流体力学学习总结ppt课件
合集下载
流体力学PPT课件
y1, y2...yn ——气体混合物中各组分的摩尔分率。
对于理想气体,其摩尔分率y与体积分率Φ相同。
9
第1节 流体静力学
五、比容
单位质量流体具有的体积,是密度的倒数,单位为m3/kg。
vV 1
m
10
第1节 流体静力学
1.1.2 流体的静压强
一、压强的定义
流体垂直作用在单位面积上的力(压应力)
在SI制单位中压强的单位是N/m2,称为帕斯卡, 以Pa表示。
注意:用液柱高度表示压强时,必须指明流体的 种类。
标准大气压有如下换算关系: 1atm = 1.013×105Pa =760mmHg
=10.33mH2O=1.033kg/cm2=1.013bar 1at=9.807×104Pa=735.6mmHg=10mH2O
为斜管压差计, 用以放大读数,提高测量精度。
R 与 R 的关系为 R' R
sin
式中α为倾斜角,其值越小,则读数放大倍数
越大。
19
第1节 流体静力学
(4) 双液体U管压差计(微差压差计) 内装密度接近但不互溶的两种指示液
A和C( A C),扩大室内径与U管内径 之比应大于10。
p1-p2≈(pA-pB)gR
16
第1节 流体静力学
三、流体静力学基本方程的应用
1.压强及压强差的测量 (1) U管压差计
p1p2(AB)gR
A-指示液 B-被测液体
A B
17
第1节 流体静力学
(2)倒U形压差计
p 1 p 2 R (B g A ) RB g
A-指示液 B-被测液体
A B
18
第1节 流体静力学
(3)斜管压差计 当所测量的流体压强差较小时,可将压差计倾斜放置,即
流体力学ppt
概念引入: 概念引入:
位置水头 :z 压强水头 :p/γ 测压管水头 :z+p/γ=C 同一容器内静止液体中, 同一容器内静止液体中, 测压管水头均相等。 测压管水头均相等。
三、压强的表示方法和度量单位
1、表示方法
(1)绝对压强Pj:以绝对真空为零点。 绝对压强P 以绝对真空为零点。 相对压强P 以大气压P 为零点。 (2)相对压强P: 以大气压Pa为零点。 工程中,通常采用相对压强, 可正可负。 工程中,通常采用相对压强,P可正可负。 绝对压强与相对压强的关系: 绝对压强与相对压强的关系:P=Pj–Pa P 为正值时: 称为正压(表压, P为正值时:Pj>Pa,称为正压(表压,即压力表 读数)。 读数)。 为负值时: 称为负压( P为负值时:Pj<Pa,称为负压(负压的绝对值称 真空度,即真空表读数)。 真空度,即真空表读数)。 真空度(只能是正值) 真空度(只能是正值):Pk=Pa-Pj=-P
§1-1 流体的主要力学性质 -
一、惯性
定义:惯性是物体维持原有运动状态的性质。 定义:惯性是物体维持原有运动状态的性质。 质量:表征惯性的物理量。 质量:表征惯性的物理量。 流体的质量:常以密度来反映。 流体的质量:常以密度来反映。 密度:对于均质流体, 密度:对于均质流体,单位体积的质量称为密度 ρ = m /V ,即: 重度:对于均质流体, 重度:对于均质流体,单位体积的流体所受的重 力称为流体的重力密度,简称重度。 力称为流体的重力密度,简称重度。 即:
h= p
γ
一标准大气压: 一标准大气压: 三种压强换算关系: 三种压强换算关系: 压强换算关系
101325 N / m 2 h= = 10.33m 3 9807 N / m
流体力学课件PPT课件
注意:恒定流中流线与迹线重合
第27页/共90页
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
第28页/共90页
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
x
y方向:
my
(uy ) dxdydz
y
z方向:
mz
(uz ) dxdydz
z
据质量守恒定律:
第39页/共90页
单位时间内流进、流出控制体的流体质量差之总和
等于控制体内流体因密度发生变化所引起的质量增
量 即
mx
my
mz
t
dxdydz
将 mx、my、mz 代入上式,化简得:
(ux ) (u y ) (uz ) 0
第54页/共90页
1.伯努利方程的物理意义
• z mgz : 单位重量流体所具有的位能。 mg
