(完整版)相交线与平行线基础练习题

合集下载

相交线与平行线(常考考点专题)(基础篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

相交线与平行线(常考考点专题)(基础篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

专题5.19 相交线与平行线(常考考点专题)(基础篇)(专项练习)一、单选题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角1.如图所示,∠1和∠2一定相等的是()A.B.C.D.2.下列四个图中,1∠互为邻补角的是()∠与2A.B.C.D.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段3.如图,直线AB,CD相交于点O,EO∠CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.如图,90∠=︒,点B到线段AC的距离指的是下列哪条线段的长度()AA .AB B .BC C .BD D .AD【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角 5.图中1∠与2∠是同位角的有( )A .1个B .2个C .3个D .4个6.如图,下列判断正确的是( )A .3∠与6∠是同旁内角B .2∠与4∠是同位角C .1∠与6∠是对顶角D .5∠与3∠是内错角【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离7.如图,P 为直线l 外一点,A ,B ,C 在l 上,且PB ∠l ,下列说法中,正确的个数是( )∠P A ,PB ,PC 三条线段中,PB 最短;∠线段PB 叫做点P 到直线l 的距离;∠线段AB 的长是点A 到PB 的距离;∠线段AC 的长是点A 到PC 的距离.A .1个B .2个C .3个D .4个8.如图,12l l ∥,AB CD ∥,2CE l ⊥,2FG l ⊥.则下列结论正确的是( ).A .A 与B 之间的距离就是线段ABB .AB 与CD 之间的距离就是线段AC 的长度C .1l 与2l 之间的距离就是线段CE 的长度D .1l 与2l 之间的距离就是线段CD 的长度【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法9.下列选项中,过点P 画AB 的垂线CD ,三角尺放法正确的是( )A .B .C .D .10.已知三角形ABC ,过AC 的中点D 作AB 的平行线,根据语句作图正确的是( )A.B.C.D.【考点六】相交线与平行线➽➼➵作图➻➼平移11.下列平移作图不正确的是()A.B.C.D.12.将如图图案剪成若干小块,再分别平移后能够得到∠,∠,∠中的()A.0个B.1个C.2个D.3个【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理13.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD l 于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A .两点确定一条直线B .两点之间,直线最短C .两点之间,线段最短D .垂线段最短14.下列说法中,正确的是( )∠两点之间的所有连线中,线段最短;∠过一点有且只有一条直线与已知直线垂直;∠平行于同一直线的两条直线互相平行;∠直线外一点到这条直线的垂线段叫做点到直线的距离.A .∠∠B .∠∠C .∠∠D .∠∠【考点八】相交线与平行线➽➼➵平行线的判定15.如图,下面哪个条件不能判断EF DC 的是( )A .12∠=∠B .4C ∠=∠ C .13180∠+∠=︒D .3180C ∠+∠=︒16.如图,下列结论不成立的是( )A .如果∠1=∠3,那么AB CD ∥B .如果∠2=∠4,那么AC BD ∥C .如果∠1+∠2+∠C =180°,那么AB CD ∥D .如果∠4=∠5,那么AC BD ∥17.在同一平面内,a ,b ,c 是直线,下列关于它们位置关系的说法中,正确的是( ) A .若a b ⊥,b c ⊥,则a c ⊥B .若a b ⊥,b //c ,则a //cC .若a //b ,b //c ,则a c ⊥D .若a //b ,b //c ,则a //c18.如图,将木条a ,b 与c 钉在一起,170=︒∠,250∠=︒,要使木条a 与b 平行,木条a 需顺时针旋转的最小度数是( )A .10︒B .20︒C .50︒D .70︒【考点九】相交线与平行线➽➼➵平行线的性质19.将一块直角三角板与两边平行的纸条如图所示放置,若155∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .65︒20.将一副直角三角板按如图所示的方式叠放在一起,若AC DE ∥.则BAE ∠的度数为( )A .85︒B .75︒C .65︒D .55︒【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系 21.如图,将一直角三角板与两边平行的纸条,如图所示放置,下列结论(1)12∠=∠;(2)34∠∠=;(3)2+4=90∠∠︒;(4)5290∠-∠=︒,其中正确的个数是( )A .1个B .2个C .3个D .4个22.如图,在五边形ABCDE 中,AE BC ,延长DE 至点F ,连接BE ,若∠A =∠C ,∠1=∠3,∠AEF =2∠2,则下列结论正确的是( )∠∠1=∠2 ∠AB CD ∠∠AED =∠A ∠CD ∠DEA .1个B .2个C .3个D .4个【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小 23.