函数的单调性课件

合集下载

函数的单调性(PPT课件)

函数的单调性(PPT课件)
3.7 函数的单调性
• 问题: 1.说出函数f(x)在某区间上是增(减) 函数的意义( 从代数及几何图像两方面说 明); • 2.函数f(x)的导数的几何意义是什么?
• 例子:函数的图像如图所示. • 考虑到曲线的切线的斜率就是函数的导 数, • 从图像可以看到: • 在区间(2,+∞)内,切线的斜率为正, 即f′(x) > 0,f(x)为增函数; • 在区间(- ∞ , 2 )内,切线的斜率为 负,即f′(x) < 0,f(x)为减函数.
• 练习:已知函数f(x)=x4+(2-a)x2+2-a,问
• 是否存在实数a,使f(x)在(-∞,-
• 是减函数,且在(-
)上
,0)上是增函数?
练习
• 1函数y=x-ex的增区间为 ,减区间 • • 2.函数y=x+ (k>0)的减区间 • • 3.确定下列函数的单调区间: • (1)y=x3-9x2+24x (2)y=x-x3 • 4.讨论二次函数y=ax2+bx+c(a≠0)的单调区间. • 5判断y=ex+e-x在(0,+∞)上
• 结论:一般地,设函数y=f(x)在某个区间 内可导, • 如果f′(x) > 0 ,则f(x)为增函数; • 如果f′(x) < 0 ,则f(x)为减函数。 • 如果在某个区间内恒有f′(x)=0 ,则f(x)为 常数函数。
2.应用:
• 例1.确定下列函数在哪个区间内是增函 数,哪个区间内是减函数。 • (1)y= x+ x ∈ (0,+∞) • • (2)y=2x3-6x2+7
小结:用导数判定函数单调性的 步骤(特别适合高次函数和复合 函数的单调性)

函数的单调性课件(共17张PPT)

函数的单调性课件(共17张PPT)
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则 不难看出,图3-7中,y是的函数,记这个函数为y =f(x).
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性

2024版《函数的单调性》全市一等奖完整版PPT课件

2024版《函数的单调性》全市一等奖完整版PPT课件

利用单调性证明不等式
1 2
构造函数 根据不等式的特点,构造一个与不等式相关的函 数。
判断函数单调性 通过求导或差分等方法判断所构造函数的单调性。
3
利用单调性证明不等式 根据函数的单调性,结合不等式的性质,证明不 等式成立。
2024/1/29
18
利用单调性解决实际应用问题
要点一
建立数学模型
要点二
判断函数单调性
2024/1/29
21
导数与微分在函数单调性研究中的应用
导数大于零的区间内函数单调 增加,导数小于零的区间内函 数单调减少。
2024/1/29
导数等于零的点为函数的驻点, 需要进一步判断其左右两侧导 数的符号来确定该点的单调性。
微分的概念可以应用于函数单 调性的研究,通过微分可以分 析函数的局部变化率,进而判 断函数的单调性。
14
指数函数与对数函数
对数函数 $y = log_a x$($a > 0, a neq 1$)的单调 性
当 $0 < a < 1$ 时,函数在 $(0, +infty)$ 上单调递减。
当 $a > 1$ 时,函数在 $(0, +infty)$ 上单调递增。
指数函数与对数函数的图像关于直线 $y = x$ 对称,即 互为反函数。
2024/1/29
19
05
函数单调性与其他知识点关联
2024/1/29
20
函数奇偶性与周期性对单调性影响
奇函数在对称区间上的单调性相 同,偶函数在对称区间上的单调
性相反。
周期函数在一个周期内的单调性 与整体单调性一致,可以通过研 究一个周期内的单调性推断整体
的单调性。

函数单调性课件(公开课)

函数单调性课件(公开课)

