正四面体内置正方体棱长的最值探究

合集下载

正四面体内置正方体棱长的最值探究

正四面体内置正方体棱长的最值探究

范 围是
A[子 B 子 ] . ,] . , o [
数形结合就 是把 抽象 的数 学 语 言与直 观 图形 结合 起来 思 索 , 抽 象思 维 和形 象思 维 结合 , 过 “ 使 通 以形 助 数 ” 以数解 形 ” 使 复杂 问题 简 单化 , 象 问题具 体 或“ , 抽
化, 从而起到优 化解题 过程 的 目的. 以形 助数” 借助 “ 是 形 的生动和直观来 阐述数 间的联系 ; 以数解形 ” “ 是借助 于数 的精确性 、 规范性 、 严密性来 阐明形 的某些属性.

3 b ! = ): 三 6— . √ 33+ 2 /

上述情 况 考 虑 的 是 内置 正 方 体 的 上 底 面 与 底 面 B D平 行 的情 况 , 设 该正 方 体 的上底 面与 底 面 B D C 假 C 不平行 ( 成一定倾斜角 ) 是否能得 到棱 长更 大的正方体 ,
中。 乏 (1 第 期・ 中 ) 7 ・ 20 3 高 版 善 7 0年
4 l
聚焦 平面 向量中的数学思 想方法
4 10 湖北省 襄樊市 第 一 中学 40 0
数 学思 想方法 是从 数 学 内容 中提炼 出来 的数学 知


1 1 以形 助 数 .
识 的精 髓 , 是将 知识 转化 为能 力 的桥梁 , 有着普 遍应 用
分析 如 图 1 正方 ,
Ta ,R 一/ : - r
R ’

\ , = / P
图3
体绕 着 它 的 中心任 意转
动时 , 各顶点所 能达到 的 轨迹为一个球 面 , 问题可
解得 : a 所 以 , , 所求 正 方 体棱 长 的最 大值 为

正四面体内置正方体棱长的最值探究

正四面体内置正方体棱长的最值探究
图1
尉贵生
则 HM = M G = R, GF = 2R, AO = 6 3 a, OP = a, tan N AGM = 3 6 tanN APO = 6 a - 2R 3 , R 解得 R = 2R = 6 a. 9 AO = 2 OP 2= AM = MG
图 3
3 a, 所 以, 所 求 正方 体 棱 长 的 最 大值 为 9
图 2
= 3, 得 x = ( 2 3- 3) b, ¹ b x 2 2 如图 5 , 若 正 三 角 形 ABC 的 内接正方形 OMPN 的一 个顶点为 BC 中 点 时. 在 v OC N 中, N N CO = 60b , N CN O = 75b , OC = ON = x, 则由正弦定理得 = b ,设 2
图6
3 EP ( 2 3- 3) b ( a - b), 所以 tan N EBP = = = 2, 解得 3 BP 3 ( a - b) 3 b= 2 6- 3 3 + 2 a, 因此内 接正方体 棱长的 最大值为 ( 2 3
- 3 ) b=
2( 2 3 - 3) a. 6- 3 3 + 2
上述情 况 考 虑 的 是 内 置 正 方 体 的 上 底 面 与 底 面 BCD 平 行 的情 况, 假 设 该正 方体 的 上底 面与 底 面 BCD 不平行 (成一定倾斜角 ), 是否能得到棱长更 大的正方体 呢? 不可能. 我们 不 妨 记由 图 6 得到 的 内 接 正 方体 为 A 1C 2, 首先, 正方体 A 1 C2 不可能绕着直线 O 1O 2 作细微的 旋转, 否则, 正方体 A 1 C2 的上底 面的顶点就会 / 捅破 0正 四 面体的 侧面; 同 样, 若 将该正 方体 绕着它 的中心 作适 当的转动, 转动后正方体下底面与正四面体底面 BCD 成 一定的角度, 即正方体下底面的 四个顶 点中至少 有一个 不在面 BCD 上, 则该正 方体 A 1C 2 的上底 面必然 会被正 四面 体 / 卡住 0. 因此, 棱 长为 a 的正四 面体内置 正方体

专题02 正四面体模型(解析版)

专题02 正四面体模型(解析版)

专题02 正四面体模型(解析版)一、解题技巧归纳总结1.正四面体如图,设正四面体ABCD的的棱长为a,将其放入正方体中,则正方体的棱长为22a,显然正四面体和正方体有相同的外接球.正方体外接球半径为236224R a a=⋅=,即正四面体外接球半径为64R a=.二、典型例题例1.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是().A.22B.32C.2D.3【解析】如图球的截面图就是正四面体中的∆ABD,已知正四面体棱长为2,所以=3AD=1AC,所以=2CD2故选:C.例2.正四面体的棱长为1,则其外接球的表面积为 . 【解析】解析:依题意,正四面体的外接球半径64R =,其表面积为23=42S R ππ=,故答案为32π. 三、配套练习1.棱长为1的正四面体的外接球的半径为( ) A .64B .34C .1D .33【解析】已知正四面体A BCD -的棱长为1,过B 作BE CD ⊥,交CD 于E ,A 作AF ⊥平面BCD ,交BE 于F ,连结AE ,设球心为O ,则O 在AF 上,连结BO ,22131()22BE AE ==-=,2333BF BE ==,1336EF BE ==, 22336()()263AF =-=, 设球半径为R ,则BO AO R ==, 22236()()33R R ∴=+-, 解得64R =. 故选:A .2.棱长为a的正四面体的外接球和内切球的体积比是()A.9:1B.4:1C.27:1D.8:1【解析】把棱长为a的正四面体镶嵌在棱长为x的正方体内,∴外接球和内切球的球心重合,为正方体的中心O,∴外接球的球半径为:23322x x=,22113(2)634x x h=⨯⨯⨯,33xh=,内切球的半径为:3333 2236x x x xh-=-=,∴外接球和内切球的半径之比为:33:3:1 26x x=,∴正四面体的外球和内切球的体积比是27:1,故选:C.3.如图所示,在正四面体A BCD-中,E是棱AD的中点,P是棱AC上一动点,BP PE+的最小值为7,则该正四面体的外接球的体积是()A6πB.6πC 36D.32π【解析】将侧面ABC∆和ACD∆展成平面图形,如图所示:设正四面体的棱长为a则BP PE+的最小值为22172cos120742aBE a a a=+-︒==,2a∴=.在正四面体A BCD -的边长为2, 外接球的半径6642R a ==外接球的体积3463V R ππ==.故选:A .4.表面积为83( ) A .43πB .12πC .8πD .6π【解析】表面积为8322将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为3 正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为24(3)12ππ=.故选:B .5.一个正四面体的棱长为2,则这个正四面体的外接球的表面积为( ) A .6πB .8πC 6πD .11π【解析】26, 正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为264()62ππ=. 故选:A .6.在棱长为2的正四面体的外接球中,相互垂直的两个平面分别截球面得两个圆.若两圆的圆心距为2,则两圆的公共弦长是( )A .34B .34C .1D .12【解析】正四面体扩展为正方体,它们的外接球是同一个球,正方体的对角线长就是球的直径,正方体的棱长为:1;对角线长为:3, 所以球的半径为:32R =, 设相互垂直两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E , 则12OO EO 为矩形,于是对角线12O O OE =, 而222232()22OE OA AE AE =-=-=, 12AE ∴=,则1AB =; 故选:C .7.如图所示,正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为14,则该正四面体的外接球表面积是( )A .12πB .32πC .8πD .24π【解析】将三角形ABC 与三角形ACD 展成平面,BP PE +的最小值,即为BE 两点之间连线的距离,则14BE =设2AB a =,则120BAD ∠=︒,由余弦定理221414222a a a a+--=,解得2a =, 则正四面体棱长为22,因为正四面体的外接球半径是棱长的64倍, 所以,设外接球半径为R ,则62234R ==, 则表面积244312S R πππ===. 故选:A .8.已知正四面体的棱长为4,则此四面体的外接球的表面积是( ) A .24πB .18πC .12πD .6π【解析】将正四面体补成一个正方体,则正方体的棱长为26 6,∴外接球的表面积的值为24(6)24ππ=.故选:A .9.一个棱长为6的正四面体内部有一个任意旋转的正方体,当正方体的棱长取得最大值时,正方体的外接球的表面积是( ) A .4πB .6πC .12πD .24π【解析】正方体可以在正四面体纸盒内任意转动,∴正方体在正四面体的内切球中,∴正方体棱长最大时,正方体的对角线是内切球的直径,点O 为内切球的圆心,连接PO 并延长交底面ABC 与点D , 点D 是底面三角形ABC 的中心,PD ∴⊥底面ABC ,OD ∴为内切球的半径,连接BO ,则BO OP =,在Rt BDP ∆中,236233BD ==2226PD PB BD -在Rt BDO ∆中,2222222()OD BD OB BD OP BD OP OD =+=+=+-,代入数据得62OD =,令正方体棱长为a ,则236a =,解得2a =, ∴正方体棱长的最大值为2,此时正方体的外接球半径:36222r =⨯=. ∴当正方体的棱长取得最大值时,正方体的外接球的表面积是:22644()62S r πππ==⨯=. 故选:B .10.如图,在棱长为1的正四面体ABCD 中,G 为BCD ∆的重心,M 是线段AG 的中点,则三棱锥M BCD -的外接球的表面积为( )A .πB .32πC 6D 6 【解析】连接BG ,四面体ABCD 中,由G 为BCD ∆的重心, 可得AG ⊥面BCD ,M 是线段AG 的中点,3BG ,226AG AB BG =-M 为线段AG 的中点,6MG ∴=设三棱锥M BCD -外接球的半径为R ,则23(R =226)(R +, 6R ∴=, ∴三棱锥M BCD -外接球的表面积为2342R ππ=. 故选:B .11.正四面体(四个面均为正三角形的四面体)的外接球和内切球上各有一个动点P 、Q ,若线段PQ 长463,则这个四面体的棱长为 4 . 【解析】设这个四面体的棱长为a , 则它的外接球与内切球的球心重合,且半径64R a =外,612r a =内, 依题意得66464123a a +=, 4a ∴=.故答案为:4.12.已知正四面体ABCD 的棱长为1,M 为棱CD 的中点,则二面角M AB D --的余弦值为 63;平面MAB 截此正四面体的外接球所得截面的面积为 .【解析】如图,M 为棱CD 的中点,AM CD ∴⊥,BM CD ⊥,又AMBM M =,CD ∴⊥平面AMB ,则AMB ∠为二面角A CD B --的平面角,由对称性,可知二面角C AB D --的平面角等于AMB ∠. 由正四面体ABCD 的棱长为1,可得3AM BM ==则2231()()1622cos()23AMB -∠==平面AMB 平分二面角C AB D --,∴二面角M AB D --的余弦值16cos()2AMB =∠;设BCD ∆的外心为G ,连接AG ,求得233BG BM ==,22361()3AG =-= 设正四面体ABCD 的外接球的半径为R ,则22263()(R R -+=,解得6R =平面MAB 过正四面体ABCD 的外接球的球心,∴平面MAB 截此正四面体的外接球所得截面的面积为263(8ππ⨯=.故答案为:63;38π. 13.已知某正四面体的内切球体积是1,则该正四面体的外接球的体积是 27 . 【解析】正四面体的外接球和内切球的半径之比为3:1,∴正四面体的外接球和内切球的体积比是27:1,正四面体的内切球体积是1,∴该正四面体的外接球的体积是27.故答案为:27.14.一个正四面体的展开图是边长为22的正三角形,则该四面体的外接球的表面积为 3π . 【解析】如图,一个正四面体的展开图是边长为2∴2,设底面三角形的中心为G ,则22162332AG AD ==-=, 正四面体的高2323PG =-. 再设正四面体外接球的球心为O ,连接OA , 则22263(()R R =+,解得3R =. ∴该四面体的外接球的表面积为234(3ππ⨯=. 故答案为:3π.15.如图所示,正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为14,则该正四面体的外接球的体积是 3π .【解析】将侧面ABC ∆和ACD ∆展成平面图形,如图所示: 设正四面体的棱长为a ,则BP PE +的最小值为2272cos12014422a a BE a a a =+-︒==, 22a ∴=.在棱锥A BCD -中,设底面三角形BCD 的中心为M ,外接球的球心为O ,F 为BC 的中点,则362DF a ==, 22633DM DF ∴==,22433AM AD DM =-=. 设外接球的半径OA OD r ==,则433OM r =-, 在Rt OMD ∆中,由勾股定理可得:2224326()()33r r =-+, 解得:3r =.∴外接球的体积为34433r ππ=.故答案为:43π.。

