2020年广东省肇庆市封开县中考数学一模试卷含答案.pdf
2020年广东肇庆封开县初三一模数学试卷(详解
【答案】 ( 1 ) 进价 元, 进价 元. (2) .
解析:
( 1 )设 的进价为 元,则 的进价是
元,
则题意得
,解得
,
经检验
是原方程的解,所以
(元).
答: 的进价是 元, 的进价是 元.
( 2 )设 玩具 个,则 玩具
在反比例函数
【答案】 A
解析:
∵点 在
上,
∴
, 选项
故选 .
的图象上,则该图象必过的点是( ). ,符合题意.
7. 一元二次方程 A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 无法确定
【答案】 A
的根的情况( ).
解析:
∵
,
,,
∴
,
∴方程有两个不相等的实数根.
3
故选 .
A.
B.
C.
D.
【答案】 A
解析: 根据图示,可得:
.
2. 据统计,深圳户籍人口约为
A.
B.
【答案】 C
解析: .
故选 .
人,将
用科学记数法表示为( ).
C.
D.
1
3. 下列图形中,是中心对称图形但不是轴对称图形的是( ).
A. 等边三角形
B. 圆
C. 矩形
【答案】 D
解析: 等边三角形不是中心对称图形,是轴对称图形, 不合题意; 圆是中心对称图形,也是轴对称图形, 不合题意; 矩形是中心对称图形,是轴对称图形, 不合题意; 平行四边形是中心对称图形但不是轴对称图形, 符合题意. 故选 .
.
广东省肇庆市2020年中考数学模拟试卷(I)卷
广东省肇庆市2020年中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2020·西华模拟) 下列各数中比1小的数是()A .B . 0C . 3D . π2. (2分) (2018八上·海淀期中) 下列运算正确的是()A . (2a2)3=6a6B . 2a2+4a2=6a4C . a3•a2=a5D . (a+2b)2=a2+4b23. (2分) 10名同学分成A、B两队进行篮球比赛,他们的身高(单位:cm)如表:队员1队员2队员3队员4队员5A队177176175172175B队170175173174183设A、B两队队员身高的平均数分别为,,身高的方差分别为S2A , S2B ,则下列关系中完全正确的是()A . =, S2A>S2BB . =, S2A<S2BC . , S2A>S2BD . , S2A<S2B4. (2分)在九张大小质地都相同的卡片上分别写有数字-4、-3、-2、-1、0、1、2、3、4,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是()A .B .C .D .5. (2分)(2011·衢州) 如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A . a2﹣πB . (4﹣π)a2C . πD . 4﹣π6. (2分)(2018·东莞模拟) 一元一次不等式组的解集在数轴上表示出来,正确的是()A .B .C .D .7. (2分)如图,一个扇形铁皮AOB 已知OA=60 cm,∠AOB=120°,小华将OA.AB合拢制成了一个圆锥形烟囱帽(接缝处忽略不计),则烟囱帽的底面圆的半径为()A . 10 cmB . 20 cmC . 24 cmD . 30 cm8. (2分) (2016九上·云阳期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共9分)9. (1分)把多项式3x3﹣6x2y+3xy2分解因式的结果是________.10. (1分)今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为80nm,1nm=0.000000001m,其最小直径用科学记数法表示约为________ m.11. (1分)正八边形的一个内角的度数是1 度。
广东省肇庆市2019-2020学年中考数学一月模拟试卷含解析
广东省肇庆市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.(12)6B.(12)7C.(22)6D.(22)72.cos30°的相反数是()A.33-B.12-C.32-D.22-3.计算(﹣12)﹣1的结果是()A.﹣12B.12C.2 D.﹣24.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C.3D.235.如图,不等式组1010xx+⎧⎨-≤⎩f的解集在数轴上表示正确的是()A.B.C.D.6.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A .56×108B .5.6×108C .5.6×109D .0.56×10107.若代数式23x -有意义,则实数x 的取值范围是( ) A .x=0B .x=3C .x≠0D .x≠38.已知,如图,AB 是⊙O 的直径,点D ,C 在⊙O 上,连接AD 、BD 、DC 、AC ,如果∠BAD =25°,那么∠C 的度数是( )A .75°B .65°C .60°D .50°9.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是( ) A .1 B .-6 C .2或-6 D .不同于以上答案10.如图,BC 平分∠ABE ,AB ∥CD ,E 是CD 上一点,若∠C=35°,则∠BED 的度数为( )A .70°B .65°C .62°D .60°11.下列运算正确的是( ) A .4x+5y=9xy B .(−m )3•m 7=m 10 C .(x 3y )5=x 8y 5 D .a 12÷a 8=a 412.函数y +2x =中,x 的取值范围是( ) A .x≠0B .x >﹣2C .x <﹣2D .x≠﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:21a -=________.14.如图,在平面直角坐标系中,点A 是抛物线()2y=a x 3+k -与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .15.函数2y x =-中,自变量x 的取值范围是_____.16.已知a+b=4,a-b=3,则a 2-b 2=____________.17.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =_____.18.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频 分组 频数 频率 0.5~50.5 0.1 50.5~ 20 0.2 100.5~150.5 200.5 30 0.3 200.5~250.5100.1率分布表和频率分布直方图(如图).(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD 的面积是 ;这次调查的样本容量是 ;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.20.(6分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.21.(6分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x ﹣5),求当x =12和x =﹣12时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.22.(8分)如图,抛物线y=﹣213x +bx+c 交x 轴于点A (﹣2,0)和点B ,交y 轴于点C (0,3),点D 是x 轴上一动点,连接CD ,将线段CD 绕点D 旋转得到DE ,过点E 作直线l ⊥x 轴,垂足为H ,过点C 作CF ⊥l 于F ,连接DF . (1)求抛物线解析式;(2)若线段DE 是CD 绕点D 顺时针旋转90°得到,求线段DF 的长;(3)若线段DE 是CD 绕点D 旋转90°得到,且点E 恰好在抛物线上,请求出点E 的坐标.23.(8分)如图所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD. (1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.24.(10分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.25.(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?26.(12分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.27.(12分)如图,AB是⊙O的直径,»»AC BC,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,由此可得S n=(12)n﹣2.当n=9时,S9=(12)9﹣2=(12)6,故选A.考点:勾股定理.2.C【解析】【分析】先将特殊角的三角函数值代入求解,再求出其相反数.【详解】∵cos30°=2,∴cos30°的相反数是故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.3.D【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:1112122-⎛⎫-==-⎪⎝⎭-,故选D.【点睛】本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.4.C【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=12CP=1,∴PE=22CP CE3-=,∴OP=2PE=23,∵PD⊥OA,点M是OP的中点,∴DM=12OP=3.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.5.B【解析】【分析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.7.D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.8.B【解析】因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠BAD=25°,∴∠B=65°,∴∠C=∠B=65°(同弧所对的圆周角相等).故选B.9.C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.故选C.点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.10.A【解析】【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答. 11.D【解析】【分析】各式计算得到结果,即可作出判断.【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3•m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12÷a8=a4,正确;故选D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.B【解析】=要使y所以x+1≥0且x+1≠0,解得x>-1.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(a+1)(a-1)【解析】【分析】根据平方差公式分解即可.【详解】21a-=(a+1)(a-1).故答案为:(a+1)(a-1). 【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止. 14.18。
2019-2020年肇庆市初三中考数学一模模拟试卷【含答案】
2019-2020年肇庆市初三中考数学一模模拟试卷【含答案】一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3 9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.13.(3分)不等式组的解集是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.参考答案与试题解析一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值的定义进行计算.【解答】解:||=,故选:B.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a6÷a2=a4,故此选项错误;C、(﹣2a)3=﹣8a3,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是分,错误;D、方差是=19,错误;故选:A.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.7.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由P A与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形P ABO中,根据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选:C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3【分析】根据m=1和m≠1两种情况,根据一次函数的性质、二次函数与方程的关系解答.【解答】解:当m=1时,函数解析式为:y=﹣6x+是一次函数,图象与x轴有且只有一个交点,当m≠1时,函数为二次函数,∵函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.【点评】本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系、灵活运用分情况讨论思想是解题的关键.9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成A→B、B→C、C→O三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:D.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=0.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1﹣4=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)不等式组的解集是﹣1≤x<3.【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为π﹣2.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△ABC=×2×2=2,S扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.【点评】本题考查了扇形的面积公式,正确理解公式是关键.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为或.【分析】依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案为:或.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=120°时,四边形AOCP是菱形;②连接BP,当∠ABP=45°时,PC是⊙O的切线.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=P A,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP =120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【解答】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=P A,∵OA=OP,∴OA=OP=P A,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点评】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?【分析】(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意,列出方程即可(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550,求即可(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000,分情况讨论即可.【解答】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意得=,解得x=80,经检验x=80 是原分式方程的解.∴x﹣30=80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得,40≤a≤55.∵a为整数,∴该超市有16 种进货方案(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15∴①当8<m<10 时,即10﹣m>0,w随a的增大而增大,故当a=55 时,所获总利润w最大,即A品牌台灯55 盏、B品牌台灯45 盏;②当m=10 时,w=3000;故当A品牌台灯数量满足40≤a≤55时,利润均为3000元;③当10<m<15 时,即10﹣m<0,w随a的增大而减小,故当a=40 时,所获总利润w最大,即A品牌台灯40 盏、B品牌台灯60 盏【点评】此题为一次函数的应用,渗透了函数与方程的思想,关键是掌握销售利润公式:利润=(售价﹣成本)×数量.22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是AF=BE;②∠ABE=90°;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.【分析】(1)只要证明△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF,∠ABE=a.只要证明△ADF≌△EDB,即可解决问题;(3)分两种情形分别求解即可;【解答】解(1)如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,∴△ADF≌△EDB,∴AF=BE,∴∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为AF=BF,90°.(2)结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,又∵AD=DE,∴△ADF≌△EDB,∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)①如图3﹣1中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴==,∵AB=8,∴AF=2,∴BE=AF=2,②如图3﹣2中,当点D在BC的延长线上时,∵AC∥DF,∴==,∵AB=8,∴AF=4,故答案为2或4.【点评】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.【分析】(1)先把A点坐标代入y=﹣3x+c求出得到B(0,3),然后利用待定系数法求抛物线解析式;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),由于S△P AB=S△POB+S△ABO﹣S△POA,S△P AB=2S△AOB,则S△POB﹣S△POA=S△ABO,讨论:当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,然后分别解方程求出x即可得到对应P 点坐标;(3)解方程﹣x2﹣2x+3=0得C(﹣3,0),则可判断△OBC为等腰直角三角形,讨论:当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),表示出DE=BE=(3﹣t),接着利用tan∠MCB=tan∠ABO得到==,所以3﹣(3﹣t)=(3﹣t),解方程求出t得到D点坐标,接下来利用待定系数法确定直线CD的解析式为y=x+,然后解方程组得此时M点坐标;当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,设N(k,﹣3k+3),证明△ABC∽△ACN,利用相似比求出AN=,再利用两点间的距离公式得到(k﹣1)2+(﹣3k+3)2=()2,解方程求出t得N 点坐标为(﹣,),易得直线CN的解析式为y=2x+6,然后解方程组得此时M点坐标.【解答】解:(1)把A(1,0)代入y=﹣3x+c得﹣3+c=0,解得c=3,则B(0,3),把A(1,0),B(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),S△P AB=S△POB+S△ABO﹣S△POA,∵S△P AB=2S△AOB,∴S△POB﹣S△POA=S△ABO,当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,解得x1=﹣2,x2=3(舍去),此时P点坐标为(﹣2,3);当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,解得x1=﹣2(舍去),x2=3(舍去),综上所述,P点坐标为(﹣2,3);(3)存在.当y=0时,﹣x2﹣2x+3=0,解得x1=﹣1,x2=﹣3,则C(﹣3,0),∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=∠OCB=45°,BC=3,当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),∵∠DBE=45°,∴△BDE为等腰直角三角形,∴DE=BE=BD=(3﹣t),∵∠MCB=∠ABO,∴tan∠MCB=tan∠ABO,∴==,即CE=3DE,∴3﹣(3﹣t)=(3﹣t),解得t=,则D(0,),设直线CD的解析式为y=mx+n,把C(﹣3,0),D(0,)代入得,解得,∴直线CD的解析式为y=x+,解方程组得或,此时M点坐标为(,);当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,AB=,AC设N(k,﹣3k+3),∵∠MCB=∠ABO,∠CBO=∠OCB,∴∠NCA=∠ABC,而∠BAC=∠CAN,∴△ABC∽△ACN,∴AB:AC=AC:AN,即:4=4:AN,∴AN=,∴(k﹣1)2+(﹣3k+3)2=()2,整理得(k﹣1)2=,解得k1=(舍去),k2=﹣,∴N点坐标为(﹣,),易得直线CN的解析式为y=2x+6,解方程组,得或,此时M点坐标为(﹣1,4),综上所述,满足条件的M点的坐标为(,)或(﹣1,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式,能把求函数交点问题转化为解方程组的问题;灵活运用锐角三角函数的定义和相似比进行几何计算;理解坐标与图形性质,记住两点间的距离公式.中学数学一模模拟试卷一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9 3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°。
