2013年全国硕士研究生入学统一考试数学(一)试题及答案解析
2013年考研数学一真题
.
【答案】 C1ex + C2e3x − xe2x
(11)设
⎧ ⎨ ⎩
x y
= =
sin t t sin
t
+
cos
t
(t
为参数),则
d2y dx2
t=π
=
.
4
【答案】 2
∫ (12)
+∞ ln x 1 (1 + x)2 dx =
.
【答案】 ln 2
( 13 ) 设 A = (aij ) 为 3 阶 非 零 矩 阵 , A 为 A 的 行 列 式 , Aij 为 aij 的 代 数 余 子 式 , 若
【答案】(A)
∫ ∑ (3)设
f
(x) =
x−
1 2
, bn
=2
1 0
f (x)sin nπ xdx
(n
= 1, 2,⋯) ,令 S( x) =
∞
bn sin nπ x ,
n=1
则 S(− 9) = ( ) 4
3
1
(A)
(B)
4
4
【答案】 (C)
1 (C) −
4
3 (D) −
4
(4)设 L1 : x2 + y2 = 1, L2 : x2 + y2 = 2 , L3 : x2 + 2 y2 = 2 , L4 : 2x2 + y2 = 2 为四条逆
�∫ 时针方向的平面曲线,记
Ii
=
Li
(y
+
y3 )dx 6
+ (2x
−
x3 )dy 3
(i
= 1, 2,3, 4) ,则
2013考研数学一真题答案
2013年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan lim kx x xc x →-=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==-(B )12,2k c ==(C )13,3k c ==-(D )13,3k c ==【答案】D【解析】33300011(())arctan 133lim lim lim ,3,3k k k x x x x x x o x xx x c k c x x x →→→--+-===∴== (2)曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) (A )2x y z -+=- (B )2x y z ++= (C )23x y z -+=- (D )0x y z --= 【答案】A【解析】设2(,,)cos()F x y z x xy yz x =+++, 则(,,)2sin()1(0,1,1)1x x F x y z x y xy F =-+⇒-=;(,,)sin()(0,1,1)1y y F x y z x xy z F =-+⇒-=-;(,,)(0,1,1)1z z F x y z y F =⇒-=,所以该曲面在点(0,1,1)-处的切平面方程为(1)(1)0x y z --++=, 化简得2x y z -+=-,选A20132(3)设()1(),[0,1]2f x x x =-∈,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S -=( )(A )34(B )14(C )14-(D )34-【答案】C【解析】根据题意,将函数在[1,1]-上奇延拓1,012()1,102x x f x x x ⎧-<<⎪⎪=⎨⎪----<<⎪⎩,它的傅里叶级数为()S x 它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()S x f x =,因此991111()(2)()()()444444S S S S f -=-+=-=-=-=- (4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++-=⎰,则()i MAX I =( )(A )1I (B )2I (C )3I(D )4I 【答案】D【解析】33()(2)(1,2,3,4)63i i l y x I y dx x dy i =++-=⎰22(1)2iDy x dxdy =--⎰⎰利用二重积分的几何意义,比较积分区域以及函数的正负,在区域14,D D 上函数为正值,则区域大,积分大,所以41I I >,在4D 之外函数值为负,因此4243,I I I I >>,故选D 。
2013年全国硕士研究生入学统一考试考研数学一真题及详解【圣才出品】
(x2 y2 )dxdy
x2 y2 R2
2
4 x2 y2 R2
3
2π
d
R r3dr
40
0
3 πR4 8
故 I1=π-3π/8=5π/8,I2=2π-(3π/8)·4=π/2;
在椭圆 D:x2/a2+y2/b2≤1 上,为方便计算二重积分,则使用广义极坐标计算
4 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
5 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