定义法
总结词
通过函数定义判断单调性
详细描述
在区间内任取两个数$x_{1}$、$x_{2}$,如果$x_{1} < x_{2}$,都有$f(x_{1}) leq f(x_{2})$,则函数在这个区间内单调递增;如果$x_{1} < x_{2}$,都有$f(x_{1}) geq f(x_{2})$,则函数在这个区间内单调递减。
感谢您的观看
03 函数单调性的应用
单调性与最值
总结词
单调性是研究函数最值的重要工 具。
详细描述
单调性决定了函数在某个区间内的 变化趋势,通过单调性可以判断函 数在某个区间内是否取得最值,以 及最值的位置。
举例
对于函数f(x)=x^2,在区间(-∞,0) 上单调递减,因此在该区间上取得 最大值0。
单调性与不等式证明
单调递减函数的图像
在单调递减函数的图像上,随着$x$的增大,$y$的值减小,图像 呈现下降趋势。
单调性转折点
在单调性转折点上,函数的导数由正变负或由负变正,对应的函数 图像上表现为拐点或极值点。
02 判断函数单调性的方法
导数法
总结词
通过求导判断函数单调性
详细描述
求函数的导数,然后分析导数的符号,根据导数的正负判断函数的增减性。如 果导数大于0,则函数在该区间内单调递增;如果导数小于0,则函数在该区间 内单调递减。
总结词
单调性是证明不等式的重要手段。
详细描述
通过比较函数在不同区间的单调性,可以证明一些不等式。例如,如果函数f(x)在区间[a,b]上 单调递增,那么对于任意x1,x2∈[a,b],有f(x1)≤f(x2),从而证明了相应的不等式。
举例
利用函数f(x)=ln(x)的单调递增性质,可以证明ln(x1/x2)≤(x1-x2)/(x1+x2)。

函数的单调性_PPT课件

函数的单调性_PPT课件

同理可得f(x)在(0, a]上是减函数.
当x<0时,由奇函数的性质知函数f(x)
在(-∞, a]上是增函数,在[ ,a0)上是 减函数.
综上,函数f(x)在[ a ,0),(0, a]
上是减函数,在(-∞, ]a ,[ ,a+∞)上是增 函数.
18
【评注】研究函数的单调性一般有两种方 法,即定义法和导数法.定义法是基础,掌握定 义法的关键是作差(f(x2)-f(x1)),运算 的结果可以判断正、负.本题判断正、负的依据 是代数式“x1x2-a”,处理这个代数式的符号是 一个难点,要有一定的数学功底作基础.把x1、 x2看成自变量,则转化为判断“x2-a”的符号, 于是转化为判断“x ”的 符a 号,自然过渡 到x= 是函数a单调区间的分界点.
0(x [2, ,
3a 0
))
解得-4<a≤4.
所以实数a的取值范围是(-4,4].
28
【评注】利用函数单调性讨论参数的取 值范围是高考试题考查能力的知识结合点, 一般要弄清三个环节:(1)考虑函数的定义 域,保证研究过程有意义.本题中,不能忽视 u=x2-ax+3a>0;(2)保证常见函数的单调区间 与题目给出的单调区间的同一性.本题中, [ a ,+∞)上是单调增区间与[2,+∞)一致; (32)注意防止扩大参数的取值范围,本题中, u(2)>0.
1 2
.
33
题型5 抽象函数的单调性
已知函数f(x)的定义域为
(0,
+∞),当x>1时,f(x)>0,且对于任意的正
数x,y都有f(xy)=f(x)+f(y).
(1)证明:函数f(x)在定义域上是增函 数;

函数的基本性质ppt课件

函数的基本性质ppt课件
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.

函数的单调性ppt课件

函数的单调性ppt课件
应用实例
THANKS
感谢观看
定义法
通过求函数的导数来判断函数的单调性。如果函数的导数大于0,则函数在该区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
导数法
03
单调性在解决函数的零点问题中也有着重要的应用。通过判断函数的单调性,可以确定函数的零点所在的区间,进而求出函数的零点。
01
单调性在解决不等式问题中有着广泛的应用。通过判断函数的单调性,可以确定不等式的解集或解的范围。
成本效益分析
利用单调性,可以分析企业生产成本与收益之间的关系,制定合理的经营策略。
风险评估
在金融学中,单调性可用于评估投资风险,例如股票价格的变化趋势。
03
02
01
单调性与其他数学概念的关系
04
CATALOGUE
单调性与导数之间存在密切的联系,导数的符号决定了函数的增减性。
单调性是指函数在某个区间内的变化趋势,而导数则是函数在某一点的切线斜率。如果函数在某个区间内单调递增,则其导数在该区间内大于等于零;如果函数在某个区间内单调递减,则其导数在该区间内小于等于零。因此,通过求函数的导数,可以判断函数的单调性。
安静
一度1
01
2
02
on on
03
asiest s掏燕 credit, members on,
切实实地 金字,
on thebbbb斯特 to , therefore, ,2 core on鉴于后者 on, core yes on
,
, on the, core, credit. on buried.,,xe.
函数的单调性可以通过函数的导数来判断。如果函数的导数大于0,则函数在该区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。