广东省肇庆市2020年数学中考一模试卷(II)卷
广东省肇庆市2020年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法正确的是()A . 平方是本身的数是0B . 立方等于本身的数是1、﹣1C . 绝对值是本身的数是正数D . 倒数是本身的数是1、﹣12. (2分)宁波市轨道交通1号线一期工程批复总投资123.88亿元,工程已于2009年6月全面开工建设,建设工期为5年,到2014年通车试运营,其中123.88亿元用科学记数法表示为()A . 123.88×108元B . 1.2388×1010元C . 1.2×1010元D . 0.12388×1011元3. (2分) (2019九上·重庆开学考) 如图,所示的几何体是由若干个大小相同的小正方体组成的,则该几何体的左视图(从左面看)是()A .B .C .D .4. (2分)(2020·长兴模拟) 关于x的分式方程 -1=2的解是()A . x=1B . x=2C . x=3D . x=5. (2分)有一组数据:2,5,7,2,3,3,6,下列结论错误的是()A . 中位数为3B . 众数为2C . 平均数为4D . 极差是56. (2分) (2018九上·湖州期中) 二次函数y=x2-2x-3的图象与x轴的交点的横坐标是()A . -1或3B . -1C . 3D . -3或37. (2分)(2018·吉林模拟) 如图,D,E分别是AB、AC的中点,则S△ADE:S△ABC=()A . 1:2B . 1:3C . 1:4D . 2:38. (2分)(2017·海南) 如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A .B .C .D .9. (2分) (2015九上·新泰竞赛) 将一副三角板如图叠放,交点为O则△AOB与△COD面积之比是().A .B .C .D .10. (2分)如图,在△ABC中,∠ACB=90°,∠B=50°,将它绕点C沿顺时针方向旋转后得到△A′B′C′.若点B′恰好落在线段AB上,则旋转角的度数是()A . 40°B . 50°C . 70°D . 80°二、填空题 (共5题;共5分)11. (1分) (2019八上·洪泽期末) ________.12. (1分)(2017·阳谷模拟) 已知,关于x的不等式组的整数解共有两个,那么a的取值范围是________.13. (1分) (2017九上·黑龙江月考) 反比例函数y=(3m﹣1)的图象在所在象限内,y随x的增大而增大,则反比例函数的解析式是________.14. (1分) (2017八下·宜兴期中) 如图,在△ABC中,M是BC边的中点,AP平分∠A,BP⊥AP于点P、若AB=12,AC=22,则MP的长为________.15. (1分)如图,直线y=﹣ x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM 折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为________.三、解答题 (共8题;共85分)16. (20分)计算题:(1)(2)()÷(3)(4)(1+ )÷(1﹣)17. (11分) (2019九下·盐城期中) 学校开展“书香校园征文比赛”活动,为了解学生的参与情况,在该校随机抽取了甲、乙、丙、丁四个班级的学生进行调查,将收集的数据整理并绘制成如图和如图两幅尚不完整的统计图,请根据图中信息,解答下列问题:(1)这四个班参与活动的学生共有________人;(2)请你补全条形统计图,并求出扇形统计图中甲班所对应扇形的圆心角;(3)若四个班级的学生总数是160人,全校共2400人,请你估计全校参与这次活动的学生大约有多少人.18. (10分) (2016八下·寿光期中) 如图,已知在△ABC中,CD⊥AB于点D,AC=20,BC=15,DB=9,(1)求DC、AB的长;(2)求证:△ABC是直角三角形.19. (5分) (2018八上·兰州期末) 如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.20. (7分)如图,反比例函数y= 的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).(1) m________,n=________;(2)求一次函数的表达式.21. (10分) (2019八下·重庆期中) 为迎接五一节,重百超市计划销售枇杷和樱桃两种水果共5000千克,若枇杷的数量是樱桃的2倍少1000千克.(1)超市计划销售枇杷多少千克?(2)若超市从某一果园直接进货,果园共30名员工负责采摘这两种水果,每人每天能够采摘30千克枇杷或10千克樱桃,应分别安排多少人采摘枇杷和樱桃,才能确保采摘两种水果所用的时间相同?22. (7分) (2019七上·桥西期中) 如图1,点为直线上一点,将一副三角板如图摆放,其中两锐角顶点放在点处,直角边,分别在射线,上,且,.图1 图2 图3(1)将图1中的三角板绕点按逆时针方向旋转至图2的位置,使得落在射线上,此时三角板旋转的角度为________度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得在的内部,若,则的度数为________度;(3)在上述直角三角板从图l旋转到图3的位置的过程中,若三角板绕点按每秒5°的速度旋转,当直角三角板的斜边所在的直线恰好平分时,求此时三角板绕点的运动时间的值.23. (15分) (2016九上·阳新期中) 如图1抛物线y=ax2+bx+c过 A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求抛物线解析式;(2)点C,D关于抛物线对称轴对称,求△BCD的面积;(3)如图2,过点E(1,﹣1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点M、N、Q 分别与A、E、F对应)使得M、N在抛物线上,求M、N的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共85分)16-1、16-2、16-3、16-4、17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
2024年广东省肇庆市封开县中考一模数学试题 含答案
2024年封开县初中毕业班第一次模拟考试数学(时间:120分钟,满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果向东走记作,那么表示的意义是( )A .向东走B .向南走C .向西走D .向北走2.以下文字是轴对称图形的是()A .B .c .D .3.近十年来,中国高铁的建设和发展取得了显著的成就,截至2023年1月,中国高铁总里程达到42000公里,稳居世界第一.42000用科学记数法表示为( )A .B .C .D .4.如图,,,则()A .B .C .D .5.计算的结果为( )A .B .C .D .6.在古代,一个国家所算的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .①③B .②③C .①④D .②④7.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A .B .C .D .8.把不等式组的解集表示在数轴上,正确的是( )5m 5+5-5m5m5m5m34210⨯34.210⨯44.210⨯40.4210⨯//a b 155∠=︒2∠=25︒35︒45︒55︒52a a-3a23a3a-7aπ1125121612324,00x x ⎩->-≥⎧⎨A .B .C .D .9.如图,四边形内接于,,A 为劣弧中点,,则等于()A .B .C .D .10.如图,在正方形中,点B ,C 的坐标分别是,,点D 在抛物线的图像上,则b 的值是()A.B .C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.因式分解:____________.12____________.13.某共享电动车蓄电池电压为,在充电过程中,当电流为时,那么电阻应为____________.14.一批树苗的成活率为,如果要栽活180棵树,大概要栽____________棵.15.如图,在矩形中,,,对角线,相交于点O ,且,.连接与相交于F .则图中四边形的面积为____________.ABCD O AB CD =BD 60BDC ∠=︒ADB ∠40︒50︒60︒70︒ABCD (2,1)-(2,0)213y x bx =+231373432a ab -==48V 10A Ω90%ABCD 8AB =6BC =AC BD //BE AC //CE BD AC DE OBEF三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(1.(2)解二元一次方程组17.新农村建设中,在相距甲、乙两地新修一条高速公路,开通后使甲、乙两地间行驶的长途客运车平均车速提高了,从而使得甲地到乙地的时间缩短了,求长途客运车原来的平均速度.18.传统工艺品油纸伞是我国的非物质文化遗产,使用历史已有1000多年.伞是由伞柄,伞骨,伞面三部分组成.伞柄是伞的主心骨,伞骨是用来支撑整个伞面的,伞面是伞中重要的组成部分.如图,伞打开时,其伞面的直径的长为,相对两根伞骨的最大夹角,求此伞的伞骨的长度.(结果精确到,参考数据:,,).四、解答题(二):本大题共3小题,每小题9分,共27分.19.如图,在中,,.(1)实践与操作:用尺规作图法作线段的垂直平分线,交于点D ,交于点E (保留作图痕迹,不要求写作法);(2)应用与计算:在(1)的条件下,连接,若,求的长.20.综合与实践(1)探究发现:如图1,在的网格图中,在线段上求一点P ,使得;小明同学发现,先在点B 的左侧取点C ,使为1个单位长度,在点A 的右侧取点D ,使为2个单位长度,然后连接交于点P (如图1),就可以得到点P 了,请你验证小明的做法,并求出的值.(2)请你在图2中线段上求作一点P ,使得.(1)2+-+-22,5.x y x y +=⎧⎨-=⎩180km 50%1h AB 120cm 152AOB ∠=︒OA 1cm sin 760.97︒≈cos760.24︒≈tan 764︒≈Rt ABC △90B ∠=︒15A ∠=︒AC AB AC DC 3BC =AB AB 12BP AP =BC AD CD AB tan APC ∠AB 23BP AP =21.学校为了选拔一位初中学生参加县运动会实心球项目比赛,记录了两位优秀同学五次投掷数据(单位:米)运动员第一次第二次第三次第四次第五次华兴1312131115强华1413121313(1)华兴同学投掷实心球数据的众数____________;强华同学投掷实心球数据的中位数____________.(2)如果你是教练会选择哪位同学参加此次县运动会该项目比赛?说说你的理由(往年该项目比赛最好成绩是13.2米).五、解答题(三):本大题共2小题,每小题12分,共24分.22.综合运用如图,已知是的直径,是的切线,连接与交于点D .取的中点E ,连接,并连接交于点F .连接交于点G ,连接交于点H .(1)若,,求的度数;(2)求证:为的切线;(3)求证:点F 为线段的中点.23.综合探究在矩形中,,,点E 为上一个动点,把沿折叠,当点D 的对应点,过点做的垂线交于点N ,交于点M .(1)如图1,求证:;(2)如图2,当落在对角线时,求的长;(3)如图3,连接,在折叠的过程中,满足下面条件情况下直接写出长.①当为以为顶点的等腰三角形时,长是多少?②当为以B 为顶点的等腰三角形时,长是多少?AB O BC O AC O BC DE OE O AF BC BD AG 1EF =BE =BOE ∠DE O HG ABCD 6AD =8AB =DC ADE △AE D 'D 'AB AB CD EMD D NA ''△≌△D 'AC 上DE BD 'DE BCD '△D 'DE BCD '△DE2024年封开县初中毕业班第一次模拟考试数学参考答案及评分标准一、选择题(每小题3分)题号12345678910答案CCCDABAAAB二、填空题(每小题3分)11.1213.14.20015.18三、解答题(一)16.(1.解:原式3分.5分(2)求解二元一次方程组:解:得,解得.3分将代入(1)得.所以该方程组的解为5分17.解:设长途客运车原来的平均速度为x ,列方程得:1分4分解得,经检验为原方程的解.6分答:长途客运车原来的平均速度为.7分18.解:由题意得,,于E 点,∵,,∴,∵,4分()a ab -245(1)2+-+-212=++5=222,(1)5,()x x y y ⎧⎨-=+=⎩(1)(2)-33y =-1y =-1y =-4x = 1.4,x y ⎧⎨=-=⎩1801801(150%)x x-=+60x =60x =60km/h BO AO =OC AB ⊥152AOB ∠=︒120cm AB =111527622AOE AOB ∠=∠=⨯=︒1112060cm 22AE AB ==⨯=∴在中,,∴6分∴此伞的伞骨的长度约为7分四、解答题19.解:(1)如下图所示,3分∴直线是线段的垂直平分线.4分(2)如下图所示,连接,由(1)得:直线是线段的垂直平分线,∴,又∵,∴,5分∴,6分在中,,,∴,8分∴.9分20.解:(1)∵∴,∴∴3分连接Rt AEO △60cm AE =sin AE AOE OA∠=606062(cm)sin 760.97OA =≈≈︒OA 62cmDE AC DC DE AC DA DC =15A ∠=︒15DCA A ∠=∠=︒30BDC DCA A ∠=∠+∠=︒Rt BDC △3BC =30BDC ∠=︒2236DC BC ==⨯=DB ==6AB AD DB DC DB =+=+=+//BC ADABC BAD ∠=∠BCD CDA ∠=∠CBP DAP△∽△12BP BC AP AD ==AC∵∴∴5分∵,∴∴是直角三角形∴∴7分(2)如图所示,点P就是所求作的点9分21.解:(1)华兴同学投掷实心球数据的众数13;3分强华同学投掷实心球数据的中位数136分(2)(说的有理就行)例:我会选华兴同学,他的夺冠的潜力大,最高数据.或我会选强华同学,他发挥稳定,拿奖牌概率高,有三个数据是.9分五、解答题(三):本大题共2小题,每小题12分,共24分.22.解:(1)∵是的直径,是的切线,∴,在直角三角形中,设半径为r ,得,∵,CBP DAP△∽△12CP BC PD AD ==13CP CD =AC ==CD ==2AD =222AC CD AD +=ACD △90ACD ∠=︒tan 3AC CDAPC CP CP∠===15m 13m AB O BC O 90ABC ∠=︒OBE O OB OF r ==1EF =BE =∴,∴,∴,∵∴.4分(2)连结,∵是的直径,∴,∵E 为直角三角形斜边的中点,∴,∴,∵,∴,∴,∴,即.∴是的切线;8分(3)连接,∵是圆O 的直径,∴,∴,∵,∴,∵O 、E 分别为、的中点,∴,∵,∴,∴222.(1)r r +=+1r =1OB =tan BE BOE OB ∠===60BOE ∠=︒OD AB O 90ADB BDC ∠=∠=︒BCD DE EC =CDE C ∠=∠OD OA =OAD ODA ∠=∠90ODA CDE OAD C ∠+∠=∠+∠=︒180()1809090ODE ODA CDE ∠=︒-∠+∠=︒-︒=︒OD DE ⊥DE O BF AB 90AFB BFG ∠=∠=︒90BAF ABF ∠+∠=︒90FBG ABF ∠+∠=︒BAF FBG ∠=∠AB BC //OE AC AC BD ⊥OE BD ⊥ DFBF =∴∴又∵,为公共边.∴∴,∴点F 为线段的中点.12分23.(1)证明:在矩形中,,由折叠可知∴∴∵,且∴∴∵在中, ∴在和中,∴4分(2)解:中,设,由折叠可知DBF DAF BAF ∠=∠=∠FBG DBF∠=∠90BFH BFG ∠=∠=︒BF (ASA)BFH BFG △≌△HF GF =HG ABCD 90D ∠=︒//AB CD ADE AD E '△≌△90D AD E '∠=∠=︒90ED M AD N ''∠+∠=︒MN AB ⊥//AB CD MN CD⊥90EMD D NA ''∠=∠=︒Rt AD N '△90NAD AD N ''∠+∠=︒ED M NAD ''∠=∠EMD '△D NA '△90EMD D NA ''∠=∠=︒ED M NAD ''∠=∠EMD D NA''△∽△Rt ADC△10AC ==DE x =DE D E x'==90AD E CD E D ''∠=∠=∠=︒6AD AD '==∴在中,∴∴8分(3)解:①当点在的垂直平分线上∴∴∴∴∴∴10分②当时∵∴∴在中,∵∴∴∴∴即.12分1064CD AC AD ''=-=-=CED '△222CE ED D C''=+222(8)4x x -=+3x =3DE =CD BD ''=D 'BC 11322D N AD AD ''===31sin 62NAD '∠==30NAD '∠=︒30DAE D AE '∠=∠=︒tan DE DAE AD∠=tan 6DE AD DAE =⋅∠==BD BC '=6BD BC AD AD ''====142AN BN AB ===Rt AND '△ND '==EMD D NA ''△∽△ED MD AD AN''='6x =9x =-9DE ED '==-。
2020年广东省肇庆市封开县中考数学一模试卷