正四面体蕴藏正方形中

正四面体蕴藏正方形中

正四面体蕴藏正方体中我们在立体几何的学习中,探讨得最多的空间图形是正方体。

例如,我们考虑两直线之间的相交(垂直)、平行、异面关系;两平面之间的相交(垂直)、平行关系;两异面直线之间的距离;两平行平面之间的距离;两相交平面之间的二面角等等,都可以借助正方体形象、直观、简洁地引入、刻画、研究。

而正方体本身所具有的简洁美、对称美、和谐美也留给我们深刻的印象。

因而,我们最熟悉的空间图形是正方体,我们最容易把握的空间图形也是正方体。

正四面体是另一个我们探讨得很多的空间图形,正四面体同样体现了数学的简洁美、对称美、和谐美。

但相比较而言,正四面体中的直线之间的平行关系;平面之间的垂直、平行关系;两平行平面之间的距离等等,都不很直观、典型。

正四面体中几何元素之间尽管和谐,但有时候也不容易把握。

我们说我们对正方体比对正四面体更熟悉、更容易把握的一个更重要的理由是,正方体中蕴藏着正四面体。

例如,如图3的正方体EBFA-CGDH 中,蕴藏着两个典型的正四面体,正四面体D-ABC 和正四面体H-EFG 。

从而就为我们利用较熟悉的正方体认识较不熟悉的正四面体带来了可能。

一般而言,单纯地利用正四面体本身的点、线、面、体这些几何量之间的某些关系进行研究,技巧性更强,推导更繁杂,更容易出错。

而借助正方体来研究正四面体,计算量更少,几何量之间的关系更加简明、直观,做完后我们的把握更大。

下面我们举一些例子进行说明。

例1 (2003年高考理科数学新课程卷选择题最后一题):一个四面体的所有棱长都为2,四个顶点在同一个球面上,则此球的表面积为 ( )A.3πB.4πC.33πD.6πBABQE C图1 图2 图3分析1:如图1所示,正四面体D-ABC 的棱长为a ,中心为O 点,D 在底面ABC 上的射影为P 点,连接OA 、OB 、OC,显然,O 到平面ABC 、BCD 、ABD 、ACD 的距离都等于OP ,且ABC D V -=4ABC O V -,即31⨯ABC S ∆⨯DP=4⨯ABC S ∆⨯OP ,即DP=4 OP 。

小谈正四面体的一些性质及其应用

小谈正四面体的一些性质及其应用
例3.如图S-ABC 是一体积为72的正四面体,连接两个面的重心E、F,则线段EF的长是____.(2000年春季高考题)
分析:连接SE、SF延长分别交AB、BC 于G、H,易知
EF= GH= AB,故只需求出正四面体的棱长即可,本题若直接由体积求棱长有一定的难度,若根据习题结论①②,先把正四面体补成正方体,则V正方体=3V正四面体=216,故正方体的棱为6,而正四面体的棱长为6 ,所以EF= AB=2 .
例4.半径为R的球的内接正四面体的体积等于___________. (第十一届“希望杯”高一培训题)
分析:由上述结论①②③可知,半径为R的球的内接正方体的对角线长为2R,故其棱长为 ,其体积为V正方体=( )3= ,V正四面体= .
正四面体与正方体是立几中较特殊、内涵较丰富的几何体,且两者有着密不可分的关系.我们在解题时若注意运用两者的特殊关系,往往会达到“山穷水复疑无路,柳暗花明又一村.”的效果
例2.棱长为2的正四面体的体积为_____________.(98年上海高考题)
本题若直接计算,有一定的难度与计算量,若利用上述习题结论,将其补成正方体,可取得事半功倍之效.
解: 将该正四面体补成正方体,由正四面体的棱长为2,易知正方体的棱长为 .故V正方体=( )3=2 ∴V正四面体= V正方体= 。
(3)正四面体的高为正方体对角线长的三分之二。
2.正四面体的三个球的有关性质
正四面体的三个球:一个正四面体有一个外接球,一个内切球和一个与各棱都相切的球。那么这三个球的球心及半径与正四面体有何关系呢?为了研究这些关系,我们利用正四面体的外接正方体较为方便。
正方体 的内接球即是正方体的内切球,此两球的球心都在正方体的中心。
例1.正三棱锥S-ABC的侧棱与底面边长相等,如果 E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等( ) (90年全国高考试题)