如图,直线a ,b 被直线c 所截,若a b ,∠1=50°,则∠2的度数是( )A .50°B .100°C .120°D .130°24.如图,AB CD ∥,AE 平分CAB ∠交CD 于点E .若50C ∠=︒,则AEC ∠的大小为( )A .55︒B .65︒C .70︒D .80︒【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 25.如图,AB CD ,则123∠+∠+∠等于( )A .90︒B .180︒C .210︒D .270︒26.如图,已知4490AB CD BAE E ∠=︒∠=︒∥,,,点P 在CD 上,那么EPD ∠的度数是( ).A .44°B .46°C .54°D .不能确定.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明 27.如图,给出下列条件.∠3=4∠∠;∠12∠=∠;∠4180BCD ∠+∠=︒,且4D ∠=∠;∠35180∠+∠=︒其中,能推出AD BC ∥的条作为( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠28.如图,若∠1=∠2,DE BC ∥,则∠FG DC ∥;∠∠AED =∠ACB ;∠CD 平分∠ACB ;∠∠1+∠B = 90°;∠∠BFG =∠BDC ,其中正确的结论是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用29.某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是( )A .第一次向左拐 30︒,第二次向右拐 30︒B .第一次向左拐 45︒,第二次向右拐 135︒C .第一次向左拐 60︒,第二次向右拐 120︒D .第一次向左拐 53︒,第二次向左拐 127︒30.如图,小刀的刀片上下是平行的,刀柄外形是一个直角梯形(下底挖去一个小半圆,则12∠+∠的度数为( )A .60︒B .75︒C .90︒D .不能确定【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题31.下列选项中,可以用来证明命题“若a >b ,则|a |>|b |”是假命题的反例是( )A .a =1,b =0B .a =-1,b =2C .a =-2,b =1D .a =1,b =-332.下列命题都是真命题,其中逆命题也正确的是( )A .若a b =,则22a b =B .若a b >,则22a b >C .若a b <,则22a b <D .若a b =±,则22a b =【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理33.下列说法正确的是()A.命题是定理,定理是命题B.命题不一定是定理,定理不一定是命题C.真命题有可能是定理,假命题不可能是定理D.定理可能是真命题,也可能是假命题34.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上【考点十七】平移➽➼➵性质35.如图,将周长为8的∠ABC沿BC方向平移1个单位得到∠DEF,则四边形ABFD 的周长为()A.6B.8C.10D.1236.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°【考点十八】平移➽➼➵应用37.如图所示是某酒店门前的台阶,现该酒店经理要在台阶上铺上一块红地毯,则这块红地毯至少需要()A.23平方米B.90平方米C.130平方米D.120平方米38.如图所示,在长为50米,宽为40米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是()A.50平方米B.40平方米C.90平方米D.89平方米二、填空题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角39.如图是一把剪刀的示意图,我们可想象成一个相交线模型,若∠AOB+∠COD=72°,则∠AOB=_______.40.如果两个角有一条公共边,它们的另一边互为____________,那么这两个角互为邻补角.图中∠1的邻补角有___________.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段41.如图,直线AB ,CD 相交于点O ,EO ∠AB 于点O ,∠EOD =50°,则∠BOC 的度数为_____.42.如图,ABC 中,CD AB ⊥,M 是AD 上的点,连接CM ,其中AC =10cm ,CM =8cm ,CD =6cm ,CB =8cm ,则点C 到边AB 所在直线的距离是__________cm .【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角43.如图,∠2的同旁内角是_____.44.如图:与FDB ∠成内错角的是______;与DFB ∠成同旁内角的是______.【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离45.如图,AD BC ∥,6BC =,且三角形ABC 的面积为12,则点C 到AD 的距离为________.46.已知A ,B ,C 三地位置如图所示,90C ∠=︒,4AC =,3BC =,则A 到BC 距离是______.若A 地在C 地的正东方向,则B 地在C 地的______方向.