2020年广东省肇庆市封开县中考数学一模试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个选项是正确的,请把正确答案写在括号内.1.(3分)实数a ,b 在数轴上的对应点的位置如图所示,把a ,b ,0按照从小到大的顺序排列,正确的是( )A .0a b <<B .0a b <<C .0b a <<D .0b a <<2.(3分)据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为( ) A .53710⨯B .53.710⨯C .63.710⨯D .70.3710⨯3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是( ) A .等边三角形B .圆C .矩形D .平行四边形4.(3分)下列运算中,正确的是( ) A .336236x x x +=B .336236x x x =gC .235()x x =D .22()ab a b -=5.(3分)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是( )A .112B .13C .512D .126.(3分)已知点(2,3)在反比例函数ky x=的图象上,则该图象必过的点是( ) A .(1,6)B .(6,1)-C .(2,3)-D .(3,2)-7.(3分)一元二次方程2210x x --=的根的情况( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定8.(3分)已知2|2|(3)0a b -++=,则a b 的值是( ) A .6-B .6C .9-D .99.(3分)如图,四边形ABCD 内接于O e ,F 是¶CD上一点,且¶¶DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若105ABC ∠=︒,25BAC ∠=︒,则E ∠的度数为()A .60︒B .55︒C .50︒D .45︒10.(3分)如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P D Q →→运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,AEF ∆的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在相应的位置上11.(4分)101()(2020)2π---= .12.(4分)分解因式:29x -= .13.(4分)已知多边形每个内角都等于144︒,则这个多边形是 边形.14.(4分)在平面直角坐标系中,点(4,5)P-与点(4,1)Q m-+关于原点对称,那么m=.15.(4分)一次函数的图象经过点(1,3)A和(3,1)B,它的解析式是.16.(4分)如图,在正方形ABCD中,4AB=,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.17.(4分)一组数为:5,35,65,105,155⋯则第8个数是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)解方程组:139x yx y-=⎧⎨+=⎩.19.(6分)先化简,再求值:22111211xxx x x+÷-++++,其中31x=-.20.(6分)如图,已知平行四边形ABCD,(1)作B∠的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,2CD=,求DE的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了名学生;若该校共有1500名学生,估计全校爱好运动的学生共有名.(2)补全条形统计图,并计算阅读部分圆心角是度.(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?22.(8分)如图,在ABCCE AD.若⊥,//∆中,90∠=︒,D是BC的中点,DE BCACBCE=;2AC=,4(1)求证:四边形ACED是平行四边形.(2)求BC的长.23.(8分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A 类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,四边形ABCD为菱形,以AD为直径作Oee交AB于点F,连接DB交O 于点H,E是BC上的一点,且BE BF=,连接DE.(1)求证:DAF DCE ∆≅∆. (2)求证:DE 是O e 的切线.(3)若2BF =,5DH =,求四边形ABCD 的面积.25.(10分)如图,直线132y x =--与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线23y ax bx =+-与x 轴的另一个交点为点(2,0)B ,点D 是抛物线上一点,过点D 作DE x ⊥轴于点E ,连接AD ,DC .设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在第三象限,设DAC ∆的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;(3)连接BC ,若EAD OBC ∠=∠,请直接写出此时点D 的坐标.2020年广东省肇庆市封开县中考数学一模试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个选项是正确的,请把正确答案写在括号内.1.(3分)实数a ,b 在数轴上的对应点的位置如图所示,把a ,b ,0按照从小到大的顺序排列,正确的是( )A .0a b <<B .0a b <<C .0b a <<D .0b a <<【解答】解:根据图示,可得: 0a b <<.故选:A .2.(3分)据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为( ) A .53710⨯B .53.710⨯C .63.710⨯D .70.3710⨯【解答】解:63700000 3.710=⨯, 故选:C .3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是( ) A .等边三角形B .圆C .矩形D .平行四边形【解答】解:等边三角形不是中心对称图形,是轴对称图形,A 不合题意; 圆是中心对称图形,也是轴对称图形,B 不合题意; 矩形是中心对称图形,是轴对称图形,C 不合题意;平行四边形是中心对称图形但不是轴对称图形,D 符合题意, 故选:D .4.(3分)下列运算中,正确的是( ) A .336236x x x +=B .336236x x x =gC .235()x x =D .22()ab a b -=【解答】解:A 、336235x x x +=,原计算错误,故此选项不符合题意; B 、336236x x x =g,原计算正确,故此选项符合题意; C 、236()x x =,原计算错误,故此选项不符合题意;D 、222()ab a b -=,原计算错误,故此选项不符合题意;故选:B .5.(3分)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是( )A .112B .13C .512D .12【解答】解:一共是60秒,绿的是25秒,所以绿灯的概率是2556012=. 故选:C .6.(3分)已知点(2,3)在反比例函数ky x=的图象上,则该图象必过的点是( ) A .(1,6)B .(6,1)-C .(2,3)-D .(3,2)-【解答】解:Q 点(2,3)在ky x=上,236k ∴=⨯=,A 选项16k ⨯=,符合题意; 故选:A .7.(3分)一元二次方程2210x x --=的根的情况( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定【解答】解:2a =Q ,1b =-,1c =-,∴△224(1)42(1)90b ac =-=--⨯⨯-=>, ∴方程有两个不相等的实数根.故选:A .8.(3分)已知2|2|(3)0a b -++=,则a b 的值是( ) A .6-B .6C .9-D .9【解答】解:2|2|(3)0a b -++=Q , 2a ∴=,3b =-.∴原式2(3)9=-=.故选:D .9.(3分)如图,四边形ABCD 内接于O e ,F 是¶CD上一点,且¶¶DF BC =,连接CF 并延长交AD的延长线于点E,连接AC,若105∠的度数为(∠=︒,则EBAC∠=︒,25ABC)A.60︒B.55︒C.50︒D.45︒【解答】解:Q四边形ABCD内接于Oe,105∠=︒,ABC∴∠=︒-∠=︒-︒=︒.180********ADC ABCQ¶¶=,25DF BCBAC∠=︒,∴∠=∠=︒,DCE BAC25∴∠=∠-∠=︒-︒=︒.752550E ADC DCE故选:C.10.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P D Q→→运动,点E、F的运动速度相同.设点E的运动路程为x,AEF∆的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C .D .【解答】解:当F 在PD 上运动时,AEF ∆的面积为12(02)2y AE AD x x ==g 剟, 当F 在AD 上运动时,AEF ∆的面积为2111(6)3(24)222y AE AF x x x x x ==-=-+<g …, 图象为:故选:A .二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在相应的位置上11.(4分)101()(2020)2π---= 1 .【解答】解:101()(2020)2112π---=-=;故答案为:1.12.(4分)分解因式:29x -= (3)(3)x x +- . 【解答】解:29(3)(3)x x x -=+-. 故答案为:(3)(3)x x +-.13.(4分)已知多边形每个内角都等于144︒,则这个多边形是 十 边形. 【解答】解:18014436︒-︒=︒, 3603610︒÷︒=,∴这个多边形的边数是10.故答案为:十.14.(4分)在平面直角坐标系中,点(4,5)P -与点(4,1)Q m -+关于原点对称,那么m = 4 . 【解答】解:Q 点(4,5)P -与点(4,1)Q m -+关于原点对称, 15m ∴+=,解得:4m =, 故答案为:4.15.(4分)一次函数的图象经过点(1,3)A 和(3,1)B ,它的解析式是 4y x =-+ . 【解答】解:设直线AB 的函数 解析式为(y kx b k =+、b 为常数且0)k ≠ Q 一次函数的图象经过点(1,3)A ,(3,1)B .∴331k b k b +=⎧⎨+=⎩,解得14k b =-⎧⎨=⎩.∴直线AB 的函数解析式为4y x =-+,故答案为4y x =-+.16.(4分)如图,在正方形ABCD 中,4AB =,分别以B 、C 为圆心,AB 长为半径画弧,则图中阴影部分的面积为 4433π-.【解答】解:连接BG ,CG BG BC CG ==Q , BCG ∴∆是等边三角形. 60CBG BCG ∴∠=∠=︒, Q 在正方形ABCD 中,4AB =,4BC ∴=,90BCD ∠=︒, 30DCG ∴∠=︒,∴图中阴影部分的面积2230460414423336036023CGCDG S S πππ⎛⋅⨯⋅⨯=-=--⨯⨯= ⎝弓形扇形,故答案为:4433π.17.(45,3565,105,155⋯则第8个数是 365 . 【解答】解:35525=6535351056545=∴相邻的两个数的差分别是:25355⋯,∴第8个数是:155657585365.故答案为:365.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)解方程组:139x y x y -=⎧⎨+=⎩. 【解答】解:139x y x y -=⎧⎨+=⎩①②,②-①得,48y =,解得2y =,把2y =代入①得,21x -=,解得3x =,故原方程组的解为32x y =⎧⎨=⎩. 19.(6分)先化简,再求值:22111211x x x x x +÷-++++,其中31x =. 【解答】解:原式221(1)(1)(1)x x x x +=+--+g 221111x x x x +-=-++ 21x =+, 当31x 时,原式233==.20.(6分)如图,已知平行四边形ABCD,(1)作B∠的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,2CD=,求DE的长.【解答】解:(1)如图,BE为所作;(2)Q四边形ABCD为平行四边形,//AD BC∴,2AB CD==,AD BC=,Q平行四边形ABCD的周长为105AB AD∴+=,3AD∴=,BEQ平分ABC∠,ABE CBE∴∠=∠,//AD BCQ,ABE AEB∴∠=∠,2AE AB∴==,321DE AD AE∴=-=-=.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了100名学生;若该校共有1500名学生,估计全校爱好运动的学生共有名.(2)补全条形统计图,并计算阅读部分圆心角是度.(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?【解答】解:(1)总人数2020%100=÷=(名),若该校共有1500名学生,估计全校爱好运动的学生有401500600100⨯=(名).故答案为100,600.(2)圆心角100402010 360108100---=︒⨯︒,条形图如图所示:故答案为108.(3)15030%500÷=(名),答:估计九年级有500名学生.22.(8分)如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD .若2AC =,4CE =;(1)求证:四边形ACED 是平行四边形.(2)求BC 的长.【解答】解:(1)证明:90ACB ∠=︒Q ,DE BC ⊥,//AC DE ∴又//CE AD Q∴四边形ACED 是平行四边形.(2)Q 四边形ACED 是平行四边形.2DE AC ∴==.在Rt CDE ∆中,由勾股定理得22224223CD CE DE --= D Q 是BC 的中点,243BC CD ∴==23.(8分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A 、B 两种玩具,其中A 类玩具的进价比B 玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同(1)求A 、B 两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A 、B 两类玩具共100个,若玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A 类玩具多少个?【解答】解:(1)设B 的进价为x 元,则a 的进价是(3)x +元 由题意得9007503x x=+, 解得15x =,经检验15x =是原方程的解.所以15318+=(元)答:A的进价是18元,B的进价是15元;(2)设A玩具a个,则B玩具(100)a-个,由题意得:1210(100)1080+-…,a aa….解得40答:至少购进40A个.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,四边形ABCD为菱形,以AD为直径作Oee交AB于点F,连接DB交O 于点H,E是BC上的一点,且BE BF=,连接DE.(1)求证:DAF DCE∆≅∆.(2)求证:DE是Oe的切线.(3)若2BF=,5DH=,求四边形ABCD的面积.【解答】(1)证明:如图,连接DF,Q四边形ABCD为菱形,AB BC CD DA∠=∠,AD BC,DAB C∴===,//Q,=BF BE∴-=-,AB BF BC BE即AF CE=,DAF DCE SAS∴∆≅∆;()(2)由(1)知,DAF DCE∠=∠.∆≅∆,则DFA DECQ是OADe的直径,∴∠=︒DEC90∴∠=︒,90DFAQ,//AD BC90ADE DEC ∴∠=∠=︒,OD DE ∴⊥,OD Q 是O e 的半径,DE ∴是O e 的切线;(2)解:如图,连接AH ,AD Q 是O e 的直径,90AHD DFA ∴∠=∠=︒,90DFB ∴∠=︒,AD AB =Q ,5DH =,225DB DH ∴==,在Rt ADF ∆和Rt BDF ∆中,222DF AD AF =-Q ,222DF BD BF =-,2222AD AF DB BF ∴-=-,2222()AD AD BF DB BF ∴--=-,222(2)2(25)2AD AD ∴--=-,5AD ∴=.2225525AH AD DH ∴=-=-=1222525202ABD ABCD S S BD AH BD AH ∆∴==⨯⋅=⋅=⨯=四边形.即四边形ABCD 的面积是20.25.(10分)如图,直线132y x =--与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线23y ax bx =+-与x 轴的另一个交点为点(2,0)B ,点D 是抛物线上一点,过点D 作DE x ⊥轴于点E ,连接AD ,DC .设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在第三象限,设DAC ∆的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;(3)连接BC ,若EAD OBC ∠=∠,请直接写出此时点D 的坐标.【解答】解:(1)在132y x =--中,当0y =时,6x =-, 即点A 的坐标为:(6,0)-,将(6,0)A -,(2,0)B 代入23y ax bx =+-得:366304230a b a b --=⎧⎨+-=⎩, 解得:141a b ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为:2134y x x =+-;(2)设点D 的坐标为:21(,3)4m m m +-,则点F 的坐标为:1(,3)2m m --, 2211133(3)2442DF m m m m m ∴=---+-=--, ADC ADF DFC S S S ∆∆∆∴=+1122DF AE DF OE =+g g g 12DF OA =g 2113()6242m m =⨯--⨯ 23942m m =--2327(3)44m =-++, 304a =-<Q , ∴抛物线开口向下,∴当3m =-时,ADC S ∆存在最大值274, 又Q 当3m =-时,2115344m m +-=-, ∴存在点15(3,)4D --,使得ADC ∆的面积最大,最大值为274;(3)①当点D 与点C 关于对称轴对称时,(4,3)D --,根据对称性此时EAD ABC ∠=∠. ②作点(4,3)D --关于x 轴的对称点(4,3)D '-,直线AD '的解析式为392y x =+, 由2392134y x y x x ⎧=+⎪⎪⎨⎪=+-⎪⎩,解得60x y =-⎧⎨=⎩或821x y =⎧⎨=⎩, 此时直线AD '与抛物线交于(8,21)D ,满足条件,综上所述,满足条件的点D 坐标为(4,3)--或(8,21)。
2020年广东省肇庆市中考数学试卷-含详细解析
2020年广东省肇庆市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020-2021学年广东省肇庆市中考数学第一次模拟试题及答案解析