正四面体的性质及应用

正四面体的性质及应用

正四面体的性质及应用正四面体是立体几何中的基本几何体,它蕴涵着极为丰富的线面的位置、数量关系.在近年来各类考试中,正四面体倍受命题者青睐,命题者常以正四面体中的线面问题为载体,借以考察学生的数学思维能力和思维品质.因此,一线师生在教学过程中,应对这个几何体引起足够的重视.笔者在长期的教学中对正四面体进行了深入研究、潜心挖掘,得出了一些优美、简洁的结论.下面给出正四面体的相关结论,并利用这些结论解决问题,以期能对同学们学习立体几何有所启示.一、理顺正四面体性质——固本清源不妨设正四面体ABCD的棱长为a,则存在着以下定理:定理1.正四面体的3对异面棱均互相垂直,任意一对异面棱之间的距离均为;定理2.正四面体的高为;定理3.正四面体的切球半径为,外接球半径为,且有;略证:如图1,易知正四面体的外接球心与切球心重合为点O,并且位于正四面体的高AH上,连结BO、CO、DO,易知,且,从而AO、BO、CO、DO两两所确定的平面将正四面体分割成四个形状相同的正三棱锥:,,且每一个小正三棱锥的高都是切球的半径,于是有,即,亦即有,所以,.故定理4.正四面体的全面积为,体积为;定理5.正四面体底面任一点O到三个侧面的距离的之和;正四面体任意一点到四个侧面的距离之和(仿定理3利用体积分割法易证).定理6.正四面体的侧棱与其底面所成的线面角大小为;定理7.正四面体相邻侧面所成的二面角的大小为;略证:设相邻两个侧面所成的角为,由于四个侧面的面积均相等,所以由射影面积公式知.定理8.设正四面体的侧棱与底面所成的角为,相邻两个侧面所成的二面角记为,则有略证:如图1所示,易知,,由H为的中心,易知,从而.定理9.正四面体的外接球的球心与切球的球心O重合且为正四面体的中心;中心与各个顶点的四条连线中两两夹角相等,其大小为,此角即为化学中甲烷分子结构式中的键位角.略证:如图1,在三角形AOB中,,,由余弦定理可求得,于是.同理可得.定理10.正四面体接于一正方体,且它们共同接于同一个球,球的直径等于正方体的对角线.二、运用正四面体性质——化繁为易1.巧算空间距离例1.一个球与正四面体的6条棱都相切,若正四面体的棱长为a,则求此球的体积.分析一:由定理10知,将正四面体嵌于正方体的部,然后再利用正四面体的棱与球相切,则该半径与正方体的切半径相等进行求解.解法一.如图2所示,将正四面体补成正方体,易知与正四面体的各棱相切的球即为正方体的切球.∵正四面体的棱长为a,∴正方体的棱长为.∴正方体的切球半径.∴.分析二:根据正四面体的对称性,结合定理1可知,该球的球心应位于正四面体的中心,其直径即为正四面体相对棱之间的距离.解法二.∵正四面体的棱长为a,∴由定理1可知,相对棱间的距离为.即该球的半径为.∴.例2.在棱长为2的正四面体木块ABCD的棱AB上有一点P(),过P点要锯出与棱AB垂直的截面,当锯到某个位置时因故停止,这时量得在面ABD上锯痕,在面ABC上的锯缝,求锯缝MN的值.解:如图3,取AB的中点E,连结CE,DE,则为正四面体相邻两面的二面角的平面角,由条件知∠MPN也是正四体相邻两面的二面角的平面角,即∠NPM=∠CED,由定理7可知,于是,在中,由余弦定理得,∴2.妙求空间角例3.设P为空间一点,PA、PB、PC、PD是四条射线,若PA、PB、PC、PD两两所成的角相等,则这些角的余弦值为.解:如图4,构造正四面体ABCD,设P为四面体的中心,则PA、PB、PC、PD两两所成的角相等,设,由正四面体的性质,可知余弦值为例4.如图5,在正四面体ABCD中,E、F分别为棱AD、BC的中点,连结AF、CE.⑴求异面直线直线AF和CE所成的角;⑵求CE与面BCD所成的角.解:⑴连结FD,在平面AFD,过点E作EG∥AF交DF于点G.则是异面直线AF与CE所成的角(或其补角).设正四面体ABCD的棱长为a,可得,,.由余弦定理可求得.故异面直线AF与CE所成的角为.⑵由已知易知平面AFD⊥平面BCD,在平面AFD,过点E作EH⊥FD于点H,连结CH,则∠ECH为CE与平面BCD所成的角.∵EH为正四面体高的一半,由正四面体性质的定理2知.∴.∴CE与底面BCD所成的角为.例5.如图6,正四面体ABCD的四个顶点在同一个球面上,CC1和DD1是该球的直径,求面ABC与面AC1D1所成角的正弦值.解:由正四面体性质定理10知正四面体接于一球,该正方体也接于此球,且正方体的对角线为此球的直径,如图所示,即CC1、DD1为该球的直径.连结C1D1,交AB于点M,连结MC.∵MC⊥AB,MD1⊥AB,∴∠CMD1为平面ABC与平面AC1D1所成的角.设正方体棱长为a,在中,.∴平面ABC与平面ACD所成的角的正弦值为.归纳反思:正四面体是立体几何中一个重要的数学问题载体,在平时的学习过程中若能有意识地研究它、利用它,就能较好地培养我们数学思维的“方向感”和思路的“归属感”,有助于促进自己数学思维空间的拓展、数学品质的提升.1.在正四面体P ABC-中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是②.①//BC面PDF;②面PDF⊥面ABC;③DF⊥面PAE;④面PAE⊥面ABC.2.正四面体ABCD中,AB与平面ACD所成角的余弦值为3.3.如图,正四面体ABCD的棱长为2,点E,F分别为棱AD,BC的中点,则EF BA的值为()A.4B.4-C.2-D.24.以下说法 ①三个数20.3a =,2log 0.3b =,0.32c =之间的大小关系是b a c <<;②已知:指数函数()(0,1)x f x a a a =>≠过点(2,4),则log 41a y =;③已知正四面体的边长为2cm ,则其外接球的体积为33cm π; ④已知函数()y f x =的值域是[1,3],则()(1)F x f x =-的值域是[0,2];⑤已知直线//m 平面α,直线n 在α,则m 与n 平行.其中正确的序号是①③.5.在正四面体A BCD -中,M 为AB 的中点,则直线CM 与AD 所成角的余弦值为()A .12B .2C .3D .23选:C .6.在正四面体ABCD 中,E 、F 分别为棱AD 、BC 的中点,连接AF 、CE ,则异面直线AF 和CE 所成角的正弦值为()A .13B .23C .24D .5 选:D .【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.本题易错点在于要看清是求异面直线AF 和CE 所成角的正弦值,而不是余弦值,不要错选答7.如图所示,在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为7,则该正四面体的外接球的体积是()A 6πB .6πC 36D .32π 选:A .8.棱长为1的正四面体ABCD 中,E 为棱AB 上一点(不含A ,B 两点),点E 到平面ACD 和平面BCD 的距离分别为a ,b ,则11a b +的最小值为6 【考点】7F :基本不等式及其应用【专题】31:数形结合;35:转化思想;5F :空间位置关系与距离;5T :不等式【分析】设点O 是正三角形ACD 的中心,连接OB ,作EF AO ⊥,垂足为点F .AO 交CD 于点M ,则点M 为CD 的中点.设(01)AE AB λλ=<<.23AO AM =,3AM ,22BO AB AO =-.由//EF BO ,可得6EF BO a λ===.同理可得:6)b EN λ=-.代入利用基本不等式的性质即可得出. 【解答】解:如图所示,设点O 是正三角形ACD 的中心,连接OB ,作EF AO ⊥,垂足为点F .AO 交CD 于点M ,则点M 为CD 的中点.设(01)AE AB λλ=<<.223333AO AM ===, 226BO AB AO ∴=- //EF BO ,6EF BO a λ∴===. 同理可得:6)b EN λ==-.∴21111161()11(1)()2a b λλλλλλ+=+=⨯=+---当且仅当12λ=时取等号.故答案为:9.已知M 是正四面体ABCD 棱AB 的中点,N 是棱CD 上异于端点C ,D 的任一点,则下列结论中,正确的个数有()(1)MN AB ⊥;(2)若N 为中点,则MN 与AD 所成角为45︒;(3)平面CDM ⊥平面ABN ;(4)存在点N ,使得过MN 的平面与AC 垂直.A .1个B .2个C .3个D .4个【考点】LM :异面直线及其所成的角;LO :空间中直线与直线之间的位置关系;LW :直线与平面垂直;LY :平面与平面垂直【专题】14:证明题【分析】连接CM 、DM ,可证明出AB ⊥平面CDM ,从而MN AB ⊥,得(1)正确;取AC 中点E ,连接EM 、EN ,利用三角形中位线定理证明出EN 、NM 所成的直角或锐角,就是异面直线MN 、AD 所成的角,再通过余弦定理,可以求出MN 与AD 所成角为45︒,故(2)正确;根据(1)的正确结论:MN AB ⊥,结合平面与平面垂直的判定定理,得到(3)正确;对于(4),若存在点N ,使得过MN 的平面与AC 垂直,说明存在N 的一个位置,使MN AC ⊥.因此证明出“不论N 在线段CD 上的何处,都不可能有MN AC ⊥”,从而说明不存在点N ,使得过MN 的平面与AC 垂直.【解答】解:(1)连接CM 、DM正ABC ∆中,M 为AB 的中点CM AB ∴⊥同理DM AB ⊥,结合MC M D M =AB ∴⊥平面CDM ,而MN ⊆平面CDMMN AB ∴⊥,故(1)是正确的;(2)取AC 中点E ,连接EM 、ENADC ∆中,E 、N 分别是AC 、CD 的中点//EN AD ∴,12EN AD =. EN ∴、NM 所成的直角或锐角,就是异面直线MN 、AD 所成的角设正四面体棱长为2a ,在MCD ∆中,2CM DM a === 则Rt MNC ∆中122CN a a =⨯=∴MN = 在MNE ∆中,122ME EN a a ==⨯=∴222cos 2EN MN EM ENM EN MN +-∠==⨯⨯ 45ENM ∴∠=︒,即异面直线MN 、AD 所成的角是45︒,故(2)正确;(3)由(1)的证明知:AB ⊥平面CDMAB ⊂平面ABN∴平面ABN ⊥平面CDM ,故(3)正确;(4)若有MN AC ⊥,根据(1)的结论MN AB ⊥,因为AB 、AC 相交于A 点,所以MN ⊥平面ABCMCD ∆中,CM MD ==,2CD a =2221cos 023CM MD CD CMD CM MD +-∴∠==> 可得CMD ∠是锐角,说明点N 在线段CD 上从C 到D 运动过程中, CMN ∠的最大值是锐角,不可能是直角,因为CM ⊂平面ABC ,CM 与NM 不能垂直,以上结论与MN ⊥平面ABC 矛盾,故不论N 在线段CD 上的何处,都不可能有MN AC ⊥.因此不存在点N ,使得过MN 的平面与AC 垂直.综上所述,正确的命题为(1)(2)(3)故选:C .10.棱长为a 的正四面体中,给出下列命题:①正四面体的体积为324a V =;②正四面体的表面积为2S ;③切球与外接球的表面积的比为1:9;④正四面体的任意一点到四个面的距离之和均为定值.上述命题中真命题的序号为②③④.【考点】LE :棱柱、棱锥、棱台的侧面积和表面积;LF :棱柱、棱锥、棱台的体积【专题】31:数形结合;35:转化思想;49:综合法;5F :空间位置关系与距离【分析】①正四面体的高h ==,体积为213V =,计算即可判断出正误;②正四面体的表面积为24S a =,即可判断出正误;③分别设切球与外接球的半径为r ,R ,则23143r ⨯,解得r ;R +=,解得R ,即可判断出正误; ④正四面体的任意一点到四个面的距离之和为H,则221133H ⨯=【解答】解:①正四面体的高h =,体积为3231324a V ==≠,因此不正确;②正四面体的表面积为224S a =,正确;③分别设切球与外接球的半径为r ,R ,则2314312r ⨯=,解得r =;R +=,解得R . :1:3r R ∴=,因此表面积的比为1:9,正确;④正四面体的任意一点到四个面的距离之和为H ,则221133H ⨯=化简可得:H =,即为正四面体的高,均为定值,正确.上述命题中真命题的序号为②③④.。

第一节 正方体与正四面体

第一节 正方体与正四面体

近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。

本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。

第一节 正方体与正四面体在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。

正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。

那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧:【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示)【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109º28’,那么这个值是否能计算出来呢?如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD 中点E ,截取面ABE(如图1-2所示),过A 、B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么 ∠AOB 就是所求的键角。

我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。

当然找出AO 和AB的关系还是有一定难度的。

先把该题放下,来看一题初中化学竞赛题:【例题2】CH 4分子在空间呈四面体形状,1个C 原子与4个H 原子各共用一对电子对形成4条共价键,如图1-3所示为一个正方体,已画出1个C 原子(在正方体中心)、1个H 原子(在正方体顶点)和1条共价键(实线表示),请画出另3个H 原子的合适位置和3条共价键,任意两条共价键夹角的余弦值为①【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上,正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面对角线的对侧,一个为体对角线的对侧。

正四面体

正四面体

正四面体常用性质:1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。

它有4个面,6条棱,4个顶点。

正四面体是最简单的正多面体。

2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。

因此,正四面体是特殊的正三棱锥。

3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。

正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。

正四面体的对边相互垂直。

正四面体的对棱相等。

正四面体内任意一点到四个面的距离之和为定值63a。

4、相关数据当正四面体的棱长为a时,一些数据如下:高:63a。

(中心把高分为1:3两部分} 表面积:23a体积:3212a外接球半径:64a,内切球半径:612a,棱切球半径:24a对棱中点的连线段的长:22a,两邻面夹角满足1cos3α=。

若将正四面体放进一个正方体内,则该正方体棱长为22a,其实,正四面体的棱切球即为次正方体的内切球。

5、建系方法1.设有一正四面体D-ABC棱长为a以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为其他性质:正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。

正四面体有四条三重旋转对称轴,六个对称面。

正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。

正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。

内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。

两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。

这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度.侧棱与底面的夹角:ArcCos(√3/3)正四面体的对棱相等。

正四面体内置正方体棱长的最值探究

正四面体内置正方体棱长的最值探究
如图 缘袁 若 正 三 角 形 粤月悦 的
内接正方形 韵酝孕晕 的一个顶点为
月悦 中 点 时援 在 吟韵悦晕 中袁 蚁晕悦韵
越 远园毅袁 蚁悦晕韵 越 苑缘毅袁 韵悦 越 遭 袁 设 圆
韵晕 越 曾袁则由正弦定理得 韵晕
泽蚤灶蚁晕悦韵
图缘

韵悦
猿渊 远 原 圆冤
袁可求得 曾 越
遭袁

泽蚤灶蚁悦晕韵


径为 砸 越 葬袁然后计算
. All Ri员圆ghts Reserved.
图员
圆 该球的内接正方体的棱长为 葬袁因此袁满足条件的正方

圆 体棱长的最大值为 葬援
远 探究 圆摇 一个棱长为 葬 的正四面体纸盒内放一个正 方体袁并且 能 使 正 方 体 在 纸 盒 内 可 绕 着 某 一 条 直 线 旋 转袁试求该正方体棱长的最大值援 分析 摇 如 图 圆袁 正 方体绕着过它的中心且 垂直于两平行平面的直 线旋转时可以得到一个 圆 柱 体袁 设 该 圆 柱 体 的 底面半 径 为 砸袁 则 它 的
高为 圆砸袁问题转化为求
正四面体满足上述条件
的 最 大 内 接 圆 柱 体袁 而
图圆
该圆柱体的最大内置正方体即为所求援
解摇 过棱 粤月 和正四面体的高 粤韵 作截面渊 如图 猿冤 袁
则 匀酝 越 酝郧 越 砸袁郧云 越 圆 砸袁粤韵 越