D.矩阵 C 的列向量组与矩阵 B 的列向量组等价 【答案】B 【考点】考查向量组等价的定义以及对矩阵与其向量组之间的关系的理解 【解析】把矩阵 A,C 列分块如下:A=(α1,α2,…,αn),C=(γ1,γ2,…,γn), αi,γi 分别为 A,C 的列向量。由于 AB=C,则可知 γi=bi1α1+bi2α2+…+binα n(i=1,2,…, n),其中 bi1,bi2,…,bin 表示 B 的第 i 列各数的值,于是得到矩阵 C 的列向量组可用矩阵 A 的列向量组线性表示。同时由于 B 可逆,即 A=CB-1,同理可知,矩阵 A 的列向量组可 用矩阵 C 的列向量组线性表示。故矩阵 C 的列向量组与矩阵 A 的列向量组等价。因此,选 择 B 项。
3.设 f(x)=|x-1/2|, 1
bn 2 0 f (x)sin nπxdx(n 1, 2,)
2 / 22
圣才电子书
令
十万种考研考证电子书、题库视频学习平台
则 S(-9/4)=( )。
A.3/4
B.1/4
C.-1/4
D.-3/4
【答案】C
【考点】函数展成傅立叶级数的公式
2013年全国硕士研究生入学考试数学一试题答案(详解)
∫ 1
1
= −4 x ln(1+ x) + 4
x dx (设 x = t )
0 01+ x
= −4 ln 2 + 8 − 2π
(16)(本题满分 10 分)设数列{an} 满足条件: a0 = 3 , a1 = 1 , an−2 − n(n − 1)an = 0
∞
∑ (n ≥ 2) , S( x) 是幂级数 an xn 的和函数。
【答案】(A)
∫ ∑ (3)设
f
(x) =
x−
1 2
, bn
=2
1 0
f (x)sin nπ xdx
(n
= 1, 2,⋯) ,令 S( x) =
∞
bn sin nπ x ,
n=1
则 S(− 9) = ( ) 4
3
1
(A)
(B)
4
4
【答案】 (C)
1 (C) −
4
3 (D) −
4
(4)设 L1 : x2 + y2 = 1, L2 : x2 + y2 = 2 , L3 : x2 + 2 y2 = 2 , L4 : 2x2 + y2 = 2 为四条逆
0
⎟ ⎟
(
k,
l
为任意常数)
⎜ 1 ⎟ ⎜0⎟ ⎜0⎟
⎜ ⎝
0
⎟ ⎠
⎜ ⎝
1
⎟ ⎠
⎜ ⎝
0
⎟ ⎠
第 5页(共 7页)
故
C
=
⎛ ⎜ ⎝
k
+l k
+
1
−k l
⎞ ⎟ ⎠
(
k,
l
2013年考研数学一真题及答案全集解析
2013考研数学一真题及答案解析目录第一章总论............................................................. 错误!未定义书签。
1.1项目提要........................................................... 错误!未定义书签。
1.2结论与建议....................................................... 错误!未定义书签。
1.3编制依据 .......................................................... 错误!未定义书签。
第二章项目建设背景与必要性............................. 错误!未定义书签。
2.1项目背景........................................................... 错误!未定义书签。
2.2项目建设必要性 .............................................. 错误!未定义书签。
第三章市场与需求预测......................................... 错误!未定义书签。
3.1优质粮食供求形势分析 .................................. 错误!未定义书签。
3.2本区域市场需求预测 ...................................... 错误!未定义书签。
3.3服务功能 .......................................................... 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策.............. 错误!未定义书签。
2013年考研数学一真题及答案
2013年考研数学一真题及答案2013年的考研数学一科目是众多考生备战考研的重要内容之一。
下面将为大家详细解析该年度的数学一真题,并提供对应的答案,帮助考生更好地复习和备考。
一、选择题1. 设函数f(x)=x^2-3,g(x)=2x+1,若f(g(x))=0,则函数g(f(x))的根是:答案:x=-2,32. 已知整数n,下列命题中正确的是:A. 若n为奇数,则n(n+1)(n+2)为偶数;B. 若n为奇数,则n^2+n为偶数;C. 若n^2+n为偶数,则n为奇数;D. 若n(n+1)(n+2)为偶数,则n为奇数。