最新广东省肇庆市中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.计算﹣(﹣2012)的结果是()A.2012 B.﹣2012 C.D.2.将46590用科学记数法表示为()A.4.659×105B.4.659×104C.0.4659×105D.46.6×1033.下列运算正确的是()A.a6÷a3=a2B.3a﹣a=3 C.(﹣a)0×a4=a4D.(a2)3=a54.16的平方根是()A.±4 B.4 C.﹣4 D.±85.某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,成绩如下:126,144,134,118,126,152.这组数据中,众数和中位数分别是()A.126,126 B.130,134 C.126,130 D.118,1526.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.从1,2,3这三个数字中随机抽取两个,抽取的这两个数的和是奇数的概率是()A.B.C.D.8.函数是反比例函数,则m的值是()A.m=±1 B.m=1 C.m=± D.m=﹣19.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60°D.70°10.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.若线段a,b,c,d成比例,其中a=5cm,b=7cm,c=4cm,d= .12.分解因式:xy2﹣9x= .13.分式方程的解是.14.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.15.已知三角形的两边长分别为3和6,那么第三边长的取值范围是.16.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“”形由3个正方形组成,第2个黑色“”形由7个正方形组成,…,那么组成第n个黑色“”形的正方形个数是(用含n的代数式表示).三、解答题(共9小题,满分66分)17.计算:cos60°﹣2﹣1+(﹣1)0+|1﹣π|.18.解不等式3﹣4(2x﹣3)≥3(3﹣2x),并把它的解集在数轴上表示出来.19.解分式方程:=.20.如图,某人要测一建筑物AB的高度,他在地面D处测得建筑物顶端A的仰角为30°,沿AE 方向前进100米到达点C处,测得建筑物的顶端A的仰角为45°,求建筑物的高.21.阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,(1)按照这个规定,请你计算的值;(2)按照这个规定,请你计算:当x2﹣4x+4=0时,的值.22.如图,在平行四边形ABCD中.(1)尺规作图(不写作法,保留作图痕迹):作∠ABC的平分线BE交AD于E;在线段BC上截取CF=DE;连接EF.(2)求证:四边形ABFE是菱形.23.王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D 类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.24.如图所示,BC是半圆O的直径,AD⊥BC,垂足为D,AB弧长等于AF弧长,BF与AD、AO 分别交于点E、G.(1)证明:∠DAO=∠FBC;(2)证明:AE=BE.25.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3和直线y=x﹣3经过点A、B,点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)点A、B的坐标分别是(3,0)、(0,﹣3),此结论可以如何验证?请你说出两种方法(不用写具体证明过程)(2)若点P在线段AB上,连接AM、BM,当线段PM最长时,求△ABM的面积;(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算﹣(﹣2012)的结果是()A.2012 B.﹣2012 C.D.【考点】相反数.【分析】根据相反数的定义,即可解答.【解答】解:﹣(﹣2012)=2012,故选:A.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.将46590用科学记数法表示为()A.4.659×105B.4.659×104C.0.4659×105D.46.6×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将46590用科学记数法表示为:4.659×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.a6÷a3=a2B.3a﹣a=3 C.(﹣a)0×a4=a4D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,非零的零次幂等于1,幂的乘方底数不变指数相乘,【解答】解:A、同底数幂的除法底数不变指数相减,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、原式=1×a4=a4,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.16的平方根是()A.±4 B.4 C.﹣4 D.±8【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,成绩如下:126,144,134,118,126,152.这组数据中,众数和中位数分别是()A.126,126 B.130,134 C.126,130 D.118,152【考点】众数;中位数.【分析】根据众数和中位数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:118,126,126,134,144,152,故众数为:126,中位数为:(126+134)÷2=130.故选C.【点评】本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键.6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【考点】简单组合体的三视图.【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【点评】考查三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.7.从1,2,3这三个数字中随机抽取两个,抽取的这两个数的和是奇数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其和是奇数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,其和是奇数的4种情况,∴其和是奇数的概率是:=故选C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.函数是反比例函数,则m的值是()A.m=±1 B.m=1 C.m=± D.m=﹣1【考点】反比例函数的定义.【分析】由反比例函数的定义可知:m﹣1≠0,m2﹣2=﹣1,从而可求得m的值.【解答】解:∵函数是反比例函数,∴m﹣1≠0,m2﹣2=﹣1.解得m=﹣1.故选:D.【点评】本题主要考查的是反比例函数的定义掌握反比例函数的定义是解题的关键.9.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60°D.70°【考点】直角三角形的性质;角平分线的定义.【分析】根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.【解答】解:∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.【点评】本题考查了直角三角形两锐角互余的性质,角平分线的定义,熟记性质是解题的关键.10.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据圆周角定理得出∠B=∠CDO,得出∠OBC的余弦值为∠CDO的余弦值,再根据CD=10,CO=5,得出DO=5,进而得出答案.【解答】解:连接CA并延长到圆上一点D,∵CD为直径,∴∠COD=∠yOx=90°,∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5,∴DO=5,∵∠B=∠CDO,∴∠OBC的余弦值为∠CDO的余弦值,∴cos∠OBC=cos∠CDO==.故选C.【点评】此题主要考查了圆周角定理以及勾股定理和锐角三角函数的定义,正确得出∠OBC的余弦值为∠CDO的余弦值是解决问题的关键.二、填空题(共6小题,每小题4分,满分24分)11.若线段a,b,c,d成比例,其中a=5cm,b=7cm,c=4cm,d= cm .【考点】比例线段.【分析】根据四条线段成比例的概念,得比例式a:b=c:d,再根据比例的基本性质,即可求得d 的值.【解答】解:∵四条线段a、b、c、d成比例,∴a:b=c:d,∴d=7×4÷5=(cm).故答案为cm.【点评】本题考查了成比例线段的概念,写比例式的时候,要注意单位统一,是一道基础题.12.分解因式:xy2﹣9x= x(y+3)(y﹣3).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.13.分式方程的解是x=﹣1 .【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,把分式方程转化为整式方程求解即可.【解答】解:原方程可化为:,方程的两边同乘(x﹣2),得1﹣4=x﹣2,解得x=﹣1,经检验x=﹣1是原方程的解,故答案为x=﹣1.【点评】考查解分式方程;若分母中的两个数互为相反数,则应先整理为相同的数;用到的知识点为:分母,分子,分式本身,同时改变2个符号,分式的大小不变.14.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【考点】三角形的稳定性.【分析】由图可得,固定窗钩BC即,是组成三角形,故可用三角形的稳定性解释.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性.【点评】本题考查三角形的稳定性在实际生活中的应用问题.15.已知三角形的两边长分别为3和6,那么第三边长的取值范围是大于3小于9 .【考点】三角形三边关系.【分析】根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵此三角形的两边长分别为3和6,∴第三边长的取值范围是:6﹣3=3<第三边<6+3=9.故答案为:大于3小于9.【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.16.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“”形由3个正方形组成,第2个黑色“”形由7个正方形组成,…,那么组成第n个黑色“”形的正方形个数是4n﹣1 (用含n的代数式表示).【考点】规律型:图形的变化类.【专题】规律型.【分析】看后面每个图形中正方形的个数是在3的基础上增加几个4即可.【解答】解:第1个黑色“”形由3个正方形组成,第2个黑色“”形由3+4=7个正方形组成,第3个黑色“”形由3+2×4=11个正方形组成,…,那么组成第n个黑色“”形的正方形个数是3+(n﹣1)×4=4n﹣1.故答案为4n﹣1.【点评】考查图形的变化规律;得到第n个图形与第1个图形中正方形个数之间的关系是解决本题的关键.三、解答题(共9小题,满分66分)17.计算:cos60°﹣2﹣1+(﹣1)0+|1﹣π|.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据0指数幂及负整数指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣+1+π﹣1=π.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的运算法则、特殊角的三角函数值及绝对值的性质是解答此题的关键.18.解不等式3﹣4(2x﹣3)≥3(3﹣2x),并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去括号,再去分母、移项、合并同类项,把x的系数化为1,并在数轴上表示出来即可.【解答】解:去括号得,3﹣8x+12≥9﹣6x,移项得,﹣8x+6x≥9﹣3﹣12,合并同类项得,﹣2x≥﹣6,系数化1得,x≤3.把它的解集在数轴上表示为:.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.19.解分式方程:=.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2=4,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.如图,某人要测一建筑物AB的高度,他在地面D处测得建筑物顶端A的仰角为30°,沿AE 方向前进100米到达点C处,测得建筑物的顶端A的仰角为45°,求建筑物的高.【考点】解直角三角形的应用-仰角俯角问题.【分析】设AB为x米,根据正切的定义用x表示出BC、BD,列出方程,解方程即可.【解答】解:设AB为x米,∵∠ACB=45°,∴BC=x,∵∠D=30°,∴tanD=,即BD==x,由题意得,x﹣x=100,解得x==50(+1).答:建筑物的高为50(+1)米.【点评】本题考查的是仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,(1)按照这个规定,请你计算的值;(2)按照这个规定,请你计算:当x2﹣4x+4=0时,的值.【考点】整式的混合运算—化简求值;实数的运算.【专题】计算题;新定义;整式.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义化简,将已知等式变形后代入计算即可求出值.【解答】解:(1)根据题中的新定义得:原式=40﹣42=﹣2;(2)∵x2﹣4x+4=0,即(x﹣2)2=0,∴x1=x2=2,则原式=(x+1)(2x﹣3)﹣2x(x﹣1)=2x2﹣3x+2x﹣3﹣2x2+2x=x﹣3=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22.如图,在平行四边形ABCD中.(1)尺规作图(不写作法,保留作图痕迹):作∠ABC的平分线BE交AD于E;在线段BC上截取CF=DE;连接EF.(2)求证:四边形ABFE是菱形.【考点】菱形的判定;平行四边形的性质.【专题】作图题.【分析】(1)①以点B为圆心,以任意长为半径画弧,分别交AB、BC于两点,再分别以这两点为圆心,以任意长为半径画弧,两弧交于一点G,连接BG并延长交AD于点E,则BE即为所求.②再以点C为圆心,以DE为半径画弧交BC于点F,连接EF即可.(2)有一组邻边相等的平行四边形是菱形.先证四边形ABFE是平行四边形;再证AB=AE.即证▱ABFE是菱形.【解答】解:(1)如图所示:(2)证明:∵ABCD是平行四边形,∴AD∥BC,AD=BC又∵DE=CF∴AD﹣DE=BC﹣CF,即AE=BF∵AE∥BF∴四边形ABFE是平行四边形,又∵BE平分∠ABC∴∠ABE=∠EBF又∵AD∥BC∴∠AEB=∠EBF∴∠ABE=∠AEB∴AB=AE∴▱ABFE是菱形.【点评】(1)考查了尺规作图.(2)菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.23.王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20 名同学,其中C类女生有 2 名,D类男生有 1 名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D 类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);故答案为:20,2,1;(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.24.如图所示,BC是半圆O的直径,AD⊥BC,垂足为D,AB弧长等于AF弧长,BF与AD、AO 分别交于点E、G.(1)证明:∠DAO=∠FBC;(2)证明:AE=BE.【考点】弧长的计算;圆周角定理.【分析】(1)连CF,OF.由AB弧长等于AF弧长,O为圆心,根据垂径定理的推论得出点G是BF的中点,OG⊥BF.根据圆周角定理得出CF⊥BF,那么OG∥CF,∠AOB=∠FCB,根据等角的余角相等得出∠DAO=∠FBC;(2)连CF,AC,AB.由在同圆中等弧对的圆周角相等得到∠BCA=∠ACF,∠ACF=∠ABF,由同角的余角相等得到∠BAD=∠BCA,所以∠ABF=∠BAD,即BE=AE.【解答】证明:(1)连CF,OF.∵AB弧长等于AF弧长,O为圆心,∴点G是BF的中点,OG⊥BF.∵BC是半圆O的直径,∴CF⊥BF,∴OG∥CF,∴∠AOB=∠FCB,∴∠DAO=90°﹣∠AOB,∠FBC=90°﹣∠FCB,∴∠DAO=∠FBC;(2)连CF,AC,AB,∵AB弧长等于AF弧长,∴∠BCA=∠ACF,∠ACF=∠ABF,∵BC为圆的直径,∴∠BAC=90°,∴∠ABC+∠ACB=90°,又AD⊥BC,∴∠ADB=90°,∴∠ABC+∠BAD=90°,∴∠BAD=∠BCA,∴∠ABF=∠BAD,即BE=AE.【点评】本题考查了垂径定理的推论,圆周角定理,余角的性质,准确作出辅助线是解题的关键.25.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3和直线y=x﹣3经过点A、B,点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)点A、B的坐标分别是(3,0)、(0,﹣3),此结论可以如何验证?请你说出两种方法(不用写具体证明过程)(2)若点P在线段AB上,连接AM、BM,当线段PM最长时,求△ABM的面积;(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)一种方法是联立方程组求交点坐标,另一种方法是将点的坐标代入解析式即可;(2)用含t的式子表示出点P,点M 的坐标,用含t的式子表示出PM的长,并求出PM最大时t 的值,根据分割法求出△ABM的面积即可;(3)根据点P的不同位置,分三种情况讨论:当0<t≤3时;当t>3时;当t<0时;用含t的式子表示线段PM的值,根据平行四边形的判定方法,一组对边平行且相等的四边形是平行四边形,令PM=OB,求出t的值即可.【解答】解:(1)方法一:联立方程组,求交点坐标;方法二:将点A(3,0),点B(0,﹣3)分别代入抛物线和直线的解析式,判断点A,点B是否在抛物线和直线上;(2)由点P在直线ABy=x﹣3上,可得:当x=t时,y=t﹣3,即点P(t,t﹣3),由点M在抛物线y=x2﹣2x﹣3上,可得:当x=t时,y=t2﹣2t﹣3,即点M(t,t2﹣2t﹣3),当点P在线段AB上时,PM=t﹣3﹣(t2﹣2t﹣3)=t﹣3﹣t2+2t+3=﹣t2+3t=,∴当t=时,PM最大,最大值为,S△ABM=S△APM+S△BPM=;(3)存在.理由:当0<t≤3时,如图1,由题意,可知:OB∥PM,要使四边形OBPM是平行四边形,需满足OB=PM即可;由(2)可知,PM的最大值为,所以PM总小于OB,∴不存在这样的点P,使得四边形OBPM是平行四边形;当t>3时,如图2,此时,PM=t2﹣2t﹣3﹣t+3=t2﹣3t,由题意,可知:OB∥PM,要使四边形OBPM是平行四边形,需满足OB=PM即可;即t2﹣3t=3,解得:,(不合题意,舍去);当t<0时,如图3,此时,PM=t2﹣2t﹣3﹣t+3=t2﹣3t,由题意,可知:OB∥PM,要使四边形OBPM是平行四边形,需满足OB=PM即可;即t2﹣3t=3,解得:(不合题意,舍去),;综上所述,点P的横坐标是或.【点评】本题主要考查二次函数的综合应用,此题的难点不大,第(2)小题,能熟练运用分割法求三角形的面积是解题的关键;第(3)小题,能够想到根据点P的不同位置进行分类讨论是解决此题关键.。
广东省肇庆市2019-2020学年中考一诊数学试题含解析
