九年级上册数学综合卷A

合集下载

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。

浙教版九年级数学上册期末综合提高测试A卷(含答案)

浙教版九年级数学上册期末综合提高测试A卷(含答案)

浙教版九年级数学期末综合提高测试A 卷班级___________ 姓名____________ 得分____________一、选择题(每题3分,共30分)1.抛物线y = - 1 2 x 2 + 1的顶点坐标是( )A .(0,1)B .( 1 2 ,1)C .( - 1 2 , - 1)D .(2, - 1)2.已知在Rt △ABC 中,∠C = 90°,AB = 4,AC = 1,则∠B 的余弦值为( )A .415B .41C .1515 D.17174 3.下列选项中,不是如图所示的几何体的三视图之一的为( )4.如图所示,AB 是⊙O 的直径,点C 在⊙O 上,若∠C = 16°,则∠BOC 的度数为( )A .74°B .48°C .32°D .16°5.如图所示,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且∠AED = ∠B ,再将下列四个选项中的一个作为条件,不一定能使得△ADE 和△BDF 相似的是( )A .BF ED BD EA =B .BD ED BF EA =C .BF AE BD AD = D .BCBA BF BD = 6.如图所示,直线PB 切⊙O 于点B ,PO 交⊙O 于点C ,若PB = 23,PC = 2,则∠BAC 的度数为( )A .20°B .30°C .40°D .60°7.已知二次函数y = ax 2 + bx + c 的图象如图所示,则下列代数式:ab ,ac ,a + b + c ,a - b + c ,2a + b ,2a - b 中,值为正数的式子有( )A .2个B .3个C .4个D .5个8.如图所示,线段AB ,CD 相交于点E ,AD ∥EF ∥BC ,若AE :EB = 1:3,则 S △ADE :S △DEF 于等于( )A .2B .23C .45D .349.如图所示,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD = 45°,将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则CDOC 的值为( ) A .21 B .31 C .22 D .33 10.已知关于x 的二次函数y = (2sina )x 2 - (4sina + 1 2 )x - sina + 1 2 ,其中a 为锐角,有下列结论:①当a 为30°时,函数有最小值 - 25 16 ;②函数图象与坐标轴必有三个交点;③当a < 60°时,函数在x > 1时,y 随x 的增大而增大;④无论锐角a 怎么变化,函数图象必过定点.其中正确的有( )A .①③④B .①④C .②③D .①②④二、填空题(每题4分,共24分)11.已知线段a = 2,b = 4,则线段a ,b 的比例中项为 _________ .12.袋中装有6个黑球和n 个白球(球除颜色外,其余均相同),经过若干次试验,发现“若从袋中任意摸出一个球,恰是黑球的概率为 3 4 ”,则这个袋中白球大约有 _________ 个. 13.如图所示,在△ABC 中,∠A = 60°,⊙O 为△ABC 的外接圆.如果BC = 23,那么⊙O 的半径为 _________ .14.在 ABCD 中,点E 为AB 边的中点,点F 在直线AD 上,且AF = 3DF ,连结EF ,与对角线AC 相交于点M ,则ME :MF 的值为 _________ .15.二次函数y = ax 2 + bx + c 的图象如图所示,则 b a 的值是 _________ , c a 的取值范围是 _________ .16.如图所示,在△ABC 中,∠ACB = 90°,BC = 8,AC = 6,以点C 为圆心、4为半径的圆上有一动点D ,连结AD ,BD ,CD ,则 1 2 BD + AD 的最小值是 _________ .三、解答题(共66分)17.(6分)如图所示,在△ABC 中,点D 在边AB 上,满足∠ACD = ∠ABC ,若AC = 3,AD = 1,求DB 的长.18.(8分)在学习圆与正多边形时,小露、小骏两位同学设计了一个画圆内接正三角形的方法:①如图所示,作直径AD;②作半径OD的垂直平分线,交⊙O于B,C两点;③连结AB,AC,BC,那么△ABC为所求的三角形.(1)请你按照两位同学设计的画法,画出△ABC.(2)请你判断两位同学的作法是否正确.如果正确,证明△ABC是正三角形;如果不正确,请说明理由.19.(8分)在一个不透明的盒子里,装有四个分别标有数- 1,- 2,- 3,- 4的小球,它们的形状、大小、质地等完全相同.先由小强从盒子里随机取出一个小球,记下数为x,放回盒子中摇匀后,再由小华随机取出一个小球,记下数为y.(1)用树状图或列表法表示出(x,y)的所有可能出现的结果.(2)求小强、小华各取一次小球所确定的点(x,y)落在一次函数y = x - 1图象上的概率.20.(10分)如图所示,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为点E,F是AE与⊙O的交点,AC平分∠BAE,连结OC.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为4,∠D = 30°,求图中阴影部分的面积.(结果用含π和根号的式子表示)21.(10分)科技馆是少年儿童节假日游玩的乐园.如图所示,横坐标x 表示科技馆从8:30开门后经过的时间(分),纵坐标y 表示到达科技馆的总人数(人),图中曲线对应的函数表达式为y = ⎪⎩⎪⎨⎧≤≤+-≤≤),9030()90(),300(22x n x b x ax 10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数表达式.(2)为了保证科技馆内游客的游玩质量,规定馆内人数不超过684人,后来的人需在馆外休息区等待.从10:30开始至12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.馆外游客最多等待多少分钟?22.(12分)如图所示,在矩形ABCD 中,AB = 4,AD = 2,点P 是边AB 上的一个动点(不与点A ,B 重合),点Q 在边AD 上,将△CBP 和△QAP 分别沿PC ,PQ 折叠,使点B 与点E 重合,点A 与点F 重合,且P ,E ,F 三点共线.(1)若点E 平分线段PF ,求此时AQ 的长.(2)若线段CE 与线段QF 所在的平行直线之间的距离为2,求此时AP 的长.(3)在“线段CE ”“线段QF ”“点A ”这三者中,是否存在两个在同一条直线上的情况?若存在,求出此时AP 的长;若不存在,请说明理由.23.(12分)已知抛物线y = 3ax 2 + 2bx + c (a ≠0).(1)若a = b = 1,c = - 1,求该抛物线与x 轴的交点坐标.(2)若a = 31,c - b = 2,且抛物线在 - 2≤x ≤2时的最小值是 - 3,求b 的值. (3)若a + b + c = 1,是否存在实数x ,使得y = 1,请说明理由.答案。

初三数学上册综合测试卷

初三数学上册综合测试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. πC. √-1D. 2/32. 已知 a > b,下列不等式中错误的是()A. a + 2 > b + 2B. 2a > 2bC. a - 3 < b - 3D. a^2 > b^23. 下列函数中,反比例函数是()A. y = x + 1B. y = 2xC. y = 1/xD. y = x^24. 在直角坐标系中,点P(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 已知等边三角形ABC的边长为a,则其外接圆半径R为()A. a/2B. √3/2 aC. a/√3D. √3/2 a6. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. -1D. 0或17. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 矩形D. 平行四边形8. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若a > 0,b = 0,则函数的图像()A. 开口向上,顶点在y轴上B. 开口向下,顶点在y轴上C. 开口向上,顶点在x轴上D. 开口向下,顶点在x轴上9. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的大小为()A. 45°B. 60°C. 75°D. 120°10. 下列各数中,无理数是()A. √4B. √9C. √-1D. √2二、填空题(每题5分,共25分)11. 已知 a = -3,b = 2,则 a + b = ________,a - b = ________,ab = ________。

12. 下列函数中,一次函数是 ________,反比例函数是 ________。

13. 在直角坐标系中,点P(-1,2)关于原点的对称点是 ________。

初三上册数学综合测试卷

初三上册数学综合测试卷

一、选择题(每题3分,共30分)1. 若a、b、c是等差数列的三项,且a+c=2b,则b的值是:A. 1B. 2C. 3D. 42. 下列函数中,是反比例函数的是:A. y = 2x + 1B. y = 3/xC. y = x^2D. y = x^33. 已知等腰三角形ABC中,AB=AC,底边BC=6cm,高AD=4cm,则腰长AB的长度是:A. 5cmB. 6cmC. 8cmD. 10cm4. 下列关于不等式2x - 5 > 3x + 1的解集是:A. x < -6B. x > -6C. x ≤ -6D. x ≥ -65. 若一个数列的前三项分别是a、b、c,且满足a + b = 2c,则该数列是:A. 等差数列B. 等比数列C. 等差数列或等比数列D. 无法确定6. 下列方程中,有唯一解的是:A. x^2 - 4 = 0B. x^2 - 2x + 1 = 0C. x^2 - 3x + 2 = 0D. x^2 - 2x +3 = 07. 若sinα = 1/2,则cosα的值是:A. √3/2B. -√3/2C. 1/2D. -1/28. 下列图形中,是圆的内接四边形的是:A. 矩形B. 菱形C. 平行四边形D. 不规则四边形9. 若一个三角形的三边长分别为3、4、5,则这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形10. 下列关于三角形外心的说法错误的是:A. 外心是三角形外接圆的圆心B. 外心到三角形三个顶点的距离相等C. 外心一定在三角形内部D. 外心是三角形三边垂直平分线的交点二、填空题(每题3分,共30分)11. 已知等差数列的第一项为2,公差为3,则第10项的值是______。

12. 若函数y = kx + b的图像经过点(2, 3),则k和b的值分别是______和______。

13. 在直角坐标系中,点A(2, 3)关于y轴的对称点是______。

数学九年级上册 期末试卷综合测试卷(word含答案)

数学九年级上册 期末试卷综合测试卷(word含答案)

数学九年级上册 期末试卷综合测试卷(word 含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135° 2.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( )A .2011B .2015C .2019D .20203.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45° 4.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( )A .74B .44C .42D .405.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4 6.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 7.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A.62B.32C.6 D.128.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变9.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为()A.6 B.7 C.8 D.910.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根11.如图所示的网格是正方形网格,则sin A的值为()A.12B.2C.35D.4512.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③二、填空题13.将边长分别为2cm,3cm,4cm的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm.14.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______.15.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.16.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .17.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________;18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)19.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.20.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm .21.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 22.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.23.如图,圆形纸片⊙O半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则 4 个小正方形的面积和为_______.24.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.三、解答题25.如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E 在边AB上.(1)求证:△ADG∽△FEB;(2)若AD=2GD,则△ADG面积与△BEF面积的比为.26.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y 元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?27.如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.28.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞20 1.6第2次捕捞15 2.0第3次捕捞15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x (kg)之间的函数关系,并估计自变量x的取值范围.29.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标Bx的取值范围.30.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.31.如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?32.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(053).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.C解析:C【解析】【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题.【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.3.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB ,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°. 故选:C .【点睛】 本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.4.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.5.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确;②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误;④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0),∴A (3,0),故当y >0时,﹣1<x <3,故④正确.故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.6.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 7.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴622CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.8.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.9.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.10.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.11.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,∵AC BC ===BC =AD =, ∵S △ABC =12AB •CE =12BC •AD ,∴CE =22BC AD AB ==,∴35CE A sin CAB C ∠===, 故选:C .【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.二、填空题13.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:133. 【点睛】 本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.14.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 15.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,221086-=cm,∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.17.5【解析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴22226810AB AC BC,∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.18.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有解析:5或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有×10=5, 当AC<BC 时,则有BC=12AB=12×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.19.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC , ∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,=4.故答案为4.本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.20.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 21.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.22.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.23.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为 52,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.24.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题25.(1)证明见解析;(2)4.【解析】【分析】(1)易证∠AGD=∠B ,根据∠ADG=∠BEF=90°,即可证明△ADG ∽△FEB ;(2)相似三角形的性质解答即可.【详解】(1)证明:∵∠C=90°,∴∠A+∠B=90°,∵四边形DEFG 是矩形,∴∠GDE=∠FED=90°,∴∠GDA+∠FEB=90°,∴∠A+∠AGD=90°,∴∠B=∠AGD ,且∠GDA=∠FEB=90°,∴△ADG ∽△FEB .(2)解:∵△ADG ∽△FEB , ∴AD EF DG BE=, ∵AD =2GD, ∴2AD DG=,∴224ADG FEB S S ==.【点睛】本题考查了相似三角形的判定与性质,求证△ADG ∽△FEB 是解题的关键.26.(1)y=100x (010x ≤≤的整数) y=2-3130x +x(1030x <≤的整数);(2)购买22件时,该网站获利最多,最多为1408元.【解析】【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当010x ≤≤的整数时,y 与x 的关系式为y=100x ;当1030x <≤的整数时, 1030062002x y x , y=2-3130x x + (1030x <≤的整数),∴y 与x 的关系式为:y=100x (010x ≤≤的整数), y=2-3130x +x(1030x <≤的整数)(2)当(010x ≤≤的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=23130x x -+, ∵a=-3<0,抛物线开口向下,∴y 有最大值,当x=22123b a -=时,y 取最大值, 因为x 为整数,根据对称性得:当x=22时,y 有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x 的取值范围及取值要求是解答此题的关键之处.27.(1)y =﹣x 2+3x +4;(﹣1,0);(2)P 的横坐标为134或114.(3)点P 的坐标为(4,0)或(5,﹣6)或(2,6).【解析】【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C 点坐标;(2)利用△AQP ∽△AOC 得到AQ =4PQ ,设P (m ,﹣m 2+3m +4),所以m =4|4﹣(﹣m 2+3m +4|,然后解方程4(m 2﹣3m )=m 和方程4(m 2﹣3m )=﹣m 得P 点坐标;(3)设P (m ,﹣m 2+3m +4)(m >32),当点Q ′落在x 轴上,延长QP 交x 轴于H ,如图2,则PQ =m 2﹣3m ,证明Rt △AOQ ′∽Rt △Q ′HP ,利用相似比得到Q ′B =4m ﹣12,则OQ ′=12﹣3m ,在Rt △AOQ ′中,利用勾股定理得到方程42+(12﹣3m )2=m 2,然后解方程求出m 得到此时P 点坐标;当点Q ′落在y 轴上,易得点A 、Q ′、P 、Q 所组成的四边形为正方形,利用PQ =PQ ′得到|m 2﹣3m |=m ,然后解方程m 2﹣3m =m 和方程m 2﹣3m =﹣m 得此时P 点坐标.【详解】解:(1)把A (0,4),B (4,0)分别代入y =﹣x 2+bx +c 得41640c b c =⎧⎨-++=⎩,解得34b c =⎧⎨=⎩, ∴抛物线解析式为y =﹣x 2+3x +4,当y =0时,﹣x 2+3x +4=0,解得x 1=﹣1,x 2=4,∴C (﹣1,0);故答案为y =﹣x 2+3x +4;(﹣1,0);(2)∵△AQP ∽△AOC , ∴AQ PQ AO CO∴=, ∴441AQ AO PQ CO ===,即AQ =4PQ , 设P (m ,﹣m 2+3m +4),∴m =4|4﹣(﹣m 2+3m +4|,即4|m 2﹣3m |=m ,解方程4(m 2﹣3m )=m 得m 1=0(舍去),m 2=134,此时P 点横坐标为134; 解方程4(m 2﹣3m )=﹣m 得m 1=0(舍去),m 2=114,此时P 点坐标为1175,416⎛⎫ ⎪⎝⎭; 综上所述,点P 的坐标为(134,5116)或(114,7516); (3)设()23,342P m m m m ⎛⎫-++> ⎪⎝⎭, 当点Q ′落在x 轴上,延长QP 交x 轴于H ,如图2,则PQ =4﹣(﹣m 2+3m +4)=m 2﹣3m ,∵△APQ 沿AP 对折,点Q 的对应点为点Q ',∴∠AQ ′P =∠AQP =90°,AQ ′=AQ =m ,PQ ′=PQ =m 2﹣3m ,∵∠AQ ′O =∠Q ′PH ,∴Rt △AOQ ′∽Rt △Q ′HP ,∴AO AQQ H PQ'''=,即243mQ H m m'=-,解得Q′H=4m﹣12,∴OQ′=m﹣(4m﹣12)=12﹣3m,在Rt△AOQ′中,42+(12﹣3m)2=m2,整理得m2﹣9m+20=0,解得m1=4,m2=5,此时P点坐标为(4,0)或(5,﹣6);当点Q′落在y轴上,则点A、Q′、P、Q所组成的四边形为正方形,∴PQ=AQ′,即|m2﹣3m|=m,解方程m2﹣3m=m得m1=0(舍去),m2=4,此时P点坐标为(4,0);解方程m2﹣3m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,6),综上所述,点P的坐标为(4,0)或(5,﹣6)或(2,6)【点睛】本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:①熟练掌握待定系数法求函数解析式;②能够熟练掌握相似三角形的判定和性质;③能够熟练掌握一元二次方程的解法;④理解折叠的性质. 28.(1)1.78kg;(2)8900kg;(3)y=14x,0≤x≤8900.【解析】【分析】(1)根据平均数的公式求解即可;(2)根据每条鱼的平均质量×总条数=总质量即可得答案;(3)根据收入=单价×质量,列出函数表达式即可.【详解】(1)样本中平均每条鱼的质量为20 1.615 2.015 1.81.78201515⨯+⨯+⨯=++(kg).(2)∵样本中平均每条鱼的质量为1.78kg,∴估计鱼塘中该种鱼的总质量为1.78×5000=8900(kg).(3)∵每千克的售价为14元,∴所求函数表达式为y=14x,∵该种鱼的总质量约为8900kg,∴估计自变量x的取值范围为0≤x≤8900.【点睛】本题考查一次函数的应用、用样本估计总体,明确题意,写出相应的函数关系式,利用平均数的知识求出每条鱼的质量是解题关键. 29.(1)②;(2)±1;(3)23-<B x <33或733-<B x <23-- 【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k 的正负分类讨论,作图后根据最美三角形的定义求解EF ,利用勾股定理求解AF ,进一步确定∠AOF 度数,最后利用勾股定理确定点F 的坐标,利用待定系数法求k .(3)本题根据⊙B 在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB 的度数,继而按照最美三角形的定义,分别以△BND ,△BMN 为媒介计算BD 长度,最后与OD 相减求解点B 的横坐标范围.【详解】(1)如下图所示:∵PM 是⊙O 的切线,∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-,∵1=2PMO S PM OM ••, ∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:按题意可得:△AEF 是直线y=kx 与⊙A 的最美三角形,故△AEF 为直角三角形且AF ⊥OF . 则由已知可得:111=1222AEF S AE EF EF ••=⨯⨯=,故EF=1. 在△AEF 中,根据勾股定理得:22AF AE ==.∵A(0,2),即OA=2, ∴在直角△AFO 中,22=2OF OA AF AF -==,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F 点代入y=kx 可得:1k =-.②当k >0时,同理可得k=1.故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D -,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OC ODC OD ∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形,∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°,在直角△BDN 中,sin BN BDN BD ∠=, 故23=sin sin 60?BN BN BD BN BDN =∠. ∵⊙B 3, ∴3BM =.当直线CD 与⊙B 相切时,3BN BM ==因为直线CD 与⊙B 相离,故BN 3BD >2,所以OB=BD-OD >23. 由已知得:113=322BMN S MN BM MN ••=•=3MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD 43OB BD OD =- 433-3。