5.3.1函数的单调性(第一课时)课件(人教版)

5.3.1函数的单调性(第一课时)课件(人教版)

利用导数判断含参函数的单调性

2:函数
f
(
x
)
1 = ax
2-(
a+1)
x
+lnx
,a>0,试讨论函数
f(
x
)
的单调性.
2
解:函数的定义域为(0,+∞),
1 ax2-(a+1)x+1 (ax-1)(x-1)
f′(x)=ax-(a+1)+ =


x
x
x
1
1
1
1,
①当 0<a<1 时, >1,∴x∈(0,1)和( ,+∞)时,f′(x)>0;x∈ a 时,f′(x)<0,
a
a
1
1
0,
,1
∴函数 f(x)在 a 和(1,+∞)上单调递增,在 a 上单调递减,
利用导数判断含参函数的单调性
综上所述,
1
1
,+∞
1,
当 0<a<1 时,函数 f(x)在(0,1)和 a
上单调递增,在 a 上单调递减;
当 a=1 时,函数 f(x)在(0,+∞)上单调递增;
1
1
0,
,1
当 a>1 时,函数 f(x)在 a 和(1,+∞)上单调递增,在 a 上单调递减.
RART 02
函数的单调性与导数
函数的单调性
思考:视察下面一些函数的图象,探讨函数的单调性与导数的正负的关系.
y y=x
O
x
(1)
y
y=x2
O
x
(2)
y
y=x3
O
x
y y=x-1
O
x
(3)

函数的单调性教学课件

函数的单调性教学课件

- 比较任意两个点的函数值即可判断单调性
单调性的应用
1 最值问题
- 单调递增:最小值在最左侧
2 最值问题
- 单调递减:最大值在最右侧
3 映射问题
- 将原函数的定义域映射到新的定义上,新函数单调性一致
总结
单调性定义:
- 单调上升和单调下降
判断方法:
- 导数符号法和函数值比较法应来自:- 最值问题和映射问题
4 示例
- $g(x) = -x^2$ 在定义域 $x\in\mathbb{R}$ 上 单调下降
如何判断单调性?
1 方法一:导数符号法
- 若 $f'(x) > 0$,则 $f(x)$ 在该区间上单调上升
2 方法一:导数符号法
- 若 $f'(x) < 0$,则 $f(x)$ 在该区间上单调下降
3 方法二:函数值比较法
函数的单调性教学ppt课件
什么是单调性?
1 定义
- 函数单调上升:对于任意 $x_1 < x_2$,有 $f(x_1) < f(x_2)$
3 示例
- $f(x) = x^2$ 在定义域 $x\geq0$ 上单调上升
2 定义
- 函数单调下降:对于任意 $x_1 < x_2$,有 $f(x_1) > f(x_2)$

函数单调性课件(公开课)ppt

函数单调性课件(公开课)ppt
函数单调性课件(公开课)
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。

函数函数的单调性课件

函数函数的单调性课件

2023函数函数的单调性课件pptcontents •引言•函数的单调性•判定函数单调性的方法•应用•习题与练习•总结目录01引言课程简介课程名称函数函数的单调性适用对象高中数学及大学数学初学者课程目标掌握函数单调性的概念、分类、判定方法及其应用帮助学生学习函数单调性的基本知识和判定方法,能够正确判断函数的单调性,并解决相关问题。

函数单调性是函数的重要性质之一,对于理解函数的变化规律、解决函数的相关问题具有重要意义,同时也是学习微积分、概率统计等学科的基础。

目的意义目的和意义1教学方法23通过讲解、演示和图示等方法,使学生理解函数单调性的概念和判定方法。

理论教学通过典型例题的分析和求解,使学生掌握函数单调性的应用和解题技巧。

案例教学教师与学生进行互动,及时了解学生的学习情况并调整教学策略。

互动教学02函数的单调性函数的定义定义域自变量的取值范围对应关系给定自变量x,可以确定唯一因变量y函数关系一种对应关系,即对于自变量x的每一个确定的值,都有唯一确定的y值与之对应。