广东省肇庆市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.32.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹3.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.13πB.23πC.49πD.59π4.下列标志中,可以看作是轴对称图形的是()A.B.C.D.5.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤3a b2 =.你认为其中正确信息的个数有A.2个B.3个C.4个D.5个6.下列几何体中,其三视图都是全等图形的是()A.圆柱B.圆锥C.三棱锥D.球7.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()A.r<5 B.r>5 C.r<10 D.5<r<108.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为()A.B.C.D.9.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A.0.72×106平方米B.7.2×106平方米C.72×104平方米D.7.2×105平方米10.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A.2P q+B.2P qPq+C.2+2p qP q Pq+++D.2+2p q pqP q+++11.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位12.下列二次根式,最简二次根式是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.14.如图,⊙O 的直径CD 垂直于AB ,∠AOC=48°,则∠BDC= 度.15.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.16.分解因式:2x 2﹣8xy+8y 2= .17.若22m n x y --与423m n x y +是同类项,则3m n -的立方根是 .18.关于x 的一元二次方程x 2+bx+c =0的两根为x 1=1,x 2=2,则x 2+bx+c 分解因式的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C .求证:∠CBP=∠ADB .若OA=2,AB=1,求线段BP 的长.20.(6分)如图,△ABC 中,AB=8厘米,AC=16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t .⑴用含t 的代数式表示:AP= ,AQ= .⑵当以A ,P ,Q 为顶点的三角形与△ABC 相似时,求运动时间是多少?21.(6分)如图,二次函数23y x x m =-++的图象与x 轴的一个交点为()4,0B ,另一个交点为A ,且与y 轴相交于C 点()1求m 的值及C 点坐标;()2在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由()3P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由.22.(8分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.23.(8分)如图,一次函数y=kx+b 的图象分别与反比例函数y=a x 的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA=OB .(1)求函数y=kx+b 和y=a x的表达式; (2)已知点C (0,8),试在该一次函数图象上确定一点M ,使得MB=MC ,求此时点M 的坐标.24.(10分)已知m 是关于x 的方程2450x x -=+的一个根,则228m m +=__25.(10分)如图,菱形ABCD 中,已知∠BAD=120°,∠EGF=60°, ∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于E 、F .(1)如图甲,当顶点G 运动到与点A 重合时,求证:EC+CF=BC ;(2)知识探究:①如图乙,当顶点G 运动到AC 的中点时,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);②如图丙,在顶点G 运动的过程中,若AC t GC=,探究线段EC 、CF 与BC 的数量关系; (3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=65,当t >2时,求EC 的长度.26.(12分)已知:如图.D 是ABC V 的边AB 上一点,//CN AB ,DN 交AC 于点M ,MA MC =. (1)求证:CD AN =;(2)若2AMD MCD ∠=∠,试判断四边形ADCN 的形状,并说明理由.27.(12分)在某小学“演讲大赛”选拔赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W 表示)或“通过”(用字母P 表示)的结论.(1)请用树状图表示出三位评委给小选手琪琪的所有可能的结论;(2)对于小选手琪琪,只有甲、乙两位评委给出相同结论的概率是多少?(3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数6yx的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=1.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×1=2.故选D.点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.2.B【解析】【分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体. 3.C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=24024= 3609ππ⋅⋅.故选C.点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=2 360n rπ⋅⋅.4.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5.D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴xb12a3=-=-,∴2b a3=-<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a ﹣b+c )+(c ﹣b )+2c >1,即a ﹣2b+4c >1.故④正确. ⑤如图,对称轴b 12a 3=-=-,则3a b 2=.故⑤正确. 综上所述,正确的结论是①②③④⑤,共5个.故选D .6.D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图. 7.D【解析】延长CD 交⊙D 于点E ,∵∠ACB=90°,AC=12,BC=9,∴AB=22AC BC +=15, ∵D 是AB 中点,∴CD=115AB=22, ∵G 是△ABC 的重心,∴CG=2CD 3=5,DG=2.5, ∴CE=CD+DE=CD+DF=10,∵⊙C 与⊙D 相交,⊙C 的半径为r ,∴ 510r <<,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG 的长是解题的关键.8.C【解析】【分析】先根据勾股定理求出BC 得长,再根据锐角三角函数正弦的定义解答即可.【详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C .【点睛】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键. 9.D【解析】试题分析:把一个数记成a×10n (1≤a<10,n 整数位数少1)的形式,叫做科学记数法. ∴此题可记为1.2×105平方米.考点:科学记数法10.C【解析】【分析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +, 水之和为:1p p ++1q q +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++, 故选C .【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.11.D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意;B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意;C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意;D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意;故选D.12.C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含开的尽的因数,故A 不符合题意;B 、被开方数含分母,故B 不符合题意;C 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C 符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选C .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】∵四边形MNPQ 是矩形,∴NQ=MP ,∴当MP 最大时,NQ 就最大.∵点M 是抛物线24y x x =-+在x 轴上方部分图象上的一点,且MP ⊥x 轴于点P , ∴当点M 是抛物线的顶点时,MP 的值最大.∵224(2)4y x x x =-+=--+,∴抛物线24y x x =-+的顶点坐标为(2,4),∴当点M 的坐标为(2,4)时,MP 最大=4,∴对角线NQ 的最大值为4.14.20【解析】解:连接OB ,∵⊙O 的直径CD 垂直于AB , ∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°15.1【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=1.故答案为1.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.16.1(x ﹣1y )1【解析】试题分析:1x 1﹣8xy+8y 1=1(x 1﹣4xy+4y 1)=1(x ﹣1y )1.故答案为:1(x ﹣1y )1.考点:提公因式法与公式法的综合运用17.2.【解析】试题分析:若22m n x y --与423m n x y +是同类项,则:4{22m n m n -=+=,解方程得:2{2m n ==-.∴3m n -=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.18. (x ﹣1)(x ﹣2)【解析】【分析】根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.【详解】解:已知方程的两根为:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).【点睛】一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP ⊥AD ,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D ,∴△AOP ∽△ABD , ∴AP AO AD AB =,即1241BP +=, ∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.20.(1)AP=2t ,AQ=16﹣3t ;(2)运动时间为167秒或1秒. 【解析】【分析】(1)根据路程=速度⨯时间,即可表示出AP ,AQ 的长度.(2)此题应分两种情况讨论.(1)当△APQ ∽△ABC 时;(2)当△APQ ∽△ACB 时.利用相似三角形的性质求解即可.【详解】(1)AP=2t ,AQ=16﹣3t .(2)∵∠PAQ=∠BAC , ∴当AP AQ AB AC =时,△APQ ∽△ABC ,即2163816t t -=,解得167t =; 当AP AQ AC AB =时,△APQ ∽△ACB ,即2163168t t -=,解得t=1. ∴运动时间为167秒或1秒.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解. 21.()14m =,()0,4C ;()2存在,()2,6M ;()(315,15P +①或(15,15P -;②当2t =时,16PBQC S =四边形最大.【解析】【分析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC 的直线和抛物线只有一个交点,从而求出点M 坐标;(3)①先判断出四边形PBQC 时菱形时,点P 是线段BC 的垂直平分线,利用该特殊性建立方程求解; ②先求出四边形PBCQ 的面积与t 的函数关系式,从而确定出它的最大值.【详解】解:(1)将B (4,0)代入23y x x m =-++,解得,m=4,∴二次函数解析式为234y x x =-++,令x=0,得y=4,∴C (0,4);(2)存在,理由:∵B (4,0),C (0,4),∴直线BC 解析式为y=﹣x+4,当直线BC 向上平移b 单位后和抛物线只有一个公共点时,△MBC 面积最大,∴24{34y x b y x x =-++=-++, ∴24(2)16t --+,∴△=1﹣4b=0,∴b=4,∴26x y =⎧⎨=⎩,∴M (2,6); (3)①如图,∵点P 在抛物线上,∴设P (m ,234m m -++),当四边形PBQC 是菱形时,点P 在线段BC 的垂直平分线上,∵B (4,0),C (0,4),∴线段BC 的垂直平分线的解析式为y=x ,∴m=234m m -++,∴m=15±, ∴P (15+,15+)或P (15-,15-);②如图,设点P (t ,234t t -++),过点P 作y 轴的平行线l ,过点C 作l 的垂线,∵点D 在直线BC 上,∴D (t ,﹣t+4),∵PD=234t t -++﹣(﹣t+4)=24t t -+,BE+CF=4,∴S 四边形PBQC =2S △PDC =2(S △PCD +S △BD )=2(12PD×CF+12PD×BE )=4PD=224164(2)16t t t -+--+ ∵0<t <4, ∴当t=2时,S 四边形PBQC 最大=1.考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.22.4小时.【解析】【分析】本题依据题意先得出等量关系即客车由高速公路从A 地道B 的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得:60048045,2x x+= 解得x =4经检验,x =4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可. 23.(1)12y x = ,y=2x ﹣1;(2)133,42M ⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)利用待定系数法即可解答;(2)作MD ⊥y 轴,交y 轴于点D ,设点M 的坐标为(x ,2x-1),根据MB=MC ,得到CD=BD,再列方程可求得x 的值,得到点M 的坐标【详解】解:(1)把点A (4,3)代入函数a =y x 得:a=3×4=12, ∴12y x=. ∵A (4,3)∴OA=1,∵OA=OB ,∴OB=1,∴点B 的坐标为(0,﹣1)把B (0,﹣1),A (4,3)代入y=kx+b 得:∴y=2x ﹣1.(2)作MD ⊥y 轴于点D.∵点M 在一次函数y=2x ﹣1上,∴设点M 的坐标为(x ,2x ﹣1)则点D (0,2x-1)∵MB=MC ,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=134∴2x ﹣1=32 , ∴点M 的坐标为133,42⎛⎫ ⎪⎝⎭. 【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.24.10【解析】【分析】利用一元二次方程的解的定义得到245m m +=,再把228m m + 变形为()224m m +,然后利用整体代入的方法计算 .【详解】解:m Q 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=,245m m ∴+=,()2228242510m m m m ∴+=+=⨯=.故答案为 10 .【点睛】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 . 25.(1)证明见解析(2)①线段EC ,CF 与BC 的数量关系为:CE +CF =12BC.②CE +CF =1t BC (3)95【解析】【分析】(1)利用包含60°角的菱形,证明△BAE ≌△CAF ,可求证;(2)由特殊到一般,证明△CAE′∽△CGE ,从而可以得到EC 、CF 与BC 的数量关系(3) 连接BD 与AC 交于点H,利用三角函数BH ,AH,CH 的长度,最后求BC 长度.【详解】解:(1)证明:∵四边形ABCD 是菱形,∠BAD =120°,∴∠BAC =60°,∠B =∠ACF =60°,AB=BC ,AB=AC ,∵∠BAE +∠EAC =∠EAC +∠CAF =60°,∴∠BAE=∠CAF ,在△BAE 和△CAF 中,BAE CAF AB ACB ACF ∠=∠⎧⎪=⎨⎪∠∠⎩=, ∴△BAE ≌△CAF ,∴BE =CF ,∴EC +CF =EC +BE =BC ,即EC +CF =BC ;(2)知识探究:①线段EC ,CF 与BC 的数量关系为:CE +CF =12BC.理由:如图乙,过点A 作AE′∥EG ,AF′∥GF ,分别交BC 、CD 于E′、F′.类比(1)可得:E′C+CF′=BC ,∵AE′∥EG ,∴△CAE′∽△CGE 12CE CG CE CA '∴==, 1'2CE CE ∴=, 同理可得:12'CF CF =, ()1111'''2'222CE CF CE CF CE CF BC ∴+=+=+=, 即12CE CF BC +=; ②CE +CF =1t BC. 理由如下:过点A 作AE′∥EG ,AF′∥GF ,分别交BC 、CD 于E′、F′.类比(1)可得:E′C +CF′=BC ,∵AE′∥EG ,∴△CAE′∽△CAE ,∴1CE CG CE AC t'==,∴CE =1t CE′, 同理可得:CF =1tCF′, ∴CE +CF =1t CE′+1t CF′=1t (CE′+CF′)=1tBC , 即CE +CF =1tBC ; (3)连接BD 与AC 交于点H ,如图所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×33AH=CH=ABcos60°=8×12=4,∴GH22BG BH-2743-1,∴CG=4-1=3,∴38 CGAC=,∴t=83(t>2),由(2)②得:CE+CF=1t BC,∴CE=1tBC -CF=38×8-65=95.【点睛】本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形.26.(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.【解析】【分析】(1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN 是平行四边形即可;(2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.【详解】证明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;(2)解:四边形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四边形ADCN是平行四边形,∴MD=MN=MA=MC,∴AC=DN,∴四边形ADCN是矩形.【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.27.(1)见解析;(2)14;(3)12.【解析】【分析】(1)根据列树状图的步骤和题意分析所有等可能的出现结果,即可画出图形;(2)根据(1)求出甲、乙两位评委给出相同结论的情况数,再根据概率公式即可求出答案;(3)根据(1)即可求出琪琪进入复赛的概率.【详解】(1)画树状图如下:(2)∵共有8种等可能结果,只有甲、乙两位评委给出相同结论的有2种可能,∴只有甲、乙两位评委给出相同结论的概率P=21 84 ;(3)∵共有8种等可能结果,三位评委中至少有两位给出“通过”结论的有4种可能,∴乐乐进入复赛的概率P=41 82 .【点睛】此题考查了列树状图,掌握列树状图的步骤,找出三位评委给出相同结论的情况数是本题的关键,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P=mn.。
2020年肇庆市数学中考试题附答案
14.如图,在四边形 ABCD 中,∠B=∠D=90°,AB=3, BC=2,tanA= 4 ,则 CD= 3
_____.
15.已知圆锥的底面圆半径为 3cm,高为 4cm,则圆锥的侧面积是________cm2. 16.如图,一张三角形纸片 ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点 A 与
∵对称轴为 1>x=﹣ >0,
∴2a+b<0, 故本选项正确;
④对称轴为 x=﹣ >0,
∴a、b 异号,即 b>0, ∴abc<0, 故本选项错误; ∴正确结论的序号为②③. 故选 B. 点评:二次函数 y=ax2+bx+c 系数符号的确定: (1)a 由抛物线开口方向确定:开口方向向上,则 a>0;否则 a<0; (2)b 由对称轴和 a 的符号确定:由对称轴公式 x=﹣b2a 判断符号; (3)c 由抛物线与 y 轴的交点确定:交点在 y 轴正半轴,则 c>0;否则 c<0; (4)当 x=1 时,可以确定 y=a+b+C 的值;当 x=﹣1 时,可以确定 y=a﹣b+c 的值.
2.B
解析:B 【解析】 【分析】 根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】 解:∵△MNP 绕某点旋转一定的角度,得到△M1N1P1, ∴连接 PP1、NN1、MM1, 作 PP1 的垂直平分线过 B、D、C, 作 NN1 的垂直平分线过 B、A, 作 MM1 的垂直平分线过 B, ∴三条线段的垂直平分线正好都过 B, 即旋转中心是 B. 故选:B.
23.如图,在四边形 ABCD 中, AB DC , AB AD ,对角线 AC , BD 交于点 O , AC 平分 BAD ,过点 C 作 CE AB 交 AB 的延长线于点 E ,连接 OE . (1)求证:四边形 ABCD 是菱形; (2)若 AB 5 , BD 2,求 OE 的长.