九年级数学上册第一学期期末综合测试卷(北师版 2024年秋)

九年级数学上册第一学期期末综合测试卷(北师版 2024年秋)

九年级数学上册第一学期期末综合测试卷(北师版2024年秋)一、选择题(每题3分,共30分)1.(教材P57复习题T13变式)关于x的一元二次方程(a-1)x2+a2-1=0的一个根是0,则a的值为()A.1B.-1C.1或-1 D.122.先贤孔子曾说过“鼓之舞之”,这是“鼓舞”一词最早的起源,如图是喜庆集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的主视图是()3.如图,要使▱ABCD成为矩形,则可添加的一个条件是()A.AB=AD B.OA=OC C.AD=BC D.AC=BD(第3题)(k≠0)的图象经过点P(1,-2),则这个函数的图象位于4.已知反比例函数y=kx()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限5.(2023山东省实验中学月考)如图是一次数学活动课上制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数(当指针恰好指在分界线上时,不记,重转),则记录的两个数都是正数的概率为()A.18B.16C.14D.12(第5题)(第6题)6.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD BD =53,CF =6,则DE 的长为()A .6B .8C .10D .127.如图,△ADC 是由等腰直角三角形EOG 经过位似变换得到的,位似中心在x轴的正半轴上,位似比为12,已知EO =1,D 点坐标为(2,0),则这两个三角形的位似中心的坐标是()B .(1,0)C .(0,0)(第7题)(第8题)8.(2023合肥一模)如图,Rt △BOC 的一条直角边OC 在x 轴的正半轴上,双曲线y =kx 过△BOC 的斜边OB 的中点A ,与另一直角边BC 相交于点D.若△BOD的面积是6,则k 的值是()A .-6B .-4C .4D .69.如图,△ABC 中,∠C =90°,AB =10,AC =8,线段DE 的两个端点D ,E 分别在边AC ,BC 上滑动,且DE =4,若点M ,N 分别是DE ,AB 的中点,则MN 的最小值为()A .2B .3C .3.5D .4(第9题)(第10题)10.(2023东营)如图,正方形ABCD的边长为4,点E,F分别在边DC,BC上,且BF=CE,AE平分∠CAD,连接DF,分别交AE,AC于点G,M,P是线段AG上的一个动点,过点P作PN⊥AC,垂足为点N,连接PM,有下列四个结论:①AE垂直平分DM;②PM+PN的最小值为32;③CF2=GE·AE;④S△ADM=62.其中正确的是()A.①②B.②③④C.①③④D.①③二、填空题(每题3分,共24分)11.如图,已知ADAE=ACAB,AD=3cm,AC=6cm,BC=8cm,则DE=________.(第11题)(第13题) 12.已知点A(-2,y1),B(a,y2),C(3,y3)在反比例函数y=-4x的图象上,且-2<a<0,则y1,y2,y3的大小关系是________.13.如图所示的是一个几何体的三视图,则这个几何体的侧面积为________.14.(2023营口二模)某水果销售网络平台以2.6元/kg的成本价购进20000kg沃柑.如下表是平台销售部通过随机取样,得到的“沃柑损坏率”统计表的一部分,从而可大约估计每千克沃柑的实际售价定为________元时(精确到0.1元),可获得13000元利润.(销售总金额-损耗总金额-销售部分成本=销售总利润)沃柑总质量n/kg (100200300400500)损坏沃柑质量m/kg…10.4419.6330.6239.5450.67沃柑损坏的频率mn(精确到0.001)…0.1040.0980.1020.0990.10115.若关于x的方程x2-3x+m=0有两个不相等的实数根,且m≥-3,则从满足条件的所有整数m中随机选取一个,恰好是负数的概率是________.16.【新趋势学科内综合】若矩形ABCD的两邻边长分别为一元二次方程x2-7x +12=0的两个实数根,则矩形ABCD的对角线长为________.17.如图,已知点A是一次函数y=13x图象上y轴右侧的一点,过点A作x轴的垂线l,B是l上一点(点B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=kx(x>0)的图象过点B,C,若△OAB的面积为12,则△ABC的面积是________.18.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在x轴上,AB=2,A(1,0),∠DAB=60°,将菱形ABCD绕点A旋转90°后,得到菱形AB1C1D1,则点C1的坐标是________.三、解答题(19~20题每题8分,21~25题每题10分,共66分)19.解下列方程:(1)(x+1)2-4=0;(2)x(x-2)=x-2.20.(2023鄂州)如图,点E是矩形ABCD的边BC上的一点,且AE=A D. (1)尺规作图:作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);(2)试判断四边形AEFD的形状,并说明理由.21.画出如图所示的几何体的三视图.22.(新考向传统文化)藏毯作为青海省非物质文化遗产项目之一,与波斯毯、东方毯并称为世界三大名毯.西宁作为藏毯之都,生产的藏毯已成为青海名副其实的特色产品,更是一张通往世界的“金名片”.(1)为了调查一批藏毯的质量,质检人员从中随机抽取了100件产品进行检测.本次抽样调查的样本容量是________;(2)6月10日是我国文化和自然遗产日.某校举办非遗文化进校园活动,决定从A,B,C,D四名同学中随机抽取两人作为“小小宣传员”,为大家介绍青海藏毯文化.请用画树状图或列表的方法求出A,B两人同时被选中的概率.23.【新考向传统文化】正月十五是中华民族的传统节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.某手工汤圆店计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?(2)为保证手工汤圆的最佳口感,汤圆店计划把这21天生产的汤圆放在近10天内销售.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?24.如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C,D.若BO:OA=2:1,BC=3A C.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.25.【新视角动点探究题】如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC =8cm,动点P从点B出发,在BA边上以5cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若△BPQ和△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.答案一、1.B 2.B3.D4.C5.C6.C7.A8.C 点拨:过点A 作AE ⊥OC 于点E ,则AE ∥BC ,∠OEA =∠OCB =90°.∴∠OAE =∠OBC .∴△OAE ∽△OBC .∴S △OAE S △OBC==14.∵S △OAE =k2,∴S △OBC =4S △OAE =2k .∴S △OBC =S △OCD +S △BOD =k2+6=2k ,解得k =4.9.B10.D 点拨:∵四边形ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°.∵BF =CE ,∴DE =FC .∴△ADE ≌△DCF (SAS ).∴∠DAE =∠FDC .∵∠ADE =90°,∴∠ADG +∠FDC =90°.∴∠ADG +∠DAE =90°.∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .又∵AG =AG ,∴△ADG ≌△AMG (ASA ).∴DG =GM ,∴AE 垂直平分DM .故①正确.易知∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE =AE DE.∴DE 2=GE ·AE .又∵DE =CF ,∴CF 2=GE ·AE .故③正确.∵正方形ABCD 的边长为4,∴在Rt △ABC 中,AC =AB 2+BC 2=42+42=4 2.∵△ADG ≌△AMG ,∴AM =AD =4.由图可知△ADM 中AM 边上的高与△ADC 中AC 边上的高相等,设△ADM 中边AM 上的高为h ,则△ADC 中AC 边上的高为h .∵12×AC ×h =12×AD ×DC ,∴h =AD ×DC AC=2 2.∴S △ADM =12·AM ·h =12×4×22=42.故④不正确.∵DM ⊥AG ,DG =GM ,∴点M 关于线段AG 的对称点为点D .过点D 作DN ′⊥AC 于点N ′,连接PD ,如图所示.则PD =PM .∴PM +PN =PD +PN ≥DN ′.∴PM +PN 的最小值即为DN ′.又∵DN ′=h =22,∴PM +PN 的最小值为2 2.故②不正确.综上所述,正确的是①③.二、11.4cm 12.y 3<y 1<y 213.16πcm 214.3.615.1216.517.8点拨:过点C 作CD ⊥y 轴于点D ,交AB 于点E .∵AB ⊥x 轴,∴CD ⊥AB .又∵△ABC 是等腰直角三角形,∴BE =AE =CE .设AB =2a ,则BE =AE =CE =a .设,13x ,13x +2+a ,13x +∵点B ,C 均在反比例函数y =kx(x >0)的图象上,∴+2(x +a +解得x =32a .∵S △OAB =12AB ·DE =12·2a ·x =12,∴ax =12.∴32a 2=12.∴a 2=8.∴S △ABC =12AB ·CE =12·2a ·a =a 2=8.18.(1-3,3)或(1+3,-3)点拨:当菱形ABCD 绕点A 顺时针旋转90°时,如图①,延长C 1D 1交x 轴于点E .易得C 1D 1=AD 1=AD =AB =2.∵∠DAB =60°,∠D 1AD =90°,∴∠D 1AB =30°.∵在菱形ABCD 中,AB ∥CD ,∴∠ADC =120°.∴∠AD 1C 1=∠ADC =120°.∴∠AD 1E =60°.∴∠AED 1=90°.∴ED 1=12AD 1=1.∴C 1E =2+1=3,AE =22-12=3,∴OE =1+3,∴C 1(1+3,-3).当菱形ABCD 绕点A 逆时针旋转90°时,如图②,延长C 1D 1交x 轴于点F .同理可得OF =3-1,C 1F =3.∴C 1(1-3,3).综上所述,C1的坐标为(1-3,3)或(1+3,-3).三、19.解:(1)移项,得(x+1)2=4,两边开平方,得x+1=±2,即x+1=2或x+1=-2.∴x1=1,x2=-3.(2)移项,得x(x-2)-(x-2)=0.提取公因式,得(x-1)(x-2)=0,∴x-1=0或x-2=0,∴x1=1,x2=2. 20.解:(1)作图如图所示.(2)四边形AEFD是菱形.理由如下:∵在矩形ABCD中,AD∥BC,∴∠DAF=∠AFE.∵AF平分∠DAE,∴∠DAF=∠EAF.∴∠AFE=∠EAF.∴AE=EF.∵AE=AD,∴AD=EF.又∵AD∥EF,∴四边形AEFD是平行四边形.又∵AE=AD,∴平行四边形AEFD是菱形.21.解:如图所示.22.解:(1)100(2)根据题意列表如下:第一人A B C D 第二人A—BA CA DA B AB —CB DB C AC BC —DC DADBDCD—由表格可知,共有12种等可能的结果,其中A ,B 两人同时被选中的结果共有2种,即AB ,BA ,所以P (A ,B 两人同时被选中)=16.23.解:(1)设总共生产了a 袋手工汤圆,依题意得0.3a 450+0.5a300=21,解得a =9000.答:总共生产了9000袋手工汤圆.(2)设促销时每袋应降价x 元,若刚好10天全部卖完,则依题意得225×2×(25-13)+8×(25-13-x )(225+752x )=40500,整理得x 2-6x +45=0,∵Δ=(-6)2-4×45<0,∴方程无解.∴10天不能全部卖完.∴第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店的利润为(15-13)[9000-2×225-+752x=13500-600x (元).依题意得225×2×(25-13)+8×(25-13-x +752x13500-600x =40500,整理得,x 2-4x =0,解得x 1=0,x 2=4.∵要促销,∴x =4.即促销时每袋应降价4元.24.解:(1)∵A (4,0),∴OA =4.又∵BO :OA =2:1,∴OB =8.∴B (0,8).∵A ,B 两点在直线y =ax +b 上,a +b =0,=8,=-2,=8.∴一次函数的表达式为y =-2x +8.如图,过点C 作CE ⊥OA 于点E .∵BC =3AC ,∴AB =4AC .易知CE ∥OB ,∴△ACE ∽△ABO .∴CE OB =AE OA =AC AB =14.∴CE =2,AE =1.∴OE =3.∴C (3,2).∵点C 在反比例函数y =kx(x >0)的图象上,∴k =3×2=6.∴反比例函数的表达式为y =6x.(2)由(1)=-2x +8,=6x .1=1,1=6.2=3,2=2.∴D (1,6).如图,过点D 作DF ⊥y 轴于点F ,则DF =1.∴S △OCD =S △AOB -S △BOD -S △COA =12·OA ·OB -12·OB ·DF -12·OA ·CE =12×4×8-12×8×1-12×4×2=8.25.解:(1)由题易知AB =10cm ,BP =5t cm ,CQ =4t cm ,∴BQ =(8-4t )cm .当△PBQ ∽△ABC 时,有BP BA =BQ BC ,即5t 10=8-4t8,∴t =1.当△QBP ∽△ABC 时,有BQ BA =BP BC,即8-4t 10=5t 8,∴t =3241.∴若△BPQ 和△ABC 相似,则t =1或t =3241.(2)如图,过点P 作PD ⊥BC 于点D ,则PD ∥AC .易得△PBD ∽△ABC .∴BP AB =PD AC =BD BC.由(1)知AB =10cm ,BP =5t cm ,可求得PD =3t cm ,BD =4t cm ,∴CD =(8-4t )cm.∵AQ ⊥CP ,∠ACB =90°,∴∠CAQ +∠ACP =90°,∠DCP +∠ACP =90°.∴∠CAQ =∠DCP .又∵∠CDP =∠ACQ =90°,∴△CPD ∽△AQC .∴CD AC =PD QC ,即8-4t 6=3t 4t =34.∴t =78.点易错:解答动态问题时,要注意分类讨论思想的应用.相似三角形对应边的位置不同,解出来的t 值也不同,应充分考虑所有可能出现的情况,避免漏解.。

九年级数学上册第一学期期中综合测试卷(湘教版 2024年秋)

九年级数学上册第一学期期中综合测试卷(湘教版 2024年秋)