【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法47.如图,利用三角尺和直尺可以准确的画出直线AB∠CD ,下面是某位同学弄乱了顺序的操作步骤:∠沿三角尺的边作出直线CD ;∠用直尺紧靠三角尺的另一条边;∠作直线AB ,并用三角尺的一条边贴住直线AB ;∠沿直尺下移三角尺;正确的操作顺序应是:_____.48.如图,一束光线以入射角为50°的角度射向斜放在地面AB 上的平面镜CD ,经平面镜反射后与水平面成30°的角,则CD 与地面AB 所成的角∠CDA 的度数是_____.【考点六】相交线与平行线➽➼➵作图➻➼平移49.作图题:将如图的三角形ABC先水平向右平移4格,再竖直向下平移4格得到三角形DEF.观察线段AB与DE的关系是_____.50.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形变换称为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,则至少需要移动____格.【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理51.如图,点B,C在直线l上,且BC=6cm,△ABC的面积为18cm2.若P是直线l 上任意一点,连接AP,则线段AP的最小长度为_____cm.52.a、b、c是直线,且a∠b,b∠c,则________ .【考点八】相交线与平行线➽➼➵平行线的判定53.如图,点E在AC的延长线上,若要使AB CD,则需添加条件_______(写出一种即可)54.如图所示,请你写出一个条件使得12l l ∥,你写的条件是______.55.如图,∠1=30°,AB ∠AC ,要使AD BC ∥,需再添加的一个条件是____________.(要求:添加这个条件后,其它条件也必不可少,才能推出结论)56.如图,请你添加一个条件______,可以得到DE AC ∥.【考点九】相交线与平行线➽➼➵平行线的性质57.如图,AD 是△ABC 的角平分线,DE ∥AC ,DE 交AB 于点E ,DF ∥AB ,DF 交AC 于点F ,图中∠1与∠2的关系是_________.58.如图,把一张长方形纸条ABCD 沿EF 折叠,若50AEG ∠=︒,则EFG ∠=______°.【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系59.如图,已知AB DE ∥,且∠C =110°,则∠1与∠2的数量关系为__________________ .60.如图,已知AB ∠CD ,请直接写出下面图形中∠APC 和∠P AB 、∠PCD 之间的数量关系式_____.【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小61.如图,39AB CD AED ∠=︒∥,,C ∠和D ∠互余,则B ∠的度数为___________.62.将一个含有45°角的直角三角板如图所示放置,其中一个45°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若a//b ,∠2=∠15°,则∠3的度数为___________°【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 63.如图,已知1100∠=︒,2100∠=︒,370∠=︒,则4∠=______.64.如图,直线 l 1∠l 2,若∠1=40°,∠2 比∠3 大 10°,则∠4=____.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明65.如图,已知GF ∠AB ,∠1=∠2,∠B =∠AGH ,则以下结论:∠GH BC ;∠∠D =∠F ;∠HE 平分∠AHG ;∠HE ∠AB .其中正确的有_____(只填序号)66.将一副三角板按如图放置,则下列结论:∠如果∠2=30°.则AC ∥DE ;∠∠2+∠CAD =180°;∠如果BC ∥AD ,则有∠2=60°;∠如果∠CAD =150°,必有∠4=∠C ;其中正确的结论有____________.【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用67.如图,为某校放置在水平操场上的篮球架的横截面图形,初始状态时,篮球架的横梁EF 平行于AB ,主柱AD 垂直于地面,EF 与上拉杆CF 形成的角度为F ∠,且150F ∠=︒,这一篮球架可以通过调整CF 和后拉杆BC 的位置来调整篮筐的高度.在调整EF 的高度时,为使EF 和AB 平行,需要改变EFC ∠和C ∠的度数,调整EF 使其上升到GH 的位置,此时,GH 与AB 平行,35CDB ∠=︒,并且点H ,D ,B 在同一直线上,则H ∠为______度.68.下图(1)是某学校办公楼楼梯拐角处,从图片抽象出图(2)的几何图形,已知AB GH IJ CD ∥∥∥,AE BF ∥,EC FD ∥,DC EC ⊥,65B ∠=︒,则∠AEC 的度数为______.【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题69.命题“若a b =,那么a b =”的逆命题是:_____;该逆命题是一个 _____命题(填真或假).70.甲:“我没有偷”;乙:“丙是小偷”;丙:“丁是小偷”;丁:“我没有偷”.若四个人里面只有一个人说了真话,则小偷是_____.【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理71.