2020年广东省肇庆市封开县九年级上学期一模数学试题(解析版)
封开县2019—2020学年度初中毕业班第一次模拟考试数学一、选择题1.实数a ,b 在数轴上的对应点的位置如图所示,把a ,b ,0按照从小到大的顺序排列,正确的是( )A. 0a b <<B. 0a b <<C. 0b a <<D. 0b a <<【答案】A【解析】【分析】根据取向右的方向为正方向时,数轴上的点对应的数字,右边的数字总比左边的大即可判断.【详解】解:由数轴可得0a b <<.故选:A【点睛】本题考查了数轴,熟练掌握数轴的特征是解题的关键.2.据统计,某市户籍人口约为3700000人,将3700000用科学记数法表示为( )A. 53710⨯B. 53.710⨯C. 63.710⨯D. 73710⨯ 【答案】C【解析】【分析】科学计数法的表示形式为10(110)n a a ⨯<≤,表示较大数时,n 为正整数,其值为原数中整数部分的位数减去1,据此表示即可.【详解】解:63700000 3.710=⨯.故选:C【点睛】本题考查了科学计数法,熟练掌握科学计数法的表示方法是解题的关键.3.下列图形中,是中心对称图形但不是轴对称图形的是( )A. 等边三角形B. 圆C. 矩形D. 平行四边形 【答案】D【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:等边三角形不是中心对称图形,是轴对称图形,A 不合题意;圆是中心对称图形,也是轴对称图形,B 不合题意;矩形是中心对称图形,是轴对称图形,C 不合题意;平行四边形是中心对称图形但不是轴对称图形,D 符合题意,故选D .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列运算中,正确的是( )A. 336236x x x +=B. 336236x x x ⋅=C. ()325x x =D. 22()ab a b -= 【答案】B【解析】【分析】根据幂的运算法则判断.【详解】解:A 选项33362365x x x x =≠+,A 错误;B 选项336236x x x ⋅=,B 正确;C 选项()322365x x x x ⨯=≠=,C 错误;D 选项222222()()a b ab a b a b =-=≠-,D 错误.故选:B【点睛】本题主要考查了幂的运算,主要涉及了同底数幂的乘法、幂的乘方和积的乘方,熟练掌握相应的运算法则是解题的关键.5.一个十字路口的交通信号灯每分钟红灯亮30s ,绿灯亮25s ,黄灯亮5s ,当你抬头看信号灯时,是绿灯的概率是( ) A. 512 B. 13 C. 112 D. 12【答案】A【解析】【分析】用绿灯亮的时间除以时间总数60即为所求的概率.【详解】解:一共是60秒,绿灯亮25秒,所以绿灯的概率是:255=6012. 故选A .【点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.6.已知点(2,3)在反比例函数y=k x 的图象上,则该图象必过的点是( ) A. ()1,6B. ()6,1-C. ()2,3-D. ()3,2- 【答案】A【解析】【分析】把已知点代入反比比例函数解析式求出k ,然后判断各选项点的坐标是否符合即可.【详解】解:∵点(2,3)在k y x=上,∴k=2×3=6,A 选项1×6=k ,符合题意; 故选A .【点睛】本题考查反比例函数图象上点的坐标特征,把点的坐标代入计算即可.7.一元二次方程2210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法确定 【答案】B【解析】【分析】根据方程的系数结合根的判别式即可得出△=9>0,由此即可得出方程有两个不相等的实数根.【详解】解:∵在方程2210x x --=中,△=(-1)2-4×2×(-1)=9>0,∴方程2210x x --=有两个不相等的实数根.故选B .【点睛】本题考查根的判别式,熟练掌握“当△>0时,方程有两个不相等的实数根”是解题的关键. 8.若2|2|(3)0a b -++=,则a b =( ) A. -6B. 6C. 9D. -9【答案】C【解析】【分析】 根据绝对值及平方的非负性可得,a b 的值,代入求解即可.【详解】解:2|2|0,3)0(a b -≥+≥Q ,且2|2|(3)0a b -++= 2|2|0,30()a b ∴-=+=2,3a b ∴==-2(3)9a b ∴=-=故选:C【点睛】本题考查了绝对值和平方的性质,灵活利用绝对值和平方的非负性是解题的关键.9.如图,四边形ABCD 内接于⊙O,F 是¶CD上一点,且¶¶DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC=105°,∠BAC=25°,则∠E 的度数为( )A. 45°B. 50°C. 55°D. 60°【答案】B【解析】【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵»»=,∠BAC=25°,DF BC∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.10.如图,正方形ABCD的边长为4,点P、Q分别为CD、AD的中点,动点E从点A向点B运动,到点B时→→运动,点E、F的运动速度相同,设点E的运动路程为x,停止运动;同时,动点F从点P出发,沿P D QV的面积为y,能大致刻画y与x的函数关系的图像是()AEFA. B. C. D.【答案】A【解析】分析】分F 在线段PD 上,以及线段DQ 上两种情况,表示出y 与x 的函数解析式,即可做出判断.【详解】当F 在PD 上运动时,△AEF 的面积为y=12AE•AD=2x (0≤x≤2), 当F 在AD 上运动时,△AEF 的面积为y=12AE•AF=12x (6-x )=-12x 2+3x (2<x≤4), 图象为:故选A . 【点睛】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y 与x 的函数解析式.二、填空题11.101(2020)2π-⎛⎫--= ⎪⎝⎭______ 【答案】1【解析】【分析】根据负指数幂及零指数幂的计算公式即可求解.【详解】解:101(2020)2112π-⎛⎫--=-= ⎪⎝⎭. 【故答案为:1.【点睛】本题考查了负指数幂及零指数幂,即01(0),1(0)p p aa a a a -=≠=≠,熟练掌握这两个公式是解题的关键.12.分解因式:29a -=__________.【答案】()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3). 故答案为(a+3)(a-3).考点:因式分解-运用公式法.13.已知一个多边形的每一个内角都是144o ,则这个多边形是_________边形.【答案】十【解析】【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】解:180°﹣144°=36°,360°÷36°=10,∴这个多边形的边数是10.故答案为十.【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.14.平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____; 【答案】4【解析】【分析】由关于原点对称的点的坐标特点可得m+1=5,解方程可得答案.【详解】∵点P (4,-5)与点Q (-4,m+1)关于原点对称,∴m+1=5,解得:m=4,故答案是:4.【点睛】考查了关于原点对称的点的坐标,关键是掌握:两个点关于原点对称时,它们的坐标符号相反. 15.一次函数的图象经过点(1,3)A 和(3,1)B ,它的解析式是______.【答案】4y x =-+【解析】【分析】利用待定系数法求解.【详解】解:设一次函数的解析式为y kx b =+将点(1,3)A 和(3,1)B 代入得331k b k b +=⎧⎨+=⎩解得14k b =-⎧⎨=⎩所以一次函数的解析式为4y x =-+.故答案为:4y x =-+【点睛】本题考查了一次函数的解析式,熟练掌握待定系数法是解题的关键.16.如图,在正方形ABCD 中,4AB =,分别以B 、C 为圆心,AB 长为半径画弧,则图中阴影部分的面积为______(结果保留π)【答案】43π 【解析】【分析】连接BG 、CG ,作GE BC ⊥于点E ,根据扇形及三角形面积公式求出扇形BCD 、扇形CBG 、扇形BCG 以及△BCG 的面积,由阴影部分的面积=扇形BCD 的面积-扇形CBG 的面积-(扇形BCG 的面积-△BCG 的面积)计算即可.【详解】解:如图,连接BG 、CG ,作GE BC ⊥于点E ,即90BEG ︒∠=.由题意可知4CG BG BC AB ====BCG ∴V 是等边三角形60BCG CBG ︒∴∠=∠=30BGE ︒∴∠= 122BE BG ∴== 在Rt BEG V 中,根据勾股定理得222BE GE BG +=GE ∴==∴扇形CBG 的面积=扇形BCG 的面积=260843603ππ︒︒⨯⨯=,扇形BCD 的面积为29044360ππ︒︒⨯⨯=,△BCG的面积为11422BC GE ⋅=⨯⨯= ∴阴影部分的面积=扇形BCD 的面积-扇形CBG 的面积-(扇形BCG 的面积-△BCG的面积)8844(333ππππ=---=故答案为:43π 【点睛】本题主要考查了扇形的面积,涉及了正方形的性质、等腰三角形的判定和性质、直角三角形的性质,灵活根据题意和图形作出合适的辅助线是解题的关键. 的17.,则第8个数为______.【答案】【解析】【分析】确定根号外面的数的变化规律,由此可知第8个数.【详解】解:观察可以知道:第11=第2个数(1=+第3个数(12=++;第4个数(123=+++第5个数(1234=++++……第8个数为(1234567+++++++=故答案为:【点睛】本题考查了数字的规律探究,灵活根据已有数字找准变化规律是解题的关键.三、解答题18.解方程组:139 x yx y-=⎧⎨+=⎩【答案】32 xy=⎧⎨=⎩【解析】【分析】利用加减消元法解二元一次方程组即可解答.【详解】解:139x yx y①②-=⎧⎨+=⎩,②-①可得y=2,将y 的值代入①中解得x=3,故二元一次方程组的解是32x y =⎧⎨=⎩. 【点睛】本题考查了用消元法解二元一次方程组,准确计算是解题的关键.19.先化简,再求值:222112111x x x x x x +÷-++++,其中1x =.【答案】11x + 【解析】【分析】根据分式的除法法则先算除法,再依据同分母分式的加减法法则进一步化简,最后代入求值即可. 【详解】解:222112111x x x x x x +÷-++++ 2221(1)(1)1x x x x x +=⋅+-++ 11x =+当1x =时,原式3=== 【点睛】本题考查了分式的化简求值,熟练掌握分式的加减乘除运算法则是解题的关键.20.如图,已知▱ABCD.(1)作∠B 的平分线交AD 于E 点.(用尺规作图法,保留作图痕迹,不要求写作法);(2)若▱ABCD 的周长为10,CD=2,求DE 的长.【答案】(1)作图见解析;(2)1【解析】【分析】(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交.然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.【详解】(1)解:如图所示:(2)解:∵平行四边形ABCD的周长为10∴AB+AD=5∵AD//BC∴∠AEB=∠EBC又∵BE平分∠ABC∴∠ABE=∠EBC∴∠AEB=∠ABE∴AB=AE=2∴ED=AD-AE=3-2=1【点睛】此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则21.某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有______名;(2)补全条形统计图,并计算阅读部分圆心角是______度;(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?【答案】(1)100,600;(2)见解析,108;(3)500【解析】【分析】(1)根据条形统计图中爱好运动的学生人数及扇形统计图中其所占的百分比可求得总共调查的学生数;总共的学生数乘以爱好运动的学生所占的百分比即可;(2)总共调查的学生数减去爱好运动、娱乐、上网的人数即为爱好阅读的人数,360︒乘以阅读所占的百分比即为阅读部分的圆心角度数;(3)九年级爱好阅读的学生的人数除以其所占的百分比即为九年级学生的总人数.【详解】(1)一共调查的学生人数为4040%100÷=名;全校爱好运动的学生共有150040%600⨯=名; (2)爱好阅读人数为:10040201030---=人,补全条形统计图,如图所示,阅读部分圆心角是30360108100︒⨯=︒, (3)爱好阅读的学生人数所占的百分比30%,∴15030%500÷=;所以估计九年级有500名学生.【点睛】本题考查了数据的收集与整理,灵活的将条形统计图与扇形统计图中的数据相结合是解题的关键. 22.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,4CE =;(1)求证:四边形ACED 是平行四边形(2)求BC 的长.【答案】(1)见解析;(2)【解析】【分析】(1)依据两组对边分别平行的四边形是平行四边形证明;(2)由平行四边形的性质可得DE 长,根据勾股定理得CD 长,结合中点的性质可知BC 长.【详解】(1)证明:∵90ACB ∠=︒,DE BC ⊥,∴//AC DE又∵//CE AD∴四边形ACED 是平行四边形.(2)∵四边形ACED 是平行四边形.∴2DE AC ==.又∵4CE =在Rt CDE ∆中,由勾股定理得CD =∵D 是BC 的中点,∴2BC CD ==.【点睛】本题主要考查了平行四边形,熟练掌握平行四边形的判定和性质是解题的关键.23.在“双十一”购物街中,某儿童品牌玩具专卖店购进了A B 、两种玩具,其中A 类玩具的金价比B 玩具的进价每个多3元.经调查发现:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同. (1)求A B 、的进价分别是每个多少元?(2)该玩具店共购进A B 、了两类玩具共100个,若玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得的利润不少于1080元,则该淘宝专卖店至少购进A 类玩具多少个?【答案】(1)A 的进价是18元,B 的进价是15元;(2)至少购进A 类玩具40个.【解析】【分析】(1)设B 的进价为x 元,则A 的进价为()3x +元,根据用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同这个等量关系列出方程即可;(2)设A 玩具a 个,则B 玩具()100a -个,结合“玩具点将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答.【详解】解:(1)设B 的进价为x 元,则A 的进价为()3x +元 由题意得9007503x x=+, 解得15x =,经检验15x =是原方程的解.所以15318+=(元)答:A 的进价是18元,B 的进价是15元;(2)设A 玩具a 个,则B 玩具()100a -个由题意得:()12101001080a a +-≥解得40a ≥.答:至少购进A 类玩具40个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.24.如图,四边形ABCD 为菱形,以AD 为直径作O e 交AB 于点F ,连接DB 交O e 于点H ,E 是BC 上的一点,且BE BF =,连接DE .(1)求证:DAF DCE ∆∆≌.(2)求证:DE 是O e 的切线.(3)若2BF =,DH =,求四边形ABCD 的面积.【答案】(1)见解析;(2)见解析;(3)20【解析】分析】(1)连接DF ,结合菱形的性质利用SAS 可证DAF DCE ∆∆≌;(2)由直经所对的圆周角是直角可知90DFA ∠=︒,由全等的性质与平行的性质可得90ADE ∠=︒,根据切线的判定定理可得结论;(3)连接AH ,由等腰三角形三线合一的性质可得2DB DH =,根据勾股定理可得AD 、AF 、DF 长,易得四边形ABCD 的面积.【详解】(1)证明:如图1,连接DF ,∵四边形ABCD 为菱形,∴AB BC CD DA ===,//AD BC ,DAB C ∠=∠,∵BF BE =,∴AB BF BC BE -=-,即AF CE =,∴DAF DCE ∆∆≌(2)∵DAF DCE ∆∆≌∴DFA DEC ∠=∠.∵AD 是O e 直径,∴90DFA ∠=︒,∴90DEC ∠=︒.∵//AD BC ,∴90ADE DEC ∠=∠=︒,∴OD DE ⊥.∵OD 是O e 的半径,∴DE 是O e 的切线(3)解:如图2,连接AH ,∵AD 是O e 的直径,∴90AHD DFA ∠=∠=︒,∴90DFB ∠=︒,∵AD AB =,DH =,∴2DB DH ==的在Rt ADF ∆和Rt BDF ∆中,∵222DF AD AF =-,222DF BD BF =-,∴2222AD AF DB BF -=-,∴2222()AD AD BF DB BF --=-,∴(2222(2)2AD AD --=-, ∴5AD =.∴3AF =∴4DF ==∴四边形ABCD 的面积5420AB DF =⋅=⨯=.【点睛】本题是几何综合题,涉及了圆周角定理、切线的判定、菱形的性质、等腰三角形的性质、勾股定理,综合性较强,但是难度一般,灵活的将已知条件与图形相结合是解题的关键.25.如图,直线132y x =--与x 轴,y 轴分别交于点,A C ,经过点,A C 的抛物线23y ax bx =+-与x 轴的另一个交点为点()2,0B ,点D 是抛物线上一点,过点D 作DE x ⊥轴于点E ,连接,AD DC ,设点D 的横坐标为m .()1求抛物线的解析式;()2当点D 在第三象限,设DAC △的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;()3连接BC ,若EAD OBC ∠=∠,请直接写出此时点D 的坐标.【答案】(1)2134y x x =+-;(2)当3m =-时,S 存在最大值,最大值为274,此时点D 的坐标为154(-3,); (3)点D 的坐标为(8,21)或(4,3)--. 【解析】【分析】(1)先利用一次函数求出点A 的坐标,再用待定系数法即可求出抛物线的解析式;(2)先用含m 的式子表示出点D 的坐标及DF 的长,进而求出S 与m 的函数关系式,根据顶点式即可得出答案;(3)由题可知△ OBC 与△ EAD 相似,根据根据的性质即可得出答案.【详解】解:(1)在132y x =--中,令0y =,得6x =-, ∴点A 的坐标为()6,0-,将点()6,0A -,()2,0B 代入23y ax bx =+-中,得, 366304230a b a b --=⎧⎨+-=⎩, 解得141a b ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2134y x x =+-; (2)如图,设DE 交直线AC 于点F ,Q 点D 的横坐标为21(,m 34m m +-), 则点F 的坐标为1m m 32(,)--, 2211133m 3m 2442DF m m m ∴=----+-=--(), ()211327··32244ADF DFC S S S DF AE DF OE m ∴=+=+=-++V V , 304a =-<Q , ∴抛物线开口向下,∴当3m =-时,S 存在最大值,最大值为274, 当3m =-时,2115344m m +-=-,∴此时点D 的坐标为153,4⎛⎫-- ⎪⎝⎭; (3)点D 的坐标为()8,21或()4,3--.【点睛】本题是一道二次函数综合题.综合运用所学知识是解题的关键.。
2020年广东省肇庆市中考数学一模试卷