葬袁 韵孕 越 葬袁 贼葬灶 蚁粤郧酝 越


贼葬灶蚁粤孕韵 越 粤韵 越 圆 圆 越 粤酝 越
员援 员摇 以形助数
詠詠 寅
詠詠 寅
例 员摇 已知向量韵月 越 渊圆袁园冤袁向量韵悦 越 渊圆袁圆冤 袁向量
詠詠 寅

江西赣州市五校协作体2025届高考数学四模试卷含解析

江西赣州市五校协作体2025届高考数学四模试卷含解析

江西赣州市五校协作体2025届高考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z 满足i i z z ⋅=+,则z 在复平面上对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.设ln 2m =,lg 2n =,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .m n mn m n +>>-D .m n m n mn +>->3.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( ) A .3πB .4πC .8πD .13π4.函数()()sin f x A x ωϕ=+(0A >,0>ω, 2πϕ<)的部分图象如图所示,则,ωϕ的值分别为( )A .2,0B .2,4π C .2, 3π-D .2,6π 5.已知集合M ={x |﹣1<x <2},N ={x |x (x +3)≤0},则M ∩N =( ) A .[﹣3,2)B .(﹣3,2)C .(﹣1,0]D .(﹣1,0)6.如图所示,在平面直角坐标系xoy 中,F 是椭圆22221(0)x ya b a b+=>>的右焦点,直线2b y =与椭圆交于B ,C 两点,且90BFC ∠=︒,则该椭圆的离心率是( )A .63B .34C .12D .327.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .113 B .4 C .133D .58.已知正四面体A BCD -外接球的体积为86π,则这个四面体的表面积为( ) A .183B .163C .143D .1239.622x x ⎛⎫- ⎪⎝⎭的展开式中,含3x 项的系数为( ) A .60-B .12-C .12D .6010.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?11.已知n S 是等差数列{}n a 的前n 项和,若201820202019S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T 取最大值时n 的值为( ) A .2020B .20l9C .2018D .201712.已知函数1222,0,()log ,0,x x f x x x +⎧+≤⎪=⎨>⎪⎩若关于x 的方程[]2()2()30f x af x a -+=有六个不相等的实数根,则实数a 的取值范围为( ) A .163,5⎛⎫⎪⎝⎭B .163,5⎛⎤⎥⎝⎦C .(3,4)D .(]3,4二、填空题:本题共4小题,每小题5分,共20分。

立体几何基础立方体与正四面体的性质与计算

立体几何基础立方体与正四面体的性质与计算

立体几何基础立方体与正四面体的性质与计算立体几何基础:立方体与正四面体的性质与计算立方体是一种具有六个相等的正方形面的立体几何体,它有一些特殊的性质和计算方法。

与之相似的还有正四面体,它有四个相等的等边三角形面。

在本文中,我们将探讨立方体和正四面体的性质,并介绍一些与它们相关的计算方法。

一、立方体的性质与计算方法立方体具有以下性质:1. 六个面积相等的正方形面:立方体的所有面都是正方形,且这六个面的面积都相等。

2. 八个顶点、十二条棱和六个面:立方体由八个顶点、十二条棱和六个面组成。

3. 所有的内角都为直角:立方体的六个顶点都是直角,即内角为90度。

4. 对角线相等:立方体的对角线相等,可以通过勾股定理进行计算。

计算方法:1. 立方体的体积计算:立方体的体积公式为V = a^3,其中a为立方体的边长。

通过将边长三次方即可得到立方体的体积。

2. 立方体的表面积计算:立方体的表面积公式为S = 6a^2,其中a 为立方体的边长。

通过将边长平方乘以6即可得到立方体的表面积。

二、正四面体的性质与计算方法正四面体具有以下性质:1. 四个边相等的等边三角形面:正四面体的四个面都是等边三角形面,且这四个面的边长都相等。

2. 四个顶点、六条棱和四个面:正四面体由四个顶点、六条棱和四个面组成。

3. 所有的内角都小于180度:正四面体的所有内角都小于180度,但不是直角。

4. 对角线相等:正四面体的对角线相等,可以通过勾股定理进行计算。

计算方法:1. 正四面体的体积计算:正四面体的体积公式为V = (a^3) / (6√2),其中a为正四面体的边长。

通过将边长的立方除以6乘以根号2即可得到正四面体的体积。

2. 正四面体的表面积计算:正四面体的表面积公式为S = √3a^2,其中a为正四面体的边长。

通过将边长的平方乘以根号3即可得到正四面体的表面积。

结论:立方体和正四面体作为常见的立体几何体,具有各自独特的性质和计算方法。

正四面体的性质最终版

正四面体的性质最终版

正四面体的性质:设正四面体的棱长为a ,则这个正四面体的(1)全面积 S 全2a ; (2)体积3; (3)对棱中点连线段的长d=2a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。

) (4)相邻两面所成的二面角 α=1arccos 3(5)对棱互相垂直。

(6)侧棱与底面所成的角为β=1arccos3(7)外接球半径a ; (8)内切球半径r=12a . (9)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质有一个三面角的各个面角都是直角的四面体叫做直角四面体.如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形;②直角顶点O 在底面上的射影H 是△ABC 的垂心; ③体积 V= 16a b c ; ④底面面积S △ABC⑤S 2△BOC =S △BHC ·S △ABC ; ⑥S 2△BOC +S 2△AOB+S 2△AOC =S2△ABC⑦22221111OH a b c =++;⑧外接球半径⑨内切球半径 r=AOBBOC AOC ABCS S S S a b c∆∆∆∆++-++四面体的性质探究如果从面的数目上来说,四面体是最简单的多面体。

一.四面体性质ABCDO HA BDCOS 1S 2S 3 S 41.四面体的射影定理:如果设四面体ABCD 的顶点A 在平面BCD 上的射影为O ,△ABC 的面积为S 1,△ADC的面积为S 2,△BCD 的面积为S 3,△ABD 的面积为S 4,二面角A-BC-D 为θ1-3,二面角A-DC-B 为θ2-3,二面角A-BD-C 为θ3-4,二面角C-AB-D 为θ1-4,二面角C-AD-B 为θ2-4,二面角B-AC-D 为θ1-2,则S 1 = S 2cosθ1-2 + S 3cosθ1-3 + S 4cosθ1-4 S 2 = S 1cosθ1-2 + S 3cosθ2-3 + S 4cosθ2-4 S 3 = S 1cosθ1-3 + S 2cosθ2-3 + S 4cosθ3-4 S 4 = S 1cosθ1-4 + S 2cosθ2-4 + S 3cosθ3-42.性质2(类似余弦定理)S 12= S 22+ S 32+S 42- 2S 2S 3 cosθ2-3 - 2S 2S 4 cosθ2-4 - 2S 3S 4 cosθ3-4 S 22= S 12+ S 32+S 42- 2S 1S 3 cosθ1-3 - 2S 1S 4 cosθ1-4 - 2S 3S 4 cosθ3-4 S 32= S 12+ S 22+S 42 - 2S 1S 2 cosθ1-2 - 2S 1S 4 cosθ1-4 - 2S 2S 4 cosθ2-4 S 42= S 12+ S 22+S 32- 2S 1S 2 cosθ1-2 - 2S 1S 3 cosθ1-3 - 2S 2S 3 cosθ2-3特别地,当cosθ1-2 = cosθ1-4 = cosθ2-4 = 0,即二面角C-AB-D 、 C-AD-B 、B-AC-D 均为直二面角(也就是AB 、AC 、BC 两两垂直)时,有S 32= S 12+ S 22+S 42, 证明:S 32= S 3S 1cosθ1-3 + S 3S 2cosθ2-3 + S 3S 4cosθ3-4= S 1 S 3cosθ1-3 + S 2 S 3cosθ2-3 + S 3 S 4cosθ3-4= S 1(S 1 - S 2cosθ1-2 + S 4cosθ1-4)+S 2(S 2 - S 1cosθ1-2 + S 4co sθ2-4)+ S 4(S 4 - S 1cosθ1-4 + S 2cosθ2-4)= S 12+ S 22+S 42- 2S 1S 2 cosθ1-2 - 2S 1S 4 cosθ1-4 - 2S 2S 4 cosθ2-4二.正四面体的性质设正四面体的棱长为a ,则这个正四面体的 (1)全面积S 全2a ;(2)体积V=312a ;(3)对棱中点连线段的长 a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。

正方体和正四面体

正方体和正四面体

第 1 页 共 4 页高中化学竞赛辅导专题讲座——三维化学近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。

本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。

第一节 正方体与正四面体在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。

正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。

那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧:【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示)【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109º28’,那么这个值是否能计算出来呢?如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD 中点E ,截取面ABE (如图1-2所示),过A 、B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么∠AOB 就是所求的键角。

我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。

当然找出AO 和AB 的关系还是有一定难度的。

先把该题放下,来看一题初中化学竞赛题:【例题2】CH 4分子在空间呈四面体形状,1个C 原子与4个H 原子各共用一对电子对形成4条共价键,如图1-3所示为一个正方体,已画出1个C 原子(在正方体中心)、1个H 原子(在正方体顶点)和1条共价键(实线表示),请画出另3个H 原子的合适位置和3条共价键,任意两条共价键夹角的余弦值为 ①【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上,正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面对角线的对侧,一个为体对角线的对侧。