函数的图形表示直角坐标系以x为横轴,y为纵轴,描绘函数图形函数图形展现函数与自变量之间的变化关系单调递增单调递减单调区间当自变量x增大时,函数值y反而减小单调递增或递减的区间03单调性的定义02 01当自变量x增大时,函数值y也增大03判定函数单调性的方法最基础的判定方法总结词定义法是通过在函数定义域内任意取两个自变量,比较其对应的函数值大小,进而判断函数的单调性。

一般情况下,需要证明函数在定义域内满足以下条件:若$x_1<x_2$,则$f(x_1)<f(x_2)$,此时函数为增函数;若$f(x_1)<f(x_2)$,则$x_1<x_2$,此时函数为减函数。

详细描述总结词适用于较复杂函数的判定方法详细描述导数法是通过求出函数的导数,然后根据导数值的正负情况来判断函数的单调性。

函数在某区间内导数值大于0时,函数在该区间内单调递增;导数值小于0时,函数在该区间内单调递减。

函数函数的单调性课件

函数函数的单调性课件
判定方法
定义法、导数法(对于可导函数) 。
复合函数的单调性例题解析
01
总结词
ቤተ መጻሕፍቲ ባይዱ
复合函数单调性的概念、性质及判定方法
02 03
详细描述
复合函数单调性取决于内外层函数单调性的关系。若外层函数单调递增 (减),内层函数单调递增(减),则复合函数为单调递增(减)函数 。
判定方法
根据复合函数单调性的性质进行判断。
易错点提醒
在求解函数的单调性问题时,容易忽略函数的定义域、导数的正负与函数单调性的关系以及如何根据 题目要求进行分类讨论。同时需要注意极值点不一定是拐点,要根据题目要求进行求解。
THANKS
感谢观看
05
总结与回顾
函数单调性的定义与性质回顾
函数单调性的定义
函数在某区间上的单调性是指函 数在该区间内随着自变量的增加 ,函数值随之增加(或减少)。
函数单调性的性质
函数的单调性可以通过导数来刻 画,如果导数大于0,则函数在该 区间内单调递增;如果导数小于0 ,则函数在该区间内单调递减。
函数单调性的应用与解题技巧总结
详细描述
函数单调性可以用于优化问题、经济问题、交通问题等多个领域。例如,在投资决策中,通过观察股票价格的波 动和单调性,可以更好地把握投资机会。在交通规划中,通过观察交通流量的变化和单调性,可以更好地规划交 通路线。
04
函数单调性的例题解析
单调递增函数的例题解析
总结词
单调递增函数的概念、性质及判 定方法
03
函数单调性的应用
利用函数单调性求函数的值域
总结词
函数单调性是求解函数值域的重要工具。
详细描述
通过观察函数在定义域内的单调性,可以容易地求出函数的值域。例如,对于一 次函数,其在定义域内是单调的,可以直接根据定义域和单调性求出值域。对于 二次函数,可以通过观察其对称轴和顶点位置,结合单调性来求解值域。

函数的单调性(公开课课件)

函数的单调性(公开课课件)

VS
单调性与极值大小的关系
单调性可以用来比较不同区间上的极值大 小。
单调性与最值的关系
单调性与最值点的关系
单调性可以用来判断函数在某点是否为最值 点。
单调性与最值大小的关系
单调性可以用来比较不同区间上的最值大小 。
THANKS FOR WATCHING感Biblioteka 您的观看CHAPTER 03
函数单调性的应用
利用单调性求参数范围
通过函数的单调性,我们可以确定参数的取值范围,进而解决一些数学问题。
在函数中,如果函数在某区间内单调递增或递减,那么我们可以根据函数值的变化趋势,确定参数的取值范围。例如,如果 函数$f(x)$在区间$(a, b)$内单调递增,且$f(x_0) = 0$,那么对于任意$x in (a, b)$,都有$f(x) > 0$,从而可以得出参数的 取值范围。
单调性可以通过函数的导数来判断,如果函数的导数大于等于0,则函数在该区 间内单调递增;如果函数的导数小于等于0,则函数在该区间内单调递减。
单调增函数和单调减函数
01
单调增函数是指函数在某个区间 内随着自变量的增加而增加。
02
单调减函数是指函数在某个区间 内随着自变量的增加而减少。
函数单调性的几何意义
导数与函数单调性
总结词
导数可以判断函数的单调性,当导数大于0时,函数单调递增;当导数小于0时 ,函数单调递减。
详细描述
导数表示函数在某一点的切线斜率。如果导数大于0,说明切线斜率为正,函数 在该区间内单调递增;如果导数小于0,说明切线斜率为负,函数在该区间内单 调递减。
复合函数的单调性
总结词
复合函数的单调性取决于内外层 函数的单调性以及复合方式。