答案:B3. 已知复数z满足|z-1+i|=2,则z可能的值为:答案:z=3, -1-i4. 设等差数列{a_n}的公差不为0,若lim(n→∞)(a_n+a_{n+1})=2,则lim(n→∞)a_n的值是:答案:15. 设函数f(x)=x^3-3x+p,若f(x)在区间[-2,2]上有且仅有一个零点,则p的值为:答案:-4二、填空题1. 已知向量a=(1,2,3),b=(4,5,6),则|a+b|的值为:答案:√992. 设随机变量X的概率密度函数为f(x)={k(x^2-x+1), 0<a≤x≤b; 0, 其他},则k的值为:答案:1/(b^2-b-a^2+a)3. 设y=f(x)是定义在R上的奇函数,若f(e^3)=2,则f(ln2)的值为:答案:-24. 设f(x)是定义在[-1,1]上的连续函数,且f(0)=0,当x≠0时,|f(x)|≤x^2,则f(x)的最大值是:答案:15. 设f(x)=a_0+a_1x+a_2x^2+…+a_nx^n,若f(1)=f'(1)=f''(1)=0,则f(0)的值为:答案:0三、解答题1. 已知数列{a_n}的通项公式为a_n=(-1)^{n+1}/n,试求其前n项和S_n。
解答:数列{a_n}的前n项和可以表示为S_n=∑_{k=1}^n a_k,代入通项公式,得到S_n=∑_{k=1}^n (-1)^(k+1)/k。
2013年全国硕士研究生入学考试数学一真题答案及解析
1 a 1 2 0 0 【解析】设 A a b a ,B 0 b 0 ,因为 A与 B 为实对称矩阵, 1 a 1 0 0 0
则 A与B 相似的充要条件是 A 的特征值分别为 2,b, 0 ,
1
A的特征方程 E-A a 1
1 /2 1 2 2 1 1 /2 2 1 3 2 sin d r dr 2 2 4 cos d sin d 0 0 0 0 2 0 4 2 0 4 1!! 1 1 1!! 1 11 . 2 2 4 4 2 2!! 2 4 2 2!! 2 4 2 8 8
/2 1 1 cos 2 d sin 2 d 0 4 4
I 3 I 4 故应选 (D). .
高学网教研中心整理
2013年考研真题
高学网权威发布
(5)设 A, B, C 均为 n 阶矩阵,若 AB C ,且 B 可逆,则( ). (A)矩阵 C 的行向量组与矩阵 A 的行向量组等价. (B)矩阵 C 的列向量组与矩阵 A 的列向量组等价. (C)矩阵 C 的行向量组与矩阵 B 的行向量组等价. (D)矩阵 C 的列向量组与矩阵 B 的列向量组等价. 【答案】B. 【解析】将 A, C 按列分块,若 A=(1 ,..., n ),C=( 1 ,..., n ) 由于 AB C ,故
a
1
a
1
b
a
a 0 b a 1 0 2a 2
[( b)( 2) 2a 2 ]
因为 0, 2,b 是 A 的特征值,所以 2a 0,即a 0 .
2
当a 0时
2013年考研数学一真题解答
2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )2221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x c k x kx kx x x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()sin n n S x b n x π∞==∑,则9()4-=S ( ) A .34 B. 14 C. 14- D. 34- 答案(C )01():(cos sin )2n n n a n n l f x a x b x l l ππ=++∑周期为2的函数对应的三角级数将函数在[0,1]展开成傅里叶级数(只含正弦项),做两次延拓函数后:它的傅里叶级数的和函数()s x 以2为周期的奇函数则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数学一真题及答案解析(完整版)
2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x c x kx kx x k x ---→→→→--+-+====+ 因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( ) A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数学一真题与解析完整版
2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan limkx x xc x→-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --=答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数学一真题及答案解析
2013考研数学一真题及答案解析目录第一章总论........................................................... 错误!未定义书签。
1.1项目提要......................................................... 错误!未定义书签。
1.2结论与建议..................................................... 错误!未定义书签。
1.3编制依据 ........................................................ 错误!未定义书签。
第二章项目建设背景与必要性........................... 错误!未定义书签。