专题17 立体几何中的最值问题【解析版】

专题17 立体几何中的最值问题【解析版】

第四章立体几何专题17 立体几何中的最值问题【压轴综述】在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.在涉及最值的问题中主要有三类,一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.从解答思路看,有几何法(利用几何特征)和代数法(应用函数思想、应用基本不等式等)两种,都需要我们正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换.要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,有关计算公式熟练掌握.一、涉及几何体切接问题最值计算求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;二.涉及角的计算最值问题1. 二面角的平面角及其求法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2.求异面直线所成角的步骤:一平移,将两条异面直线平移成相交直线.二定角,根据异面直线所成角的定义找出所成角.三求角,在三角形中用余弦定理或正弦定理或三角函数求角.四结论.3.线面角的计算:(1)利用几何法:原则上先利用图形“找线面角”或者遵循“一做----二证----三计算”. (2)利用向量法求线面角的方法(i分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(ii)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.下面通过例题说明应对这类问题的方法与技巧.【压轴典例】例1.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面 所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .4B C .4D 【答案】A 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,,所以其面积为26(424S =⨯⋅=,故选A. 例2.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .【答案】B 【解析】 如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===2ABCSAB == AB 6∴=,点M 为三角形ABC 的中心2BM 3BE ∴==Rt OMB ∴中,有OM 2==DM OD OM 426∴=+=+=()max 163D ABC V -∴=⨯=故选B.例3.(2017·全国高考真题(理))a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③ 【解析】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故|AC |=1,|AB|=斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则D (1,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′(cos θ,sin θ,0), 其中θ为B ′C 与CD 的夹角,θ∈[0,2π),∴AB ′在运动过程中的向量,'AB =(cos θ,sin θ,﹣1),|'AB|=设'AB 与a 所成夹角为α∈[0,2π], 则cos α()()10102'cos sin a AB θθ--⋅==⋅,,,,|sin θ, ∴α∈[4π,2π],∴③正确,④错误. 设'AB 与b 所成夹角为β∈[0,2π],cos β()()'1100''AB b cos sin AB bbAB θθ⋅-⋅===⋅⋅,,,,θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===, ∵cos 2θ+sin 2θ=1,∴cos β2=|cos θ|12=,∵β∈[0,2π],∴β3π=,此时'AB 与b 的夹角为60°, ∴②正确,①错误. 故答案为:②③.例4.(2017·全国高考真题(理))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【答案】【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则13OG x =x =.∴5FG SG x ==-,SO h ====,∴三棱锥的体积21133ABC V S h x =⋅==.设()455n x x x =-,x >0,则()3420n x x x '=,令()0n x '=,即4340x =,得x =()n x 在x =处取得最大值.∴max 48V ==例5.(2016·浙江高考真题(理))如图,在ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而 的面积.当平面PBD⊥平面BDC 时:四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为例6.(2019·安徽芜湖一中高三开学考试)在Rt AOB ∆中,6OAB π∠=,斜边4AB =.Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)求直线CD 与平面AOB 所成角的正弦的最大值.【答案】(1)详见解析;(2【解析】(1)AOB ∆为直角三角形,且斜边为AB ,2AOB π∴∠=.将Rt AOB ∆以直线AO 为轴旋转得到Rt AOC ∆,则2AOC π∠=,即OC AO ⊥.二面角B AO C --是直二面角,即平面AOC ⊥平面AOB .又平面AOC I 平面AOB AO =,OC ⊂平面AOC ,OC ∴⊥平面AOB .OC ⊂Q 平面COD ,因此,平面COD ⊥平面AOB ;(2)在Rt AOB ∆中,6OAB π∠=,斜边4AB =,122OB AB ∴==且3OBA π∠=. 由(1)知,OC ⊥平面AOB ,所以,直线CD 与平面AOB 所成的角为ODC ∠.在Rt OCD ∆中,2COD π∠=,2OC OB ==,CDsin OC ODC CD ∴∠==当⊥OD AB 时,OD 取最小值,此时sin ODC ∠取最大值,且sin3OD OB π==因此,sin 7OC ODC CD ∠==≤=,即直线CD 与平面AOB 所成角的正弦的最大值为7. 例7.(2019·深圳市高级中学高三月考(文))如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.【答案】(1)见解析;(2);(3)【解析】(1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.又PO垂直于圆O所在的平面,所以PO⊥AC.因为DO∩PO=O,所以AC⊥平面PDO.(2)解:因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.又AB=2,所以△ABC面积的最大值为.又因为三棱锥P-ABC的高PO=1,故三棱锥P-ABC体积的最大值为.(3)解:在△POB中,PO=OB=1,∠POB=90°,所以.同理,所以PB=PC=BC.在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.又因为OP=OB,,所以垂直平分PB,即E为PB的中点.从而,即CE+OE的最小值为.例8.(2016·江苏高考真题)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少? (2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?【答案】(1)312(2)【解析】(1)由PO 1=2知OO 1=4PO 1=8. 因为A 1B 1=AB=6,所以正四棱锥P-A 1B 1C 1D 1的体积正四棱柱ABCD-A 1B 1C 1D 1的体积所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m ),PO 1=h (m ),则0<h<6,OO 1=4h.连结O 1B 1.因为在中,所以,即于是仓库的容积,从而.令,得或(舍).当时,,V 是单调增函数;当时,,V 是单调减函数.故时,V 取得极大值,也是最大值.因此,当m 时,仓库的容积最大.【压轴训练】1.(2019·四川石室中学高三开学考试(文))在ABC △中,已知AB =BC =045ABC ∠=,D 是边AC 上一点,将ABD △沿BD 折起,得到三棱锥A BCD -.若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上,设BM x =,则x 的取值范围为( )A.(B.C.D.(【答案】B 【解析】由将ABD △沿BD 折起,得到三棱锥A BCD -,且A 在底面BCD 的射影M 在线段BC 上, 如图2所示,AM ⊥平面BCD ,则AM BD ⊥, 在折叠前图1中,作AM BD ⊥,垂足为N ,在图1中过A 作1AM BC ⊥于点1M ,当运动点D 与点C 无限接近时,折痕BD 接近BC ,此时M 与点1M 无限接近,在图2中,由于AB 是直角ABM ∆的斜边,BM 为直角边,所以BM AB <, 由此可得1BM BM AB <<,因为ABC ∆中,045ABC AB BC ∠===,由余弦定理可得AC =所以1BM ==BM <<由于BM x =,所以实数x 的取值范围是,故选B .2.(2019·四川高三月考(文))已知球O 表面上的四点A ,B ,C ,P 满足AC BC ==2AB =.若四面体PABC 体积的最大值为23,则球O 的表面积为( ) A .254πB .254π C .2516π D .8π【答案】A 【解析】当平面ABP 与平面ABC 垂直时,四面体ABCP 的体积最大.由AC BC ==2AB =,得90ACB ︒∠=.设点Р到平面ABC 的距离为h,则112323h ⨯=,解得2h =. 设四面体ABCP 外接球的半径为R ,则()22221R R =-+,解得5R=4.所以球O 的表面积为2525444ππ⎛⎫⨯= ⎪⎝⎭. 故选:A .3.(2019·湖南雅礼中学高三月考(理))圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( ) A.),2π B.π⎡⎤⎣⎦C.}D.,2π⎫⎪⎪⎣⎭【答案】A 【解析】设轴截面的中心角为α,过圆锥顶点的截面的顶角为β,且βα≤ 过圆锥顶点的截面的面积为:122sin β2sin β2⨯⨯⨯=, 又过圆锥顶点的截面中,面积的最大值为2, 故此时β2π=,故απ2π≤<圆锥底面半径r )2sin22α=∈ ∴侧面展开图的中心角为θ弧度2sin222πsin22απα⨯⨯==∈),2π 故选:A.4.(2019·安徽高考模拟(理))如图,已知四面体ABCD 为正四面体,1AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .14B C D .1【答案】A 【解析】将正四面体补成正方体,如下图所示:EF α⊥ ∴截面为平行四边形MNKL ,可得1NK KL +=又//KL BC ,//KN AD ,且AD BC ⊥ KN KL ∴⊥ 可得2124MNKLNK KL S NK KL +⎛⎫=⋅≤=⎪⎝⎭四边形(当且仅当NK KL =时取等号) 本题正确选项:A5.(2019·湖北高三月考(理))若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( )A .3B .C .D .【答案】A 【解析】设正方形的边长为a ,则四棱锥的高为227h a =,则其外接圆的半径r =.设球的半径为R ,则()222h R r R -+=,解得44222272727210844108a a R a a a =+=++94≥=,当且仅当42274108a a =,即3a =时等号成立,此时,四棱锥的高为2272739h a ===.故选A. 6.(2019·四川雅安中学高三开学考试(文))已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且AB BC ==2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( )A.50081πB.1009πC.259πD.4π【答案】B 【解析】AB BC ==2AC = 222AB BC AC ∴+= AB BC ∴⊥112ABC S AB BC ∆∴=⋅= 如下图所示:若三棱锥D ABC -体积最大值为1,则点D 到平面ABC 的最大距离:3d = 即:3DO '=设球的半径为R ,则在Rt OAO '∆中:()22213R R =+-,解得:53R =∴球的表面积:210049S R ππ==本题正确选项:B7.(2017·山西高三(理))两球1O 和2O 在棱长为1的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为( )A .(32pB .(42pC .(32p +D .(42p【答案】A 【解析】设球1O 与球2O 的半径分别为r 1,r 2,∴r 1+r 2r 1+r 2)= r 1+r 2=32-,r 1+r 2⩾球1O 与球2O 的面积之和为: S =4π(21r+21r)=4π(r 1+r 2)2−8π12r r ⩾()212π1+−2π()231+=(6−)π,当且仅当r 1=r 2时取等号其面积最小值为(6−π. 故选A.8.(2019·广东高考模拟(理))平面四边形ABCD 中,AD AB ==CD CB ==且AD A B ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C D 【答案】D 【解析】 取BD 的中点O,则,,,A B A D BC CD A O BD CO BD '''==∴⊥⊥即BD ⊥平面A OC ',从而平面BCD ⊥平面A OC ',因此A '在平面BCD 的射影在直线OC 上,即A CO '∠为直线A C '与平面BCD 所成角,因为AD AB ==CD CB ==AD AB ⊥,所以111,2sin sin sin 22A O A O OC A CO OA C OA C OC '''''==∴∠=∠=∠≤,即A CO '∠最大值为π6,因此直线A C '与平面BCD 所成最大角的正切值为πtan63=,选D.9.(2019·云南省玉溪第一中学高二月考(理))已知底面边长为,侧棱长为S ABCD -内接于球1O .若球2O 在球1O 内且与平面ABCD 相切,则球2O 的直径的最大值为__________. 【答案】8 【解析】如图所示,正四棱锥S ABCD -内接于球1O ,1SO 与平面ABCD 交于点O ,正方形ABCD 中,4AB AO ==,在直角三角形SAO 中,2SO ===,设球1O 的半径为R ,则在直角三角形1OAO 中,222(2)4R R -+=, 解得5R =, 所以球1O 的直径为10,当求2O 与平面ABCD 相切且与球1O 相切时,球2O 的直径最大, 又因为球2SO =,所以球2O 的直径的最大值为1028-=.10.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__. 【答案】323【解析】如图所示,设,AB m AC n ==,则12ABCS mn ∆=,ABC ∆3,三棱锥P ABC -的体积公式为221113)3)3234m n mn +⨯≤⨯,设224m n t +=,则1()3f t t =,1()33f t '⎫=+⎪⎭,令()0f t '=,解得8t =,()f t 在()0,8单增,[]8,9单减,max 32()(8)3f t f ∴==, 所以三棱锥P ABC -体积最大值为32311.(2019·云南师大附中高三月考)在直三棱柱111ABC A B C -中,90BAC ∠=︒且14BB =,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为2,则球O 的表面积的最小值是_____________. 【答案】28π 【解析】 如图,在Rt ABC △中,设AB c =,=AC b ,则BC =, 取BC ,11B C 的中点分别为2O ,1O ,则2O ,1O 分别为Rt ABC △和111Rt A B C △的外接圆的圆心,连接2O 1O ,又直三棱柱111ABC A B C -的外接球的球心为O ,则O 为2O 1O 的中点,连接OB ,则OB 为三棱柱外接球的半径.设半径为R ,因为直三棱柱111ABC A B C -,所以1214BB O O ==,所以三棱锥O ABC -的高为2,即22OO =,又三棱锥O ABC -体积为2,所以1122632O ABC V bc bc -=⨯⨯=⇒=.在2Rt OO B △中,22222221()4424b c R BC OO +⎛⎫=+=+=+ ⎪⎝⎭⎝⎭, 所以2=4πS R =球表22224π4π()16π2π16π12π16π28π4b c b c bc ⎛⎫++=+++=+=⎪⎝⎭≥,当且仅当b c =时取“=”,所以球O 的表面积的最小值是28π,故答案为28π.12.(2019·湖南高三月考(文))已知三棱锥A BCD -满足3AB BD DC CA ====,则该三棱锥体积的最大值为________.【答案】【解析】取AD 中点E ,连接BE ,CE ,因为3AB BD DC CA ====, 所以BE AD ⊥,CE AD ⊥,且BE CE =,由题意可得,当平面⊥BAD 平面CAD 时,棱锥的高最大,等于BE ,此时体积也最大; 所以此时该三棱锥体积为113sin sin 362-∆=⋅⋅=⋅⋅⋅∠⋅=⋅∠A BCD ACD V S BE CA CD ACD BE CE ACD ,设ACD θ∠=,则sin 3cos 22πθθ-⎛⎫=⋅=⎪⎝⎭CE CD , 所以239cos sin 9sin cos 9sin sin 222222θθθθθθ-⎛⎫=⋅=⋅=- ⎪⎝⎭A BCD V , 令sin2θ=x ,因为0θπ<<,所以0sin12θ<<,设3()=-f x x x ,01x <<,则2()13'=-f x x ,由2()130'=->f x x 得03x <<;由2()130'=-<f x x 得13x <<;所以函数3()=-f x x x 在⎛ ⎝⎭上单调递增,在⎫⎪⎪⎝⎭上单调递减;所以max ()33279⎛==-= ⎝⎭f x f ,因此三棱锥体积的最大值为99-=⋅=A BCD V故答案为13.(2019·河南高三月考(文))已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足BA BC ==2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.【答案】323π 【解析】 如图所示:设球心为O ,ABC △所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为BA BC ==2ABC π∠=,所以ABC △是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABC V PO S -=⋅⋅;因为132ABCS==,设球的半径为R ,所以11PO PO OO R R =+==+(1333R ⋅⋅=,解得:2R =,所以球的体积为:343233R ππ=.14.(2019·四川双流中学高三月考(文))已知球的直径4DC =,A ,B 是该球面上的两点,6ADC BDC π∠=∠=,则三棱锥A BCD -的体积最大值是______.【答案】2 【解析】因为球的直径4DC =,且6ADC BDC π∠=∠=,所以2AC BC ==,AD BD ==13A BCD BCD V S h -∆=⨯⨯(其中h 为点A 到底面BCD 的距离),故当h 最大时,A BCD V -的体积最大,即当面ADC ⊥面BDC 时,h 最大且满足42h =⨯h =112232A BCD V -=⨯⨯⨯=.15.(2019·河北高三月考)在四棱锥P ABCD -中,PD AC ⊥,AB ⊥平面PAD ,底面ABCD 为正方形,且3CD PD +=,若四棱锥P ABCD -的每个顶点都在球O 的球面上,则球O 的表面积的最小值为_____. 【答案】6π 【解析】∵AB ⊥平面PAD ,∴AB PD ⊥,又PD AC ⊥,∴PD ⊥平面ABCD ,则四棱锥P ABCD -可补形成一个长方体,球O 的球心为PB 的中点,设()03CD x x =<<,则3PD x =-.从而球O 的表面积为()2243126x πππ⎡⎤=-+≥⎣⎦⎝⎭. 故答案为6π 16.(2016·浙江高考真题(文))如图,已知平面四边形ABCD ,AB=BC=3,CD=1,直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.【解析】试题分析:如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则0,2A ⎛⎫ ⎪ ⎪⎝⎭, 2B ⎛⎫ ⎪ ⎪⎝⎭, 0,2C ⎛⎫- ⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H翻折过程中, 'D H 始终与AC 垂直, 则2CD CH CA ===则3OH = DH ==因此'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α),则'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==,所以cos 1α=-时, cos θ.17.(2019·重庆一中高三开学考试(理))已知正方形ABCD 的边长为ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B-ACD .若O 为AC 的中点,点M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,则当三棱锥N-AMC 的体积取得最大值时,点N 到平面ACD 的距离为______.【答案】1【解析】由题意知,BO AC ⊥,而平面ABC ⊥平面ACD ,所以BO ⊥平面ACD ,易知BO =2,设BN x =,三棱锥N AMC -的高为NO ,则2NO x =-,由三棱锥体积公式得211=(2)(1)3233N AMC V y x x -=⨯⨯⨯-=--+,∴x =1时,y max =3.此时,211NO =-=. 故本题正确答案为1.18.(2019·浙江高三开学考试)如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________.【解析】由已知得四面体1A BMP 体积1122,33A MBP MBP V S -∆=⨯⨯=所以1,MBP S ∆=设P 到BM 的距离为h ,则11,2MBP S h ∆==解得h =所以P 在底面ABCD 内(不包括边界)与BM 的线段l 上, 要使1C P 的最小,则此时P 是过C 作BM 的垂线的垂足.点C 到BM 的距离为,5所以5CP =此时()1min 5C P ==19.(2019·安徽合肥一中高考模拟(文))如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.【解析】 取BC 中点N ,连结11,,B D B N DN ,作CO DN ⊥,连1C O ,因为面1//B DN 面面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN , 当点P 与点O 重合时,1C P 取得最小值,因为1112252DN CO DC NC CO ⋅=⋅⇒==,所以1min 1()5C P C O ====. 20.(2019·湖南高三期末(文))点P 在正方体1111ABCD A B C D -的侧面11BCC B 及其边界上运动,并保持1AP BD ⊥,若正方体边长为2,则PB 的取值范围是__________.【答案】2⎤⎦【解析】连结1AB ,AC ,1CB ,易知平面11ACB BD ⊥,故P 点的轨道为线段1CB ,当P 在1CB 当P 与C 或1B 重合时:最大值为2则PB 的取值范围是2⎤⎦.故答案为:2⎤⎦。