•
p
mg
p
/
mg
:
单位重量流体所具有的压能。
•z p :
单位重量流体所具有的势能。
•
u2 2g
1 2
mu
2
/
mg
:
单位重量流体所具有的动能。
第55页/共90页
• z p u2 : 单位重量流体所具有的机械能。
第8页/共90页
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。
流体力学学习总结ppt课件
Re d 2n
叶轮直径 搅拌器转速 液体密度 液体黏度
Re < 10 , 叶 轮 周 围 液体随叶轮旋转作周 向流,远离叶轮的液 体基本是静止的,属 于完全层流。
10 < Re < 30 , 液 体 的运动达到槽壁, 并沿槽壁有少量上 下循环流发生,此 现象为部分层流, 仍为层流范围。
30<Re<103 ,桨叶 附近的液体已出现湍 流,而其外周仍为层 流,此为过渡流状态。
1883 年,雷诺(Reynolds)通过大量实验观察到,流体流动分为层流、过渡 流、湍流,且流动型态除了与流速 (u) 有关外,还与管径 (d) 、流体的粘度 () 、流
体的密度 ( ) 有关。
雷诺将 u、d、、 组合成一个复合数群。
Re du
此数群,后人称之为雷诺准数 Re,无数的观察与研究证明,Re 值的大小,可 以用来判断流动类型。Re<2000 为层流; Re>4000 为湍流; Re 在 2000-4000 之间 为过渡流。
外界对流体表面的作用力,与表面积大小成正比;
取微小单元△S,其受的表面力:
pn
limPdP S0S dS
表面力的合力: P pnds
S
1.5 流体的压强及其表示方法
流体的压强:流体垂直作用于单位面积上的力,称为流体 的压强。用p表示,工程上习惯称之为压力。
(1)压力单位:SI 制中, N/m2 = Pa,称为帕斯卡
V t
m3/s
质量流量
qm =
m t
kg/s
qm = qV
流速
体积流速
u=
qV A
质量流速
w
=
qm A
m/s
kg/(m2s) w = u qm =w A = u A
叶轮直径 搅拌器转速 液体密度 液体黏度
Re < 10 , 叶 轮 周 围 液体随叶轮旋转作周 向流,远离叶轮的液 体基本是静止的,属 于完全层流。
10 < Re < 30 , 液 体 的运动达到槽壁, 并沿槽壁有少量上 下循环流发生,此 现象为部分层流, 仍为层流范围。
30<Re<103 ,桨叶 附近的液体已出现湍 流,而其外周仍为层 流,此为过渡流状态。
1883 年,雷诺(Reynolds)通过大量实验观察到,流体流动分为层流、过渡 流、湍流,且流动型态除了与流速 (u) 有关外,还与管径 (d) 、流体的粘度 () 、流
体的密度 ( ) 有关。
雷诺将 u、d、、 组合成一个复合数群。
Re du
此数群,后人称之为雷诺准数 Re,无数的观察与研究证明,Re 值的大小,可 以用来判断流动类型。Re<2000 为层流; Re>4000 为湍流; Re 在 2000-4000 之间 为过渡流。
外界对流体表面的作用力,与表面积大小成正比;
取微小单元△S,其受的表面力:
pn
limPdP S0S dS
表面力的合力: P pnds
S
1.5 流体的压强及其表示方法
流体的压强:流体垂直作用于单位面积上的力,称为流体 的压强。用p表示,工程上习惯称之为压力。
(1)压力单位:SI 制中, N/m2 = Pa,称为帕斯卡
V t
m3/s
质量流量
qm =
m t
kg/s
qm = qV
流速
体积流速
u=
qV A
质量流速
w
=
qm A
m/s
kg/(m2s) w = u qm =w A = u A
流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
流体力学(共64张PPT)
1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功
令
HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准
流体力学ppt课件-流体动力学
g
g
2g
水头
,
z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.
