLt Ltb
式中 F—冲裁力(N) K—安全系数,K=1.3 t—材料的厚度(mm) τ—材料的抗剪强度(MPa) σb—材料的抗拉强度(MPa)
第二章 冲裁工艺及冲裁模具的设计
第二节 冲裁模设计与有关工艺计算
三、冲裁排样与定位元件(继)
3.搭边值的确定
搭边:排样时冲裁件之间以及冲裁件与条料侧边之间留下的
工艺废料。
搭边的作用: (1)补偿定位误差和剪板误差,确保冲出合格零件;
(2)增加条料刚度,方便条料送进,提高劳动生产率;
(3)搭边还可以避免冲裁时条料边缘的毛刺被拉人模具 间隙,从而提高模具寿命。
(3)冲裁件的形状与尺寸
大些。 (4)送料及挡料方式
零件外形越复杂,圆角半径越小,搭边值取
用手工送料,有侧压装置的搭边值可以小一些;
用侧刃定距比用挡料销定距的搭边小一些。 (5)卸料方式 弹性卸料比刚性卸料的搭边小一些。
第二章 冲裁工艺及冲裁模具的设计
第二节 冲裁模设计与有关工艺计算
第2章 冲裁工艺与冲裁模
1 1 1 1 Ld ( Lmin ) Td ( Lmin ) 2 2 2 8
0 绪论 一、冲压概念
2.凸模与凹模配合加工
配合加工法是指配做时,先制出一个基准件(如凹模),然后根据基准件 的实际尺寸,再按最小合理间隙Zmin配做另一件(如凸模)。
1.冲裁力的计算
平刃口冲裁模的冲裁力可按下式计算:
FP K PtL
式中,F—冲裁力,单位N; k—系数; L—冲裁件周边长度,单位㎜; t—板料厚度,单位㎜;τ b——材料抗剪强度,单位为MPa; 系数k是考虑到实际生产中各种因素对冲裁力的影响。 根据经验,一般取k=1.3。 抗剪强度τ 的数值,取决于材料的种类和状态,可在有关手册中查取。 一般取τ b=0.8σ b。 估算冲裁力公式: F=Ltσ
Ap A K T
0
p
0 绪论 一、冲压概念
② 凸模磨损后尺寸增大。
B p B K
Tp 0
③ 凸模磨损后尺寸没有变化。 (根据工件尺寸的标注形式不同其计算也各异) 工件尺寸为正偏差标注,如C+0Δ,可按下式计算。 T 即 C p C 0.5 2p 工件尺寸为负偏差标注,如,可按下式计算。 Tp C C 0 . 5 即 p 2 工件尺寸为对称偏差标注,如,可按下式计算。 即 C p C Tp 2 式中, Ap、Bp、Cp——凸模刃口尺寸; A、B、C——工件孔的基本尺寸。
0 绪论
2.2 冲裁件尺寸精度及结构工艺性
2.2.1 冲裁件尺寸精度和表面粗糙度
1、金属冲裁件的内、外形的经济精度不高于ITll级,如表2-1。 一般落料精度最好低于IT10级,冲孔精度最好低于IT9级。冲裁剪切 面的近似表面粗糙度值件见表2-2。 2、非金属冲裁件的内外形的经济精度为IT14、IT15级。 3、冲裁尺寸标注应符合冲压工艺要求。例如下图2-5所示的冲裁件, 其中图a的尺寸标注方法就不合理,因为,两孔中心距会随模具的磨 损而增大。如改为图b的标注方式,则两孔中心距与模具磨损无关。
第二章冲裁工艺与冲裁模
凸模:
凹模:
式中: d—冲孔工件孔的基本尺寸,mm dp、dd—冲孔凸、凹模刃口尺寸,mm Δ—工件公差,mm —凸、凹模制造偏差(查表),mm X—磨损系数(查表)
第二章冲裁工艺与冲裁模
第二章冲裁工艺与冲裁模
②落料 设冲裁件的落料尺寸为
计算原则,计算公式为:
凹模:
,根据刃口尺寸
如不满足,则应提高模具制造精度,即减小 、 ⑤优点
凸、凹模具有互换性,制造周期短,便于批量生产。 ⑥缺点:模具制造公差小,模具制造困难,成本高。
第二章冲裁工艺与冲裁模
刃口尺寸计算注意点:
1.分清是冲孔还是落料 2.冲裁间隙Z的确定:与材料和料厚有关 3.冲裁件的尺寸标注是否标准
孔的标注: 落料的标注: 中心距标注:L
基准件刃口尺寸计算式:
A类尺寸:
B类尺寸:
C类尺寸:
C = C ±D ' 4 = C ±D 8
第二章冲裁工艺与冲裁模
A类尺寸:
B类尺寸:
C类尺寸: C = C ±D ' 4 = C ±D 8
式中: A、B、C—基准件基本尺寸, mm Amax—冲裁件A类尺寸最大极限值, mm B min—冲裁件B类尺寸最小极限值, mm δ—模具制造公差, mm
毛剌区:是由于冲裁间隙的存在 而产生,该区域一般不可避免。Байду номын сангаас
第二章冲裁工艺与冲裁模
注意事项
a、粗大毛刺的产生部位:
当凸模刃口磨钝时,落料件的上端会出现 粗大的毛刺; 当凹模刃口磨钝时,冲孔件的下端会出现 粗大的毛刺; 当凸、凹模刃口同时磨钝时,则冲裁件上、下端都会产生毛刺。
第二章冲裁工艺与冲裁模
(2-1、2-2)冲裁变形过程分析
第二章 冲裁工艺与冲裁模设计
第二节 冲裁变形过程分析
三、冲裁件质量及其影响因素(续)
2、冲裁件尺寸精度及其影响因素 冲裁件的尺寸精度: 指冲裁件的实际尺寸与图纸上基本尺寸之差。 该差值包括两方面的偏差: 一是冲裁件对于凸模或凹模尺寸的偏差; 二是模具本身的制造偏差。 影响因素: (1)冲模的制造精度(零件加工和装配); (2)材料的性质 (3)冲裁间隙
变形:由于材料的边缘冲孔或孔距太小等原因,因胀形而产生的。
第二章 冲裁工艺与冲裁模设计
第二节 冲裁变形过程分析
三、冲裁件质量及其影响因素(续)
3、冲裁件形状误差及其影响因素 模具结构也对冲裁件质量有影响。 普通冲裁模的尺寸精度和断面质量均不太高。 经济级精度:IT14 - IT10 最高精度:IT10 - IT8
第二章 冲裁工艺与冲裁模设计
Байду номын сангаас本章目录
第一节 概述 第二节 第三节 第四节 第五节 第六节 第七节 冲裁变形过程分析 冲裁模间隙 凸模与凹模刃口尺寸的确定 冲裁排样设计 冲裁力和压力中心的计算 冲裁的工艺设计
第八节 冲裁模的典型结构 第九节 冲裁模零部件设计 第十节 冲裁模设计程序
第二章 冲裁工艺与冲裁模设计
了解和掌握冲裁变形规律, 有利于冲裁工艺与冲裁模设计, 控制冲裁件质量。
一、冲裁时板材变形区受 力情况分析
第二章 冲裁工艺及冲裁模设 复习题答案
1 •什么是冲裁工序?它在生产中有何作用?利用安装在压力机上的冲模,使板料的一部分和另一部分产生分离的加工方法,就称为冲裁工序。
冲裁工序是在冲压生产中应用很广的一种工序方法,它既可以用来加工各种各样的平板零件,如平垫圈、挡圈、电机中的硅钢片等,也可以用来为变形工序准备坯料,还可以对拉深件等成形工序件进行切边。
2 •冲裁的变形过程是怎样的?冲裁的变形过程分为三个阶段如图图 2.1.3 所示:从凸模开始接触坯料下压到坯料内部应力数值小于屈服极限,这是称之为弹性变形阶段 ( 第一阶段 ) ;如果凸模继续下压,坯料内部的应力达到屈服极限,坯料开始产生塑性变形直至在刃口附近由于应力集中将要产生裂纹为止,这是称之为塑性变形阶段 ( 第二阶段 ) ;从在刃口附近产生裂纹直到坯料产生分离,这就是称之为断裂分离阶段 ( 第三阶段 ) 。
3 •普通冲裁件的断面具有怎样的特征?这些断面特征又是如何形成的?普通冲裁件的断面一般可以分成四个区域,如图 2.1.5 所示,既圆角带、光亮带、断裂带和毛刺四个部分。
圆角带的形成发生在冲裁过程的第一阶段(即弹性变形阶段)主要是当凸模刃口刚压入板料时,刃口附近的材料产生弯曲和伸长变形,使板料被带进模具间隙从而形成圆角带。