如图所示,90AOB COD ︒∠=∠=,那么AOC ∠=________,依据是__________.72.如图所示,已知AB FE =,AD FC =,BC ED =.下列结论:∠A F ∠=∠;∠//AB EF ;∠//AD FC .其中正确的结论是________.(填序号)【考点十七】平移➽➼➵性质73.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为 _____m .74.用等腰直角三角板画45AOB ∠=,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为______.【考点十八】平移➽➼➵应用 75.如图,有一块长为a 米,宽为3米的长方形地,中间阴影部分是一条小路,空白部分为草地,小路的左边线向右平移1米能得到它的右边线,若草地的面积为122米,则=a ______.76.如图,某酒店重新装修后,准备在大厅主楼梯上铺设红色地毯.已知这种地毯每平方米售价160元,主楼梯道宽2.5m ,其侧面如图所示,则购买地毯至少需要______元.三、解答题77.如图:已知AO BC ⊥,DO OE ⊥,B ,O ,C 在同一条直线上.(1) AOE ∠的余角是_________,∠BOE 的补角是_________.(2) 如果35AOD ∠=︒,求∠BOE 的度数.(3) 找出图中所有相等的角(除直角外),并对其中一对相等的角说明理由.78.如图,点G 在CD 上,已知180BAG AGD ∠+∠=︒,EA 平分BAG ∠,FG 平分AGC ∠.请说明AE GF ∥的理由.解:因为180BAG AGD ∠+∠=︒(已知),180AGC AGD ∠+∠=︒(______),所以BAG AGC ∠=∠(______). 因为EA 平分BAG ∠, 所以112BAG ∠=∠(______). 因为FG 平分AGC ∠, 所以122∠=______, 得12∠=∠(等量代换), 所以______(______).79.把下面的证明过程补充完整: 已知:如图,12180∠+∠=︒,C D ∠=∠. 求证:A F ∠=∠.证明:∠12180∠+∠=︒(已知), ∠BD ∥_________( ), ∠C ABD ∠=∠( ), ∠C D ∠=∠( ), ∠D ∠=∠_________( ), ∠AC DF ∥( ), ∠A F ∠=∠( ).80.在如图所示的网格图(每个小网格都是边长为1个单位长度的小正方形)中,P,A ∠的边OB,OC上的两点.分别是BOC(1) 将线段OP向右平移,使点O与点A重合,画出线段OP平移后的线段'AP,连接PP',并写出相等的线段;∠相等的角;(2) 在(1)的条件下,直接写出与BOC(3) 请在射线OC上找出一点D,使点P与点D的距离最短,并写出依据.参考答案1.D【分析】根据对顶角,邻补角的定义逐一判断即可.解:选项A中∠1和∠2为邻补角,不一定相等.选项B中∠1和∠2为两个不同的角,不一定相等.选项C中∠1和∠2为两个不同的角,不一定相等.选项D中∠1和∠2为对顶角,一定相等.故选D.【点拨】本题考查的是对顶角,邻补角的定义,熟练掌握对顶角,邻补角的定义是解决问题的关键.2.D【分析】根据邻补角的定义作出判断即可.解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点拨】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.B【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解. 解: EO ∠CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒, 2180905436∴∠=︒-︒-︒=︒. 故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键. 4.A【分析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.根据定义直接可得答案.解:∠90,A ∠=︒∠BA AC ⊥,点B 到线段AC 的距离指线段AB 的长, 故选:A .【点拨】本题主要考查了点到直线的距离的概念.点到直线的距离是是垂线段的长度,而不是垂线段.5.B【分析】根据同位角的定义作答.解:第1个图和第4个图中的1∠与2∠是同位角,有2个, 故选:B .【点拨】本题考查了同位角的识别,两条直线被第三条直线所截,在截线的同侧,在两条被截直线的同旁的两个角是同位角.如果两个角是同位角,那么它们一定有一条边在同一条直线上.6.A【分析】根据同位角、同旁内角、内错角和对顶角的概念解答即可. 解:A 、3∠与6∠是同旁内角,故本选项符合题意; B 、2∠与4∠不是同位角,故本选项不合题意; C 、1∠与6∠不是对顶角,故本选项不合题意; D 、5∠与3∠不是内错角,故本选项不合题意;故选:A.【点拨】本题考查了同位角、内错角、同旁内角的定义,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.7.B【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短.逐一判断.解:∠线段BP是点P到直线l的垂线段,根据垂线段最短可知,P A,PB,PC三条线段中,PB最短;故原说法正确;∠线段BP是点P到直线l的垂线段,故线段BP的长度叫做点P到直线l的距离,故原说法错误;∠线段AB是点A到直线PB的垂线段,故线段AB的长度叫做点P到直线l的距离,故故原说法正确;∠由题意及图形无法判断线段AC的长是点A到PC的距离,故原说法错误;综上所述,正确的说法有∠∠;故选:B.