流体力学基本知识PPT优秀课件
第一章 流体力学基本知识
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
第1章流体力学基本知识-PPT精品
(二)恒定流与非恒定流
2 .非恒定流:流体运动时,流体中任一 位置的压强、流速等运动要素随时间的 变化而变动的流动。如水位随水放出不 断改变的水流运动。
自然界中都是非恒定流,建筑设备工程 中取为恒定流。
(三)流线与迹线: 1.流线:是流体中同一瞬间由许多质点组成的
曲线。在该曲线上所有各点的速度向量都与 该曲线相切。
该关系式表达了流量(Q)、过流断面(ω)和 平均流速(v)三者之间的关系。
二、恒定流的连续性方程式
如图所示,在恒定总流中任取一元流,元流 在1-1过流断面上的面积为dω1,流速为u1;在 2-2过流断面上的面积为dω2,流速为u2。
二、恒定流的连续性方程式
应用质量守恒定律,在dt时段内流入的质量 与流出的质量相等:
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。
rhω1-2--1-2两过流断面间压强损 失。
第4节 流:
本节的任务:计算水头损失(或压强损失、流 动阻力)和计算管段。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
z1、z2:位置水头,表示单位 p1/γ、 p2/γ:重压量强的水位头置。势P能为。相
对压强(静压)。
α1v12/2g、 α2v22/2g:流 速水头(动
《流体力学基础知识》课件
流体粘性
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。
流体力学课件 ppt
流体阻力计算
利用流体动力学方程,可以计算 流体在管道中流动时的阻力,为 管道设计提供依据。
管道优化设计
通过分析流体动力学方程,可以 对管道设计进行优化,提高流体 输送效率,减少能量损失。
流体动力学方程在流体机械中的应用
泵和压缩机性能分析
流体动力学方程用于分析泵和压缩机的性能 ,预测其流量、扬程、功率等参数,为机械 设计和优化提供依据。
适用于不可压缩的流体。
方程意义
描述了流体压强与密度、重力加速度和深度之间的 关系。
Part
03
流体动力学基础
流体运动的基本概念
01
02
03
流体
流体是气体和液体的总称 ,具有流动性和不可压缩 性。
流场
流场是指流体在其中运动 的区域,可以用空间坐标 和时间描述。
流线
流线是表示流体运动方向 的曲线,在同一时间内, 流线上各点的速度矢量相 等。
能量损失的形式
流体流动的能量损失可以分为沿程损失和局部损失两种形式。沿程损失是指流体在流动过程中克服摩擦阻力而损 失的能量,局部损失是指流体在通过管道或槽道的局部障碍物时损失的能量。
Part
05
流体动力学方程的应用
流体动力学方程在管道流动中的应用
稳态流动和非稳态
流动
流体动力学方程在管道流动中可 用于描述稳态流动和非稳态流动 ,包括流速、压力、密度等参数 的变化规律。
变化的流动。
流体动力学基本方程
1 2
质量守恒方程
表示流体质量随时间变化的规律,即质量守恒原 理。
动量守恒方程
表示流体动量随时间变化的规律,即牛顿第二定 律。
3
能量守恒方程
表示流体能量随时间变化的规律,即热力学第一 定律。
流体力学完整版课件全套ppt教程最新
取一微元正交六面体。
左侧面压力: 右侧面压力:
( p 1 p dx)dydz 2 x
( p 1 p dx)dydz 2 x
y
p 1 p dx 2 x
z
p 1 p dx 2 x
x
再考虑 x 轴方向的质量力,可列出 x 轴方向的平衡方程:
(p
1 2
p x
dx)dydz ( p
1 2
p x
ν× 106/ m2/s
1.792 1.007 0.661 0.477 0.367 0.296
空气
μ × 106/ Pa·s
ν× 106/ m2/s
17.09 18.08 19.04 19.97 20.88 21.75
13.20 15.00 16.90 18.80 20.90 23.00
§1.3 流体的物理性质
➢ 牛顿流体与非牛顿流体
牛顿流体; 塑性体; 伪塑性体; 宾汉体。
du dy
(du)n dy
du dy
(du)n
dy
0
du dy
➢ 粘性流体与理想流体
实际流体都具有粘性。理想流体就是忽略流体的粘性。
§1.3 流体的物理性质
1.3.4 液体的表面张力
➢ 表面ห้องสมุดไป่ตู้力现象演示
肥皂薄膜对棉线作用一个拉力。
温度/ K
291 291 293
σ× 103/ N/m
73 490 472
§1.3 流体的物理性质
➢ 表面张力产生的压差
由表面张力引起的液体自由表面两边 的附加压力差为:
p ( 1 1 ) R1 R2
➢ 毛细现象
当液体与固体接触时,如果液体分子 间的吸引力(内聚力)大于液体分子 和固体分子间的引力(附着力),则 液体抱成团与固体不浸润;当液体分 子内聚力小于附着力时,则液体就能 浸润固体表面。
《流体力学》PPT课件
h
3
流体力学的基础理论由三部分组成: 一是流体处于平衡状态时,各种作用在流体上的力之间关系
的理论,称为流体静力学; 二是流体处于流动状态时,作用在流体上的力和流动之间关
系的理论,称为流体动力学; 三是气体处于高速流动状态时,气体的运动规律的理论,称
为气体动力学。 工程流体力学的研究范畴是将流体流动作为宏观机械运动进