巧用正四面体的_补形正方体_解题_曹开清

巧用正四面体的_补形正方体_解题_曹开清
第 1 感 :秀枝一株 , 嫁接成林 原文问题串 : (1)已知数列{an}中 , a1 =1 , an+1 =2an , 求通 项公 式 an ; (2)已知数列{an}中 , a1 =1 , an +1 =2an +1, 求 an ; (3)已知数列{an}中 , a1 =1 , an +1 =2an +n, 求 an ; (4)已知数列{an}中 , a1 =1, an +1 =2an +3n , 求 an ; (5)已知数列{an}中 , a1 =1, an +1 =2an +2n , 求 an . [ 注 :第(4)问本来是原文 末尾的 思考题 , 笔者 把它 调到这里 , 是因 为从(3)到(4)再到(5), 衔接 过渡 较合 理 , 便于启发学生 思维 .因 此 , 在 后面 的“ 第 3 感” 的行 文中 , 将跟原文略有出入 , 但不改变原文精神 .] 从课本例 题习 题 出 发 , 以 题 组 形式 , 进 行变 式 教 学 , 无论从方法还是内容上都 起着“ 固体 拓新” 的作 用 , 对于完善知识结构和认知结构 , 培养提 出问题和解决问 题的能力以及 创新能 力 , 都 是大有 裨益的 ! 其效 果, 那 是整天疲于奔命打乱仗式的题海战术所无法比拟的 ! 第 2 感 :类比引路 , 举一反三 题(1)是源头 , 启发题(2)用待定 系数法 :设 an +1 + λ=2(an +λ), 可转化 为等比 数列 ;从题(2)和题(3), 常 数 1 变 成一次函数 n , 解答时 仍可 用待定 系数 法 , 相应 地 , 把 an+1 +λ=2(an +λ)改为 an+1 +k(n +1)+p = 2(an +kn +p),[ 注意体会为什么 等号左边 第二项 要写 成 k(n+1)] , 仍可转化为等比数列 !

专题4.4 立体几何中最值问题(解析版)

专题4.4 立体几何中最值问题(解析版)