【点拨】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:∠从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∠从直线外一点到这条直线上各点所连的线段中,垂线段最短.8.C【分析】根据两点间的距离和平行线间的距离的性质逐项判断即可.解:A、A与B之间的距离就是线段AB的长度,不符合题意,故本项错误;B、AB与CD之间的距离就是线段HI的长度,不符合题意,故本项错误;C 、1l 与2l 之间的距离就是线段CE 的长度,符合题意,故本项正确;D 、1l 与2l 之间的距离就是线段CE 或GF 的长度,不符合题意,故本项错误. 故答案为:C .【点拨】本题考查了两点间的距离和平行线间的距离的性质,解决本题的关键是掌握以上基本的性质.9.C【分析】根据P 点在CD 上,CD ∠AB 进行判断.解:过点P 画AB 的垂线CD ,则P 点在CD 上,CD ∠AB ,所以三角尺放法正确的为故选:C .【点拨】本题考查了作图-基本作图,熟练掌握基本作图(过一点画已知直线的垂线)是解决问题的关键.10.B【分析】根据中点的定义,平行线的定义判断即可. 解:过AC 的中点D 作AB 的平行线, 正确的图形是选项B , 故选:B .【点拨】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.11.C【分析】根据平移的概念作选择即可.解:A、B、D符合平移变换,C是轴对称变换.故选:C.【点拨】本题考查了平移的概念,掌握好平移的概念是本题的关键.12.C【分析】根据图形进行剪切拼接可得图形.解:根据左边图形可剪成若干小块,再进行拼接平移后能够得到∠,∠,不能拼成∠,故选C.【点拨】此题主要考查了图形的平移,通过改变平移的方向和距离可使图案变得丰富多彩.13.D【分析】根据垂线段最短解答即可.⊥于点D,将水泵房建在了D处.这样做最节省水管长度,其数学解:过点C作CD l道理是:垂线段最短.故选D.【点拨】本题考查了垂线段的性质,熟练掌握垂线段性质是解答本题的关键.从直线外一点到这条直线上各点所连的线段中,垂线段最短.14.B【分析】根据线段的性质公理判断∠;根据垂线的性质判断∠;根据平行公理的推论判断∠;根据点到直线的距离的定义判断∠.解:∠两点之间的所有连线中,线段最短,说法正确;∠在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;∠平行于同一直线的两条直线互相平行,说法正确;∠直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.【点拨】本题考查了线段的性质公理,垂线的性质,平行公理的推论,点到直线的距离的定义,是基础知识,需熟练掌握.15.C【分析】由平行线的判定定理求解判断即可.∠=∠,根据内错角相等,两直线平行可判定EF DC,故A不符合题意;解:A.由12B .由4C ∠=∠,根据同位角相等,两直线平行可判定EF DC ,故B 不符合题意; C .由13180∠+∠=︒,根据同旁内角互补,两直线平行可判定ED BC ∥,不能判定EF DC ,故C 符合题意;D .由3180C ∠+∠=︒,根据同旁内角互补,两直线平行可判定EF DC ,故D 不符合题意;故选:C .【点拨】本题考查了平行线的判定,熟练掌握“内错角相等,两直线平行”、“同位角相等,两直线平行”、“同旁内角互补,两直线平行”是解题的关键.16.D【分析】根据平行线的判定定理判断求解即可.解:A .如果∠1=∠3,那么能得到AB CD ∥,故本选项结论成立,不符合题意. B .如果∠2=∠4,那么能得到AC BD ∥,故本选项结论成立,不符合题意. C .如果∠1+∠2+∠C =180°,能得到AB CD ∥,故本选项结论成立,不符合题意. D .如果∠4=∠5,那么不能得到AC BD ∥,故本选项结论不成立,符合题意. 故选:D .【点拨】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键. 17.D【分析】根据平行线的判定与性质、平行公理的推论判断求解即可. 解:若a ∠b ,b ∠c ,则a ∠c ,故A 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故B 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故C 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故D 正确,符合题意; 故选:D .【点拨】此题考查了平行线的判定与性质,平行公理的推论,熟练掌握平行线的判定定理与性质定理是解题的关键.18.B【分析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数. 解:∠当木条a 与b 平行, ∠∠1=∠2, ∠∠1需变为50°,∠木条a 至少旋转:70º-50º=20º, 故选:B .【点拨】本题考查了旋转的性质及平行线的性质:∠两直线平行同位角相等;∠两直线平行内错角相等;∠两直线平行同旁内角互补;∠夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.19.A【分析】根据题意得到,90ACB AB CD ∠=︒∥,推出1,2ACE BCD ∠=∠∠=∠,进而得到1290∠+∠=︒,即可求出2∠的度数.解:由题意得,90ACB AB CD ∠=︒∥, ∠1,2ACE BCD ∠=∠∠=∠, ∠18090ACE BCD ACB ∠+∠=︒-∠=︒ ∠1290∠+∠=︒ ∠155∠=︒ ∠235∠=︒, 故选:A .