九年级数学上册第一学期期中综合测试卷(湘教版2024年秋)一、选择题(每题3分,共30分)题序12345678910答案1.若关于x 的方程(k -1)x 2+3x -2=0是一元二次方程,则k 的取值范围是()A .k ≠1B .k =1C .k ≠0D .k >12.下列各点在反比例函数y =-3x的图象上的是()A .(1,3)B .(-1,-3)C .(3,-1)D .(-3,-1)3.已知a b =34,则a +b b的值是()A .1B.43C.32D.744.用配方法解方程x 2-10x -1=0时,变形正确的是()A .(x -5)2=26B .(x +5)2=26C .(x -5)2=24D .(x +5)2=245.如图,已知AB ∥CD ∥EF ,AD ∶AF =3∶5,若BE =10,则CE 的长等于()A .4B .5C .6D .7(第5题)(第6题)6.如图,在四边形ABCD 中,已知∠ADC =∠BAC ,那么补充下列条件后不能判定△ADC 和△BAC 相似的是()A .CA 平分∠BCDB .AC 2=BC ·CDC .∠DAC =∠ABCD.AD AB =DC AC7.关于x 的一元二次方程x 2+kx +k -1=0的根的情况,下列说法中正确的是()A .有两个实数根B .有两个不相等的实数根C.有两个相等的实数根D.无实数根8.在同一坐标系中,函数y=-kx和y=kx+2的图象大致是()9.如图,某小区居民休闲娱乐中心是一块长方形(长60米,宽40米)的场地,被3条宽度相同的绿化带分为总面积为1750平方米的活动场所,设绿化带的宽度为x米,由题意可列方程为()(第9题)A.(60-x)(40-x)=1750B.(60-2x)(40-x)=1750C.(60-2x)(40-2x)=1750D.(60-x)(40-2x)=1750 10.如图,已知矩形ABCD与矩形BEFG是位似图形,原点O是位似中心,若点D的坐标为(-2,1),点F的坐标为(-8,2),则S矩形ABCD∶S矩形BEFG等于() A.1∶4B.1∶6C.1∶8D.1∶9(第10题)(第14题)二、填空题(每题3分,共18分)11.若函数y=(m+1)xm2-1是反比例函数,则m=________.12.若点A(-1,m),B(-2,n)在双曲线y=4x上,则m,n的大小关系是m________n. 13.若关于x的一元二次方程(k-2)x2-5x+k2-4=0有一个解为x=0,则k=________.14.三角尺在灯泡O的照射下在墙上形成的影子如图所示,若OA=25cm,AA′=50cm,则这个三角尺的周长与它在墙上的影子的周长的比是__________.15.已知m,n是方程x2+3x-6=0的两根,则(m-2)(n-2)的值为________.16.如图,反比例函数y=-6x在第二象限的图象上有两点A,B,它们的横坐标分别为-1,-3,直线AB与x轴交于点C,则△AOC的面积为________.(第16题)三、解答题(17~20题每题6分,21~23题每题8分,24~25题每题12分,共72分)17.解方程:(1)x(x+3)=7(x+3);(2)x2-4x-7=0.18.已知反比例函数y=2-kx的图象经过点A(3,-2).(1)求k的值;<x2,请(2)若点C(x1,y1),B(x2,y2)均在反比例函数y=2-kx的图象上,且0<x1直接写出y1,y2的大小关系.19.如图,O为原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以O 为位似中心,在y 轴左侧将△OBC 放大2倍,得到△OB ′C ′,请画出图形(B ,C 两点的对应点分别为B ′,C ′);(2)分别写出点B ′,C ′的坐标;(3)已知M (x ,y )为△OBC 内部一点,写出点M 的对应点M ′的坐标.(第19题)20.如图,在平面直角坐标系xOy 中,菱形OABC 的顶点A 在x 轴的正半轴上,反比例函数y =12x(x >0)的图象经过点C (3,m ).(1)求菱形OABC 的周长;(2)求点B 的坐标.(第20题)21.当今社会,“直播带货”已经成为商家的一种新型的促销手段.小亮在直播间销售一种进价为每件10元的日用品,经调查发现,该日用品每天的销售量y(件)与销售单价x(元)满足一次函数关系,部分数据如下表:销售单价x/元202530销售量y/件200150100(1)求y与x之间的函数表达式;(2)该商家每天想获得2160元的利润,又要尽可能地减少库存,应将销售单价定为多少元?22.关于x的一元二次方程x2-(2k-1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1,x2满足x1+x2=-x1x2,求k的值.23.如图①是一个台球桌,其桌面示意图如图②所示,矩形桌面ABCD中,AD =260cm,AB=130cm,球目前在点E的位置,AE=60cm.如果小丁瞄准BC 边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置,求BF的长.(提示:台球的反弹原理是反射角等于入射角)(第23题)24.阅读以下文字并解答问题:在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:(第24题)小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图①).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图②),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小明:测得丙树落在地面上的影长为2.4米,落在坡面上的影长为3.2米(如图③).身高是1.6米的小明站在坡面上,影子也都落在坡面上,小芳测得他的影长为2米.(1)甲树的高度为________米,乙树的高度为________米;(2)请求出丙树的高度.25.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合),以AD为边作菱形ADEF(A,D,E,F按逆时针排列),使∠DAF=60°,直线EF与直线BC交于点H.(1)如图①,当点D在边BC上时,试说明:AD2=DH·AC;(2)如图②,当点D在边BC的延长线上且其他条件不变时,结论AD2=DH·AC是否还成立?若成立,请说明理由;若不成立,请写出AD、DH、AC之间存在的数量关系;(3)如图③,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AD、DH、AC之间存在的数量关系.(第25题)答案一、1.A 2.C 3.D 4.A 5.A 6.B7.A8.D9.B10.A二、11.012.<13.-214.1∶3思路点睛:先求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.15.416.12点拨:因为反比例函数y=-6x在第二象限的图象上有两点A,B,它们的横坐标分别为-1,-3,所以易得A(-1,6),B(-3,2).设直线AB的表达式为y=kx+b k+b=6,3k+b=2,=2,=8,所以直线AB的表达式为y=2x+8,令y=0,则x=-4,所以CO=4,所以△AOC的面积为12×6×4=12.三、17.解:(1)移项,得x(x+3)-7(x+3)=0,所以(x+3)(x-7)=0,所以x+3=0或x-7=0,解得x1=-3,x2=7.(2)移项,得x2-4x=7,配方,得x2-4x+4=7+4,所以(x-2)2=11,所以x-2=±11,解得x1=11+2,x2=-11+2.18.解:(1)将点A(3,-2)的坐标代入y=2-kx,得-2=2-k3,解得k=8.(2)y1<y2.(第19题)19.解:(1)如图,△OB′C′即为所求.(2)B′(-6,2),C′(-4,-2).(3)点M′的坐标为(-2x,-2y).20.解:(1)因为反比例函数y=12x(x>0)的图象经过点C(3,m),所以m=4,所以C(3,4).作CD⊥x轴于点D,所以OD=3,CD=4,所以由勾股定理,得OC=OD2+CD2=5.所以菱形OABC的周长是4×5=20.(2)作BE⊥x轴于点E,因为四边形OABC是菱形,所以BC=OC=5,所以OE=OD+BC=3+5=8.因为BC∥OA,所以BE=CD=4,所以B(8,4).21.解:(1)根据题意可设y与x之间的函数表达式为y=kx+b,把(20,200),(25,150)代入,20k+b=200,25k+b=150,k=-10,b=400,故y与x之间的函数表达式为y=-10x+400.(2)根据题意可得(-10x+400)(x-10)=2160,整理得x2-50x+616=0,解得x1=28,x2=22.因为要减少库存,所以取x=22.答:应将销售单价定为22元.22.解:(1)根据题意,得Δ=[-(2k-1)]2-4×1×(k2+1)=-4k-3>0,解得k<-34.(2)因为x1+x2=2k-1,x1x2=k2+1,x1+x2=-x1x2,所以2k-1=-(k2+1),整理得k2+2k=0.解得k1=0,k2=-2,因为k<-34,所以k=-2.23.解:∵四边形ABCD 为矩形,∴∠EBF =∠FCD =90°,AD =BC =260cm ,AB =CD =130cm.过点F 作FG ⊥BC ,如图,易知∠EFG =∠DFG ,∴∠EFB =∠DFC ,∴△BEF ∽△CDF ,∴BE CD =BF CF.∵AE =60cm ,∴BE =AB -AE =70cm ,∴70130=BF 260-BF,解得BF =91cm.即BF 的长是91cm.(第23题)(第24题)24.解:(1)5.1;4.2(2)如图,假设AB 是丙树,BF 为丙树落在地面上的影长,FE 为丙树落在坡面上的影长,CD 为小明,CE 为小明落在坡面上的影长,则BF =2.4米,FE =3.2米,CD =1.6米,CE =2米.延长BF 交AE 于点H ,作FG ⊥BF ,交AE 于点G ,由小芳的测量方法易知FG FH =10.8=54.∵易知CD ∥FG ,∴△CDE ∽△FGE ,∴CD FG =CE FE ,∴1.6FG =23.2,∴FG =2.56米.∴FH =2.048米.∵易知GF ∥AB ,∴△FGH ∽△BAH ,∴FG BA =FH BH ,∴2.56BA = 2.0482.4+2.048,∴BA =5.56米,故丙树的高度为5.56米.25.解:(1)∵四边形ADEF 是菱形,∠DAF =60°,∴AD ∥EF ,∠DAF =∠E =60°,AD =DE ,∴∠ADC =∠DHE .∵△ABC 是等边三角形,∴∠ACD =60°,∴∠ACD =∠E ,∴△ACD ∽△DEH ,∴AD DH =AC DE ,即AD DH =ACAD,∴AD 2=DH ·AC .(2)成立.理由如下:∵四边形ADEF 是菱形,∠DAF =60°,∴AD ∥EF ,∠DAF =∠DEF =60°,AD =DE ,∴∠ADC =∠DHE ,∠DEH =120°.∵△ABC 是等边三角形,∴∠ACB =60°,11∴∠ACD =120°,∴∠ACD =∠DEH,(第25题)∴△ACD ∽△DEH ,∴AD DH =AC DE ,即AD DH =AC AD,则AD 2=DH ·AC .(3)补全图形如图,数量关系为AD 2=DH ·AC .。

九年级数学上册 各单元综合测试题及答案5套

九年级数学上册 各单元综合测试题及答案5套

人教版九年级数学上册第二十一章综合测试卷02一、选择题(每小题5分,共40分)1.将方程2324664x x x x +-+=+()化为一元二次方程的一般形式后,其二次项系数和一次项系数分别为()A .3-,6-B .3,6C .3,6-D .3,2-2.方程2353x x x -=-()()的根是()A .52x =B .3x =C .13x =,22x =D .12x =-,23x =-3.(2014·广东)关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为()A .94m >B .94m <C .94m =D .94m -<4.若一元二次方程()200ax bx c a ++=≠中的0a b c ++=,则该方程必有一根为()A .0B .1C .1-D .1±5.下列方程没有实数根的是()A .2423x x +=()B .2510x x --=()C .2100x x -=D .2924160x x -+=6.若1x ,2x 是一元二次方程210160x x ++=的两根,则12x x +的值是()A .10-B .10C .16-D .167.经计算整式1x +与4x -的积为234x x --,则一元二次方程2340x x --=的根为()A .11x =-,24x =-B .11x =-,24x =C .11x =,24x =D .11x =,24x =-8.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x ,可列方程为()A .22 0161 1 500x -=()B .21 5001 2 160x +=()C .21 50012160x -=()D .21 500 1 5001 1 50012 160x x ++++=()()二、填空题(每小题5分,共15分)9.已知关于x 的方程220x x k ++=的一个根是1-,则k =_________.10.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则m 的值为_________.11.若|1|0b -=,且关于x 的一元二次方程20kx ax b ++=有实数根,则k 的取值范围是_________.三、解答题(共45分)12.(15分)用适当的方法解下列方程.(1)2270x x --=;(2)22570x x --=;(3)(1)(3)12x x -+=.13.(10分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?14.(10分)已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.15.(10分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件.批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x 元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价/元8040销售量/件200(2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?第二十一章综合测试答案解析1.【答案】D 【解析】化成一般形式为23220x x --=.2.【答案】C 【解析】用因式分解法求解即可。

九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)

九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)

