北师大版七年级数学下册《三角形》全章复习与巩固(提高)知识讲解【名校学案+详细解答】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形》全章复习与巩固(提高)

【学习目标】

1. 理解三角形有关的概念,掌握三角形内角和定理的证明,能应用内角和定理进行相关的计算及证明问题.

2. 理解并会应用三角形三边关系定理;

3.了解三角形中三条重要的线段并能正确的作图.

4.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式,而且要用利用图形全等的解决实际生活中存在的问题.

5. 掌握常见的尺规作图方法,并根据三角形全等判定定理利用尺规作一个三角形与已知三角形全等.

【知识网络】

【要点梳理】

要点一、三角形的内角和

三角形内角和定理:三角形的内角和为180°.

要点诠释:应用三角形内角和定理可以解决以下三类问题:

①在三角形中已知任意两个角的度数可以求出第三个角的度数;

②已知三角形三个内角的关系,可以求出其内角的度数;

③求一个三角形中各角之间的关系.

要点二、三角形的分类

1.按角分类:

⎧⎪⎧⎨⎨⎪⎩⎩

直角三角形三角形 锐角三角形斜三角形 

钝角三角形 要点诠释:

①锐角三角形:三个内角都是锐角的三角形;

②钝角三角形:有一个内角为钝角的三角形.

2.按边分类:

⎧⎪⎧⎨⎨⎪⎩⎩

不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 要点诠释:

①不等边三角形:三边都不相等的三角形;

②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;

③等边三角形:三边都相等的三角形.

要点三、三角形的三边关系

1.定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边. 要点诠释:

(1)理论依据:两点之间线段最短.

(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.

(3)证明线段之间的不等关系.

2.三角形的重要线段:

一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.

一个三角形有三条角平分线,它们交于三角形内一点.

三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.

要点四、全等三角形的性质与判定

1.全等三角形的性质

全等三角形对应边相等,对应角相等.

2.全等三角形的判定定理

全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). “

全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).

全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)

全等三角形判定4—— “边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).

要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;

(2)可以从已知出发,看已知条件确定证哪两个三角形全等;

(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;

(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.

要点五、用尺规作三角形

1.基本作图

利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;

要点诠释:要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.

【典型例题】

类型一、三角形的内角和

1.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少? 【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.

【答案与解析】

解:分两种情况讨论:

(1)当△ABC为锐角三角形时,如图所示,在△ABD中,

∵ BD是AC边上的高(已知),

∴∠ADB=90°(垂直定义).

又∵∠ABD=30°(已知),

∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.

又∵∠A+∠ABC+∠C=180°(三角形内角和定理),

∴∠ABC+∠C=120°,

又∵∠ABC=∠C,∴∠C=60°.

(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,

∵∠ABD=30°(已知),所以∠BAD=60°.

∴∠BAC=120°.

又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),

∴∠ABC+∠C=60°.

∴∠C=30°.

综上,∠C 的度数为60°或30°.

【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.

举一反三

【变式】已知:如图,在ΔABC 中,∠A∶∠B∶∠C=3∶4∶5,BD 、CE 分别是边AC 、AB 上的高,BD 、CE 相交于H ,则∠BHC 的度数为 .

【答案】135°. 类型二、三角形的三边关系及分类

2.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).

A .6个

B .5个

C .4个

D .3个

【答案】D

【解析】x 的取值范围:511x <<,又x 为偶数,

所以x 的值可以是6, 8, 10,故x 的值有3个。

【总结升华】不要忽略“x 为偶数”这一条件.

举一反三

【变式】(2019•朝阳)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为 .

【答案】8.

解:设第三边长为x ,

∵两边长分别是2和3,

∴3﹣2<x <3+2,

即:1<x <5,

∵第三边长为奇数,

∴x=3,

∴这个三角形的周长为2+3+3=8.

3.如图,O 是△ABC 内一点,连接OB 和OC .

相关文档
最新文档