中考数学一模试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.有理数-4的绝对值等于()A. 4B. -4C. 0D. ±42.如图所示的几何体的主视图是()A.B.C.D.3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元()A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元4.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. 晴B. 浮尘C. 大雨D. 大雪5.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为()A. 1B. -1C. 1或-1D.6.下列关于一次函数y=-2x+3的结论中,正确的是()A. 图象经过点(3,0)B. 图象经过第二、三、四象限C. y随x增大而增大D. 当x>时,y<07.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A. 8B. 10C. 21D. 229.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.10.如图所示,是反比例函数y=与y=在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于A点和B点,若点P在x轴上运动,则△ABP的面积等于()A. 5B. 4C. 10D. 20二、填空题(本大题共6小题,共24.0分)11.计算:-1-2=______.12.分解因式:2x2-10x=______.13.方程的解为x=______.14.一个不透明的盒子中装有6个除颜色外其他均相同的乒乓球,其中4个是黄球,2个是白球,从该盒子中任意摸出一个球,摸到黄球的概率是______.15.若正方形的面积是9,则它的对角线长是______.16.为配合枣庄市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小丽同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小丽同学不买卡直接购书,则她需付款______元.三、计算题(本大题共1小题,共7.0分)17.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.类别人数百分比排球36%乒乓球1428%羽毛球15篮球20%足球816%合计100%四、解答题(本大题共8小题,共59.0分)18.计算:4cos30°+20190+|1|19.先化简,后求值:,其中,x从0、-1、-2三个数值中适当选取.20.如图,在直角△ABC中,∠C=90°.用尺规作图作∠A的平分线AD,交BC于D,过D作AB的垂线,垂足为E,并求证:DE=DC(保留作图痕迹,不要求写作法和证明)21.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.22.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)23.如图,已知A(3,m),B(-2,-3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.24.已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=-x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:|-4|=4,故选:A.根据绝对值的求法求-4的绝对值,可得答案.本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.【答案】B【解析】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【答案】D【解析】解:80000000000000元=8×1013元,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】B【解析】解:根据题意得:a2-1=0且a-1≠0,解得:a=-1.故选:B.根据方程的解的定义,把x=0代入方程,即可得到关于a的方程,再根据一元二次方程的定义即可求解.本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.6.【答案】D【解析】解:A、图象经过点(,0),故原题说法错误;B、图象经过第二、一、四象限,故原题说法错误;C、y随x增大而减小,故原题说法错误;D、当x>时,y<0,故原题说法正确;故选:D.根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降进行分析即可.此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b(k≠0)的性质.7.【答案】B【解析】解:解不等式->1,得:x<-2,解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.【答案】D【解析】解:∵共有4+10+8+6+2=30个数据,∴中位数为第15、16个数据的平均数,即中位数为=22,故选:D.根据条形统计图得到数据的总个数,然后根据中位数的定义求解.本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).9.【答案】A【解析】【分析】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sin A==.故选A.10.【答案】A【解析】解:设点A(a,)∵AB∥x轴∴点B纵坐标为,且点B在反比例函数y=图象上,∴点B坐标(-,)∴S△ABP=(a+)×=5故选:A.设点A(a,),可得点B坐标(-,),即可求△ABP的面积.本题考查了反比例函数图象上点的坐标特征,设点A(a,),利用字母a表示AB的长度和线段AB上的高,是本题的关键.11.【答案】-3【解析】解:-1-2=-1+(-2)=-3.故答案为-3.根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.12.【答案】2x(x-5)【解析】解:原式=2x(x-5).故答案是:2x(x-5).首先确定公因式是2x,然后提公因式即可.本题考查了提公因式法,正确确定公因式是关键.13.【答案】9【解析】解:方程两边同乘x(x-3),得2x=3(x-3),解得x=9.经检验x=9是原方程的解.本题考查解分式方程的能力,观察可得方程最简公分母为x(x-3),去分母,转化为整式方程求解.结果要检验.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.【答案】【解析】解:∵一个不透明的盒子中装有6个除颜色外其他均相同的兵乓球,其中4个是黄球,2个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是:=.故答案为.由一个不透明的盒子中装有6个除颜色外其他均相同的兵乓球,其中4个是黄球,2个是白球,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.【答案】【解析】解:若正方形的面积是9,则它的边长是3,根据勾股定理得到则它的对角线长===3.故答案为3根据正方形的性质可求得其边长,再根据勾股定理可求得其对角线的长.此题主要考查学生对正方形的性质的理解及运用.16.【答案】150【解析】解:根据题意得:x-(0.8x+20)=10,解得:x=150,答:此次小丽同学不买卡直接购书,则她需付款150元.设此次小丽同学不买卡直接购书,则她需付款x元,根据“某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小丽同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元”结合不买卡直接购付款-买卡后打折付款=节省的费用,列出关于x的一元一次方程,解之即可.本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.17.【答案】解:(1)3÷6%=50人,则篮球的人数为50×20%=10人,则补全条形统计图如下:羽毛球占总数的百分比为:15÷50=30%,补全人数分布表为:类别人数百分比排球36%乒乓球1428%羽毛球1530%篮球1020%足球816%合计50100%(2)920×30%=276人.则七年级学生喜爱羽毛球运动项目的人数为276人.【解析】(1)由排球的人数除以所占的百分比求出总人数,乘以篮球所占的百分比即可求出篮球的人数,补全条形统计图,如图所示,求出羽毛球所占的百分比,补全人数分布图,如图所示;(2)用人数乘以羽毛球所占的百分比即可求出人数.此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.18.【答案】解:原式=4×-2+1+-1=2-2+1+-1=.【解析】直接利用二次根式的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:原式=÷=•=,因为x从0、-1数值,代入原式无意义,所以:取x=-2,得:原式=3.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.20.【答案】解:(1)如图所示,AD和DE即为所求;(2)∵DE⊥AB,∴∠C=∠DEA=90°,∵AD平分∠BAC,∴DC=DE.【解析】本题主要考查作图-复杂作图,角平分线的性质,解题的关键是熟练掌握角平分线的尺规作图和过直线外一点作已知直线的尺规作图.(1)根据角平分线和过直线外一点作已知直线的垂线的尺规作图可得;(2)根据角平分线的性质求解可得.21.【答案】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS).(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=×180°=90°.【解析】(1)根据平行四边形的性质和已知条件证明即可;(2)由菱形的性质可得:BE=DE,因为∠EBD+∠EDB+∠A+∠ABE=180°,所以∠ABD=∠ABE+∠EBD=×180°=90°,问题得解.本题考查了平行四边形的性质、全等三角形的判定和性质以及菱形的性质、等腰三角形的判断和性质,题目的综合性较强,难度中等.22.【答案】解:假设AD=xm,∵AD=xm,∴BD=xm,∵∠ACD=30°,∠ABD=45°,BC=50m,∴tan30°==,∴=,∴AD=25(+1)≈68.3m.【解析】根据AD=xm,得出BD=xm,进而利用解直角三角形的知识解决,注意运算的正确性.此题主要考查了解直角三角形的应用,根据已知假设出AD的长度,进而表示出tan30°=是解决问题的关键.23.【答案】解:(1)设反比例函数解析式为y=,把B(-2,-3)代入,可得k=-2×(-3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB的解析式为y=ax+b,把A(3,2),B(-2,-3)代入,可得,解得,∴直线AB的解析式为y=x-1;(2)由题可得,当x满足:x<-2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(-3,-2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(-2,-3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(-3,-2)代入,可得-2=×(-3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=-,∴直线AC3的解析式为y=x-,解方程组,可得C3(-,-);综上所述,点C的坐标为(-3,-2),(,),(-,-).【解析】(1)运用待定系数法,根据A(3,m),B(-2,-3),即可得到直线AB和反比例函数的解析式;(2)根据直线AB在双曲线的下方,即可得到x的取值范围;(3)分三种情况进行讨论:延长AO交双曲线于点C1,过点C1作BO的平行线,交双曲线于点C2,过A作OB的平行线,交双曲线于点C3,根据使得△OBC的面积等于△OAB的面积,即可得到点C的坐标为(-3,-2),(,),(-,-).本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.24.【答案】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°-(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH-∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【解析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.此题是圆的综合题,主要考查了圆的有关性质,等腰三角形的判定和性质,平行线的判定和性质,平行四边形的判定和性质,解直角三角形,相似三角形的判定和性质,还考查了学生的运算能力,推理能力,空间观念与几何直观,判断出DH=OD是解本题的关键.25.【答案】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=-x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10-m),∴S=•CP•QE=m×(10-m)=-m2+3m;②∵S=•CP•QE=m×(10-m)=-m2+3m=-(m-5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=-x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8-n)2++(n-4)2=16,解得:n=6±,∴F3(,6+),F4(,6-),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6-).【解析】(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;②直接写出满足条件的F点的坐标即可,注意不要漏写.本题是二次函数的综合题,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.。
2020年广东省肇庆市封开县中考数学一模试卷含答案.pdf
2020年广东省肇庆市封开县中考数学一模试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个选项是正确的,请把正确答案写在括号内.1.(3分)实数a,b在数轴上的对应点的位置如图所示,把a,b,0按照从小到大的顺序排列,正确的是()A.a<0<b B.0<a<b C.b<0<a D.0<b<a2.(3分)据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×1073.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.圆C.矩形D.平行四边形4.(3分)下列运算中,正确的是()A.2x 3+3x3=6x6B.2x3?3x3=6x6C.(x2)3=x5D.(﹣ab)2=a2b5.(3分)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.6.(3分)已知点(2,3)在反比例函数y=的图象上,则该图象必过的点是()A.(1,6)B.(﹣6,1)C.(2,﹣3)D.(﹣3,2)7.(3分)一元二次方程2x2﹣x﹣1=0的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定8.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.99.(3分)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.60°B.55°C.50°D.45°10.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在相应的位置上11.(4分)=.12.(4分)分解因式:x2﹣9=.13.(4分)已知多边形每个内角都等于144°,则这个多边形是边形.14.(4分)在平面直角坐标系中,点P(4,﹣5)与点Q(﹣4,m+1)关于原点对称,那么m=.15.(4分)一次函数的图象经过点A(1,3)和B(3,1),它的解析式是.16.(4分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.17.(4分)一组数为:,3,6,10,15…则第8个数是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)解方程组:.19.(6分)先化简,再求值:÷﹣x+1,其中x=﹣1.20.(6分)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了名学生;若该校共有1500名学生,估计全校爱好运动的学生共有名.(2)补全条形统计图,并计算阅读部分圆心角是度.(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?22.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.23.(8分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A 类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:△DAF≌△DCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=,求四边形ABCD的面积.25.(10分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.2020年广东省肇庆市封开县中考数学一模试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个选项是正确的,请把正确答案写在括号内.1.(3分)实数a,b在数轴上的对应点的位置如图所示,把a,b,0按照从小到大的顺序排列,正确的是()A.a<0<b B.0<a<b C.b<0<a D.0<b<a【解答】解:根据图示,可得:a<0<b.故选:A.2.(3分)据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×107【解答】解:3700000=3.7×106,故选:C.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.圆C.矩形D.平行四边形【解答】解:等边三角形不是中心对称图形,是轴对称图形,A不合题意;圆是中心对称图形,也是轴对称图形,B不合题意;矩形是中心对称图形,是轴对称图形,C不合题意;平行四边形是中心对称图形但不是轴对称图形,D符合题意,故选:D.4.(3分)下列运算中,正确的是()A.2x3+3x3=6x6B.2x3?3x3=6x6C.(x2)3=x5D.(﹣ab)2=a2b【解答】解:A、2x3+3x3=5x6,原计算错误,故此选项不符合题意;B、2x3?3x3=6x6,原计算正确,故此选项符合题意;C、(x2)3=x6,原计算错误,故此选项不符合题意;D、(﹣ab)2=a2b2,原计算错误,故此选项不符合题意;故选:B.5.(3分)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.【解答】解:一共是60秒,绿的是25秒,所以绿灯的概率是.故选:C.6.(3分)已知点(2,3)在反比例函数y=的图象上,则该图象必过的点是()A.(1,6)B.(﹣6,1)C.(2,﹣3)D.(﹣3,2)【解答】解:∵点(2,3)在y=上,∴k=2×3=6,A选项1×6=k,符合题意;故选:A.7.(3分)一元二次方程2x2﹣x﹣1=0的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【解答】解:∵a=2,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×2×(﹣1)=9>0,∴方程有两个不相等的实数根.故选:A.8.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.9【解答】解:∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3.∴原式=(﹣3)2=9.故选:D.9.(3分)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.60°B.55°C.50°D.45°【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选:C.10.