2.1项目背景......................................................... 错误!未定义书签。
2.2项目建设必要性 ............................................ 错误!未定义书签。
第三章市场与需求预测....................................... 错误!未定义书签。
3.1优质粮食供求形势分析 ................................ 错误!未定义书签。
3.2本区域市场需求预测 .................................... 错误!未定义书签。
3.3服务功能 ........................................................ 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策............ 错误!未定义书签。
第四章项目承担单位情况................................... 错误!未定义书签。
2013年考研数学一真题及参考答案(完整版)
2013数学一硕士研究生入学考试1.已知极限0arctan limk x x x c x→-=,其中k ,c 为常数,且0c ≠,则( ) A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c == 2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --=3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()sin n n S x b n x π∞==∑,则9()4-=S ( ) A .34 B. 14 C. 14- D. 34- 4.设221:1L x y +=,222:2L x y +=,223:22L x y +=,224:22L x y +=为四条逆时针方向的平面曲线,记33()(2)(1,2,3,4)63ii L y x I y dx x dy i =++-=⎰ ,则{}1234max ,,,I I I I = A. 1I B. 2I C. 3I D 4I5.设A,B,C 均为n 阶矩阵,若AB=C ,且B 可逆,则( )A.矩阵C 的行向量组与矩阵A 的行向量组等价B 矩阵C 的列向量组与矩阵A 的列向量组等价C 矩阵C 的行向量组与矩阵B 的行向量组等价D 矩阵C 的列向量组与矩阵B 的列向量组等价6.矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的充分必要条件为( )A. 0,2a b ==B. 0,a b = 为任意常数C. 2,0a b ==D. 2,a b = 为任意常数7.设123,,X X X 是随机变量,且1(0,1)X N ,22(0,2)X N ,23(5,3)X N ,{}22(1,2,3)=-≤≤=i i P P X i ,则( ) A. 123P P P >> B. 213P P P >> C. 322P P P >> D 132P P P >>8.设随机变量()X t n ,(1,)Y F n ,给定(00.5)a a <<,常数c 满足{}P X c a >=,则{}2P Y c >=( )9.设函数y=f(x)由方程y-x=e x(1-y) 确定,则01lim [()1]n n f n→-= 。
2013年考研数学一真题与解析完整版
2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan lim k x x xc x→-=,其中k ,c 为常数,且0c ≠,则() A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=- 切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013考研数一真题答案及详细解析
—勹 B = fxy (1,
= e-½'
—勹 C = fyy (1,
= e-½
(1.-f) 因为 A>o,AC — B2 =2e气>O, 所以
是极小值点,极小值为
(-+ !(1, —:片) =
+½)e··½ = -e勹 .
(18) 证 CI)设F(x)= f(x)-.1::, xE[—1,l].
·; f(x) 是奇函数,:. f(O)=0.
解 记A�[�: �'考察矩阵A的特征值为2,b,O的条件.
首先,显然1At�:, 因L是A的特征值.
其次,矩阵A的迹tr(A) =2 -t-b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个 特征值于是 “ 充要条件 ” 为2是A的特征值.由
lzE —Al = — a 2-b —a = — 4a 2 =O气=O.
故应选C.
二、填空题
(9) 1
解 把 X = O代入方程有八0)=1 . 方程y-X = exO-y)两端同时对x求导有 f'(工)-1= e[l-f(x)] [1-f(x)-xf'(x)J.
把 X =O代入上式得厂(0)=2 - f(O)=l.