函数的单调性公开课课件

函数的单调性公开课课件

教学目标与要求
教学目标
通过本节课的学习,使学生掌握函数单调性的定 义、判断方法以及应用。
教学要求
学生能够理解函数单调性的概念,掌握判断函数 单调性的方法,并能够运用所学知识解决与函数 单调性相关的问题。
02
函数单调性的判断方法
导数法
01 导数与函数单调性的关系
当函数在某区间内可导时,若导数大于0,则函数 在该区间内单调递增;若导数小于0,则函数在该 区间内单调递减。
反函数单调性判断方法
首先确定原函数的单调性,然后根据反函数的定 义和性质判断反函数的单调性。
3
反函数单调性应用
在解决一些涉及反函数的问题时,可以利用反函 数的单调性来简化计算或证明过程。
单调性与连续性的关系
单调性与连续性的关系定理
若函数$y = f(x)$在区间$X$上是单调的,则它在该区间内至多只有第一类间断点。
02 导数的计算
通过求导公式和求导法则,计算出函数的导数表 达式。
03 导数法判断函数单调性的步骤
首先确定函数的定义域,然后求出函数的导数, 最后根据导数的正负判断函数的单调性。
差分法
01 差分的定义
差分是函数在两个相邻点的函数值之差,即 Δy=f(x+Δx)−f(x)。
02 差分与函数单调性的关系
针对某些复杂的不等式,可以通过构 造辅助函数,利用函数的单调性进行 证明。
在函数值比较中的应用
利用单调性比较函数值大小
对于同一区间内的两个函数值,如果函数在该区间内单调,则可 以通过比较自变量的大小来推断函数值的大小关系。
确定函数值的范围
通过函数的单调性,可以确定函数在某一区间内的取值范围,进而 对函数值进行比较和估算。

函数的单调性(公开课课件)

函数的单调性(公开课课件)

利用单调性解方程
利用函数的单调性,可以求解方程。
通过分析函数的单调性,可以确定方程解的范围,从而求解方程。例如,对于一元二次方程$ax^2 + bx + c = 0$,如果$a > 0$,则函数$f(x) = ax^2 + bx + c$在区间$(-infty, -frac{b}{2a})$上单调递减,在区间$(-frac{b}{2a}, +infty)$上单调递增 ,因此方程的解必定落在$(-frac{b}{2a}, +infty)$区间内。
格单调的。
函数单调性的扩展
05
多变量函数的单调性
01 02
定义
对于多变量函数,如果函数在某个区域内的任意两点x1和x2,当x1<x2 时,函数值f(x1)<=f(x2),则称函数在此区间内单调递增;反之,则称 函数在此区间内单调递减。
判断方法
通过求导数或求偏导数,判断函数的增减性。
03
应用
在经济学、物理学等领域中,多变量函数的单调性有着广泛的应用。
严格单调函数的反例
总结词
非严格单调函数
详细描述
严格单调函数在其整个定义域内单调递增或递减,没有拐点或水平切线。反例可以是通 过构造一个有拐点或水平切线的函数来证明。例如,函数$f(x) = x^3 + x$在$(-infty, +infty)$内是严格单调递增的,但如果在某点处添加一个水平切线,则该函数不再是严
详细描述
单调增函数是指函数在某个区间内,对于任 意两个自变量$x_1$和$x_2$($x_1 < x_2$ ),如果$x_1$和$x_2$都在这区间内,那么 函数值$f(x_1) leq f(x_2)$。也就是说,函数 的图像随着$x$的增加而上升。