温度 t (℃)
20 20 20 20 20 20 20 20 20 20 20 20 -257 -195 20
密度
( kg/m3) 998
1026 1149
789 895 1588 1335 1258 678 808 850-958 918
72 1206 13555
相对密度 d
1.00 1.03 1.15 0.79 0.90 1.59 1.34 1.26 0.68 0.81 0.85-0.93 0.92 0.072 1.21 13.58
动 力 黏 度 104
( P a·s) 10.1 10.6 — 11.6 6.5 9.7 —
14900 2.9
19.2 72 —
0.21 2.8
15.6
2021/1/10
h
14
表1-2
在标准大气压和20℃常用气体性质
气体
空
气
二氧化碳
一氧化碳
氦
氢
密度
( kg/m3) 1.205 1.84 1.16
h
1
第一节 流体力学的研究对象和任务
目
第二节 流体的主要物理性质
录
第三节 流体的静压强及其分布规律
第四节 流体运动的基本知识
第五节 流动阻力和水头损失
返回
《流体力学》课件
流体力学的应用领域
总结词
流体力学的应用领域与实例
详细描述
流体力学在日常生活、工程技术和科学研究中有广学、石油和天然气工业中的流体输送等。
流体力学的发展历程
总结词
流体力学的发展历程与重要事件
详细描述
流体力学的发展经历了多个阶段,从 早期的水力学研究到近代的流体动力 学和计算流体力学的兴起。历史上, 牛顿、伯努利等科学家对流体力学的 发展做出了重要贡献。
损失计算
根据流体流动的阻力和能量损失,计算流体流动的总损失。
流体流动阻力和能量损失的减小措施
优化管道设计
采用流线型设计,减少流体与 管壁的摩擦。
合理配置局部障碍物
减少不必要的弯头、阀门等, 或优化其设计以减小局部阻力 。
选择合适的管材
选用内壁光滑、摩擦系数小的 管材。
提高流体流速
适当提高流体的流速,可以减 小沿程损失和局部损失。
流体动力学基本方程
连续性方程
表示质量守恒的方程,即单位时间内流出的质量等于单位 时间内流入的质量。
01
动量方程
表示动量守恒的方程,即单位时间内流 出的动量等于单位时间内流入的动量。
02
03
能量方程
表示能量守恒的方程,即单位时间内 流出的能量等于单位时间内流入的能 量。
流体动力学应用实例
航空航天
飞机、火箭、卫星等的设计与制造需要应用 流体动力学知识。
流动方程
描述非牛顿流体的流动规律,包括连续性方程 、动量方程等。
热力学方程
描述非牛顿流体在流动过程中的热力学状态变化。
非牛顿流体的应用实例
食品工业
01
非牛顿流体在食品工业中广泛应用于番茄酱、巧克力、奶昔等
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 作用在流体上的质量力和表面力
1.4.1 质量力(体积力):
透过物质传递的力,作用在研究流体质量中心,与质量 成正比;取一流体微团质量为△m,其受的质量力:
F 1 F dF
f(x,y,z) lm i0m m lV i0m VdV
质量力的合力:FVf(x,y,z,t)dV 1.4.2 表面力:
流体知识学习总结
流体是液体和气体及等离子态的总称。
血液流动:生物流体力学 航空航天:空气动力学 等离子体运动:电磁流体力学 化工产业:多相流体力学 石油和天然气开采:渗流力学 燃烧过程:化学流体力学
……
工作中重要的匀浆涂布工序
流体静力学 流体运动学 流体动力学
流体作用力的角度
理想流体动力学
粘性流体动力学 可/不可压缩流体动力学 非牛顿流体力学
▪动力粘度:液体在剪切应力作用下流动时内磨擦力的量度. 其值为所加于流动液体的剪切应力和剪切速率之比.
dv dy
在国际单位制(SI)中,动力粘度的单位以帕·秒(Pa·s) 表示.通常使用的单位为毫帕·秒(mPa·s)。
胶液浆料粘度以此粘度衡量!!!
2.2 粘度影响因素
〈1〉粘压关系
压强其分子间距离(被压缩)内聚力粘度
何上没有维度的点; 同时微观上足够大,它里面包含着许许多多的分
子,其行为已经表现出大量分子的统计学性质。
1.2 学习流体力学知识储备
流体的流动是由充满整个流动空间的无限多流体质点的运动所构成的。 我们把充满运动着的流体的空间称为流场。场论是流体力学的数学基础。
1.2.1 标量、向量、张量及场的概念
……
不同“力学 模型”角度
目录
第1章 流体力学基础知识 第2章 流体粘性 第3章 流体运动 第4章 流体搅拌
第1章 流体力学基础知识
1.1、流体质点与连续介质模型
把流体视为由无数个流体微团(或流体质点)所 组成,这些流体微团紧密接触,彼此没有间隙。这就 是连续介质模型。
流体微团(或流体质点): 宏观上足够小,以致于可以将其看成一个几
ax ay az
1.3 流体物理特性
一、易流动性:切应力作用下流体能产生连续变形(流动)。
密度: limmdm
V0V dV
kg m3
比容:v 1
m3 kg 即单位质量占有的体积
重 度 : g N m3 即单位体积物质的重量
比 重: d H2O@4o C
二、粘性(后续单独介绍)
即相对密度
三、压缩性:流体的密度或容积随压力或温度变化的性质。
一般不考虑压强变化对粘度的影响。 〈2〉粘温关系
温度内聚力 粘度 (液体) 温度交换能力 粘度 (气体)
μ 空气
水 T
粘度与温度关系图
温度变化时对流体粘度的影响必须给于重视!!!