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【解答】解:当F在PD上运动时,△AEF的面积为y=AE?AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE?AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选:A.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在相应的位置上11.(4分)=1.【解答】解:=2﹣1=1;故答案为:1.12.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).13.(4分)已知多边形每个内角都等于144°,则这个多边形是十边形.【解答】解:180°﹣144°=36°,360°÷36°=10,∴这个多边形的边数是10.故答案为:十.14.(4分)在平面直角坐标系中,点P(4,﹣5)与点Q(﹣4,m+1)关于原点对称,那么m=4.【解答】解:∵点P(4,﹣5)与点Q(﹣4,m+1)关于原点对称,∴m+1=5,解得:m=4,故答案为:4.15.(4分)一次函数的图象经过点A(1,3)和B(3,1),它的解析式是y=﹣x+4.【解答】解:设直线AB的函数解析式为y=kx+b(k、b为常数且k≠0)∵一次函数的图象经过点A(1,3),B(3,1).∴,解得.∴直线AB的函数解析式为y=﹣x+4,故答案为y=﹣x+4.16.(4分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为4﹣.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=60°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.17.(4分)一组数为:,3,6,10,15…则第8个数是36.【解答】解:3﹣=26﹣3=310﹣6=4∴相邻的两个数的差分别是:2、3、4、…,∴第8个数是:15+6+7+8=36.故答案为:36.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)解方程组:.【解答】解:,②﹣①得,4y=8,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.19.(6分)先化简,再求值:÷﹣x+1,其中x=﹣1.【解答】解:原式=?(x+1)﹣(x﹣1)=﹣=,当x=﹣1时,原式==.20.(6分)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.【解答】解:(1)如图,BE为所作;(2)∵四边形ABCD为平行四边形,∴AD∥BC,AB=CD=2,AD=BC,∵平行四边形ABCD的周长为10∴AB+AD=5,∴AD=3,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=2,∴DE=AD﹣AE=3﹣2=1.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了100名学生;若该校共有1500名学生,估计全校爱好运动的学生共有600名.(2)补全条形统计图,并计算阅读部分圆心角是108度.(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?【解答】解:(1)总人数=20÷20%=100(名),若该校共有1500名学生,估计全校爱好运动的学生有1500×=600(名).故答案为100,600.(2)圆心角=360°×108°,条形图如图所示:故答案为108.(3)150÷30%=500(名),答:估计九年级有500名学生.22.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD===2.∵D是BC的中点,∴BC=2CD=4.23.(8分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A 类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?【解答】解:(1)设B的进价为x元,则a的进价是(x+3)元由题意得=,解得x=15,经检验x=15是原方程的解.所以15+3=18(元)答:A的进价是18元,B的进价是15元;(2)设A玩具a个,则B玩具(100﹣a)个,由题意得:12a+10(100﹣a)≥1080,解得a≥40.答:至少购进A40个.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:△DAF≌△DCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=,求四边形ABCD的面积.【解答】(1)证明:如图,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS);(2)由(1)知,△DAF≌△DCE,则∠DFA=∠DEC.∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴AD2﹣(AD﹣2)2=(2)2﹣22,∴AD=5.∴AH===2∴S四边形ABCD=2S△ABD=2×?AH=BD?AH=2×2=20.即四边形ABCD的面积是20.25.(10分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF?AE+?DF?OE=DF?OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)。
广东省封开县中考数学第一次模拟测试题 新人教版
题号一二三总分16 17 18 19 20 21 22 23 24 25得分一、选择题(本大题共 10 小题,每小题3分,共30 分.在每小题给出的4个选项中,只有一项是符合题目要求的.)1.34-的绝对值是(▲ )A.34B.43C.34-D.43-2.2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为(▲ )A.5.464×107吨 B.5.464×108吨C.5.464×109吨 D.5.464×1010吨3.如图所示的几何体的主视图是(▲ )A. B.C. D.4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为(▲ )A.51B.31C.85D.835.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是22220.65,0.55,0.50,0.45S S S S====乙甲丙丁,则射箭成绩最稳定的是(▲ )A.甲B.乙C.丙D.丁6.在平面直角坐标系中,将点A (-2,1)向左平移2个单位到点Q,则点Q的坐标为(▲ )A.(-2,3) B.(0,1) C.(-4,1) D.(-4,-1)7.在△ABC中,∠C=90º,AB=5,BC=3,则∠A的余弦值为(▲ )A.35B.34C.45D.438.下列函数的图像在每一个象限内,y值随x值的增大而增大的是(▲ )A.1y x=-+B.12--=xy C.1yx=D.1yx=-9.已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是(▲ )A.外离 B.相交 C.内切 D.外切10.如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若1AD=,3BC=,则AOCO的值为(▲ )OA DA BCE F A .12B .13C .14D .19二、填空题(本大题共 5 小题,每小题 3 分,共15 分.) 11.计算:218÷=_ ▲ . 12.如图,在△ABC 中,BC =6cm ,E 、F 分别 是AB 、AC 的中点,则EF =_ ▲ cm .13.甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为:9、9、11、7,则这组数据的:①众数为_ ▲ ;②中位数为_ ▲ .14.已知圆锥的母线长力30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径 为_ ▲ .15.若:23443556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=, …,观察前面计算过程,寻找计算规律计算37____________A =.(直接写出计算结果).并比较341010_____A A (填“>”或“<”或“=”).三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分 6 分)计算:01)1(30cos 2)21(-+︒--π17.(本小题满分 6 分)解不等式组⎩⎨⎧>+<-01251x x18.(本小题满分 6 分)某校为了调查学生视力变化情况,从该校2008年入校的学生中抽取了部分学生进行连续三年的视力跟踪调查,将所得数据处理,制成拆线统计图和扇形统计图,如图所示:(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2010年有多少名学生视力合格.19.(本小题满分7分)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?20.(本小题满分 7 分)如图,在平面直角坐标系x Oy 中,一次函数2y x =-的图象与反比例函数ky x=的图象的一个交点为A (1-,n ). (1)求反比例函数ky x=的解析式;(2)若P 是坐标轴上一点,且满足PA OA =,直接写出点P 的坐标.21.(本小题满分 7 分)已知:如图,E ,F 在AC 上,AD //CB 且AD =CB ,∠D =∠B . 求证:AE =CF .22.(本小题满分 8 分)先化简,再求值:21111211a a a a a a ++-÷+-+-,其中 2.a =23.(本小题满分8分)如图,在△ABC 中,AB =AC ,D 为BC 的中点,四边形ABDE 是平行四边形. (1)求证:四边形ADCE 是矩形;2008 2009 2010 )30 50 80 人数(人) 被抽取学生视力在5.0以下人数变化情况统计图 40%10%A 20% 30%B C D被抽取学生视力在2010的视力分布情况统计图视力分组说明: A :5.0以下 B :5.0~5.1 C :5.2~5.2 D :5.2以上 每组数据只含最低B CDA FE(2)若AC 、DE 交于点O ,四边形ADCE 的面积为316,CD =4,求∠AOD 的度数.24.(本小题满分 10 分) 如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x 轴交于点C ,连结BA 、BC ,求△ABC 的面积. (3) 若抛物线的顶点为D ,在y 轴上是否存在一点P ,使得⊿PAD 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.25.(本小题满分 10 分)如图,已知AB 为⊙O 的直径,CD 是弦,AB ⊥CD 于E ,OF⊥AC 于F ,BE =OF . (1)求证:OF ∥BC ;(2)求证:△AFO ≌△CEB ;(3)若EB =5cm ,CD =103cm ,设OE =x ,求x 值及阴影部分的面积.2012年九年级数学第一次模拟题参考答案和评分标准一、ABBCD CCDAB二、11、4 12、3 13、9,9, 14、10 15、210;<. 三、16.解:原式=2-2⨯23+1 ······················· 3分 =2-3+1 ························ 5分 =3-3 ························· 6分AC BD EO(第24题)17.解:由(1)得:6<x ························· 2分由(2)得:21->x ························· 4分 ∴不等式组的解集是:621<<-x ··················· 6分18.(1)被抽查的学生共有:80÷40%=200(人) ············· 3分 (2)视力合格人数约有:600×(10%+20%)=180(人) ·········· 6分 19.解:设李大叔去年甲种蔬菜种植了x 亩,乙种蔬菜种植了y 亩,则102000150018000x y x y +=⎧⎨+=⎩,, ···················· 4分解得64x y =⎧⎨=⎩,, ···························· 5分答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩. ········· 7分 20.解:(1)∵ 点A (-1,n)在一次函数x y 2-=的图象上, ∴ 2)1(2=-⨯-=n 2分 ∴ 点A 的坐标为(-1,2) 3分 ∵ 点A 在反比例函数ky x=的图象上, ∴ 2-=k 4分 ∴ 反比例函数的解析式为xy 2-= 5分 (2) 点P 的坐标为(-2,0)或(0,4) 7分21.证明:∵AD //CB∴∠A =∠C ······························ 2分 在△ADF 和△CBE 中,又∵AD =CB ,∠D =∠B ························· 3分 ∴△ADF ≌△CBE ··························· 5分 ∴AF =CE ······························· 6分 ∴AF +EF =EF +CE , ∴AE =CF ······························· 7分 22.解:原式=()2111111a a a a a +--++-· ····················· 2分 =1111a a -+- ························· 4分 =221a -- ··························· 6分当2a =时,原式=()22221-=-- ··············· 8分23.(1)∵在△ABC 中,AB =AC ,D 为BC 的中点, ∴AD ⊥BC∴∠AOD =90° ····························· 1分 ∵四边形ABDE 是平行四边形∴AE =BD ,AE ∥BD ···························· 2分 ∵D 为BC 的中点,∴DC =BD ······························· 3分 ∴AE =DC ,AE ∥DC∴四边形ADCE 是平行四边形 ······················ 4分 ∴四边形ADCE 是矩形 ························· 5分 (2)∵矩形ADCE 的面积=CD AD ⋅=316,CD =4∴AD =34 ····························· 6分∴在Rt △ABC 中,tan ∠CAD =33=AD CD ··············· 7分 ∴∠CAD =30°又∵四边形ADCE 是矩形 ∴OD =OA∴∠AOD =120° ···························· 8分24.解:(1)把A (2,0)、B (0,-6)代入c bx x y ++-=221 得:2206b c c -++=⎧⎨=-⎩ ···················· 1分解得46b c =⎧⎨=-⎩························ 2分∴这个二次函数的解析式为21462y x x =-+-. ········· 3分(2) ∵该抛物线对称轴为直线4412()2x =-=⨯- ··········· 4分∴点C 的坐标为(4,0)∴AC=OC -OA =4-2=2 ······················· 5分 ∴1126622ABC S AC OB =⨯⨯=⨯⨯=△ ·············· 6分 (3) 存在在y 轴上取一点P ,要使⊿PAD 的周长(PA +PD+AD )最小,因为AD 定长,则要使PA +PD 最小.设点D 关于y 轴对称的对称点D ',过点A 、D '的直线与x 轴的交点便是点P .∵抛物线21462y x x =-+-2)4(212+--=x∴抛物线的顶点D 的坐标为:(4, 2) ··············· 7分 ∴点D 关于y 轴对称的对称点D '的坐标为:(-4, 2) ······· 8分设过点A 、D '的直线表达式为:b kx y +=,则⎩⎨⎧+-=+=b k b k 4220 解得:⎪⎩⎪⎨⎧=-=3231b k ∴过点A 、D '的直线表达式为:3231+-=x y ············ 9分当0=x 时, 323231=+-=x y∴在y 轴上存在一点P )32,0(使得⊿PAD 的周长最小 ········· 10分25.(1)证明:∵AB 为⊙O 的直径,∴∠ACB =90° ························ 1分 ∴AC ⊥BC ·························· 2分 又∵OF ⊥AC∴OF ∥BC ·························· 3分(2)证明:∵AB ⊥CD∴BC ⌒ =BD ⌒ ·························· 4分∴∠CAB=∠BCD ························ 5分又∵∠AFO=∠CEB=90°,OF=BE ,∴△AFO ≌△CEB ························· 6分(3)∵AB ⊥CD∴CE=12CD=cm . 在直角△OCE 中,OC=OB=5x +(cm ),根据勾股定理可得:222(5)x x +=+解得:5x = ··························· 7分 ∴tan ∠=∴∠COE =60° ··························· 8分 ∴∠COD =120°,∴扇形COD 的面积是:2120101003603ππ⨯=cm 2△COD 的面积是:12CD•OE=152⨯=2··········· 9分∴阴影部分的面积是:100(3π-cm 2. ·············· 10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省肇庆市封开县中考数学一模试卷
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有
一个选项是正确的,请把正确答案写在括号内.
1.(3分)实数a,b在数轴上的对应点的位置如图所示,把a,b,0按照从小到大的顺序排列,正确的是()
A.a<0<b B.0<a<b C.b<0<a D.0<b<a
2.(3分)据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×107
3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.圆C.矩形D.平行四边形
4.(3分)下列运算中,正确的是()
A.2x 3
+3x
3
=6x6B.2x3?3x3=6x6
C.(x2)3=x5D.(﹣ab)2=a2b
5.(3分)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()
A.B.C.D.
6.(3分)已知点(2,3)在反比例函数y=的图象上,则该图象必过的点是()A.(1,6)B.(﹣6,1)C.(2,﹣3)D.(﹣3,2)7.(3分)一元二次方程2x2﹣x﹣1=0的根的情况()
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
8.(3分)已知|a﹣2|+(b+3)2
=0,则b a的值是()
A.﹣6B.6C.﹣9D.9
9.(3分)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()
第1页(共18页)
A.60°B.55°C.50°D.45°
10.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()
A.B.
C.D.
二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在相应
的位置上
11.(4分)=.
12.(4分)分解因式:x2﹣9=.
13.(4分)已知多边形每个内角都等于144°,则这个多边形是边形.
14.(4分)在平面直角坐标系中,点P(4,﹣5)与点Q(﹣4,m+1)关于原点对称,那么m=.
15.(4分)一次函数的图象经过点A(1,3)和B(3,1),它的解析式是.
第2页(共18页)。