九年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.2cos45°的值等于()A.1 B.2 C.3D.22.下列函数中,一定是反比例函数的是()A.y=-2x-1B.y=kx-1C.y=4x D.y=1x-13.已知二次函数y=-3(x-2)2-3,下列说法正确的是()A.图象的对称轴为直线x=-2B.图象的顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-34.如图,在△ABC中,点D是AB边上一点,下列条件中,能使△ABC与△BDC 相似的是()A.∠B=∠ACD B.∠ACB=∠ADCC.AC2=AD·AB D.BC2=BD·AB(第4题)5.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1 C.x1<x3<x2D.x2<x1<x3 6.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为() A.1:4B.3:4C.2:3D.1:2(第6题)(第7题)7.如图,在△ABC中,∠C=45°,tan B=3,AD⊥BC于点D,AC=2 6.若E,F分别为AC,BC的中点,则EF的长为()A.233B.2C.3D.238.已知二次函数y=ax2+bx-2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a-b-2,则t的取值范围是()A.-2<t<0B.-3<t<0C.-4<t<-2D.-4<t<0 9.如图,在x轴的正半轴上依次截取OP1=P1P2=P2P3=…=P n-1P n=1,过点P1,P2,P3,…,P n分别作x轴的垂线,与反比例函数y=2x(x>0)的图象交于点Q1,Q2,Q3,…,Q n,连接Q1Q2,Q2Q3,…,Q n-1Q n,过点Q2,Q3,…,Q n分别向P1Q1,P2Q2,…,P n-1Q n-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()(第9题)A.2n+1B.2n C.n-1n D.n+22n10.如图,正方形ABCD的边长为2cm,点O为正方形的中心,点P从点A出发沿A-O-D运动,同时点Q从点B出发沿BC运动,连接BP,PQ,在移动的过程中始终保持PQ⊥BC.已知点P的运动速度为2cm/s,设点P的运动时间为t(s),△BPQ的面积为S(cm2),下列图象能正确反映出S与t的函数关系的是()(第10题)二、填空题(本大题共4小题,每小题5分,满分20分)11.如果α是锐角,sin α=cos 30°,那么α=________°.12.已知3a =4b ,则3a +2b a -b=________.13.已知点C 是线段AB 的黄金分割点,且AB =5+1,则AC 的长是________.14.如图,抛物线y =-x 2+2x +c 交x 轴于A (-1,0),B 两点,交y 轴于点C ,D 为抛物线的顶点.(第14题)(1)点D 的坐标为________;(2)若点C 关于抛物线对称轴的对称点为点E ,M 是抛物线对称轴上一点,且△DMB和△BCE 相似,则点M 的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:27+-122-3tan 60°+(π-2)0.16.已知:如图,△ABD ∽△ACE .求证:(1)∠DAE =∠BAC ;(2)△DAE ∽△BAC .(第16题)四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,△CAB的顶点坐标分别为点C(1,1),A(2,3),B(4,2).(1)以点C(1,1)为位似中心,按21在位似中心的同侧将△CAB放大为△CA′B′,放大后点A,B的对应点分别为A′,B′,画出△CA′B′,并写出点A′,B′的坐标;(2)在(1)中,若P(a,b)为线段AB上任意一点,请直接写出变化后点P的对应点P′的坐标.(第17题)18.《九章算术》中有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问:走出南门多少步恰好能望见这棵树?(注:1里=300步)(第18题)五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=ax2+bx+c与x的一些对应值如下表:x…-101234…y=ax2+bx+c…3-13…(1)根据表格中的数据,该二次函数的表达式为__________;(2)填写表格中空白处的对应值,并利用五点作图法在下面的网格图中画出该二次函数y=ax2+bx+c的图象(不必重新列表);(3)根据图象回答:①当1≤x≤4时,y的取值范围是________________;②当x取什么值时,y>0?(第19题)(m≠0,x>0)的图象20.如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=mx交于点A(2,n),与y轴交于点B,与x轴交于点C(-4,0).(1)直接写出k,m的值;(2)若P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.(第20题)六、(本题满分12分)21.“山地自行车速降赛”是一种新兴的极限运动,这项运动的赛道需全部是下坡骑行路段.如图是某一下坡赛道,由AB,BC,CD三段组成,在同一平面内,其中AB段的俯角是30°,长为2m,BC段与AB段,CD段都垂直,长为1m,CD段长为3m,求此下坡赛道的垂直高度.(结果保留根号)(第21题)七、(本题满分12分)22.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数表达式y=a(x-h)2+k.二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)该二次函数的表达式y=a(x-h)2+k为__________;(2)分别求出前9个月公司累计获得的利润以及10月一个月内所获得的利润;(3)在1~12月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?(第22题)八、(本题满分14分)23.【项目化学习】背景:小明是学校的一名升旗手,他在考虑如何能让国旗在国歌结束时,刚好升至旗杆顶端?要解决此问题就要知道学校旗杆的高度,为此他与同学们进行了专题项目研究.主题:测量学校旗杆的高度.分析探究:旗杆的高度不能直接测量,需要借助一些工具,比如小镜子、标杆、皮尺、小木棒、自制的直角三角形硬纸板……确定方案后,画出测量示意图,并进行实地测量,得到具体数据,从而计算出旗杆的高度.成果展示:下面是部分测量方案及测量数据.方案一方案二工具皮尺标杆,皮尺测量方案选一名同学直立于旗杆影子的顶端处,测量该同学的身高和影长及同一时刻旗杆的影长.选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆,使旗杆的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上,这时测出观测者的脚到旗杆底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段AB表示旗杆,这名同学的身高CD=1.8m,这名同学的影长DE=1.44m,同一时刻旗杆的影长BD=10.32m.线段AB表示旗杆,标杆EF=2.6m,观测者的眼睛到地面的距离CD=1.7m,观测者的脚到旗杆底端的距离DB=16.8m,观测者的脚到标杆底端的距离DF=1.35m.……请你继续完善上述成果展示.任务一:写出“方案一”中求旗杆高度时所利用的知识:____________________________;(写出一个即可)任务二:根据“方案二”的测量数据,求学校旗杆AB的高度;任务三:写出一条你在活动中的收获、反思或困惑.答案一、1.B 2.C3.C4.D5.B6.B7.B8.D 9.C10.D 点拨:如图①,当点P 在OA 上时,0≤t ≤1,延长QP 交AD 于点E ,则PE ⊥AD ,由题意得BQ =t cm ,AP =2t cm ,易得AE =PE =t cm ,QE =AB =2cm ,∴PQ =(2-t )cm ,∴S =12BQ ·PQ =12t (2-t )=-12t 2+t ;(第10题)如图②,当点P 在OD 上时,1<t ≤2,由题意得PQ =BQ =t cm ,∴S =12t 2.二、11.6012.-1713.2或5-114.(1)(1,4)(2)(1,-2)三、15.解:原式=33+4-33+1=5.16.证明:(1)∵△ABD ∽△ACE ,∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC .(2)∵△ABD ∽△ACE ,∴AD AE =AB AC ,∴AD AB =AE AC,而∠DAE =∠BAC ,∴△DAE ∽△BAC .四、17.解:(1)如图,△CA ′B ′即为所求.其中A ′(3,5),B ′(7,3).(第17题)(2)P ′(2a -1,2b -1).18.解:如图,由题意,得AB =15里,AC =4.5里,CD =3.5里.(第18题)∵DE ⊥CD ,AC ⊥CD ,∴AC ∥DE ,∴△ACB ∽△DEC ,∴DE AC =DC AB ,即DE 4.5=3.515,解得DE =1.05里=315步.答:走出南门315步恰好能望见这棵树.五、19.解:(1)y =x 2-4x +3(2)x …-101234…y =ax 2+bx +c…83-13…函数图象如图所示.(第19题)(3)①-1≤y ≤3②当x <1或x >3时,y >0.20.解:(1)k 的值为12,m 的值为6.(2)易知B (0,2).∵P (a ,0)为x 轴上的一动点,∴PC =|a +4|,∴S △CBP =12PC ·OB =12×|a +4|×2=|a +4|,S △CAP =12PC ·y A =12×|a +4|×3=32|a +4|.∵S △CP A =S △ABP +S △CBP ,∴32|a +4|=72+|a +4|,解得a =3或-11.六、21.解:如图,延长AB 与直线l 2交于点E ,过点D 作DF ⊥BE 于点F ,过点A 作AG ⊥l 2于点G ,易得DF =BC =1m ,BF =CD =3m ,∠FED =30°.在Rt △DEF 中,tan 30°=DF EF,∴EF =3m ,∴AE =AB +BF +EF =2+3+3=(5+3)m.在Rt △AGE 中,AG =12AE =5+32m.答:此下坡赛道的垂直高度为5+32m.(第21题)七、22.解:(1)y =(x -4)2-16(2)当x =9时,y =(9-4)2-16=9,答:前9个月公司累计获得的利润为9万元;当x =10时,y =20.20-9=11(万元).答:10月一个月内所获得的利润为11万元.(3)设在1~12月中,第n 个月该公司一个月内所获得的利润为s 万元,则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9.∵2>0,∴s 随n 的增大而增大.又∵n 的最大值为12,∴当n =12时,s 取最大值,为15.答:12月该公司一个月内所获得的利润最多,最多利润是15万元.八、23.解:任务一:相似三角形的判定与性质(答案不唯一)任务二:如图,过点C 作CG ⊥AB 于点G ,交EF 于点H ,则易得四边形CDBG 与四边形CDFH 是矩形,(第23题)∴CH =DF =1.35m ,CG =BD =16.8m ,CD =HF =GB =1.7m ,∴EH =EF -HF =2.6-1.7=0.9(m).由题意得EF ∥AB ,∴△CEH ∽△CAG ,∴CH CG =EH AG ,∴1.3516.8=0.9AG,∴AG =11.2m.∴AB =AG +BG =11.2+1.7=12.9(m).答:学校旗杆AB 的高度为12.9m.任务三:在利用阳光下的影子测量时,如果没有太阳光,会影响测量;测量数据不准确,在测量过程中为了避免误差太大,可以多次测量,取平均值作为最后的测量结果;在项目研究中感受到了数学与生活的联系等.(答案不唯一,表述合理即可)。

人教版九年级数学上册综合检测试卷(全册)【有答案】

人教版九年级数学上册综合检测试卷(全册)【有答案】

人教版九年级数学上册综合检测试卷(全册)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.一元二次方程的解是()A. B.C.无解D.或2.一台机器原价万元,如果每年的折旧率是,两年后这台机器的价格为万元,则与的函数关系式为()A. B.C. D.3.下列命题中正确的是()A.过圆心的线段叫做圆的直径B.面积相等的两个圆是等圆C.大于半圆的弧叫劣弧D.平分弦的直径垂直于这条弦4.如图,在方格纸中的经过变换得到,正确的变换是()A.把向右平移格B.把向右平移格,再向上平移格C.把绕着点顺时针方向旋转,再右平移格D.把绕着点逆时针方向旋转,再右平移格5.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数相差的概率是()A. B. C. D.6.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B.C.且D.且7.已知关于的方程的两个根分别是和,则和的值分别是()A.,B.,C.,D.,8.在半径为的圆中,长为的弦所对的圆心角的度数是()A. B. C. D.9.同时掷两个质地均匀的骰子,两个骰子向上一面的点数相同的概率是()A. B. C. D.10.一条排污水管的横截面如图所示,已知排污水管的横截面圆半径,横截面的圆心到污水面的距离,则污水面宽等于()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,在平面直角坐标系中,是直角三角形,两条直角边的长分别是,.先将绕原点逆时针旋转得到,然后继续将绕原点逆时针旋转得到,则点的坐标是________,点的坐标是________.12.如果函数的图象是抛物线,那么这个抛物线的顶点坐标是________.13.为了庆祝中华人民共和国成立周年,同学们通过互送贺卡来表示喜悦的心情.已知某班的一个数学学习小组一共送出卡片张,则此小组有学生________人.14.如图,在中,,,,现将绕点逆时针旋转得到,则阴影部分的面积为________.15.已知的周长为,若,则点在________;若,则点在________;若,则点在________.16.已知的半径是,圆心到直线的距离是,则直线与的位置关系是________.17.一个扇形的圆心角为,这个扇形的弧长是,则这个扇形的面积是________.18.如图,中,点关于点的对称点是点________.19.某玩具店进了一箱黑白两种颜色的塑料球个(除颜色外都相同),为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子里,多次重复上述过程后,发现摸到黑球的频率在附近波动,据此可以估算黑球的个数约为________个.20.如图,给出了二次函数的图象,对于这个函数有以下结论:① ;② ;③ ;④ ;⑤ ;⑥ ,其中正确的有________(填序号)三、解答题(共 8 小题,共 60 分)21.(16分)解方程:.22.(6分) 如图,在平面直角坐标系中,的顶点、、.作出关于原点对称的;作出绕点顺时针方向旋转后得到的;求出在的变换中点所经过路径的长.23.(6分) 已知二次函数(为常数).若该二次函数的图象与两坐标轴有三个不同的交点,求的取值范围;已知该二次函数的图象与轴交于点和点,与轴交于点,顶点为,若存在点使得与面积相等,求的值.24.(6分)如图,在中,,,以为直径的圆交于,交于,求图中阴影部分的面积.25.(6分)某商场经营某种品牌的玩具,购进时的单价是元,根据市场调查发现:在一段时间内,当销售单价是元时,销售量是件,而销售单价每涨元,就会少售出件玩具.若商场要获得元销售利润,该玩具销售单价应定为多少元?售出玩具多少件?26.(6分) 已知关于的方程.求证:无论取任何实数时,方程总有实数根;当抛物线(为正整数)图象与轴两个交点的横坐标均为整数,求此抛物线的解析式;已知抛物线恒过定点,求出定点坐标.27.(6分) 如图,在足够大的空地上有一段长为米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了米木栏.(1)若,所围成的矩形菜园的面积为平方米,求所利用旧墙的长;(2)求矩形菜园面积的最大值.28.(8分) 研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.盒中红球、黄球各占总球数的百分比分别是多少?盒中有红球多少个?答案1.D2.A3.B4.D5.B6.C7.A8.C9.B10.A11.12.13.14.15.内上外16.相切17.18.19.①④⑤⑥21.解:)方程整理得:,这里,,,∵ ,∴,∴,;分解因式得:,可得或,解得:,.移项得,��开平方得,,移项得,,.∵,∴,∴,∴.22.解:如图所示:如图所示:弧的长.23.解:由题意可得,该二次函数与轴有两个不同的交点,也就是当时,方程有两个不相等的实数根,即,所以,.又因为该二次函数与两个坐标轴有三个不同的交点,所以.综上,若该二次函数的图象与两坐标轴有三个不同的交点,的取值范围为且.因为点在该二次函数图象上,可得,.所以该二次函数的关系式为,可得.由,可得,.若点使得与面积相等,可得点、到的距离相等,此时,.设过点、的直线的函数关系式为,即解得设过点、的直线的函数关系式为,即,解得.即,当时,,即.24.解:连接、、,∵ ,,∴ ,(三线合一)∵ (同弧所对的圆周角相等),∴ ,∴,即阴影部分面积之和即为,∵ (直角三角形斜边上的中线等于斜边的一半),∴∴ ,∴相似比,,,∴阴影部分面积为:.25.解:设该玩具销售单价应定为元,则售出玩具件,根据题意得:,整理得:,解得:,.当时,;当时,.26.证明:①当时,方程为,所以,方程有实数根,②当时,∵ ,即,∴无论取任何实数时,方程总有实数根;解:令,则,解关于的一元二次方程,得,,∵二次函数的图象与轴两个交点的横坐标均为整数,且为正整数,∴ .∴该抛物线解析式为;依题意得恒成立,即恒成立,则,解得或.所以该抛物线恒过定点、.27.设,则,根据题意得,解得,,当时,,不合题意舍去;当时,,答:的长为;设,∴,当时,则时,的最大值为;当时,则当时,随的增大而增大,当时,的最大值为,综上所述,当时,的最大值为;当时,的最大值为.28.红球占,黄球占;由题意可知,次摸球实验活动中,出现有记号的球次,∴总球数为,∴红球数为,答:盒中红球有个.。

九年级上册期末综合测试卷(A卷)(原卷)

九年级上册期末综合测试卷(A卷)(原卷)

2022-2023学年九年级上册综合测试卷(A卷)数学(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。

1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=32.下面左侧几何体的左视图是()A .B .C .D .3.如果=2,则的值是()A.3B.﹣3C .D .4.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20B.30C.40D.505.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣36.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950B.300(1+x2)=950C.300(1+2x)=950D.300(1+x)2=9507.若点(1,﹣3)、(﹣2,m)都是反比例函数y =(k≠0)的图象上的点,则m的值是()A .B .C.6D.﹣68.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°9.如图,DE∥BC,CD与BE相交于点O ,若,则的值为()A .B .C .D .10.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.abc<0B.2a+b<0C.b2﹣4ac<0D.a+b+c<012.如图,点P 是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF ⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF 的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共6题,每小题3分,共18分)。