一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为()A.B.1 C.D.2【答案】B【解析】以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z∈[0,4],F(x,0,0),x∈[0,4],则|AF|=x.=(4,4,4﹣z),=(x,0,﹣z).因为C1E⊥EF,所以,即:z2+4x﹣4z=0,x=z﹣.当z=2时,x取得最大值为1.|AF|的最大值为1.故选:B.【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A.B.C.D.【答案】A【解析】解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;则,,底面CDEB,结合图形中的数据,求得,在中,由勾股定理得,同理求得,.故选:A .2、【河南省顶级名校2019届高三第四次联合测评】在侧棱长为的正三棱锥中,侧棱OA ,OB ,OC 两两垂直,现有一小球P 在该几何体内,则小球P 最大的半径为 A . B . C .D .【答案】B 【解析】当小球与三个侧面,,及底面都相切时,小球的体积最大此时小球的半径最大,即该小球为正三棱锥的内切球设其半径为由题可知因此本题正确选项:3、如右图所示,在棱长为2的正方体1111ABCD A B C D 中, E 为棱1CC 的中点,点,P Q 分别为面1111A B C D和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.【解析】将面1111A B C D 与面11BB C C 折成一个平面,设E 关于11B C 的对称点为M ,E 关于1B C 对称点为N,则PEQ ∆周长的最小值为MN ==类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .【答案】C 【解析】补全截面EFG 为截面EFGHQR 如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小,∴三角形面积的最小值为,故选:C.【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P所在线段,得解.【举一反三】1、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为()A.B.C.D.【答案】B【解析】如图,,,分别为,,的中点,作面,作面,连,,易知点即为四面体的外接球心,,,.设,,则,,,.【处理一】消元化为二次函数..【处理二】柯西不等式..所以.2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )A .1B .2C .21D .41 【答案】BABC P -的正视图与俯视图的面积之比的最大值为2;故选B .3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A .2B .C .3D .【答案】C【解析】由三视图可得,该几何体的直观图如图所示,其中,为的中点,平面,,.所以,,.又因为,,所以,故,所以.故选C.类型三体积的最值问题【例3】如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.【答案】A【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的. 【举一反三】1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠=,则四面体ABCD 的体积的最大值是A. B. C. 18 D. 36 【答案】A2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A. B.16 C.48 D.144 【答案】C 【解析】,,DA DA βααβ⊂⊥∴⊥面.,,DA CB αα⊥⊥PAD ∴∆和PBC ∆均为直角三角形.,APD BPC PAD ∠=∠∴∆∽PBC ∆.4,8,2AD BC PB PA ==∴=.学科&网过P 作PM AB ⊥,垂足为M .则PM β⊥.令AM t =,()t R ∈.则2222PA AM PB BM -=-,即()222246PA t PA t -=--,2124,PA t PM ∴=-∴=底面四边形ABCD 为直角梯形面积为()1486362S =+⨯=.学科&网136483P ABCD V -∴=⨯=.故C 正确.3.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l 的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( ) A . B .C .D .【答案】A 【解析】依题意,当球与三棱锥的四个面都相切时,球的体积最大, 该三棱锥侧面的斜高为,,,所以三棱锥的表面积为,设三棱锥的内切球半径为, 则三棱锥的体积,所以,所以,所以,故选A.类型四 角的最值问题【例4】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【答案】25【解析】建立坐标系如图所示.设1AB =,则11(1,,0),(,0,0)22AF E =.设(0,,1)(01)M y y ≤≤,则1(,,1)2EM y =-,由于异面直线所成角的范围为(0,]2π,所以cos θ==.2281145y y +=-+,令81,19y t t +=≤≤,则281161814552y y t t+=≥++-,当1t =时取等号.所以2cos 5θ==≤=,当0y =时,取得最大值.C【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.当点M 在点P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当点M 向左移动时,.EM 与AF 所成角逐渐变小,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、矩形ABCD 中,,,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.B.C.D.【答案】C2、在正方体1111D C B A ABCD -中,O 是BD 中点,点P 在线段11D B 上,直线OP 与平面BD A 1所成的角为α,则αsin 的取值范围是( ) A .]33,32[B .]21,31[C .]33,43[D .]31,41[ 【答案】A3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:可能与平面平行;与BC所成的最大角为;与PQ一定垂直;与所成的最大角的正切值为;.其中正确的有______写出所有正确命题的序号【答案】【解析】解:由在棱长为1的正方体中点P为AD的中点,点Q为上的动点,知:在中,当Q为的中点时,,由线面平行的判定定理可得PQ与平面平行,故正确;在中,当Q为的中点时,,,,可得,故错误;在中,由,可得平面,即有,故正确;在中,如图,点M为中点,PQ与所成的角即为PQ与所成的角,当Q与,或重合时,PQ与所成的角最大,其正切值为,故正确;在中,当Q 为的中点时,PQ 的长取得最小值,且长为,故正确.故答案为:.4、在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________.【答案】,3838⎡⎢⎣⎦ 【解析】设P 到平面ABC 的射影为点O ,取BC 中点D ,以O 为原点,在平面ABC 中,以过O 作DB 的平行线为x 轴,以OD 为y 轴,以OP 为z 轴,建立空间直角坐标系,如图,设正四面体P −ABC的棱长为则()()(((0,4,0,,,,A B C P M --,由AN AB λ=,得(),64,0N λ-,∴((),56,NM AC λ=--→-=-,∵异面直线NM 与AC 所成角为α, 1233λ≤≤,∴2NM AC cos NM AC α⋅==⋅,设32t λ-=,则5733t 剟∴222111124626()41t cos t t t tα==-+-⋅+,∵1313375t <剟cos α.∴cos α的取值范围是⎣⎦.三.强化训练一、选择题1、【甘肃省2019届高三第一次高考诊断】四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为()A.B.C.D.【答案】D【解析】设正方形的中心为,当在于球心的连线上时,四棱锥高最高,由于底面面积固定,则高最高时,四棱锥体积取得最大值.设高为,,球的半径为,故,解得.故四棱锥的体积的最大值为.故选D.2.【广东省东莞市2019届高三第二次调研】已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A.B.C.4 D.2【答案】A【解析】解:如图所示,由题意知,平面平面ABCD,设点P到AD的距离为x,当x最大时,四棱锥的高最大,因为,所以点P的轨迹为一个椭圆,由椭圆的性质得,当时,x取得最大值,即该四棱锥的高的最大值为.故选:A.3.【四川省教考联盟2019届高三第三次诊断】已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为()A.12 B.6 C.32 D.24【答案】A【解析】由锥体的体积公式v=,可知,当s和h都最大时,体积最大.由题得顶点P到底面ABCD的距离h≤2.当点P在底面上的射影恰好为圆心O时,即PO⊥底面ABCD时,PO最大=2,即,此时,即四边形ABCD为圆内接正方形时,四边形ABCD的面积最大,所以此时四边形ABCD的面积的最大值=,所以.故选:A4.【安徽省蚌埠市2019届高三第一次检查】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,三棱锥表面上的点M在俯视图上的对应点为A,三棱锥表面上的点N在左视图上的对应点为B,则线段MN的长度的最大值为A .B .C .D .【答案】D 【解析】由三视图可知,该三棱锥的底面是直角三角形, 一条侧棱与底面垂直(平面),为几何体的直观图如图,在上,重合,当与重合时, 线段的长度的最大值为.故选D .5.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13 B. 4 C. 12 D. 23【答案】C 【解析】如图:在矩形中,过点作的垂线交于点,交于点设,6.【2019年4月2019届高三第二次全国大联考】已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为( ) A . B . C .D .【答案】A 【解析】 设正四面体的棱长为则,解得则正四面体的高为记点到平面、、的距离分别为则因为,所以,则故又,故即实数的取值范围为本题正确选项:二、填空题7.【山东省青岛市2019届高三3月一模】在四棱锥中,底面是边长为2的正方形,面,且,若在这个四棱锥内有一个球,则此球的最大表面积为__________.【答案】【解析】在这个四棱锥内有一个球,则此球的最大表面积时,对应的球应该是内切球,此时球的半径最大,设内切球的球心为O半径为R,连接球心和ABCD四个点,构成五个小棱锥,根据体积分割得到,五个小棱锥的体积之和即为大棱锥的体积,,根据AB垂直于AD,PD垂直于AB 可得到AB垂直于面PDA,故得到AB垂直于PA,同理得到BC垂直于PC,表面积为:,此时球的表面积为:.故答案为:.8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O,底面ABCD在半球O底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.【答案】4【解析】设正四棱柱的高为h,底面棱长为a,则正四棱柱的底面外接圆直径为,所以,.由勾股定理得,即,得,其中,所以,正四棱柱的体积为,其中,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,则.因此,该正四棱柱的体积的最大值为4.9.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.10.【江西省上饶市2019届高三二模】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.【答案】【解析】由题该正四面体在铁盒内任意转动,故其能在正方体的内切球内任意转动,内切球半径为6,设正四面体棱长为a, 将此正四面体镶嵌在棱长为x的正方体内,如图所示:则x=,外接球的球心和正方体体心O重合,∴外接球的球半径为:=6,a=4又正四面体的高为∴该正四面体的体积为故答案为11.【河北省衡水市第二中学2019届高三上期中】已知体积为的正四棱锥外接球的球心为,其中在四棱锥内部.设球的半径为,球心到底面的距离为.过的中点作球的截面,则所得截面圆面积的最小值是___________.【答案】【解析】如图取底面的中心为,连接平面,且球心在上,由条件知,,连接,,则,于是底面的边长为.又,故四棱锥的高是,所以,即,从而,,于是,过的中点的最小截面圆是以点为圆心的截面圆,该截面圆的半径是,故所求面积为.12.【江西省临川第一中学等九校2019届高三3月联考】如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.【答案】【解析】过球心,又是边长为的等边三角形,,,三角形是等腰直角三角形,,,又因为,在平面内,由线面垂直的判定定理可得平面,即平面,设,,则三棱锥体积,当且仅当,即时取等号,故答案为.13.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.【答案】【解析】因为,所以,所以,同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则且,所以,当平面时,平面截球的截面面积最小,此时截面为圆面,其半径为,故截面的面积为.填.14.【江西师范大学附属中学2019高三上学期期末】若一个四棱锥的底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球的体积最小时,它的高为_________.【答案】【解析】设四棱锥底面边长为a,高为h,底面对角线交于O,由条件四棱锥P-ABCD为正四棱锥,其外接球的球心M在高PO上,设外接球半径为R,在直角三角形MAO中,,又该四棱锥的体积为9,所以所以,,,时,时,所以时R极小即R最小,此时体积最小.故答案为3.15.【江西省上饶市2019届高三二模】已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.【答案】【解析】因为平面与对角线垂直,所以平面与对角面平行,作出图象,为六边形,设则,所以,由对称性得平面过对角线中点时截面面积取最大值为,则的最大值为.16.【河南省洛阳市2019届高三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.【答案】【解析】如下图,正方体中作出一个正四面体将正三角形和正三角形沿边展开后使它们在同一平面内,如下图:要使得最小,则三点共线,即:,设正四面体的边长为,在三角形中,由余弦定理可得:,解得:,所以正方体的边长为2,正四面体的体积为:,设四正面体内切球的半径为,由等体积法可得:,整理得:,解得:,所以该四面体内切球的体积为.17.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.【答案】【解析】设,,当时,取得最大值,此时为中点,经过点,且,,所以可求,,因此易求,,,,又∵,∴.。

探究正四面体内置正方体棱长的最大值问题

探究正四面体内置正方体棱长的最大值问题

正四面体内置正方体棱长的最值探究浙江省诸暨市天马学校高中部 尉贵生 311800正四面体和正方体都是立体几何中最常见的两种几何体,现在若把正方体内置于正四面体中,在不同条件下,如何来探求该内置正方体棱长的最大值,本文就此问题进行一些探究,以供参考。

探究1 一个棱长为a 的正四面体纸盒内放一个正方体,并且能使该正方体在纸盒内任意转动,试求该正方体棱长的最大值。

分析:如图1,正方体绕着它的中心任意转动时,各顶点所能达到的轨迹为一个球面,问题可转化为求正四面体内切球的内接正方体。

不难求得正四面体内切球的半径为a R 126=,然后计算该球的内接正方体的棱长为a 62,因此,满足条件的正方体棱长的最大值为a 62。

探究2 一个棱长为a 的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内可绕着某一条直线旋转,试求该正方体棱长的最大值。

分析:如图2,正方体绕着过它的中心且垂直于两平行平面的直线旋转时可以得到一个圆柱体,设该圆柱体的底面半径为R ,则它的高为R 2,问题转化为求正四面体满足上述条件的最大内接圆柱体,而该圆柱体的最大内置正方体即为所求。

解:过棱AB 和正四面体的高AO 作截面(如图3),则R MG HM ==,R GF 2=,a AO 36=,a OP 63=,RRa MG AM OP AO APO AGM 23622tan tan -====∠=∠, 解得a R 93=,所以,所求正方体棱长的最大值为a R 962=。