函数单调性课件ppt

函数单调性课件ppt

导数与函数单调性
01
02
03
导数大于0
函数在对应区间内单调递 增
导数小于0
函数在对应区间内单调递 减
导数等于0
函数可能存在拐点或不可 导点
复合函数的单调性
同增异减
内外层函数单调性相同,则复合 函数单调递增;内外层函数单调 性不同,则复合函数单调递减。
注意拐点
复合函数在拐点处可能改变单调 性。
常见函数的单调性
函数单调性课件
目录
• 函数单调性的定义 • 判断函数单调性的方法 • 函数单调性的应用 • 函数单调性的实例分析 • 函数单调性的综合练习
01
函数单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的 增减性。如果函数在某个区间内单调 递增,那么对于该区间内的任意两个 数$x_1$和$x_2$,当$x_1 < x_2$时 ,有$f(x_1) < f(x_2)$;反之,如果 函数在某个区间内单调递减,那么对 于该区间内的任意两个数$x_1$和 $x_2$,当$x_1 < x_2$时,有 $f(x_1) > f(x_2)$。
03
函数单调性的应用
利用单调性证明不等式
总结词
单调性是证明不等式的一种有效工具 ,通过比较函数在不同区间的增减性 ,可以推导出不等式的正确性。
详细描述
利用单调性证明不等式的基本思路是 ,首先确定函数在指定区间上的单调 性,然后根据单调性定义,比较函数 值的大小,从而证明不等式。
利用单调性求函数的极值
VS
单调性是函数的一种固有属性,与函 数的定义域和值域无关,只与函数的 增减性有关。
单调增函数和单调减函数
01
单调增函数是指函数在某个区间 内单调递增的函数。对于任意两 个数$x_1$和$x_2$,当$x_1 < x_2$时,有$f(x_1) < f(x_2)$。

函数单调性课件公开课

函数单调性课件公开课

典型例题分析与解答
• 例题1:讨论函数$f(x) = |x| + x^2$的单调性。 • 解答:首先确定函数的定义域为全体实数。当$x \geq 0$时,$f(x) = x + x^2$,其导数为$f'(x) = 1 + 2x
\geq 1 > 0$,故在该区间内函数单调递增;当$x < 0$时,$f(x) = -x + x^2$,其导数为$f'(x) = -1 + 2x < 1 + 0 = -1 < 0$,故在该区间内函数单调递减。因此,函数$f(x) = |x| + x^2$在$x \geq 0$时单调递增,在 $x < 0$时单调递减。 • 例题2:判断分段函数$f(x) = \begin{cases} x^2, & x \leq 1 \ 2x, & x > 1 \end{cases}$的单调性。 • 解答:当$x \leq 1$时,$f(x) = x^2$,其导数为$f'(x) = 2x$。由于在该区间内$2x \leq 2 < 0$不成立,故函 数在该区间内不单调;当$x > 1$时,$f(x) = 2x$,其导数为$f'(x) = 2 > 0$,故函数在该区间内单调递增。 因此,分段函数$f(x)$在$x \leq 1$时不单调,在$x > 1$时单调递增。同时注意到在分段点$x=1$处$f(1) = 1^2 = 1 < 2 \times 1 = 2$,不影响整体单调性判断。
分段函数单调性判断方法
逐段判断
对于分段函数,需要分别在每一 段上判断函数的单调性,并考虑
分段点处的函数值大小关系。
图像法
通过绘制分段函数的图像,可以直 观地判断函数的单调性。

函数的单调性公开课课件

函数的单调性公开课课件
函数的单调性公开课 课件
目录
• 引言 • 函数单调性的判断方法 • 函数单调性的性质 • 函数单调性的应用 • 典型例题分析 • 课堂小结与思考题
CHAPTER 01
引言
函数的单调性定义
增函数
对于函数$f(x)$,如果在其定义域内的任意两个数$x_1$和 $x_2$($x_1 < x_2$),都有$f(x_1) leq f(x_2)$,则称$f(x)$ 在该定义域内是增函数。
导数非正 如果一个函数在其定义域内的导数存在且非正,则该函数 在该定义域内单调减少。
单调函数的周期性
周期函数与非周期函数
单调函数可以是周期函数,也可以是非周期函数。周期函数具有重复出现的特性,而非 周期函数则不具有这种特性。
周期函数的单调性
如果一个周期函数在一个周期内单调增加(或减少),则在每个周期内都具有相同的单 调性。这意味着周期函数的图像在每个周期内都会重复相同的上升或下降趋势。
利用单调函数的性质,如增减性、连续性等,对函数值进行比较和估算。
在函数图像分析中的应用
利用函数的单调性判断函数图像的趋势
通过函数的单调性可以判断函数图像在某个区间内的上升或下降趋势,从而了解函数的整体性质。
单调函数的性质在函数图像分析中的应用
利用单调函数的性质,如拐点、极值点等,对函数图像进行进一步的分析和研究,如确定函数的最大值、 最小值等。
3
导数非负 如果一个函数在其定义域内的导数存在且非负, 则该函数在该定义域内单调增加。
单调减函数的性质
函数值随自变量增大而减小 对于任意两个自变量的值x1和x2(x1 < x2),如果函数 f(x)在区间[x1, x2]内单调减少,则有f(x1) ≥ f(x2)。