2023-2024学年人教版九年级数学上册第22章综合训练卷附答案解析

2023-2024学年人教版九年级数学上册第22章综合训练卷附答案解析

2023-2024学年九年级数学上册第22章综合训练卷二次函数(满分120分)一、选择题(本大题共有10个小题,每小题4分,共40分)1.抛物线2(1)2y x =-+的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)2.已知函数2y ax =的图象经过点P (-1,4),则该图象必经过点()A.(1,4)B.(-1,-4)C.(-4,1)D.(4,-1)3.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y =(x -1)2+2B.y =(x +1)2+2C.y =(x -1)2-2D.y =(x +1)2-24.已知点A(﹣2,a),B(﹣1,b),C(3,c)均在抛物线y=﹣2(x+1)2+3上,则a,b,c 的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.a<b<c5.如图,已知二次函数21y ax bx c =++与一次函数2y kx m =+的图像相交于点(5,3)A --,(3,4)B 则关于x 的方程2ax bx c kx m ++=+的解是()A.15x =-,23x =-B.13x =-,24x =C.13x =,24x =D.15x =-,23x =6.如图是二次函数y =ax 2+bx +c 的图象,下列结论:①二次三项式ax 2+bx +c 的最大值为4;②4a +2b +c <0;③一元二次方程ax 2+bx +c =1的两根之和为﹣1;④使y ≤3成立的x 的取值范围是x ≥0.其中正确的个数有()A.1个B.2个C.3个D.4个7.已知二次函数2y ax bx c =++的图象如图所示,那么下列判断不正确的是()A.0ac <B.0a b c -+>C.4b a =-D.关于x 的方程20ax bx c ++=的根是1215x x =-=,8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米9.二次函数2y ax bx c =++(0a ≠)的图象如图所示,则一次函数y ax b =-(0a ≠)与反比例函数cy x =(0c ≠)在同一平面直角坐标系中的图象大致是()A.B.C.D.10.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是1x =.下列结论中:①<0abc ;②20a b +=;③0a c +>;④若点(),A m n 在该抛物线上,则2am bm c a b c ++≤++.⑤方程24ax bx c ++=有两个不相等的实数根;其中正确的有()A.5个B.4个C.3个D.2个二、填空题(本大题共有6个小题,每小题4分,共24分)11.抛物线()21y x =+与y 轴的交点坐标是_______12.如图,抛物线2y ax bx c =++的对称轴为直线=1x -,且经过点(1,0),则93a b c -+的值是_______13.如图,一名学生推铅球,铅球行进高度y (单位:m)与水平距离x (单位:m)之间的关系是1(10)(4)12y x x =--+,则铅球推出的距离OA =m.14.抛物线的部分图像如图所示,则当y >0时,x 的取值范围是.15.如图,坐标系中正方形网格的单位长度为1,抛物线y 1=-12x 2+3向下平移2个单位后得抛物线y 2,则阴影部分的面积S =.16.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y =a 1x 2+b 1x +c 1,则下列结论正确的是.(写出所有正确结论的序号)①b >0;②a ﹣b +c <0;③阴影部分的面积为4;④若c =﹣1,则b 2=4a .三、解答题(本大题共有10个小题,共86分)17.已知二次函数22y x x m =-++.(1)如果二次函数的图像与x 轴有两个交点,求m 的取值范围;(2)如图,二次函数的图像过点A (3,0),与y 轴交于点B ,直线AB 与这个二次函数图像的对称轴交于点P ,求点P 的坐标.18.已知:如图,以A 为顶点的抛物线交y 轴于点B .(1)点B 的坐标为______;(2)求这个抛物线的解析式;(3)求出这个抛物线与x 轴的交点坐标C 、D .19.如图,已知二次函数23y ax bx =++的图象交x 轴于点()1,0A ,()3,0B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的顶点,求BCP 面积.20.如图,经过原点的抛物线22y x mx =+与x 轴交于另一点()2,0A .(1)求m 的值和抛物线顶点M 的坐标;(2)在y 轴上求一点P ,使PAM △的周长最小.21.抛物线2y x bx c =-++交x 轴于点(4,0)A ,交y 轴于点(0,4)B .(1)求抛物线的解析式,并直接写出抛物线的对称轴和另一个与x 轴交点C 的坐标;(2)直接写出当0y <时,x 的取值范围.(3)如图,点P 是线段AB 上方抛物线上一动点,当P 点的坐标为_______时,PAB 的面积最大.22.如图,是一个运动员投掷铅球的抛物线图,解析式为21251233y x x =-++(单位:米),其中点A 为出手点,点C 为铅球运行中的最高点,点B 为铅球落地点,求:(1)出手点A 离地面的高度;(2)最高点C 离地面的高度;(3)该运动员的成绩是多少米?23.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于()1,0A -,()3,0B ,与y 轴交于点()0,3C ,D 为抛物线的顶点.(1)求此二次函数的解析式;(2)求CDB △的面积;(3)在其对称轴右侧的抛物线上是否存在一点P ,使PDC △是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克)506070销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)要使商品每天的总利润为1600元,则每千克售价x 为多少元?(3)设商品每天的总利润为W (元).求W 与x 之间的函数表达式,并指出售价为多少元时获得最大利润?最大利润是多少?(利润=收入-成本)25.已知二次函数2y x bx c =-++的图象过点()4,0A 、()1,0C -.(1)求b 、c 的值;(2)如图,二次函数的图象与y 轴交于点B ,二次函数图象的对称轴与直线AB 交于点P ,求P 点的坐标;(3)在第一象限内的抛物线上有一点Q ,当QAB 的面积最大时,求点Q 的坐标.26.如图,二次函数2=23y x x --与x 轴交于A 、B 两点(A 点在B 点的左侧),直线y x m =+与抛物线交于A 、C 两点.(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点P 作y 轴平行线交AC 于E 点,当EP 最长时求此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点N ,使以,,,A B M N 为顶点的四边形为平行四边形?若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.(解答卷)二、选择题(本大题共有10个小题,每小题4分,共40分)1.抛物线2(1)2y x =-+的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)【答案】D2.已知函数2y ax =的图象经过点P (-1,4),则该图象必经过点()A.(1,4)B.(-1,-4)C.(-4,1)D.(4,-1)【答案】A3.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y =(x -1)2+2B.y =(x +1)2+2C.y =(x -1)2-2D.y =(x +1)2-2【答案】A4.已知点A(﹣2,a),B(﹣1,b),C(3,c)均在抛物线y=﹣2(x+1)2+3上,则a,b,c 的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.a<b<c【答案】C5.如图,已知二次函数21y ax bx c =++与一次函数2y kx m =+的图像相交于点(5,3)A --,(3,4)B 则关于x 的方程2ax bx c kx m ++=+的解是()B.15x =-,23x =-B.13x =-,24x =C.13x =,24x =D.15x =-,23x =【答案】D6.如图是二次函数y =ax 2+bx +c 的图象,下列结论:①二次三项式ax 2+bx +c 的最大值为4;②4a +2b +c <0;③一元二次方程ax 2+bx +c =1的两根之和为﹣1;④使y ≤3成立的x 的取值范围是x ≥0.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B7.已知二次函数2y ax bx c =++的图象如图所示,那么下列判断不正确的是()A.0ac <B.0a b c -+>C.4b a =-D.关于x 的方程20ax bx c ++=的根是1215x x =-=,【答案】B8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米【答案】A9.二次函数2y ax bx c =++(0a ≠)的图象如图所示,则一次函数y ax b =-(0a ≠)与反比例函数cy x =(0c ≠)在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】A11.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是1x =.下列结论中:①<0abc ;②20a b +=;③0a c +>;④若点(),A m n 在该抛物线上,则2am bm c a b c ++≤++.⑤方程24ax bx c ++=有两个不相等的实数根;其中正确的有()A.5个B.4个C.3个D.2个【答案】B:①②③④二、填空题(本大题共有6个小题,每小题4分,共24分)11.抛物线()21y x =+与y 轴的交点坐标是_______【答案】()0,112.如图,抛物线2y ax bx c =++的对称轴为直线=1x -,且经过点(1,0),则93a b c -+的值是_______【答案】014.如图,一名学生推铅球,铅球行进高度y (单位:m)与水平距离x (单位:m)之间的关系是1(10)(4)12y x x =--+,则铅球推出的距离OA =m.【答案】1014.抛物线的部分图像如图所示,则当y >0时,x 的取值范围是.【答案】13x -<<15.如图,坐标系中正方形网格的单位长度为1,抛物线y 1=-12x 2+3向下平移2个单位后得抛物线y 2,则阴影部分的面积S =.【答案】416.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y =a 1x 2+b 1x +c 1,则下列结论正确的是.(写出所有正确结论的序号)①b >0;②a ﹣b +c <0;③阴影部分的面积为4;④若c =﹣1,则b 2=4a .【答案】③④三、解答题(本大题共有10个小题,共86分)17.已知二次函数22y x x m =-++.(1)如果二次函数的图像与x 轴有两个交点,求m 的取值范围;(2)如图,二次函数的图像过点A (3,0),与y 轴交于点B ,直线AB 与这个二次函数图像的对称轴交于点P ,求点P 的坐标.解:(1)∵二次函数的图像与x 轴有两个交点,∴△=2240m +>,∴m >﹣1;故答案为:m >﹣1;(2)∵二次函数的图像过点A (3,0),∴096m =++﹣,∴m =3,∴二次函数的解析式为:223y x x =-++,令x =0,则y =3,∴B (0,3),设直线AB 的解析式为:()0y kx b k =+≠,∴033k bb=+⎧⎨=⎩,解得:1{3k b =-=,∴直线AB 的解析式为:3y x =-+,∵抛物线223y x x =-++的对称轴为:x =1,∴3{1y x x =-+=,解得:12x y =⎧⎨=⎩,∴P (1,2).18.已知:如图,以A 为顶点的抛物线交y 轴于点B .(1)点B 的坐标为______;(2)求这个抛物线的解析式;(3)求出这个抛物线与x 轴的交点坐标C 、D .解:(1)由图可得,B 为()0,3,故答案为:()0,3(2)由图可知,抛物线顶点坐标为()1,4,∴设抛物线为()214y a x =-+,∴抛物线经过()0,3B ,∴()23014a =-+,解得:1a =-,∴抛物线为:()214y x =--+,(3)令0y =得,()2140x --+=,()214x -=,12x -=±,13x =,21x =-,由图判断,C 为()1,0-,D 为()3,0.19.如图,已知二次函数23y ax bx =++的图象交x 轴于点()1,0A ,()3,0B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的顶点,求BCP 面积.解:(1)∵二次函数23y ax bx =++的图象交x 轴于点()1,0A ,()3,0B ,∴309330a b a b ++=⎧⎨++=⎩,解得14a b =⎧⎨=-⎩,∴二次函数的表达式是243y x x =-+;(2)∵()224321y x x x =-+=--,∴点P 的坐标是()2,1-,抛物线的对称轴为2x =,当0x =时,2433y x x =-+=,∴点C 的坐标是()0,3,如图,设直线2x =与直线BC 的交点为M ,设直线BC 的解析式为y kx m =+,把B 、C 的坐标代入得,303k m m +=⎧⎨=⎩,解得13k m =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+,当2x =时,3231y x =-+=-+=,∴点M 的坐标是()2,1,则()112PM =--=,∴111121222132222BCP PMB PMC S S S PM PM =+=⨯+⨯=⨯⨯+⨯⨯= ,即BCP 面积为3.20.如图,经过原点的抛物线22y x mx =+与x 轴交于另一点()2,0A .(1)求m 的值和抛物线顶点M 的坐标;(2)在y 轴上求一点P ,使PAM △的周长最小.解:(1)∵抛物线22y x mx =+过点()2,0A ,∴22220m ⨯+=,解得4m =-,∴()2224212y x x x =-=--,∴抛物线顶点M 的坐标是()1,2-.(2)解:∵PAM C AM PA PM =++ ,AM 为定值∴当PA PM +的值最小时,PAM △的周长最小如图,作点()2,0A 关于y 轴对称的点()2,0A '-,连接A M '交y 轴于点P ,点P即为所求.设直线A M '的解析式为()0y kx b k =+≠,将()2,0-,()1,2-代入y kx b =+,得202k b k b -+=⎧⎨+=-⎩,解得2343k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线A M '的解析式为2433y x =--.∴点P 的坐标为40,3⎛⎫- ⎪⎝⎭.21.抛物线2y x bx c =-++交x 轴于点(4,0)A ,交y 轴于点(0,4)B.(1)求抛物线的解析式,并直接写出抛物线的对称轴和另一个与x 轴交点C 的坐标;(2)直接写出当0y <时,x 的取值范围.(3)如图,点P 是线段AB 上方抛物线上一动点,当P 点的坐标为_______时,PAB 的面积最大.解:(1)将点(4,0)A ,(0,4)B 代入2y x bx c =-++,∴16404b c c -++=⎧⎨=⎩,解得34b c =⎧⎨=⎩,234y x x ∴=-++;令0y =,得2034x x =-++解得:121;4x x =-=∴(1,0)C -,(4,0)A 对称轴直线322b x a =-=(2)由(1)得:(1,0)C -,(4,0)A ∴当1x <-或>4x 时,0y <(3)设直线AB 的解析式为y kx m =+,∴404k m m +=⎧⎨=⎩,解得14k m =-⎧⎨=⎩,4∴=-+y x ,过点P 作PG y ∥轴交AB 于点G ,设2(,34)P t t t -++,则(,4)G t t -+,223444PG t t t t t ∴=-+++-=-+,2214(4)2(2)82PAB S t t t ∆∴=⨯⨯-+=--+,当2t =时,PAB 的面积有最大值8,此时(2P ,2).故答案为:()2,2.22.如图,是一个运动员投掷铅球的抛物线图,解析式为21251233y x x =-++(单位:米),其中点A 为出手点,点C 为铅球运行中的最高点,点B 为铅球落地点,求:(1)出手点A 离地面的高度;(2)最高点C 离地面的高度;(3)该运动员的成绩是多少米?(1)解:令21251233y x x =-++中0x =,得53y =,∴出手点503A ⎛⎫⎪⎝⎭,,即出手点离地面高度为53米;(2)∵()22125143123312y x x x =-++=--+,∴顶点()43C ,,可知最高点离地面高度为3米;(3)令212501233y x x =-++=,解得12x =-,210x =,∴()100B ,,由此可知该运动员成绩为10米.23.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于()1,0A -,()3,0B ,与y 轴交于点()0,3C ,D 为抛物线的顶点.(1)求此二次函数的解析式;(2)求CDB △的面积;(3)在其对称轴右侧的抛物线上是否存在一点P ,使PDC △是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)将()1,0-,()3,0,()0,3代入2y ax bx c =++,得00933a b c a b c c =-+⎧⎪=++⎨⎪=⎩,解得123a b c =-⎧⎪=⎨⎪=⎩,故此二次函数的解析式为223y x x =-++.(2)解:由()222314y x x x =-++=--+知,()1,4D .∵()3,0B ,()0,3C ,()()222300318BC ∴=-+-=,()()222310420BD =-+-=,()()22201342CD =-+-=,∴222BD BC CD =+.∴CDB △是直角三角形,且90BCD ∠=︒.∴1122322CDB S BC =⋅=⨯⨯△,即CDB △的面积是3.(3)解:存在,点P 的坐标为355522⎛ ⎝⎭或()2,3.由(2),知()1,4D ,对称轴为直线1x =,①若以CD 为底边,则PC PD =,设点P 的坐标为(),x y ,根据勾股定理,得()()()2222314x y x y +-=-+-,∴4y x =-,又∵点P 在抛物线上,∴2423x x x -=-++,∴2310x x -+=,解得135x +=235x -=∵点P 在其对称轴右侧的抛物线上,对称轴为直线1x =,∴35x +=∴5542y x =-=,即点P 的坐标为3555+-⎝⎭;②若以CD 为一腰,∵点P 在其对称轴右侧的抛物线上,∴由抛物线的对称性可知,点P 与点C 关于直线1x =对称,此时点P 的坐标为()2,3.综上所述,点P 的坐标为355522+-⎝⎭或()2,3.24.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克)506070销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)要使商品每天的总利润为1600元,则每千克售价x 为多少元?(3)设商品每天的总利润为W (元).求W 与x 之间的函数表达式,并指出售价为多少元时获得最大利润?最大利润是多少?(利润=收入-成本)解:(1)设()0y kx b k =+≠,将()()50,100,60,80代入得:50100,6080k b k b +=⎧⎨+=⎩解得:2,200k b =-⎧⎨=⎩∴()22004080y x x =-+≤≤;(2)解:()()4022001600x x --+=,解得160x =,280x =,答:每千克售价x 为60元或80元.(3)解:由题意可得:()()()24022002701800W x x x =--+=--+,∵20a =-<,∵4080x ≤≤,∴当70x =时,W 的最大值1800=,∴W 的最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.25.已知二次函数2y x bx c =-++的图象过点()4,0A 、()1,0C -.(1)求b 、c 的值;(2)如图,二次函数的图象与y 轴交于点B ,二次函数图象的对称轴与直线AB 交于点P ,求P 点的坐标;(3)在第一象限内的抛物线上有一点Q ,当QAB 的面积最大时,求点Q 的坐标.解:(1)把点()4,0A 、()1,0C -代入2y x bx c =-++中,101640b c b c --+=⎧⎨-++=⎩解得34b c =⎧⎨=⎩∴3b =,4c =(2)在234y x x =-++中令0x =,则4y =∴()0,4B 设直线AB 的解析式为y kx b =+,∴4160b k b =⎧⎨+=⎩∴414b k =⎧⎪⎨=-⎪⎩∴直线AB 的解析式为:144y x =-+∴二次函数234y x x =-++的对称轴为32x =∴当32x =时,13294428y =-⨯+=∴329,28P ⎛⎫⎪⎝⎭(3)设()2,34Q m m m -++,QAB 的面积为S连接QA ,QB ,OQ ,则OBQ OAQ OABS S S S =+-△△△()211134222OB m OA m m OA OB=⋅+⨯-++-⋅⋅又∵4OA OB ==∴()2228228S m m m =-+=--+当2m =时,8S 最大=此时2346m m -++=∴()2,6Q 26.如图,二次函数2=23y x x --与x 轴交于A 、B 两点(A 点在B 点的左侧),直线y x m =+与抛物线交于A 、C 两点.(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点P 作y 轴平行线交AC 于E 点,当EP 最长时求此时点P 的坐标;(4)抛物线顶点为M ,在平面内是否存在点N ,使以,,,A B M N 为顶点的四边形为平行四边形?若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.解:(1)在2=23y x x --中,令0y =,得2230x x --=,解得:11x =-,23x =,()()1,0,3,0A B ∴-,直线y x m =+经过点()1,0A -,∴01m =-+,解得:1m =,∴直线AC 的解析式为1y x =+,联立方程组,得2123y x y x x =+⎧⎨=--⎩,解得:1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩()4,5C ∴;(2)如图1,设点2(,23)P n n n --,则点(),1E n n +,∴2223251233424()()PE n n n n n n =+--=-=-++--+,10-<,∴当32n =时,PE 取得最大值254,此时,315,24P ⎛⎫- ⎪⎝⎭;(3) 2223(1)4y x x x =--=--,∴抛物线顶点为()14M -,,如图2,点,,,A B M N 为顶点的四边形是平行四边形时,设(),N m n ,分三种情况:①BM 为对角线时,AN 的中点与BM 的中点重合,∴(1)3122m +-+=,04022n +-+=,解得:5m =,n =-4,∴()154N -,,②AM 为对角线时,BN 的中点与AM 的中点重合,∴31122m +-+=,04022n+-+=,解得:3m =-,n =-4,∴()234N --,,③AB 为对角线时,MN 的中点与AB 的中点重合,∴11322m +-+=,(4)022n +-+=,解得:1m =,4n =,∴()31,4N ,综上所述,点N 的坐标为:()154N -,,()234N --,,()31,4N .。

2023华师版数学九年级上册综合测评卷(含答案解析)

2023华师版数学九年级上册综合测评卷(含答案解析)