【点拨】此题考查了平行线的性质:两直线平行内错角相等,两直线平行同位角相等,熟练掌握平行线的性质是解题的关键.20.B【分析】先根据平行线的性质定理得120CAE ∠=︒,然后由已知得45BAC ∠=︒,再由BAE CAE BAC ∠=∠-∠即可得解.解:AC DE ∥,180E CAE ∴∠+∠=︒,由已知可知:60,45E BAC ∠=︒∠=︒, 180********CAE E ∴∠=︒-∠=︒-︒=︒, 1204575BAE CAE BAC ∴∠=∠-∠=︒-︒=︒;故选:B.【点拨】此题考查了平行线的性质定理与直角三角板的知识,熟练掌握平行线的性质定理是解答此题的关键.21.D【分析】根据平行线的性质即可判断(1)(2),根据平角的定义即可判断(3),根据等量代换即可判断(4).解:∠AB CD,∠123445180==+=︒∠∠,∠∠,∠∠,故(1)(2)正确∠90∠=︒,CAD∠2418090+=︒-=︒∠∠∠,故(3)正确,CAD∠521809090∠∠,故(4)正确;-=︒-︒=︒∠正确的有4个,故选D.【点拨】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.22.C【分析】分别根据平行线的性质以及平行线的判定方法逐一判断即可.解:∠中,∠AE BC,∠∠3=∠2,∠∠1=∠3,∠∠1=∠2,∠∠正确∠中,∠AE BC,∠∠A+∠B=180°,∠∠A=∠C,∠∠C+∠B=180°,∠AB CD;∠∠正确∠中,∠AE BC,∠∠2=∠3,∠A+∠ABC=180°,∠∠1=∠3,∠∠1=∠2=∠3,∠ABC=2∠2,∠∠AEF=2∠2,∠∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°,∠∠AEF+∠AED=180°,∠∠AED=∠A.∠∠正确∠无条件证明,所以不正确.∠结论正确的有∠∠∠共3个.故选:C.【点拨】此题考查了平行线的判定与性质以及多边形的内角和外角,熟练掌握平行线的判定与性质是解本题的关键.23.D∠∠,再【分析】如图所示,根据平行线的性质:两直线平行,同位角相等,可得3=1根据邻角互补即可得到答案.解:如图所示:a b,∠1=50°,∴∠=∠=︒,3150∠+∠=︒,23180∴∠=︒-∠=︒-︒=︒,2180318050130故选:D.【点拨】本题考查求角度问题,涉及到平行线的性质及邻补角定义,熟练掌握相关定义是解决问题的关键.24.B【分析】根据平行线的性质得出130CAB ∠=︒,根据角平分线的性质以及平行线的性质即可求解.解:∠AB CD ∥,∠180BAC C ∠+∠=︒,∠50C ∠=︒,∠130BAC ∠=︒, ∠AE 平分CAB ∠,∠1652BAE CAE BAC ∠=∠=∠=︒, ∠AB CD ∥,∠65AEC BAE ∠=∠=︒.故选B .【点拨】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键.25.B【分析】过点E 作直线EF AB ∥,根据平行线的判定和性质,以及平角的定义即可得解. 解:过点E 作直线EF AB ∥,交BC 于点F ,则:3AEF ∠=∠,∠AB CD ,∠EF CD ,∠1DEF ∠=∠,∠12322180AEF DEF DEA ∠+∠+∠=∠++=+=︒∠∠∠∠;故选:B .【点拨】本题考查平行线的判定和性质.熟练掌握平行线的判断和性质是解题的关键.遇到拐点问题,通常过拐点作平行线来进行解题.26.B【分析】过点E 作HF //AB ,可证AB //HF //CD ,由平行线的性质可求∠BAE =∠AEH ,∠EPD =∠HEP ,由∠E =90°,由∠HEP =90°−∠AEH 可求解.解:如图,过点E 作HF //AB ,∠AB //CD ,HF //AB ,∠AB //HF //CD ,∠∠BAE =∠AEH ,∠HEP =∠EPD ,∠∠BAE =44°,∠E =90° ∠∠AEH =44°, ∠HEP =90°−∠AEH =90°−44°=46°,∠∠EPD =∠HEP =46°.故选:B.【点拨】本题考查了平行线的判定和性质,添加恰当辅助线构造平行线是本题的关键.27.C【分析】根据平行线的判定定理依次判断即可.解:∠∠34∠=∠,∠AD BC ∥,正确,符合题意;∠∠12∠=∠,∠AB CD ∥,(内错角相等,两直线平行),选项不符合题意;∠∠4180BCD ∠+∠=︒,4D ∠=∠,∠180D BCD ∠+∠=︒,∠AD BC ∥,正确,符合题意;∠∠3518045180∠+∠=︒∠+∠=︒,,∠3=4∠∠,由同位角相等,两直线平行可得AD BC ∥,正确,符合题意;故能推出AD BC ∥的条件为∠∠∠.故选C .【点拨】题目主要考查平行线的判定,熟练掌握平行线的判定定理是解题关键.28.B【分析】根据平行线的性质和判定定理逐项分析判断∠∠∠,结合题意和图形判断∠∠,即可进行解答.∥,解:∠∠DE BC∠∠1=∠DCB,∠∠1=∠2,∠∠DCB=∠2,∥,∠FG DC故∠正确;∥,∠∠DE BC∠∠AED=∠ACB,故∠正确;∥,∠由∠可知:FG DC∠∠BFG=∠BDC,故∠正确,而CD不一定平分∠ACB,∠1+∠B不一定等于90°,故∠,∠错误;【点拨】本题考查了平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质,并能进行推理论证.29.D【分析】根据题意画出图形,由图可知,第一次向左拐,要使最后行驶方向与原来相反,则第二次也要向左拐,再根据平行线的性质即可解答.解:如图,第一次向左拐,要使最后行驶方向与原来相反,则第二次也要向左拐,∠∠1+∠3=180°,∠2=∠3,∠∠1+∠2=180°,故选:D。