探究3 在一个棱长为a 的正四面体纸盒内放置一个正方体(不作任何转动,能放进去即可),试求该正方体棱长的最大值。

分析:若正四面体的内置正方体的上底面与底面BCD 平行,则过正方体上底面的截面必为一正三角形,问题只须考虑正三角形的最大内接正方形即可。

下面来研究正三角形的最大内接正方形问题。

如图4,正三角形ABC 的边长为b ,四边形EFGH 为ABC ∆的内接正方形(正方形的一条边EF 在BC 上)。

2019年高考数学二轮复习大题查漏补缺——立体几何 文科

2019年高考数学二轮复习大题查漏补缺——立体几何  文科

2019届二轮复习-------立体几何(文科)一、球类问题1.【2018河南中原名校质检二】一棱长为6的正四面体内部有一个可以任意旋转的正方体,当正方体的棱长取最大值时,正方体的外接球的表面积是( B )A. B. C. D.-内接于球O,且底面ABCD过球心O,则球O的2.【2018超级全能生全国联考】若正四棱锥P ABCD-内切球的半径之比为(A )半径与正四棱锥P ABCDA. 1B. 2C.D. 1-的底面是以AB为斜边的等腰直角三角形,3.【2018河南漯河中学三模】已知三棱锥S ABC====,则三棱锥的外接球的球心到平面ABC的距离为( A )AB SA SB SC4,4A.B. 2 D.34.【2018吉林长春一模】已知矩形的顶点都在球心为,半径为的球面上,,且四棱锥的体积为,则等于( A )A. 4B.C.D.5.【2018南宁摸底联考】三棱锥中,为等边三角形,,,三棱锥的外接球的体积为( B )A. B. C. D.6.【2018河南漯河中学二模】四面体的四个顶点都在球的表面上,,,,平面,则球的表面积为( D )A. B. C. D.7、(2019·广东一模)《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( A )ABC. D .24π8.【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【答案】92π二、空间点线面问题1.【2018衡水联考】在棱长为1的正方体1111ABCD A B C D -中,点E , F 分别是侧面11AA D D 与底面ABCD 的中心,则下列命题中错误的个数为( A )①//DF 平面11D EB ; ②异面直线DF 与1B C 所成角为60︒; ③1ED 与平面1B DC 垂直; ④1112F CDB V -=. A. 0 B. 1 C. 2 D. 32.【2018江苏南宁联考】在如图所示的正方体中,分别棱是的中点,异面直线与所成角的余弦值为( D )A. B. C. D.3.(2018·东城期末·7)某三棱锥的三视图如 图所示,该三棱锥的体积为BA.B.C.D.4.(2018·通州期末·8)如图,各棱长均为1的正三棱柱111ABC A B C -,M ,N 分别为线段1A B ,1B C 上的动点,且MN ∥平面11ACC A , 则这样的MN 有D A .1条 B . 2条 C .3条 D .无数条5.(2018·海淀期末·8)已知正方体的1111ABCD A B C D -棱长为2,点M ,N 分别是棱11,BC C D 的中点,点P 在平面1111A B C D 内,点Q 在线段1A N上,若PM =,则PQ 长度的最小值为C1B.C.D.6.(2018·朝阳期末·6)某四棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该四棱锥的体积为B侧视图俯视图正视图A .B . 4C . D.7.【2017课标3,文10】在正方体1111ABCD A B C D 中,E 为棱CD 的中点,则( C )A .11A E DC ⊥B .1A E BD⊥ C .11A E BC ⊥ D .1A E AC⊥8.(2018北京文、理)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( C )A .1B .2C .3D .49.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( C )A .2B .4C .6D .8 ]10.(2018浙江)已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( D )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ111.(2018全国新课标Ⅰ文9)某圆柱的高为2,底面周长为16, 其三视图如右图.圆柱表面上的点M在正视图上的对应点为 A ,圆柱表面上的点N在左视图上的对应点为B ,则在此圆柱侧面上, 从M 到N 的路径中,最短路径的长度为( B )A. B .C .3D .2俯视图正视图12.(2018全国新课标Ⅰ文10)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( C )A .8B .C .D .13.(2018全国新课标Ⅰ文5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B ) A. B .12π C . D .10π14.(2018全国新课标Ⅱ文)在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( C )A B C D15.(2018全国新课标Ⅲ文、理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )16.(2018全国新课标Ⅲ文、理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为( B )A .B .C .D . 17.【2018黑龙江佳木斯一中调研】如图,正方体1111ABCD A B C D -中, F 是四边形ABCD 的中心,G 是1CC 的中点,则直线GF 与AB 所成的角的正切值为.18.(2018天津文)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.1319. (2018天津理)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为112.20.(2018全国新课标Ⅱ文)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.8πPAB CDE三、证明题1、平行四边形模型、三角形中位线模型1.【2017课标II ,理19】如图,四棱锥P -ABCD 中,侧面P AD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点。

较难的小题

较难的小题

1. 一个棱长为a 的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内可以任意转动,则正方体棱长的最大值为____________.2. 已知三个正数,,a b c ,满足333a b c +=,那么这三个正数,,a b c(A ) 能组成一个锐角三角形的三边;(B ) 能组成一个直角三角形的三边;(C ) 能组成一个钝角三角形的三边;(D ) 不能组成一个三角形的三边3. 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,满足333a b c +=.求证:cos C 的最大值为12-. 4. 已知12,x x 是方程20ax bx c ++=的两根,且满足1212,,,x x a b c Z <<<∈,则当正整数a 取得最小值时,b c +=(A )5- (B )4- (C )1- (D )35.如图,在ABC ∆中,sin 22ABC AB ∠==,点D 在线段AC 上,且2,3AD DC BD ==cos C =__79_________. 6.若关于x 函数()()2222sin 0tx x t x f x t x t+++=>+的最大值为M ,最小值为N ,且4M N +=,则实数4的值为(A )1 (B )2 (C )3 (D )47.(2012年全国课标卷)设点P 在曲线12x y e =上,点Q 在曲线()ln 2y x =上,则PQ 的最小值)1ln 2-_______.5.在ABC △中,内角A B C 、、所对的边的长分别为a b c 、、,且2()a b b c =+,则12_____. 6.(11)已知函数 32()ln ,()5a f x x x g x x x x =+=--,若对任意的 121,,22x x ⎡⎤∈⎢⎥⎣⎦,都有12()()2f x g x -≥ 成立,则a 的取值范围是[)1,+∞_________(7)一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体体积为(A )16(B(C)6(D )12(13)已知函数)(x f 是R 上的减函数,且(2)y f x =-的图象关于点(2,0)成中心对称.若,u v 满足不等式组()(1)0,(1)0,f u f v f u v +-≤⎧⎨--≥⎩则22u v +的最小值为 12 . 14.已知:当0x >时,不等式11kx b x ≥++恒成立,当且仅当13x =时取等号,则k = 916- .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合就是把抽象的数学语言与直观图形结合 起来思索,使抽象思维和形象思维结合,通过“以形助 数”或“以数解形”,使复杂问题简单化,抽象问题具体 化。从而起到优化解题过程的目的.“以形助数”是借助 形的生动和直观来阐述数间的联系;“以数解形”是借助 于数的精确性、规范性、严密性来阐明形的某些属性.
1.1 以形助数
内接正方形OMPN的一个顶点为

底面半径为尺,则它的
BC中点时.在AOCN中,LNCO
高为恤。问题转化为求
:60。,/_CNO=75。。OC=妻。设
正四面体满足上述条件

C 0
溯鬻差大AB篇iF黧_ A隶O作矧如图3;,:盎sin CNO雕舡牮6, 的最大内接圆柱体,而
图2
ON=茗,贝…]E ._sln£ON』而
图5
解过棱 和 四面体的高 作截面(如图),


’11””。

v’

万方数据
·复习参考·
寸。7擞.7(2010-q-g 3期·高中版)
4l
聚焦平面向量中的数学思想方法
441000湖北省襄樊市第一中学王勇
数学思想方法是从数学内容中提炼出来的数学知 识的精髓,是将知识转化为能力的桥梁,有着普遍应用 的意义,是历年高考的重点.下面仅就平面向量中常见 的数形结合思想、分类讨论思想、函数与方程思想、转化 与化归思想进行举例说明. 1数形结合思想
b=——鼍—',因此内接正方体棱长的最大值为(狮
—3)b:亟鹳. 6—343+√2 6一啪+以 上述情况考虑的是内置正方体的上底面与底面
BCD平行的情况,假设该正方体的上底面与底面BCD 不平行(成一定倾斜角),是否能得到棱长更大的正方体 呢?
不可能.我们不妨记由图6得到的内接正方体为 A。c2,首先,正方体A。c2不可能绕着直线0。02作细微的 旋转。否则,正方体A。Q的上底面的顶点就会“捅破”正 四面体的侧面;同样,若将该正方体绕着它的中心作适 当的转动,转动后正方体下底面与正四面体底面BCD成 一定的角度,即正方体下底面的四个顶点中至少有一个 不在面BCD上,则该正方体A。C:的上底面必然会被正
下面来研究正三角形的最大内接正方形问题.
如图4,正三角形ABC的边长
为b,四边形EFGH为AABC的内
接正方形(正方形的一条边EF在
BC上).设正方形的边长为菇,则在

.。


AGCF中,tan/_GCF=篇= E o F
图4
—专=万,得皇=(2,3-一3)b,①
丁一丁 如图5,若正三角形ABC的
圆柱体,设该圆柱体的R
探究1一个棱长为n的正四面体纸盒内放一个正 方体,并且能使该正方体在纸盒内任意转动,试求该正 方体棱长的最大值.
分析如图1,正方 体绕着它的中心任意转
,了/g口,oP=譬d,tan£AGM=
tanZ.APO=A而O=2在=AMUG=
焉Ta一压R .,


么\c
.f 1’



EoF
图3
解得R-_4百3口,所以,所求正方体棱长的最大值为
棱长的最大值为黜. 四面体“卡住”.因此,棱长为a的正四面体内置正方体
(收稿日期:20091204)
万方数据
中’?擞·7(2010年第3期·高中版)
·复习参考·
正四面体内置正方体校长的最值探究
311800浙江省诸暨市天马学校高中部尉贵生
正四面体和正方体都是立体几何中常见的两种几 则HM=MG=R,GF=胁,AO=

何体,现在若把正方体内置于正四面体中,在不同条件 下,如何来探求该内置正方体棱长的最大值,本文就此 问题进行一些探究,以供参考.
例1已知向量蔬:(2,o),向量砣=(2,2),向量 葫:(屈啪,qt2sina),则向量蔬与向量蔬夹角的取值
范围是
A.[o,詈]B.[寻,5西.tr】
c.[卺,丁,IT]D.[舌,卺]
解如图1,向量魂的终点
A在以c(2。2)为圆心,在为半径
图1 的圆上,0,4。,0,4:是圆的两条切
线,切点分别为A.,A:,在RtAOCA。中,Io--d|_砸,
该球的内接正方体的棱长为詈口,因此,满足条件的正方

体棱长的最大值为警口. U
探究2一个棱长为口的正四面体纸盒内放一个正 方体,并且能使正方体在纸盒内可绕着某~条直线旋 转,试求该正方体棱长的最大值.
分析 如图2。正 方体绕着过它的中心且 垂直于两平行平面的直 线旋转时可以得到一个
问题只须考虑正三角形的最大内接正方形即可.
动时,各顶点所能达到的 轨迹为一个球面,问题可 转化为求正四面体内切雪 球的内接正方体.不难求 得正四面体内切球的半

径为R:,石/60,然后计算
C 图1
廊:争.
探究3在一个棱长为口的正四面体纸盒内放置一 个正方体(不作任何转动,能放进去即可),试求该正方 体棱长的最大值.
分析若正四面体的内置正方体的上底面与底面 BCD平行,则过正方体上底面的截面必为一正三角形,
因为(硒一3)b>,3-<万4-4Y)b.所以边长为6的正
三角形的最大内接正方形的边长为(圻一3)b.
解如图6,直三 棱柱EFG—PQR内置底面BCD
内,直三棱柱的高为正 。

△明啦的最大内接正
方形的边长。设正
△EFG的边长为b,由
上述分析可得它的最
图6
扎札譬以~脚』BP 2端27得
相关文档
最新文档