光亮带的形成发生在冲裁过程的第二阶段(即塑性变形阶段),当刃口切入板料后,板料与模具侧面发生挤压而形成光亮垂直的断面(冲裁件断面光亮带所占比例越大,冲裁件断面的质量越好)。
断裂带是由于在冲裁过程的第三阶段(即断裂阶段),刃口处产生的微裂纹在拉应力的作用下不断扩展而形成的撕裂面,这一区域断面粗糙并带有一定的斜度。
毛刺的形成是由于在塑性变形阶段的后期,凸模和凹模的刃口切入板料一定深度时,刃尖部分呈高静水压应力状态,使微裂纹的起点不会在刃尖处产生,而是在距刃尖不远的地方发生。
随着冲压过程的深入,在拉应力的作用下,裂纹加长,材料断裂而形成毛刺。
对普通冲裁来说,毛刺是不可避免的,但我们可以通过控制冲裁间隙的大小使得毛刺的高度降低。
第二章 第一节 冲裁过程变形分析
第一节冲裁过程变形分析一、冲裁过程冲裁变形过程可分为三个阶段:第一阶段:弹性变形阶段(图2一la)图2-1 冲裁变形过程凸模与材料接触后,先将材料压平,继而凸模及凹模刃口压人材料中,由于弯矩M的作用,材料不仅产生弹性压缩且略有弯曲,随着凸模的继续压入,材料在刃口部分所受的应力逐渐增大,直到h1深度时,材料内应力达到弹性极限,此为材料的弹性变形阶段。
图 2-2凸模压力与冲裁过程A—压平材料之应力OC—弹性区域B—材料弹性变形之应力CD—塑性区域C—屈服应力E—整个板厚被切断D—材料最大强度第二阶段:塑性变形阶段(图2—1b)凸模继续压人,压力增加,材料内的应力达到屈服点,产生塑性变形。
随着塑性变形程度的增大,材料内部的拉应力和弯矩随之增大,变形区材料硬化加剧,当压入深度达到h2时,刃口附近材料的应力值达到最大值,此为塑性变形阶段。
第三阶段:断裂阶段(图2一1c)凸模压入深度达到h3时,先后在凹、凸模刃口侧面产生裂纹,裂纹产生后沿最大切应力方向向材料内层发展,当凹、凸模刃口处的裂纹相遇重合时,材料便被切断分离。
冲裁变形的三个阶段,可以在剪切曲线图中得到验证,如图2—2所示。
料厚为4.8mm。
板料切断后,冲裁件与孔断面的形状,如图2—3所示。
现将切断面各部分加以说明。
图2—3中的口塌角约为5%t,t为板料厚度。
它是凸模压人材料时,刃口附近的材料被牵连拉入变形的结果:b为光亮带,约为1/3t,其表面光滑,断面质量最佳;c为剪裂带,约为62%t,表面倾斜且粗糙;d 为毛刺,其高度约为(5%~l0%)t ,它是在出现裂纹时形成的。
二、变形过程力学分析在无压边装置冲裁时,材料所受外力如图2—4所示。
主要包括:p F 、d F ——凸、凹模对板材的垂直作用力;21F F 、——凸、凹模对板材的侧压力;dP F F μμ、——凸、凹模端面与板材间的摩擦力,其方向与间隙大小有关,但一般指向模具刃口,其中,μ是摩擦系数,下同。
第二章冲裁工艺与模具设计
2)斜排:适用于椭圆形、T形、Г形、S形零件。
3)直对排:适用于梯形、三角形、半圆形、T形、Π形、 Ш形零件。
4)斜对排:适用于椭圆形、T形、Г形、S形零件。
5)组合排:适用于材料与厚度相同的两种以上零件。
6)多行排:适用于大批量生产中尺寸不大的圆形、六角 形、方形、矩形零件。
7)交叉排:适用于C形、Π形、Ш形等零件。
3)采用侧刃:B=(L+1.5b+nF) –Δ
式中: L——制件垂直于送料方向的基本尺寸; n——侧刃数; F——侧刃裁切宽度; Δ——条料的宽度公差; b——侧面搭边值。
(2)材料利用率的计算 一般常用的计算方法是:一个进距内的实际面积与 所需板料面积之比的百分率,一般用η表示:
S S 100% 100% S0 A B
(4)典型案例分析 1)垫圈:
(4)典型案例分析 2)电机转子:
(4)典型案例分析 2)电机定子:
2)电机转子: 制件结构复杂,形状对称,无悬臂狭槽,孔边距较大; 转子轴孔Φ10的公差为0.027mm(IT8级);
外圆Φ47.2的公差为0.05mm(IT9级); 毛刺高度应小于0.05mm; 材料为电工硅钢,材料具有一定的脆性。
式中: A—在送料方向,排样图中相邻两个制件对应点的距离(mm); B—条料宽度(mm); S—一个进距内之间的实际面积(mm); S0 —一个进距内所需毛坯面积(mm)。
(3)典型案例冲裁材料利用率计算(见表2-17)
2.6 冲裁模刃口尺寸计算
2.6.1 冲裁间隙 冲裁间隙是指冲裁模凸模与凹模刃口间缝隙的距离。
1)应避免冲裁件上有过长的悬臂和狭槽。
最小宽度:b>2t
冲裁件悬臂与窄槽尺寸
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 冲裁工艺与冲裁模设计
【知识目标】 1.了解冲裁工艺原理; 2.掌握冲裁工艺分析与计算方法; 3.熟悉冲裁模设计程序; 4.掌握冲裁模工作零件及其它组成零部件的设计方法。
【技能目标】 1.能进行冲裁排样、冲裁力及冲裁工艺计算; 2.能进行单工序冲裁工艺与模具设计; 3.能进行复合工序冲裁工艺与模具设计; 4.能进行斜楔冲裁模具设计。
第二章 冲裁工艺与冲裁模设计
重点:
1.冲裁变形规律及冲裁件质量影响因素; 2.刃口尺寸计算原则和方法; 3.冲裁工艺性分析与工艺方案制定; 4.冲裁模典型结构及特点; 5.冲裁模结构设计及模具标准应用; 6.冲裁工艺与冲裁模设计的方法和步骤。
难点:
1.冲裁变形规律及冲裁件质量影响因素; 2.刃口尺寸计算原则和方法; 3.模具结构设计及模具标准应用; 4.冲裁工艺与冲裁模设计的方法和步骤。
第一节必备知识点
一、冲裁件工艺性分析(续)
1.冲裁件的结构工艺性(续) (6) 冲孔时,因受凸模强度的限制,孔的尺寸不应太小,否则 凸模易折断或压弯。
第二章 冲裁工艺与冲裁模设计
第一节必备知识点
一、冲裁件工艺性分析(续)
2.冲裁件的尺寸精度和表面粗糙度
冲裁件的精度一般可分为精密级与经济级两类。
(1) 冲裁件的经济公差等级不高于IT11级,一般要求落料件公差等级最好 低于IT10级,冲孔件最好低于IT9级。 (2) 冲裁件的断面粗糙度与材料塑性、材料厚度、冲裁模间隙、刃口锐钝 以及冲模结构等有关。当冲裁厚度为2mm以下的金属板料时,其断面粗糙度 Ra一般可达12.5~3.2μm。
1.冲裁件的结构工艺性 (1) 冲裁件的形状 (2) 冲裁件内形及外形的转角
第二章 冲裁工艺与冲裁模设计
第一节必备知识点
一、冲裁件工艺性分析(续)
1.冲裁件的结构工艺性 (续) (3) 冲裁件上凸出的悬臂和凹槽 (4) 冲裁件的孔边距与孔间距 (5) 在弯曲件或拉深件上冲孔时
第二章 冲裁工艺与冲裁模设计
1.要保证冲裁件的质量。在模具类型中,复合模冲出的制件精度高于连续模,而连续 模又高于单工序模。所以精度要求较高的制件,可以采用复合模进行加工。
2.要遵循经济性原则。在设计模具时,还要考虑成本。应在保证制件质量的前提下, 尽量选用简易模具,从而提高经济效益。
3.要保证安全生产。例如一些多工序小型制件,如果采用单工序模进行生产,在加工 过程中容易造成操作失误,很不安全,所以应采用级进模进行冲压。
第二章 冲裁工艺与冲裁模设计
第二章 冲裁工艺与冲裁模设计
内容简介: 冲裁是最基本的冲压工序。 本章是本课程的重点章。在分析冲裁变形过程及冲裁件