原因详解:这是因为气体的粘性力主要来自相邻流动层分子的横向动量交换的结果: 温度升高,这种动量的交换也加剧。因而内摩擦力或μ 值将增大。但是,液体则不 同。随着温度的升高,液体的μ 值将减小。原因在于液体的粘性力主要来自相邻流 动层间分子的内聚力;随着温度的升高,液体分子热运动加剧,液体分子间的距离 变大,因而分子间的内聚力将随之减小。
外界对流体表面的作用力,与表面积大小成正比;
取微小单元△S,其受的表面力:
pn
limPdP S0S dS
表面力的合力: P pnds
S
1.5 流体的压强及其表示方法
流体的压强:流体垂直作用于单位面积上的力,称为流体 的压强。用p表示,工程上习惯称之为压力。
(1)压力单位:SI 制中, N/m2 = Pa,称为帕斯卡
场的概念:设在空间中的某个区域内或全部区域内定义某一个函数
(将物理量作为空间点位置和时间t的函数 :F (r;t)F (x,y,z;t)),
则称定义在此空间区域内的函数为场。场是具有物理量的空间。
①标量场:物理量为标量,1个元素表示,如温度场; ②向量场:物理量为向量,即3个元素表示的既有大小又有方向的量, 如速度场、加速度场; ③张量场:物理量为张量,n阶张量场由3n元素表示的场,如应力场和 应变场等。
砂浆、中等浓度的悬浮液等)
粘性流体的分类
纯 粘 性 流 体
粘弹性 流体
牛顿流体
假塑性流体 与
时 间
膨胀性流体
无 关
宾汉流体(塑性流体) 非
的 屈服-假塑性流体
牛
顿
屈服-膨胀性流体
流
与时 触变性流体
体
间有
关的 震凝性流体
多种类型
(a) 纯粘性流体在 撤除剪切应力后,它 们在受剪切应力作用 期间的任何形变都不 会回复;
1.2.2 场论的几个概念
i xj yk zgr ad梯度:描描述述场场物内理空参间数不的均变匀化性率;
aax ay az diav 散度:描述场内单元单位体积变
x y z
化率,运动中集中叫辐合,
i jk
发散称为辐散(描述流场
ห้องสมุดไป่ตู้
a x y y
中的扩散) rota 旋度:描述流场内的旋转运动
Absolute zero reference p =0
压强示意图
三 绝对压强P=大气压强 + 计示压强 者 关 计示压强Pm=绝对压强-当地大气压Pa 系 真空度 Pv=当地大气压-绝对压强
=-计示压强
第2章 流体粘性
2.1 粘度的定义
▪运动粘度:液体在重力作用下流动时内摩擦力的量度.其值 为相同温度下液体的动力粘度与其密度之比.在国际单位制 (SI)中,运动粘度的单位以平方米/秒(m2/s)表示.通常使用 的单位为平方毫米/秒(mm2/s) 。
2.3 流体类型 2.3.1 理想流体与粘性流体
理想流体: μ=0,即无粘性流体 粘性流体: μ≠0 2.3.2 牛顿流体与非牛顿流体 牛顿流体:动力粘度μ 为不变数的流体 非牛顿流体: μ 为变数的流体
2.3.3 粘性流体分类
塑性流体 τ
拟塑性流体 牛顿流体
τ0
膨胀型流体
o
dv/dy
膨胀型流体:τ的增长率随dv/dy的增大而增加 拟塑性流体:τ的增长率随dv/dy的增大而降低(高分子溶液、纸浆、血液等) 塑性流体——克服初始应力τ0后,τ才与速度梯度成正比(牙膏、新拌水泥
1 atm(标准大气压)=1.013×105 Pa =760 mmHg =10.33 mH2O
1at(工程大气压)=9.807×104 Pa=735.6mmHg=10 mH2O
(2)压力大小的两种表征方法 绝对压强:以绝对真空为基准
p
(1)
计示压强:以当地大气压为基准
pm
p1
(2) p v p a
p2