九年级上册综合测评卷 时间:100分钟满分:120分一.选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意) 1.下列说法正确的是( )A.明天会下雨是必然事件B.随机事件发生的概率为12 C.概率很小的事件不可能发生 D.不可能事件发生的概率为0 2.下列二次根式中,与√3是同类二次根式的是 ( )A.√8 B .√12C.√18 D .√163.已知一元二次方程x 2-3x-3=0的两根分别为α与β,则1α+1β的值为 ( )A.-1B.1C.-2D.24.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长度至少为( )A.8米B.8√3米C.8√33米 D.4√33米 5.如图,DE 是△ABC 的中位线,若四边形BDEC 的面积是60,则△ADE 的面积为 ( )A.20B.40C.50D.606.若6<x<9,则化简√x 2-12x +36+√x 2-18x +81的结果是 ( )A.2x-15B.-15C.2x-3D.37.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为 ( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=1758.有5名自愿献血者,其中3人血型为O 型,2人血型为A 型,现从他们当中随机挑选2人参与献血,抽到的两人均为O 型血的概率为( )A.25B.38C.310D.379.在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F,若EC=2BE,则BFFD 的值是( )A.12 B.13 C.14 D.1510.如图,在△ABC 中,AB=AC=a,点D 是边BC 上的一点,且BD=a,AD=DC=1,则a 等于 ( )A.1+√52 B.1−√52C.1±√52D .2二.填空题(共5小题,每小题3分,共15分) 11.计算:√80-√45= .12.若x=-1是关于x 的一元二次方程ax 2+bx-2=0的一个根,则2 021-2a+2b 的值等于 . 13.如图,在△ABC 中,AD 为中线,点E,F,G 为AD 的四等分点,在△ABC 内任意抛一粒豆子,豆子落在阴影部分的概率为 .(第13题) (第14题)14.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30°,然后向建筑物AB 前进10 m 到达点D 处,此时测得点A 的仰角为60°(点C,D,B 在同一条直线上),那么建筑物AB 的高度为 m.15.在等腰直角三角形ABC 中,∠BAC=90°,AB=AC=2,直角三角板含45°角的顶点P 在边BC 上移动(点P 不与点B,C 重合),如图,直角三角板的一条直角边始终经过点A,斜边与边AC 交于点Q.当△ABP 为等腰三角形时,CQ 的长为 .三.解答题(共8小题,共75分)16.(共2小题,每小题5分,共10分)解答下列各题.-2sin 45°.(1)计算:√8-2×√12(2)用配方法解方程:2x2-3x-5=0.17.(8分)如图,△ABC的三个顶点坐标分别是A(0,3),B(1,0),C(3,1).(1)以原点O为位似中心,在y轴左侧画出△A1B1C1,使得△A1B1C1与△ABC的相似比为2∶1;(2)△ABC的内部一点M的坐标为(a,b),则点M在△A1B1C1中的对应点M1的坐标是多少?18.(8分)如图,在△ABC中,∠BAC=90°,∠C=30°,点D,E,F分别为AB,AC,BC的中点,连接DE,AF.求证:DE=AF=AB.19.(8分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个三位数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请用画树状图的方法求所有可能得到的三位数;(2)甲、乙两人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.20.(8分)已知关于x的方程(c+b)x2+2ax+c-b=0,其中a,b,c是△ABC的三边.(1)若x=-1是方程的一个根,则△ABC是;(2)若方程有两个相等的实数根,则△ABC是;(3)若△ABC是等边三角形,试求方程(c+b)x2+2ax+c-b=0的根.21.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的试验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,最后在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=60°.(1)求AB的长.(结果保留根号)(2)已知本路段对校车限速为50千米/时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:√3≈1.7,√2≈1.4)22.(11分)“美好”汽车销售公司4月份销售某品牌汽车,在一定范围内,每辆汽车的进价与销售量之间有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为13.5万元,每多售出1辆,所有售出的汽车的进价每辆均降低0.05万元.月底汽车生产厂家根据销售公司的销售量一次性返利给销售公司:若当月销售量在10辆以内(含10辆),每辆返利0.25万元;若当月销售量在10辆以上,每辆返利0.5万元.(1)若“美好”公司当月销售3辆汽车,则每辆汽车的进价为万元;(2)如果“美好”公司把该品牌汽车的售价定为14万元/辆,并计划当月盈利6万元,那么需要销售多少辆汽车?(提示:盈利=销售利润+返利)23.(12分)如图,在平面直角坐标系中,直线AB分别交x轴于点B、交y轴于点A,已知点B(-2,0),点C是线段AB的中点,tan∠ABO=√3,点P是y轴上的一动点.(1)求点A的坐标;(2)如果以点A,C,P为顶点的三角形与△AOB相似,求点P的坐标;(3)平面上是否存在点M,使得以点A,B,P,M为顶点的四边形是菱形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.九年级上册综合测评卷1 2 3 4 5 6 7 8 9 10D B A C A D D C B A11.√512.2 017 13.3814.5√315.1或2√2-21.D 明天会下雨是随机事件;随机事件发生的概率在0到1之间;概率很小的事件也有可能发生;不可能事件发生的概率为0.故选D.2.B √8=2√2,√12=2√3,√18=3√2,√16=4.故选B.3.A 根据题意得α+β=3,αβ=-3,所以1α+1β=α+βαβ=3-3=-1.故选A.4.C 设梯子的长度为x 米.由题意可知,sin 60°≥4x,所以x≥8√33.故选C.5.A 因为DE 是△ABC 的中位线,所以DE ∥BC,DE BC =12.易知△ADE ∽△ABC,所以S △ADE S △ABC =(12)2.故S △ADE S △ADE +60=14,所以S △ADE =20.故选A.6.D 原式=√(x -6)2+√(x -9)2=(x-6)+[-(x-9)]=3.故选D.7.D 因为平均每月的增长率为x,所以二月份工业产值为50(1+x)亿元,三月份工业产值为50(1+x)2亿元,依题意得50+50(1+x)+50(1+x)2=175.故选D. 8.C 画树状图如下:由树状图可知,共有20种等可能的结果,抽到的两人均为O 型血的结果有6种,所以抽到的两人均为O 型血的概率为620=310.故选C.9.B 如图,∵AD ∥BC,∴△BEF ∽△DAF.又EC=2BE,∴AD=BC=3BE,∴BF FD =BE AD =13.故选B.10.A∵AB=AC,∴∠B=∠C.∵DA=DC,∴∠DAC=∠C,∴∠DAC=∠B.∵∠C=∠C,∴△CDA ∽△CAB,∴CD CA =CACB,∴CA 2=C D·CB.∵CA=a,BD=a,CD=1,∴CB=1+a,∴a 2=1·(1+a),∴a 2-a-1=0,解得a 1=1+√52,a 22=1-√52(不合题意,舍去),故选A.11.√5 【解析】原式=4√5-3√5=√5. 12.2 017 【解析】将x=-1代入方程,得a-b-2=0,所以a-b=2,所以2 021-2a+2b=2 021-2(a-b)=2 021-2×2=2 021-4=2 017. 13.38 【解析】由题易知,阴影部分面积占△ABC 面积的38,故所求概率为38.14.5√3 【解析】设DB=x m,在Rt △ADB 中,AB=x· tan 60°=√3x m.在Rt △ACB 中, tan 30°=√3xx+10,即√3xx+10=√33, 整理得3x=x+10,解得x=5,所以AB=5√3 m.15.1或2√2-2 【解析】易证△PCQ ∽△ABP,∴CQ BP =PCAB,即CQ BP =2√2-BP 2,∴CQ=(2√2-BP)·BP2.当△ABP 为等腰三角形时,BP=√2或2,代入上式,得CQ=1或2√2-2.16.【参考答案】(1)原式=2√2-2×√22-2×√22=0. (5分)(2)方程两边同时除以2,得x2-32x-52=0,即x2-32x=52, (2分)变形,得x2-32x+(34)2=52+(34)2, (3分)所以(x-34)2=4916,开方得x-34=74或x-34=-74,解得x1=52,x2=-1. (5分) 17.【参考答案】(1)如图所示,△A1B1C1即为所求.(6分) (2)△ABC的内部一点M的坐标为(a,b),则点M在△A1B1C1中的对应点M1的坐标是(-2a,-2b). (8分)18.【解题思路】由直角三角形斜边上的中线等于斜边的一半,可得AF=12BC,根据中位线定理可得DE=12BC,由直角三角形中30°角对应直角边等于斜边的一半,得AB=12BC,即可求证.【参考答案】证明:∵AF是Rt△ABC的斜边BC上的中线,∴AF=12BC. (2分) ∵DE是△ABC的中位线,∴DE=12BC. (4分) ∵∠BAC=90°,∠C=30°,∴AB=12BC.∴DE=AF=AB. (8分) 19.【参考答案】(1)根据题意画树状图如下:(2分)由树状图可得,所有可能得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432. (4分) (2)这个游戏不公平. (5分) 理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个, (6分)∴甲胜的概率为13, ∴乙胜的概率为1-13=23. (7分)∵13≠23,∴这个游戏不公平. (8分) 20.【解题思路】(1)把x=-1代入方程(c+b)x 2+2ax+c-b=0即可判断△ABC 的形状;(2)根据方程(c+b)x 2+2ax+c-b=0有两个相等的实数根,可得Δ=0,进而找出三边关系即可判断△ABC 的形状;(3)根据△ABC 是等边三角形得a=b=c,再把a=b=c 代入方程(c+b)x 2+2ax+c-b=0即可得解. 【参考答案】(1)等腰三角形 (2分) 解法提示:由题意,得(c+b)×(-1)2+2a×(-1)+c-b=0, 解得a=c,故△ABC 是等腰三角形. (2)直角三角形 (4分) 解法提示:∵方程(c+b)x 2+2ax+c-b=0有两个相等的实数根, ∴(2a)2-4(c+b)(c-b)=4a 2-4c 2+4b 2=0, ∴a 2-c 2+b 2=0,即a 2+b 2=c 2, ∴△ABC 是直角三角形. (3)∵△ABC 是等边三角形, ∴a=b=c,∴原方程可变形为2ax 2+2ax+a-a=0, ∴x 2+x=0,分解因式,得x(x+1)=0, ∴x=0或x+1=0, ∴x 1=0,x 2=-1. (8分) 21.【解题思路】 (1)分别在Rt △ADC 与Rt △BDC 中利用正切函数求得AD 与BD 的长,即可求得AB 的长;(2)由从A 到B 用时2秒,即可求得这辆校车的速度,与50千米/时比较大小,即可确定这辆校车是否超速. 【参考答案】(1)由题意得,在Rt △ADC 中,tan 30°=CD AD =24AD, 解得AD=24√3.(2分)在Rt △BDC 中,tan 60°=CD BD =24BD, 解得BD=8√3,所以AB=AD-BD=24√3-8√3=16√3(米).(5分) (2)校车从A 到B 用时2秒,所以速度为16√3÷2≈13.6(米/秒), (7分) 因为13.6米/秒=48.96千米/时<50千米/时, 所以此校车没有超速. (10分) 22.【参考答案】(1)13.4 (2分)(2)设需要销售x 辆汽车,由题意可知,每辆汽车的销售利润为14-[13.5-0.05(x-1)]=0.05x+0.45. (4分) 当1≤x≤10时,根据题意,得 x·(0.05x+0.45)+0.25x=6, 整理,得x 2+14x-120=0,解得x 1=-20(不符合题意,舍去),x 2=6. (7分) 当x>10时,根据题意,得 x·(0.05x+0.45)+0.5x=6, 整理,得x 2+19x-120=0,解得x 1=-24(不符合题意,舍去),x 2=5.因为x=5不在x>10的范围内,所以x 2=5舍去. 答:需要销售6辆汽车. (11分) 23.【解题思路】(1)根据三角函数可求得OA 的长,即可求得点A 的坐标.(2)分△ACP ∽△ABO 和△ACP ∽△AOB 两种情况讨论即可.(3)分AB 为对角线和边两种情况讨论,然后再依据菱形的性质画图求解即可. 【参考答案】(1)∵tan ∠ABO=√3,点B 的坐标为(-2,0), ∴OB=2,OA=OB·tan ∠ABO=2×√3=2√3, ∴点A 的坐标为(0,2√3).(3分)(2)如图(1)所示,满足条件的点P 有2个. 易知AB=2OB=4.当CP ∥OB 时,如图(1)中点P 1所示,△ACP 1∽△ABO, ∴AC AB =AP 1AO. ∵点C 是AB 的中点,∴AC=2,点P 1是AO 的中点, 此时点P 1的坐标为(0,√3).当CP ⊥AB 时,如图(1)中点P 2所示,△ACP 2∽△AOB. ∴AC OA =AP 2AB ,即2√3=AP24, ∴AP 2=4√33, ∴OP 2=OA-AP 2=2√3-4√33=2√33, 此时点P 2的坐标为(0,2√33). 综上可知,点P 的坐标为(0,√3)或(0,2√33). (8分)图(1) 图(2)),(0,2√3-4),(0,2√3+4)或(0,-2√3).(12分) (3)存在,如图(2)所示.符合条件的点P的坐标为(0,2√33。

数学九年级上册 期末试卷综合测试卷(word含答案)

数学九年级上册 期末试卷综合测试卷(word含答案)