质量影响因素的基础上,介绍冲裁工艺计算、工艺方案制 定和冲裁模设计。涉及冲裁变形过程分析、冲裁件质量及 影响因素、间隙确定、刃口尺寸计算原则和方法、排样设 计、冲裁力与压力中心计算、冲裁工艺性分析与工艺方案 制定、冲裁典型结构、零部件设计及模具标准应用、冲裁 模设计方法与步骤等。
第一节必备知识点
一、冲裁件工艺性分析
冲裁工艺设计包括:冲裁件的工艺性和冲裁工艺方案确定。
冲裁件的工艺性是指冲裁件对冲裁工艺的适应性。 冲裁工艺性好是指能用普通冲裁方法,在模具寿命和生产
率较高、成本较低的条件下得到质量合格的冲裁件。
第二章 冲裁工艺与冲裁模设计
第一节必备知识点
一、冲裁件工艺性分析(续)
1.要保证冲裁件的质量。在模具类型中,复合模冲出的制件精度高于连续模,而连续 模又高于单工序模。所以精度要求较高的制件,可以采用复合模进行加工。
2.要遵循经济性原则。在设计模具时,还要考虑成本。应在保证制件质量的前提下, 尽量选用简易模具,从而提高经济效益。
3.要保证安全生产。例如一些多工序小型制件,如果采用单工序模进行生产,在加工 过程中容易造成操作失误,很不安全,所以应采用级进模进行冲压。
第二章 冲裁工艺与冲裁模设计
第一节必备知识点
概述
冲裁: 利用模具使板料沿着一定的轮廓形状产生分离的一种冲压工序。
基本工序:落料和冲孔。既可加工零件,也可加工冲压工序件。
冲裁模: 冲裁所使用的模具叫冲裁模,它是冲裁过程必不可少的工艺装
备。凸、凹模刃口锋利,间隙小。
分类: 普通冲裁、精密冲裁
第二章 冲裁工艺与冲裁模设计
4.生产批量。如表2.1.4所示。 总之,确定出最终最佳方案是要综合考虑制件的精度、表面质量、生产数量、企业的 实际条件等方面。
第二章 冲裁工艺与冲裁模设计
第一节必备知识点
三、模具结构形式设计
对制件进行工艺性分析后,要针对该制件的工序性质、工序数、工序顺序及组合方 式等进行分析,制定出几种不同的冲压工艺方案,最终确定该套模具的类型。模具的类型 根据工序组合区分,包括单工序模、复合模和级进模三大类。 确定工艺方案的原则主要有以下四点:
第二章 冲裁工艺与冲裁模设计
学习目的与要求:
1.了解冲裁变形规律、冲裁件质量及影响因素; 2.掌握冲裁模间隙确定、刃口尺寸计算、排样设计、冲裁力 计算等设计计算方法。 3.掌握冲裁工艺性分析与工艺设计方法; 4.认识冲裁模典型结构(尤其是级进模和复合模)及特点, 了解模具标准,掌握模具零部件设计及模具标准应用方法; 5.掌握冲裁工艺与冲裁模设计的方法和步骤。
第二章 冲裁工艺与冲裁模设计
第一节必备知识点
一、冲裁件工艺性分析(续)
3.冲裁件尺寸标注
冲裁件尺寸的基准应尽可能
与其冲压时定位基准重合,并选 择在冲裁过程中基本上下不变动 的面或线上。
第二章 冲裁工艺与冲裁模设计
第一节必备知识点
二、冲压方案制定
对制件进行工艺性分析后,要针对该制件的工序性质、工序数、工序顺序及组合方 式等进行分析,制定出几种不同的冲压工艺方案,最终确定该套模具的类型。模具的类型 根据工序组合区分,包括单工序模、复合模和级进模三大类。 确定工艺方案的原则主要有以下四点:
【素质目标】 1.具备必须且够用的关于翻边、缩口、旋压、胀形、整形等的基本知识; 2. 具有良好的从事冷冲压模具设计与制造的职业道德和操守;3.养成严
谨的工作作风和吃苦耐劳的工作精神; 4.能够将学到的关于其它冲压工艺与模具设计知识很好地与工作实际相结
合,做到学以致用、融会贯通; 5.具备继续学习和创新设计的能力; 6.具有良好的团队协作精神。