f 又 lim 釭) - ]-= f'(O)=l,
x-o
厂 +厂 1
O
lnx +x)
2
dx=
_
lnx l+x
+=
1
1
dx
=O+ln
x
+=
1 =O — ln_l= ln2
O+x)x
l+x 1
2
(13) -1
2013年考研数一真题答案解析
一、选择题(1) D解用洛必达法则 1 l—x arctanx 1 + x 2 1 + x 2—11X l im· =l im =l i m =—hm =c #-O ,x 丑X, 一-ok x k -lx-0 k x k -l (1 +X z) k x 勺x k -11因此k -1 =Z, 一-c ,即k=3,c -一故应选D.k3CZ) A解F:=zx-ys i n(xy)+L F:=-xs i n(xy)+z, F:=y曲面x 2+c os(xy) + y z十X =0在点(0'1,—1)处的切平面的法向晕n={l ,-1,1},切平面方程为:1• (x—0)—(y—1) + 1• (z + 1)= 0, 即x—y +z --Z故应选A.(3)C解观察到S(x)是f(x)的正弦函数,对J进行奇延拓,其周期为z 故S(x)f(x). 9 1 1 s (-—) =S(--—s -=- 1 144) (4)1(了)=勹一故应选C(4)D解由格林公式得I ,-f (y +f )山+(Zx -�) d y =』(1—x 2-f )心d y'其中D 1:x z+y z冬1,D 2:x 2+y 2�z,D3:f +y 2冬1,yD 口x z+��l.z显然在几内有y y l-x 2 -—>O , 在队外有l -x 2-—<O ,z z又如图有D1C D4 ,D4 C D z 由重积分性质知I1>I1,I4>Iz.y 又D4=几+D4\D 5,几=D5+D3\D 5,在D3\D 5上l -x 2--<0,在D4\D5上z1 2 y-x -—z>O ,2013年(数一)真题答案解析故J4=II (1-x 2—f)dxd y + II (1—X 2 --f )dxd y D5D八D s>13=』(1y —x 2勹)dxdy + I I (1—.亢2飞)dxdy. 故应选D.D5D叭D5(5) B解由千A B =C,那么对矩阵A,C按列分块,有,、`丿,,“` , . . . , 2”, ,1”, ( _ --n nn 12…nb b b ��…�22212…”b b b11112…n b b b) "" , . . . ,2", 1 "( Y1 =b 11a1 +b心+…+b.1a.,即{了:,�b ,,a +b 心+…+b .,a.,r. =b1na1 +b z.az +…+ b n.an. 这说明矩阵C的列向最组r 口rz '…,r. 可由矩阵A的列向量组a1,a2, …, a. 线性表出.又矩阵B可逆,从而A=CB飞那么矩阵A的列向量组也可由矩阵C的列向械组线性表出.由向量组等价的定义可知,应选B .(6) B解记A�[�:�'考察矩阵A的特征值为2,b ,O的条件.首先,显然1At �:,因L是A的特征值.其次,矩阵A的迹t r (A )=2 t -b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个特征值于是“充要条件”为2是A的特征值.由lzE—A l=—a 2-b—a =—4a 2 =O 气=O .—l -al因此充要条件为a =O,b为任意实数,故应选B.(7) A解将随机变量义和x3化成标准正态后再比较其大小.P 1 =P {—2�X1�2} =<P (2) -中(—2)'—2X z2Pz=P {-2�X三2}=P {—《—《—}气(1)-<P (-1)'22 2 p3 =P {-2�X3�2} -2—5 x3—5 2-5 =P {3� —3� 2 } =iP (-1)—叶习=<P行)-<P(l )'由右图正态分布曲线下的面积所代表的概率可知P1 > Pz > p 3.故应选A .x7l 3(8)C解当X-t(n)时,X 2-FO,n),又Y-FO,n),故Y与xz同分布.当C > 0时,由t 分布的对称性有P{Y>c 2}=P{X 2>c 2}==P{ X >c}=P{X>cUX<—c}=2P{X>c}=2a.故应选C.二、填空题(9)1解把X =O 代入方程有八0)=1. 方程y -X = e xO -y )两端同时对x 求导有f'(工)-1 = e [l -f(x )] [1-f (x ) -x f'(x ) J . 把X =O 代入上式得厂(0)=2 -f(O) =l.又limf 釭)-]-=f '(O)=l,x-oX1三卢—1]飞巴!(-;;}—l气尸�1nOO)C 1e 立+c z 产-xe红解由常系数非齐次线性微分方程解的性质可得Y 1 -Y 3 = e3x,Y 2 -Y 3 = ex是相应二阶齐次线性微分方程的两个特解.故相应二阶齐次线性微分方程的通解为Y O = C I e 3·x + C 2 e .