函数的单调性与最值课件共20张PPT

函数的单调性与最值课件共20张PPT
那么就称函数f(x)在区间D上单 那么就称函数f(x)在区间D上单
调递增
调递减
∀x1,x2∈D 且 x1≠x2,有fxx11- -fx2x2>0(<0)或
(x1- x2)[f(x1)- f(x2)]>0(<0)⇔ f(x) 在区 间 D 上单 调递 增
(减).
复习回顾
图象 描述
自左向右看图象是上升的
解析

x2+4=t,则
t≥2,∴x2=t2-4,∴y= t2
+t 1=t+1 1,
t
设 h(t)=t+1,则 h(t)在[2,+∞)上为增函数, t
∴h(t)min=h(2)=52,∴y≤15=25(x=0 时取等号). 2
即 y 的最大值为2. 5
求函数最值的三种基本方法:
一.单调性法:先确定函数的单调性,再由单调性求最值. 二.图象法:先作出函数的图象,再观察其最高点、最低点,求出
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性 变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 y f (x) 是递增的.
(3) 反比例函数 f (x) 1 的单调递减区间是 x
(, 0) U(0, ) .
例题 判断并证明函数 f (x) 0.001x 1的单调性.
练习 证明函数 f (x) x 1 (x 0) 的单调性:
x
(1)在 (0,1) 上递减; (2)在 (1, ) 上递增.
思考
物理
k
0)
告诉我们,对于一定量的气体,当其体积 V 减
小时,压强 p 将增大.试用函数的单调性证明.
课堂小结 通过本节课的学习,你的主要收获有
哪些?
关键词: 三种语言,证明方法, 数学思想,情感体验,等.
课堂作业
(1)第38页 习题2-3 A组:3,5
(2)判断并证明函数 f (x) x 1 在 (, 0)
设函数的定义域为 I ,区间 D I . 在区间
D 上,若函数的图象(从左向右)总是上升的, 即 y随x的增大而增大,则称函数在区间 D 上 是递增的,区间 D 称为函数的单调增区间;
问题2 (1)下图是函数 y f (x)的图象,它 在定义域R上是递增的吗?
f (x) 0.001x 1
(2)函数 f (x) x 1 在区间(0, +) 上有何
能保证函数 y f (x) 在区间[a,b]上递增吗?
回顾 用“任意”代替一一验证
即 若任意 a A ,都有a B ,则 A B .
问题4 如何用数学语言精确刻画函数 y f (x) 在区间 D 上递增呢?
问题5 请你试着用数学语言定义函数 y f (x) 在区间 D 上是递减的.
实例 科考队对沙漠气候进行科学考察,下图 是某天气温随时间的变化曲线. 请你根据曲线 图说说气温的变化情况?
函数的单调性
问题1 函数是描述事物变化规律的数学模型. 如果清楚了函数的变化规律,那么就基本上 掌握了相应事物的变化规律. 在事物变化过 程中,保持不变的特征就是这个事物的性质.
观察下列函数图象,请你说说这些函数 有什么变化趋势?
单调性?
x
问题3 (1)如何用数学符号描述函数图象的 “上升”特征,即“y随x的增大而增大” ?
例如 函数 f (x) x2 在区间 [0, )上递增的.
动画演示“y随x的增大而增大”.
(4)已知 a x1 x2 x3 x4 b ,
若有 f (a) f (x1) f (x2 ) f (x3) f (x4 ) f (b) .
上的单调性.
x
探究题 向一杯水中加一定量的糖,糖加得越多
糖水越甜.请你运用所学的数学知识解释这 一现象.
判断题 你认为下列说法是否正确,请说明理 由(举例或者画图).
(1) 设函数 y f (x) 的定义域为 [a, ) ,若对 任意 x a ,都有 f (x) f (a) ,则 y f (x) 在 区间 [a, ) 上递增.
(2) 设函数 y f (x) 的定义域为R,若对任意
x1, x2 (a, ),且 x1 x2 ,都有 f (x1) f (x2 ),
相关文档
最新文档