数学-相交线与平行线(含答案)

数学-相交线与平行线(含答案)

数学-相交线与平行线(含答案)相交线与平行线知识要点:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。

2.两条不同的直线,若它们只有一个公共点,就说它们相交。

即,两条直线相交有且只有一个交点。

3.垂直是相交的特殊情况。

有关两直线垂直,有两个重要的结论:1)过一点有且只有一条直线与已知直线垂直;2)直线外一点与直线上所有点的连线中,垂线段最短。

4.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做同侧内角;如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做同侧外角;如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做对顶角。

5.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么它们也平行。

6.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等则平行。

⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等则平行。

⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补则平行。

7.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线垂直。

8.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等。

简单说成:同位角相等。

⑵两条平行直线被第三条直线所截,内错角相等。

简单说成:内错角相等。

⑶两条平行直线被第三条直线所截,同旁内角互补。

简单说成:同旁内角互补。

方法指导:平行线中要理解平行公理,能熟练地找出“三线八角”图形中的同位角、内错角、同旁内角,并会运用与“三线八角”有关的平行线的判定定理和性质定理,利用平行公理及其推论证明或求解。

能力训练:一、选择题:1.如图(1)所示,同位角共有()A.1对B.2对C.3对D.4对3.一个三角形的三个外角之和为360°,而钝角大于90°,因此钝角的个数最少为1个,选项B。

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。

平行线与相交线练习题

平行线与相交线练习题

平行线与相交线练习题一、选择题1. 在同一平面内,两条不相交的直线叫做平行线。

以下哪组直线不满足平行线的定义?A. 直线a和直线b在平面内,且直线a与直线b不相交B. 直线c和直线d在平面内,但直线c与直线d相交C. 直线e和直线f在不同平面内D. 直线g和直线h在平面内,且直线g与直线h相交2. 根据平行线的性质,以下说法正确的是:A. 平行线之间的距离处处相等B. 平行线可以相交C. 平行线可以重合D. 平行线之间的夹角是锐角3. 如果直线a与直线b平行,直线b与直线c相交,那么直线a与直线c的关系是:A. 平行B. 相交C. 重合D. 无法确定4. 在同一平面内,两条直线的位置关系有几种?A. 1种B. 2种C. 3种D. 4种5. 两条平行线被第三条直线所截,同位角相等。

以下哪个选项不能说明两条直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 同旁内角相等二、填空题6. 如果直线m和直线n在同一平面内且不相交,那么直线m和直线n 是_________。