所以所求非齐次方程的通解可表示为y = C1e x + C 2芒—X e2x•(11)心解•• dxdy· —= cost , -= t c ost ,dt dt. dy tcost•• -= =t,dxcost 叶店)d 2y d dy dt -=--(—)=—一=-1 c!x2 dx cl x clxcostc!t心1从而dx 2,-f =亢=迈.cos—4(12)lnZ解厂l n x2dx = _ l n x += +厂dx =O+l n x1+==O —l n _l =ln 2 1O+x)l+x 1 2 l+x 1 1O+x)x(13) -1解题设条件"a ;;+A ;; = 0 "即A T =—A*'于是A =—[Al'可见A只可能是0或—1.又r(A)= r (A T ) = r (-A *) = r (A 天),则rCA)只可能为3或0.而A为非零矩阵,因此r (A)不能为o ,从而r(A) = 3 , A [ #-0 , [ A [ = -1.或,用特例法.取一个行列式为—1的正交矩阵满足A T=-A勹故应填-1.104)1——e解由于X�E(l),a>O,则由指数分布的分布函数有P{Y冬a+IY>a}=P{Y>a,Y,s;:;a+l } =P{a<Y,s;:;a+l}P {Y >a}1—P{Y冬a}1-e 一(a +])—0-e -")e -a —e -a -1 1 = = =l —e -1 = 1—— l —(1—e -a )-a e e 三、解答题05)解由条件显然有J(l )=O, J'(x)=由分部积分法及换元积分法有『八x)d x =2f J(x)d 左。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
e
x (1−
y
)
确定,则
lim
n→∞
n
f
(
1 n
)
−
1
= ___________
【答案】1
【解析】 x = 0 时, y = 1 方程两边对 x 求导得 y′ −1 = ex(1−y) (1− y − xy′) 所以 y′(0) = 1
lim
n→∞
n
f
(
1 n
)
−
1
【答案】A
【解析】曲面在点 (0,1,-1) 处的法向量为
→
n =(Fx′,Fy′,Fz′) (0,1,-1) =(2x-y sin (xy)+1,-x sin (xy)+z,y) (0,1,-1) =(1,-1,1) 故曲面在点 (0,1,-1) 处的切面方程为 1⋅ (x-0)-(y-1)+(z+1)=0, 即 x − y + z = −2 ,选 A
aij + Aij = 0(i, j = 1, 2, 3) 则 A =___________ 【答案】 −1.
1 0 0
【解析】方法一:取矩阵
A
=
0 0
−1 0
0 1
,满足题设条件,
A = −1.
方法二: A* = − AT ,则 A* = − AT ,整理得到 A 3−1 = (−1)3 A ,即 A = −1或者 A = 0 .
≤a
a}
+
1}
=
a +1
a +∞
f ( y)dy f ( y)dy
=
e−a
− e−(a+1) e−a
=1− 1 e
a
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证
明过程或演算步骤.
(15)(本题满分 10 分)
∫ ∫ 计算 1 f (x) dx ,其中 f (x) = x ln(t +1) dt
(C) 2α
(D)1− 2α
P{Y > c2} = P{X 2 > c2} = P{X > c} + P{X < −c} = 2P{X > c} = 2α ,选 C.
二、填空题:9 14 小题,每小题 4 分,共 24 分.请将答案写在答.题.纸.指定位置上.
(9)
设函数 y
=
f (x) 由方程 y − x
∫ ∑ (3)
设
f (x) =
x−
1 2
, bn
=
2
1 0
f
(x) sin nπ xdx(n
= 1, 2,L)
.
令
∞
s(x) = bn sin nπx
n=1
,
则
s(− 9) = 4
(A) 3 4
【答案】C
(B) 1 4
(C) − 1 4
(D) − 3 4
()
【解析】
f
(x)=
x- 1
=
y
y = ϕ(x)
O 1 2 7/3
x
(8) 设随机变量 X ~ t(n) ,Y ~ F (1, n) ,给定α (0 < α < 0.5) ,常数 c 满足 P{X > c} = α ,
{ } 则 P Y > c2 = ( )
(A) α
【答案】C
(B) 1−α
【解析】 X ~ t(n) ,则 X 2 ~ F (1, n)
dt
dx = 2tdt
= 2[t − arctan t]1 = 2(1− π)
从而 A = −1.
(14) 设随机变量Y 服从参数为1的指数分布, a 为常数且大于零,则
P{Y ≤ a +1 Y > a} = ____.