数学九年级上册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .10 C .3 D .10 2.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .103.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个4.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度5.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定 6.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤7.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④8.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=9.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 11.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变12.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度二、填空题13.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.14.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____.15.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.16.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.17.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.18.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 19.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.20.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____. 21.已知3a =4b ≠0,那么ab=_____. 22.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.23.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.24.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题25.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒ 26.如图,在ABC ∆中,AD 是高.矩形EFGH 的顶点E 、H 分别在边AB 、AC 上,FG 在边BC 上,6BC =,4=AD ,23EF EH =.求矩形EFGH 的面积.27.如图,在Rt △ABC 中,∠C =90°,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:△ADG ∽△FEB ;(2)若AD =2GD ,则△ADG 面积与△BEF 面积的比为 .28.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值; ②如图2,若∠CBQ =45°,请求出此时点Q 坐标.29.已知关于的方程,若方程的一个根是–4,求另一个根及的值.30.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于10cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.31.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88 (1)根据上述数据,将下列表格补充完整. 整理、描述数据: 成绩/分8889 90 91 95 96 97 98 99 学生人数 2132121数据分析:样本数据的平均数、众数和中位数如下表: 平均数 众数 中位数 9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.32.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,CD=2,AD=22,tanA=21222CDAD==,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.A解析:A 【解析】 【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可. 【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-, 解得:r=5, 故答案为:A. 【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.3.C解析:C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C .本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.4.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.5.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.6.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.7.A解析:A 【解析】 【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可. 【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.8.C解析:C 【解析】 【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.解:设方程2(1)(1)0a x b x c -+-+=中,1t x =- 则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =, ∴关于t 的方程20at bt c ++=的解为11t =-,23t =,∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3 解得:10x =,24x =, 故选C . 【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.9.D解析:D 【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2, 即所列的方程为100(1+x )2=144, 故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.10.C解析:C 【解析】 【分析】根据抛物线顶点的变换规律作出正确的选项. 【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C . 【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.12.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.二、填空题13.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.15.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.16.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.17.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C =108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.18.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.19.【解析】【分析】先根据解析式求出点A、B、C的坐标,求出直线AC 的解析式,设点P的坐标,根据过点P作⊙B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A、B、C的坐标,求出直线AC 的解析式,设点P的坐标,根据过点P作⊙B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【详解】令2143115y x x =--中y=0,得x 1=-3,x 2=53, ∴直线AC 的解析式为31y x =--, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,=(x-53)2+(313x )2-1, =242837533x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443, ∴PQ 的最小值是26,故答案为:26,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.20.-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2 是关于 x 的方程 x2+4x5=0的两个根,∴x1 x2=-=-4,故答案为:-4.【点睛】此题主要考解析:-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于 x 的方程 x2+4x-5=0的两个根,∴x1+ x2=-41=-4,故答案为:-4.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.21..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.22.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要 解析:13【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积 ∴飞镖落在阴影部分的概率是3193=, 故答案为13. 【点睛】 此题主要考查概率的求解,解题的关键是熟知几何概率的公式.23.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2. 【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 24.【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.解析:42【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD 2=x 2+(8﹣x )2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.则AC 为直径时最长,则最大值为42.【详解】解:设AB =x ,则AD =8﹣x ,∵∠BAD =∠BCD =90°,∴BD 2=x 2+(8﹣x )2=2(x ﹣4)2+32.∴当x =4时,BD 取得最小值为42.∵A ,B ,C ,D 四点在以BD 为直径的圆上.如图,∴AC 为直径时取得最大值.AC 的最大值为2.故答案为:2.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题25.(1)x 1=-1,x 2=4;(2)原式=12【解析】 【分析】(1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【详解】解:(1)234x x -=(x+1)(x-4)=0 ∴x 1=-1,x 2=4;(2)原式=3+22()-2×3 =12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值. 26.6EFGH S =四边形【解析】【分析】根据相似三角形对应边比例相等性质求出EF,EH 的长,继而求出面积.【详解】解:如图:∵四边形EFGH 是矩形,AD 交EH 于点Q,∴∥EH FG∴AEH ABC ∆∆∽∴AQ EH AD BC= 设2EF x =,则3EH x = ∴42346x x -=解得:1x =. 所以2EF =,3EH =.∴236EFGH S EF EH =⋅=⨯=四边形【点睛】本题考查的知识点主要是相似三角形的性质,利用相似三角形对应边比例相等求出有关线段的长是解题的关键.27.(1)证明见解析;(2)4.【解析】【分析】(1)易证∠AGD=∠B ,根据∠ADG=∠BEF=90°,即可证明△ADG ∽△FEB ;(2)相似三角形的性质解答即可.【详解】(1)证明:∵∠C=90°,∴∠A+∠B=90°,∵四边形DEFG 是矩形,∴∠GDE=∠FED=90°,∴∠GDA+∠FEB=90°,∴∠A+∠AGD=90°,∴∠B=∠AGD ,且∠GDA=∠FEB=90°,∴△ADG ∽△FEB .(2)解:∵△ADG ∽△FEB , ∴AD EF DG BE=, ∵AD =2GD, ∴2AD DG=, ∴224ADG FEB S S ==. 【点睛】本题考查了相似三角形的判定与性质,求证△ADG ∽△FEB 是解题的关键.28.(1)(﹣1,4);(2)①278;②Q(﹣52,74). 【解析】【分析】(1)将点A 坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q 作y 轴的平行线交AC 于点N ,先求出直线AC 的解析式,点Q(x ,﹣x 2﹣2x+3),则点N(x ,x+3),则△QAC 的面积S=12×QN×OA=﹣32x 2﹣92x ,然后根据二次函数的性质即可求解;②tan ∠OCB=OB CO =13,设HM=BM=x ,则CM=3x ,BC=BM+CM=4x=10,解得:x=104,CH=10x=52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-12x+12,即可求解. 【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m =﹣1,故抛物线的表达式为:y =﹣x 2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4), 故答案为:(﹣1,4);(2)①过点Q 作y 轴的平行线交AC 于点N ,如图1,设直线AC 的解析式为y=kx+b ,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,303k b b -+=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线AC 的表达式为:y =x+3,设点Q(x ,﹣x 2﹣2x+3),则点N (x ,x+3),△QAC 的面积S =12⨯QN×OA =12⨯(﹣x 2﹣2x+3﹣x ﹣3)×3=﹣32x 2﹣92x , ∵﹣32<0,故S 有最大值为:278; ②如图2,设直线BQ 交y 轴于点H ,过点H 作HM ⊥BC 于点M ,tan∠OCB=OBCO=13,设HM=BM=x,则CM=3x,BC=BM+CM=4x=10,解得:x=104,CH=10x=52,则点H(0,12),同直线AC的表达式的求法可得直线BH(Q)的表达式为:y=﹣12x+12…②,联立①②并解得:﹣x2﹣2x+3=﹣12x+12,解得x=1(舍去)或﹣52,故点Q(﹣52,74).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.29.1,-2【解析】【分析】把方程的一个根–4,代入方程,求出k,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.30.(1)3秒后,PQ 的长度等于(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,PQ =5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(22252x x -+= 解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于;(2)设t 秒后,5PB t =-,2QB t =,又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.31.(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.【解析】【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【详解】(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.【点睛】本题考查了众数、中位数、用样本估计总体等知识;熟练掌握众数、中位数、用样本估计总体是解题的关键.32.(1)14;(2)14.【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=14,故答案为:14;(2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。

【期末测试AB卷】人教版数学九年级上册-A基础测试试题试卷含答案

【期末测试AB卷】人教版数学九年级上册-A基础测试试题试卷含答案

【期末测试AB 卷】人教版九年级上学期数学·A 基础测试一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•盱眙县期中)下列方程中是一元二次方程的是( )A .x +y =2B .2x 2+1=0C .x 2+2x +1=x 2D .xy ﹣9=02.(2分)(2022秋•新抚区期中)下列方程中,关于x 的一元二次方程是( )A .x 2﹣x (x +3)=0B .ax 2+bx +c =0C .x 2﹣2y ﹣1=0D .x 2﹣2x +3=03.(2分)(2022秋•大田县期中)用公式法解方程x 2﹣2x =3时,求根公式中的a ,b ,c 的值分别是( )A .a =1,b =﹣2,c =3B .a =1,b =2,c =﹣3C .a =1,b =2,c =3D .a =1,b =﹣2,c =﹣34.(2分)(2022秋•丹江口市期中)如果m 、n 是一元二次方程x 2﹣x =5的两个实数根,那么多项式m 2﹣mn +n +1的值是( )A .12B .10C .7D .55.(2分)(2022秋•江夏区期中)抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是( )A .y =12(x +1)2﹣2B .y =12(x +1)2+2C .y =12(x ﹣1)2﹣2D .y =12(x ﹣1)2+26.(2分)(2022秋•西湖区校级期中)关于二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如表,下列说法正确的是( )x …﹣3﹣201…y…7﹣2﹣27…A .图象与y 轴的交点坐标为(0,2)B .图象的对称轴是直线x =1C .y 的最小值为﹣5D .图象与x 轴有且只有一个交点7.(2分)(2022秋•江夏区期中)在下列图案中,属于中心对称图形的是( )A .B .C .D .8.(2分)(2022秋•法库县期中)以下说法合理的是( )A .小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23B .某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C .某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率12D .小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是129.(2分)(2022秋•开福区校级期中)如图,圆锥的底面半径为5,高为12,则该圆锥的侧面积为( )A .30πB .60πC .65πD .90π10.(2分)(2022秋•市中区期中)若点A (﹣2,1)在反比例函数y =kx 的图象上,则k 的值是( )A .12B .―12C .2D .﹣211.(2分)(2022秋•肇源县期中)如图四个由小正方体拼成的立体图形中,从正面看是的是( )A.B.C.D.12.(2分)(2022秋•奉贤区期中)已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是( )A.tan A=23B.cot A=23C.sin A=23D.cos A=23二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•招远市期中)在平面直角坐标系中,一次函数y=6x与反比例函数y=kx(k>0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是 .14.(3分)(2022秋•新抚区期中)已知二次函数y=x2﹣2x+1,当﹣5≤x<3时,y的取值范围是 .15.(3分)(2022秋•前郭县期中)如图所示的图形绕其中心至少旋转 度就可以与原图形完全重合.16.(3分)(2022秋•源汇区校级月考)如图,在正五边形ABCDE中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM交于点O,则∠EOA= .17.(3分)(2022秋•惠山区校级期中)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,3),(3,1).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点C 的坐标为 .18.(3分)(2022秋•城阳区期中)在一个不透明的袋子中装有除颜色外其余均相同的n 个小球,其中15个黑球,从袋中随机摸出一球,记下其颜色,之后把它放回袋中,这称为一次摸球试验.搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n 的值是 .三、解答题(共9小题,满分78分)19.(8分)(2022秋•大田县期中)解下列方程:(1)x 2﹣2x ﹣8=0;(2)(x ﹣1)2=2x (x ﹣1).20.(8分)(2022秋•漳州期中)已知关于x 的方程x 2﹣2x +m ﹣2=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若3x 1+3x 2﹣x 1x 2=5,求m 值.21.(9分)(2022秋•鄞州区校级期中)如图,在Rt △ABC 中,∠ABC =90°,斜边AC 的垂直平分线交BC 于点D ,交AC 于点E ,连接BE .(1)若BE 是△AEC 外接圆的切线,求∠C 的大小;(2)当AB =4,BC =8时,求△DEC 外接圆的半径.22.(9分)(2022秋•莱芜区期中)北京时间2022年6月5日10时44分,神舟十四号载人飞船在酒泉发射升空,为弘扬航天精神,某校在教学楼上从楼顶位置悬挂了一幅励志条幅GF.如图,已知楼顶到地面的距离GE为18.5米,当小亮站在楼前点B 处,在点B正上方点A处测得条幅顶端G的仰角为37°,然后向教学楼方向前行15米到达点D处(楼底部点E与点B,D在一条直线上),在点D正上方点C处测得条幅底端F的仰角为42°,若AB,CD均为1.7米(即四边形ABDC为矩形),请你帮助小亮计算:(1)当小亮站在B处时离教学楼的距离BE;(2)求条幅GF的长度.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(8分)(2022秋•如东县期中)某汽车4S店销售A,B两种型号的轿车,具体信息如下表:每辆进价(万元)每辆售价(万元)每季度销量(辆)A60x﹣x+100B50y﹣2y+150(注:厂家要求4S店每季度B型轿车的销量是A型轿车销量的2倍.)根据以上信息解答下列问题:(1)用含x的代数式表示y;(2)今年第三季度该4S 店销售A ,B 两种型号轿车的利润恰好相同(利润不为0),试求x 的值;(3)求该4S 店第四季度销售这两种轿车能获得的最大利润.24.(9分)(2022秋•李沧区期中)如图所示为某商场的一个可以自由转动的转盘,商场规定顾客购物满100元即可获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品,如表是活动进行中的统计数据:转动转盘的次数50100200500800100020005000落在“纸巾”区的次数227110931247361211933004根据以上信息,解析下列问题:(1)请估计转动该转盘一次,获得纸巾的概率是 ;(精确到0.1)(2)现有若干个除颜色外都相同的白球和黑球,根据(1)的结论,在保证获得纸巾和免洗洗手液概率不变的情况下,请你设计一个可行的摸球抽奖规则,详细说明步骤;(3)小明和小亮都购买了超过100元的商品,均获得一次转动转盘的机会,根据(2)中设计的规则,利用画树状图或列表的方法求两人都获得纸巾的概率.25.(9分)(2022秋•南召县期中)如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC 的位似图形△A 1B 1C 1.(1)在图中标出△ABC 和△A 1B 1C 1的位似中心M 点的位置并写出M 点的坐标.(2)若以点A 1为位似中心,请你帮小明在图中画出△A 1B 1C 1的位似图形△A 2B 2C 2,且△A 1B 1C 1与△A 2B 2C 2的位似比为2:1.(3)直接写出(2)中C 2点的坐标.26.(9分)(2022秋•宁波期中)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:∠DFA =∠ECD ;(2)△ADF 与△DEC 相似吗?为什么?(3)若AB =4,AD =AE =3,求AF 的长.27.(9分)(2022秋•招远市期中)如图,一次函数y =kx +b 与反比例函数y =12x(x >0)的图象交于A (m ,6),B (n ,3)两点.(1)求一次函数的解析式;(2)若M 是x 轴上一点,S △MOB =S △AOB ,求点M 的坐标;(3)当x >0时,根据图象直接写出kx +b ―12x >0时,x 的取值范围.参考答案一、选择题(共12小题,满分24分,每小题2分)1.B;2.D;3.D;4.A;5.B;6.C;7.A;8.D;9.C;10.D;11.C;12.B;二、填空题(共6小题,满分18分,每小题3分)13.014.0≤y≤1615.4516.72°17.(4,3)或(5,0)或(5,2)18.30;三、解答题(共9小题,满分78分)19.解:(1)∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,则x+2=0或x﹣4=0,解得x1=﹣2,x2=4;(2)∵(x﹣1)2=2x(x﹣1),∴(x﹣1)2﹣2x(x﹣1)=0,∴(x﹣1)(﹣x﹣1)=0,则x﹣1=0或﹣x﹣1=0,解得x1=1,x2=﹣1.20.解:(1)∵关于x的方程x2﹣2x+m﹣2=0有两个实数根x1、x2,∴Δ=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3;(2)由题意得:x1+x2=2,x1•x2=m﹣2,∵3x1+3x2﹣x1x2=5,∴6﹣(m﹣2)=5,∴m=3.21.解:(1)设DC 的中点为O ,连接OE ,∵DE 垂直平分AC ,∴∠DEC =90°,∴DC 是△AEC 外接圆的的直径,∵BE 是⊙O 的切线,∴∠OEB =90°,∴∠EBO +∠BOE =90°,在Rt △ABC 中,E 为斜边AC 的中点,∴BE =EC =AE =12AC ,∴∠EBO =∠C ,由圆周角定理得:∠BOE =2∠C ,∵∠EBO +∠BOE =90°,∠EBO =∠C ,∴∠C +2∠C =90°,∴∠C =30°;(2)在Rt △ABC 中,AC ===则BE =12AC =∵∠CED =∠CBA =90°,∠ECD =∠BCA ,∴△CED ∽△CBA ,∴CECB =CDCA ,即=解得:CD =5,则△DEC 外接圆的半径为52.22.解:(1)延长AC 交EG 于H ,则AB =CD =EH =1.7米,AC =BD ,AH =BE ,∵GE =18.5米,∴HG=EG﹣HE=18.5﹣1.7=16.8(米),在Rt△AGH中,∠GAH=37°,∴tan37°=GHAH =16.815CH≈0.75,∴CH=7.4,∴BE=AH=15+7.4=22.4(米),答:小亮站在B处时离教学楼的距离BE为22.4米;(2)由(1)知CH=7.4米,在Rt△FCH中,∵∠FCH=42°,∴tan42°=FHCH =FH7.4≈0.90,∴FH=6.66,∴FG=GH﹣FH=16.8﹣6.66≈10.1(米),答:条幅GF的长度约为10.1米.23.解:(1)根据题意得:﹣2y+150=2(﹣x+100),整理得:y=x﹣25;(2)根据题意得:(x﹣60)(﹣x+100)=(y﹣50)(﹣2y+150),由(1)知,y=x﹣25,∴(x﹣60)(﹣x+100)=(x﹣75)(﹣2x+200),整理得:x2﹣190x+9000=0,解得x1=90,x2=100,∵x=100时利润为0,∴x的值为90;(3)设该4S店第四季度销售这两种轿车能获得的利润为w万元,则w=(x﹣60)(﹣x+100)+(y﹣50)(﹣2y+150)=(x﹣60)(﹣x+100)+(x﹣75)(﹣2x+200)=﹣3x2+510x﹣21000=﹣3(x﹣85)2+675,∵﹣3<0,∴当x=85时,w有最大值,最大值为675,答:该4S店第四季度销售这两种轿车能获得的最大利润为675万元.24.解:(1)估计转动该转盘一次,获得纸巾的概率约是0.6(精确到0.1);故答案为:0.6;(2)摸球抽奖规则:把3个白球和2个黑球放入一个不透明的袋子(5个球除颜色外都相同),顾客购物满100元即可获得一次摸球的机会,当摸到白球时奖品为纸巾,摸到黑球时奖品为免洗洗手液;(3)画树状图为:共有25种等可能的结果数,其中两人都获得纸巾的结果数为9,.所以两人都获得纸巾的概率为92525.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠ECD=180°,∵∠AFE=∠B,∴∠AFE+∠ECD=180°,∵∠AFE+∠AFD=180°,∴∠DFA=∠ECD.(2)解:相似,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=4,∴∠ADF=∠CED,又∵∠DFA=∠ECD,∴△ADF∽△DEC.(3)解:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,∴AE⊥AD,在Rt△EAD中,DE===6,∵△ADF∽△DEC,∴ADDE =AFDC,即=AF4.∴AF=27.解:(1)把点A代入y=12x 得:6=12m,解得m=2,把点A代入y=12x 得3=12n,解得n=4,∴A(2,6),B(4,3),设要求的一次函数的表达式为y=kx+b,由题意得:6=2k+b 3=4k+b,解之得:k=―32b=9,∴一次函数的表达式为y =―32x +9;(2)设直线AB 交x 轴于点P ,则0=―32x +9,∴x =6,∴P (6,0),∴S △AOB =S △AOP ﹣S △BOP =12×6×6―12×6×3=18―9=9,∴S △MOB =9,设点M 的坐标为(m ,0),∴OM =|m |,∴12×3×|m|=9,∴|m |=6,∴m =±6,∴点M 的坐标为(6,0)或(﹣6,0);(3)观察图象可知,kx +b ―12x >0时x 的取值范围是2<x <4.。