【答案】1 − 1 e
【解析】
f
(y)
=
e− y, y > 0, 0, y ≤ 0,
{ { { ∫∫ P
Y
≤ a +1Y
> a} =
P
Y
> P
a,Y Y>
t=π 4
=
1 cos
π
=
2
dt
4
∫ (12)
+∞ 1
ln (1 +
x x)2
dx
=
.
【答案】 ln 2
∫ ∫ 【解析】
+∞ 1
ln (1 +
x x)2
dx
=
−
ln (1 +
x x)
+∞ 1
+
+∞ dx = ln x 1 x(1+ x) (1+ x)
+∞ 1
= ln 2
(13) 设 A = (aij ) 是 3 阶 非 零 矩 阵 , A 为 A 的 行 列 式 , Aij 为 aij 的 代 数 余 子 式 , 若
【解析】将 A,C 按列分块, A = (α1,...,αn ),C = (γ1,...,γ n )
由于 AB = C ,故
(α1,
...,α
n
)
b11 . bn1
... ... ...
b1n . bnn
=
(γ
1
,
...,
γ
n
)
即 γ1 = b11α1 + ... + bn1αn ,...,γ n = b1nα1 + ... + bnnαn 即 C 的列向量组可由 A 的列向量线性表示 由于 B 可逆,故 A = CB−1 , A 的列向量组可由 C 的列向量组线性表示,选 B
0
≤
X2 −0 2
≤
2
− 2
0
=
Φ(1)
−
Φ(−1)
=
2Φ(1) −1,
p3
=
P{−2
≤
X3
≤
2} =
P −2 − 5 3
≤
X3 −5 3
≤
2 − 5 3
=
Φ(−1)
−
Φ
−
7 3
=
Φ
7 3
−
Φ(1),
由下图可知, p1 > p2 > p3 ,选 A.
所以3 − k = 0, k = 3, c = 1 = 1 ,故选D k3
(2) 曲面 x2 + cos(xy) + yz + x = 0 在点 (0,1, −1) 的切平面方程为
()
(A) x − y + z = −2 (B) x + y + z = 0 (C) x − 2 y + z = −3 (D) x − y − z = 0
2013 年全国硕士研究生入学统一考试数学一试题
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合 题
目要求的,请将所选项前的字母填在答.题.纸.指定位置上.
(1)已知
lim
x→0
x-arctan xk来自x=c
,其中
k,
c
为常数,且
c
≠
0
,则
(A) k =2,c = −1 2
故选 D
(5)设 A, B,C 均为 n 阶矩阵,若 AB = C ,且 B 可逆,则
()
(A)矩阵 C 的行向量组与矩阵 A 的行向量组等价
(B)矩阵 C 的列向量组与矩阵 A 的列向量组等价
(C)矩阵 C 的行向量组与矩阵 B 的行向量组等价
(D)矩阵 C 的列向量组与矩阵 B 的列向量组等价
【答案】B
−1 −a λ −1 −λ −a λ −1
λ −a −1
= 0 λ − b −a = λ (λ − 2)(λ − b) − 2a2 ,
0 −a λ −1
因为 λ = 2 是 A 的特征值,所以 2E − A = 0
所以 −2a2 = 0 ,即 a = 0 .
当 a = 0 时, λE − A = λ (λ − 2)(λ − b) ,
(B)
1 k =2,c=
2
(C) k =3,c = −1 3
k =3,c= 1 3
【答案】D
【解析】因为 c ≠ 0
() (D)
c
=
lim
x→0
x
−
arctan xk
x
洛
=
lim
x→0
1-
1 1+x
2
kx k −1
=
lim
x→0
kxk
x2 −1 (1 +
x2
)
=
lim
x→0
x2 kx k −1
=
1 lim x3−k k x→0
0x
0x
0
∫ ∫
= −4 ln(x +1)
x
1 0
−
1
x
dx = −4 ln 2 + 4
01+ x
1x dx
01+ x
其中
∫ = ∫ ∫ ∫ ∫ 1 x
x =t
dx
0 1+ x x=t2
1t 0 1+ t2
.2tdt
=
2
1 t2 0 1+ t2
dt
=
2
1 dt − 2