九年级数学上册各单元综合测试题含答案共13套

九年级数学上册各单元综合测试题含答案共13套

人教版九年级数学上册第二十一章综合测试卷01一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是()A .2550x x -+=B .2550x x +-=C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是()A .12x x ==B .10x =,2x =-C .1x 2x =-D .1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为()A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为()A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为()A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为()A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=()A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为()A .1(1)282x x +=B .1(1)282x x -=C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是()A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -++-=的两根为1x ,2x ,则1211x x +=__________.15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________.16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________.17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分)19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=.(1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。

九年级数学 综合测试(A卷)题及答案

九年级数学 综合测试(A卷)题及答案

综合测试(A 卷)(50分钟,共100分)班级:_______ 姓名:_______ 得分:_______一、请准确填空(每小题3分,共24分)1.若α为锐角,且si n 2α+cos 230°=1,则∠α=_____.2.如图1,在△ABC 中,∠A=30°,tanB=21,BC=5,则AB=_____. 3.⊙O 的直径CD 与弦AB 交于点M ,添加条件:______(写出一个即可),就可得到M 是AB 的中点.A BC图1图2 图34.如图2,在△ABC 中,∠A=90°,⊙A 切BC 于D ,BD=4,DC=16,则⊙A 的半径为_____.5.在Rt △ABC 中,∠C=90°,AB=3,BC=1,以AC 所在直线为轴旋转一周,所得圆锥的侧面积是_____.6.抛物线y=2(x -2)2-7的顶点为C ,已知函数y=-kx -3的图象经过点C ,则它与两坐标轴所围成的三角形面积为_____.7.已知0<a<b 满足a 2-7a+2=0,b 2-7b+2=0,则抛物线y=x 2-7x+2与x 轴的两交点是(用a 、b 表示)_____. 8.如图3,一转盘被圆盘直径八等分,则转盘至少转_____度与原图形重合;如果一小鸟飞来要落在转盘上,则落在阴影部分上的概率是_____. 二、相信你的选择(每小题3分,共24分)9.已知抛物线y=x 2-2x+c 的顶点在x 轴上,你认为c 的值应为( )A.-1B.0C.1D.210.已知数据6,8,3,6,4,6,3,那么这组数据的中位数、众数分别为( )A.6,5B.5,6C.5.5,6D.6,611.二次函数y=ax 2+bx+c 的图象永远为负值的条件是( )A.a>0,b 2-4ac<0B.a<0,b 2-4ac>0C.a<0,b 2-4ac<0D.a>0,b 2-4ac>012.在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6 m ,斜坡上相邻两树间的坡面距离是( )A.3B.35C.33D.413.已知抛物线y=ax 2+bx+c 中,4a -b=0,a -b+c>0,抛物线与x 轴有两个不同的交点,且这两个交点之间的距离小于2,则下列判断错误的是( )A.abc<0B.c>0C.4a>cD.a+b+c>0 14.若一个直角三角形的一条直角边等于它的外接圆的半径,则该三角形的面积与其外接圆的面积的比为( )A.π23 B .π43 C.π3D.π215.截面直径为100 cm 的圆形下水道横截面如图4所示,水面宽60 cm ,则下水道中水的最大深度为( )A.90 cmB.80 cmC.60 cmD.50 cm 16.图5中奥迪车商标的长为34 cm ,宽为10 cm ,则d 的值为( )A.14B.16C.18D.20图4 图5三、考查你的基本功(共16分)17.(6分)已知在Rt △ABC 中,∠C=90°,AC=15,∠A 的平分线AD=103,求BC 和AB.18.(10分)如图,已知⊙O 1与⊙O 2是等圆,直线CF 顺次交两圆于C 、D 、E 、F ,且CF 交O 1O 2于点M.需要添加上一个条件:_____(只填写一个条件,不添加辅助线或另添字母),则M 是线段O 1O2的中点,并说明理由.(说明理由时可添加辅助线或字母)四、生活中的数学(共20分)19.(10分)如图,某电信部门计划修建一条连接B、C两地的电缆,测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B地测得C地的仰角为60°.已知C地比A地高200米,电缆BC至少长多少米?(精确到0.1米)20.(10分)某电台“市民热线”对上周内接到的热线电话进行了分类统计,得到的统计信息图如图所示,其中有关房产城建的电话有30个,请你根据统计图的信息回答以下问题:(1)道路交通热线电话是多少个?占总数百分比是多少?(2)上周“市民热线”接到有关环境保护方面的电话有多少个?(3)据此估计,除环境保护方面的电话外,“市民热线”今年(按52周计算)将接到的热线电话约多少个?(4)为了更直观显示各类“市民热线”电话的数目,你准备采用什么样的统计方法?五、探究拓展与应用(共16分)21.(10分)已知抛物线y=2x2+bx-2经过点A(1,0).(1)求b的值;(2)设p为此抛物线的顶点,B(a,o)(a≠1)为抛物线上的一点,Q是坐标平面内的点,若以A、B、P、Q为顶点的四边形为平行四边形,这样的Q点有几个?并求出PQ的长.22.(6分)某跑道的周长为400 m且两端为半圆形,要使矩形内部操场的面积最大,直线跑道的长应为多少?参考答案一、1.30° 2.2+3 3.CD ⊥AB(或AM=BM 或AD =AD …)4.85.3π6.497.(a ,0) (b ,0) 8.18041 二、9.C 10.D 11.C 12.B 13.A 14.A 15.A 16.C 三、17.解:在Rt △ADC 中,∵AC=15,AD=103, ∴CD=3522=-AC AD .∴CD=21AD . ∴∠DAC=30°. ∴∠BAC=60°. ∴∠B=90°-∠BAC=30°. ∴AB=2AC=30, BC=31522=-AC AB .18.解:CD EF = (或CD=EF).理由:过O 1作O 1A ⊥CD 于A ,过O 2作O 2B ⊥EF 于B ,则O 1A ∥O 2B. ∵⊙O 1、⊙O 2是等圆,CD EF = (或CD=EF), ∴O 1A=O 2B . ∵O 1A ∥O 2B , ∴MO MO A O A O 2121=. ∴O 1M=O 2M , 即M 为O 1O 2的中点. 四、19.解:过B 点分别作BE ⊥CD 、BF ⊥AD ,垂足分别为E 、F .设BC=x m . ∵∠CBE=60°, ∴BE=21x ,CE=23x. ∵CD=200, ∴DE=200-23x . ∴BF=DE=200-23x, DF=BE=21x .∵∠CAB=45°, ∴AD=CD=200. ∴AF=200-21x . 在Rt △ABF 中, tan30°=.2120023200x xAF BF --=解得).答:电缆BC 至少147米.20.(1)15个, 10%; (2) 45个; (3) 5460个; (4)可用条形统计图. 五、21.解:(1)由题意得2×12+b ×1-2=0,∴b=0.(2)由(1)知y=2x 2-2. ∴P(0,-2) .∵B(a ,0)(a ≠1)在抛物线上, ∴2a 2-2=0 . ∴a=-1 . ∴B(-1,0). 符合题意的Q 点在坐标平面内的位置有下述三种.如图①当Q 在y 轴上时,∵四边形QBPA 为平行四边形, 可得QO=OP=2, ∴PQ=2. ②当点Q 在第四象限时, ∵四边BPQA 是平行四边形, ∴PQ=AB=2.③当点Q 在第三象限时, 同理可得PQ=2. 22.解:设矩形直线跑道长为2 .由题意得:.10000)100(110)100(1200122400242ππππππ+--=+--=+-=⋅-=x x x x x x y当.。

九年级数学(上)综合水平测试(A)

九年级数学(上)综合水平测试(A)

九年级数学(上)综合水平测试(A )一、选择题(每小题2分,共16分)1.对于任何实数a 、b ,下列结论正确的是( )A .a 2的算术平方根是aB .2()a a -=-C .22()a a =D .2()a a -= 2.关于x 的方程ax 2-3x +2=0是一元二次方程,则( )A .a >0B .a ≠0C .a =1D .a ≥03.如图1,把一个量角器放置在∠BAC 的上面,请你根据量角器的读数判断∠BAC 的度数是( )A .30°B .60°C .15°D .20°4.4张扑克牌如图2(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图2(2)所示,那么她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张5.一元二次方程x 2-x +2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范围是( )A .r >2B .2<r <14C .1<r <8D .2<r <87.在两个口袋里分别放黑白球各一粒(它们仅颜色不同),在每一个口袋里摸一粒,记下颜色后,放到第2个口袋里,再在第2个口袋里摸一粒,两次摸到颜色相同的频率估计是( )A .13B .14C .12D .238.如图3,在△ABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O的半径是( )A .1B .54C .127D .94二、填空题(每小题3分,共24分)9.当x 时,式子3x -有意义. 10.当m = 时,最简二次根式1312m +和42m -可以合并. 11.如图4,CD 所在的直线垂直平分线段AB ,利用这样的工具,最少使用 次就可以找到圆形工件的圆心.12.口袋中放有2只红球和5只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,则取到黄球的概率是 .13.旋转是一种常见的全等变换,如图5中△ABC 绕点O 旋转后得到△A ′B ′C ′,我们称点A 和点A ′、点B 和点B ′、点C 和点C ′分别是对应点,把点O 称为旋转中心.观察图形,想一想,旋转变换具有哪些特点呢?请写出其中的一个特点: .14.在边长为3cm 、4cm 、5cm 的三角形白铁皮上剪下一个最大的圆,此圆的半径为 cm .15.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程x 2-10x +m =0的两根,则m 的值是 .16.如图6,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依ABCDEFCGA 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断地爬行,直到行走2 006πcm 后才停下来.请问这只蚂蚁停在哪一个点?答:停在 点.三、解答题(本大题共60分)17.(本题8分)有一道题“先化简,再求值:22241344x x x x x -⎛⎫+÷ ⎪+--⎝⎭,其中3x =-.”小玲做题时把“3x =-”错抄成了“3x =”,但她的计算结果也是正确的,请你解释这是怎么回事?18.(本题8分)如图7,请在下列网格图中画出所给图形绕点O 顺时针依次旋转90°、180°、270°后所成的图形.(注意:有阴影部分图形旋转后的对应图形要涂上阴影.不要求写画法)19.(本题10分)小红和小明在操场做游戏,他们先在地上画了半径分别2m 和3m 的同心圆(如图8),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)20.(本题10分)如图9,有一个拱桥是圆弧形,他的跨度为60m,拱高为18m,当洪水泛滥跨度小于30m时,要采取紧急措施.若拱顶离水面只有4m时,问是否要采取紧急措施?21.(本题10分)顾客李某于今年“五·一”期间到电器商场购买空调,与营业员有如下的一段对话:顾客李某:A品牌的空调去年“国庆”期间价格还挺高,这次便宜多了,一次降价幅度就达到19%,是不是质量有问题?营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.顾客李某:我们单位的同事也想买A品牌的空调,有优惠政策吗?购买A品牌系列空调的优惠办法:方案一:各种型号的空调每台价格优惠5%,送货上门,负责安装,每台空调另加运输费和安装费共90元.方案二:各种型号的空调每台价格优惠2%,送货上门,负责安装,免运输费和安装费.根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:(1)求A品牌系列空调平均每次降价的百分率?(2)请你为顾客李某决策,选择哪种优惠更合算,并说明为什么?22.(本题14分)(1)已知MN是一条直线,AB是⊙O的直径,且AB=2R,设A、B两点到M、N的距离分别为x、y.如图10,当直线MN与⊙O相切时,x、y与O点到直线MN的距离d之间的关系为:;(2)如图11、图12,当直线MN与⊙O相离时,x、y与O点到直线MN的距离d之间的关系为:;(3)根据图10、图11、图12,你能归纳出什么结论:;(4)当直线MN与⊙O相交时,上面归纳的关系是否一定成立?成立时,请写出证明过程,不成立时,说明理由.(请画出图形)附加题:(本题20分,不计入总分)23.如图13,形如量角器的半圆O的直径D E=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线D E围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.参考答案:一、1~5.DBCAC 6~10.DAA二、9.0x ≥且9x ≠ 10.14 11.两 12.5713.①对应点到旋转中心的距离相等;②任意一对对应点与旋转中心的连结所成的角相等;③旋转前后两个图形全等等均可14.1 15.16或25 16.D三、17.略.18.图略.19.(1)不公平,理由略.(2)略.20.不用采取紧急措施,理由略.21.(1)A 品牌系列空调平均每次降价的百分率为10%;(2)当A 品牌系列空调的某一型号的价格为每台小于3000元时,应选方案二;当A 品牌系列空调的某一型号的价格为每台3000元时,两种方案都可以选;当A 品牌系列空调的某一型号的价格为每台大于3000元时,应选方案一.22.解:(1)2x y d +=(或2R );2)2x y d +=;(3)2x y d +=(此时MN 与O e 相切或相离);(4)不一定成立,理由略.附加题:23.解:①1t =s 时,半圆O 与AC 相切;图略;②4s t =时,半圆O 与AB 相切,图略.此时重叠部分面积为29cm π.③7s t =时,半圆O 与AC 相切;图略.此时重叠部分面积为26)cm π. ④16s t =时,半圆所在的O e 和直线AB 的延长线相切.图略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学综合试卷(一)
一、选择题(本大题共8小题,每小题3分,共24分)
1.下列等式一定成立的是( ) A.916916+=+ B.22a b a b -=- C.44ππ⨯=⨯ D.2()a b a b +=+
2.直角坐标系内,点P (-2 ,3)关于原点的对称点Q 的坐标为( )
A.(2,-3)
B.(2,3)
C.(3,-2)
D.(-2,-3) 3.方程0)1(=-x x 的解是( )
A.0=x
B.1=x
C.0=x 或1-=x
D.0=x 或1=x
4.时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是
( )
A.30°
B. 45°
C. 60°
D. 90°
5.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的关系是( )
A.R =2r
B.3R r =
C.R =3r
D.R =4r
6、一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是( ).
A.12
B.13
C.14
D.15
7.抛物线图象如图3所示,根据图象,抛物线的解析式可能..
是( ) A.223y x x =-+ B.223y x x =--+ C.223y x x =-++
D.223y x x =-+-
8.已知⊙O 过正方形ABCD 顶点A 、B ,且与CD 相切,若正方形边长为2,则圆的半径为( )
A.34
B.45
C.2
5 D.1 二、填空题(本大题共10小题,每小题3分,共30分,)
9.若代数式3
2--x x 有意义,则x 的取值范围为__________. 5题6题
B O A y
x 10.关于x 的一元二次方程0162=+-x kx 有两个不相等的实数根,则k 的取值范围是____.
11.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取得黄球的概率是_________.
12.在ABC ∆中,∠A=500.三角形内有一点O ,若O 为三角形的外心,则∠BOC = ,若O 为三角形的内心,则∠BOC = 度.
13.两个圆的半径分别是2cm 和7cm ,圆心距是5cm ,则这两个圆的位置关系是 .。

14.抛物线2)1(2+-=x y 的顶点坐标是 .
15.⊙O 的半径是13,弦AB ∥C D, AB=24, C D=10,则 AB
与C D 的距离是 .
16.观察下列各式:312311=+,413412=+,5
14513=+……,请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________
三、(本大题共3小题,每小题6分,共18分)
17.计算:1303)2(2514-÷-+⎪⎭
⎫ ⎝⎛+-
18.如图,在Rt OAB △中,90OAB ∠=o ,且点B 的坐标为(4,2).画出OAB △绕点O 逆时针旋转90o 后的11OA B △,并求点A 旋转到点1A 所经过的路线长.
19.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管
⑴请你补全这个输水管道的圆形截面; ⑵若这个输水管道有水部分的水面宽AB =16cm ,
水面最深地方的高度为4cm
四、(本小题共2小题,每小题8分,共16分)
20.元旦期间,元坝商场的原价为100元的某种产品经过两次连续降价以每件81元出售,设这种商品每次降价的百分率相同,求这个百分率。

21. 张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:
张彬:如图,设计了一个能够自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;
王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.
请你使用所学的概率知识,分析张彬和王华的设计方案对双方是否公平.
100︒
70︒
五、(本小题共2小题,每小题9分,共18分)
22.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:⑴AC是⊙D的切线;⑵AB+EB=AC.
23.已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长为x cm旋转形成的圆柱的侧面积S.
⑴请你写出矩形的长x cm与旋转形成的圆柱的侧面积S的函数关系.
⑵当矩形的长x cm为多少时,旋转形成的圆柱的侧面积S最大,最大面积是多少?。

相关文档
最新文档