7. 两条直线相交成90度角,这两条直线叫做_________。

8. 根据平行线的性质,如果直线a和直线b平行,那么直线a和直线b之间的距离在任何位置都是_________。

9. 平行线的性质之一是,如果两条平行线被第三条直线所截,那么一组内错角的度数之和等于_________。

10. 如果直线a和直线b相交,且直线a和直线c平行,那么直线b 和直线c的关系是_________。

三、判断题11. 平行线永远不会相交。

()12. 两条平行线之间的距离处处相等。

()13. 如果两条直线相交,它们就不可能平行。

()14. 两条直线相交所形成的四个角中,如果有一个角是直角,那么其他三个角也是直角。

()15. 平行线的性质可以用于证明其他几何命题。

()四、解答题16. 已知直线AB和直线CD相交于点O,直线EF平行于直线AB,请说明直线EF与直线CD的位置关系。

相交线与平行线基础必做好题附答案详解

相交线与平行线基础必做好题附答案详解

相交线与平行线基础必做好题附答案详解一-选择题(30分)5.同一平面内,三条不同直线的交点个数可能是()个. A ・1或3 B ・0. 1或3 C ・0、1或2 D ・0、1、2或3 6-下列所示的四个图形中,Z1和Z2是同位角的是(1. 下列图形中,Z1与Z2不是同位角的是( XI如图,下列各组角中,是对顶角的一组是(B. Z3 和Z5 C ・ Z3 和Z4 D. Z1 和Z5直线a, b 被直线C 所截,Z1与Z2是(内错角C.同旁内角 D ・邻补角4・如图,直线AB, CD 相交于点6 EO 丄CD 于点6 ZAOE=36\则ZBOD=( A. B. D.2. A. Z1 和 Z23.如图所示, bD.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行9. 下列说法正确的有(① 两点之间的所有连线中,线段最短;② 相等的角叫对顶角:③ 过一点有且只有一条直线与已知直线平行:④ 过一点有且只有一条直线与已知直线垂直:⑤ 两点之间的距离是两点间的线段:⑥ 在同一平面内的两直线位置关系只有两种:平行或相交•A. 1个B. 2个C. 3个D ・4个10. 在同一平面内,不巫合的两条直线的位置关系是(A.平行B.相交8. A. B. 过任意一点可作已知直线的一条平行线同一平面内两条不相交的直线是平行线C. 下列图形中,lIlZl=Z2能得到AB//CD 的是(1. ④A. C下列说法不正确的是(C.平行或相交D.平行、相交或垂直填空题(21分)11.如图,按角的位置关系填空:ZA与Z1是;ZA与Z3是;Z2与Z3是12.如图,直线AB和0C相交于点6 ZAOC=100^则/= 度・23•观察图中角的位置关系,Z1和Z2是角,Z3和Z1是角,Z1和Z4是角,Z3和Z4是角,Z3和Z5是角・14.如图一个弯形管道ABCD的拐角ZABC=120\ ZBCD=60\这时说管道AB〃CD,是根据D .....15.如图,是小明学习三线八角时制作的模具,经测量Z2=100\要使木条a与b平行,则Z1的度数必须是16.如图所示,用直尺和三角尺作直线AB, CD,从图中可知,直线AB与直线CD的位置关系为17. 设a 、b 、c 为平面上三条不同直线,<1)若a 〃b, b 〃c,则a 与c 的位置关系是(2)若a 丄b, b 丄c,则a 与c 的位置关系是三.解答题(共12小题)如图"图中共有对对顶角; 如图C,图中共有 对对顶角;研究(1)〜(3)小题中直线条数与对顶角的对数之间的关系,若有n 条 直线相交于一点,则可形成 对对顶角:(5)若有2008条直线相交于一点,则可形成对对顶角. 20. (2分)如图,在△ABC 中,ZABU90,过点B 作三角形ABC 的AC 边上的 高BD,过D 点作三角形ABD 的AB 边上的高DE ・点B 到直线AC 的距离是线段的长度. 点D 到直线AB 的距离是线段 的长度.21 (5分)•如图,点P 是ZAOB 的边OB 上的一点.(i )过点P 画OA 的垂线,垂足为H;18 (5分)观察下列各图,寻找对顶角(不含平角):(2) 如图b,图中共有对对顶角;AC鼬BC=90"((2)过点P 画OB 的垂线,交0A 于点C ;(3)线段PH 的长度是点P 到 的距离, 是点C 到直线0B 的距离-因为 直线外一点到直线上各点连接的所有线段中,垂线段最短,所以线段PC 、PH 、 0C 这三条线段大小关系是 •(用“V"号连接) 1 1 1 1 1 1 1 1 » 1 1 11 1 11 1 1■ . 1 1 i 1 1 1 1 1 1 1 :/.... ••: <1 1 1! ! :? 乂」 1 i 才 1 1 11 1 11 ■ . L 1 J :0 :: 1 1 1: :A :1 1 ■ 1 1 1 1 1 1 ■ 1 11 1 11 1 122. (5 分)如图,已知ZAGD 二ZACB, Z1=Z2.求证s CD 〃EF ・ (填空并在后面的括号中填理山) 证明:VZAGD =ZACBZ3=VZ1=Z2(6分)已知:如图AB 丄BC, BC 丄CD 且Z1=Z2,试说明:BE 〃CF ・7Z1=Z2 (已知)(等式性质)AZ3= (等量代换)解: TAB 丄BC, BC±CD (已知)〃 23.D24. (4分)填写推理理如图,CD〃EF, Z1=Z2,求证:Z3=ZACB.证明:TCD〃EF,AZDCB=Z27Z1=Z2, AZDCB=Z1.AZ3=ZACB25. (6分)推理说明题,按图填空,括号内注明理山.S知:如图,直线AB, CD被EF所截,Z1=Z2.求证:AB〃CD证明:VZ2=Z3 (乂VZ1=Z2 (已知),//Z2=Z3. BE *j DF平行吗?为什么?解:BE〃DF7AB1BC,二 ZABC=即 Z3+Z4=乂 VZ1+Z2=9O\且 Z2=Z3,理山是:27. (7分)已知S 如图,CE 平分ZACD, Zl 二Z2.求证:AB 〃CD 证明TCE 平分ZACD (7Z1=Z2 (已知人AZ1=Z28. (6分)作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB 、BC.利用方格纸完成以下操作:过点C 作AB 的平行线,与(1)中的平行线交于点D ;(1) 过点A 作BC 的平行线;(2) 二 BE 〃DFA AB# CD (过点B作AB的垂线•29.(8分)完成下面的推理过程,并在括号内填上依据.如图,E为DF上的一点,B为AC . h的一点,Z1=Z2, Z8ZD,求证;AC〃DF 证明:VZ1=Z2 (Z1=Z3 (对顶角相等)AZ2=Z3 (//AZC=ZABD (乂VZC=ZD (己知)AZD=ZABD <•••AC〃DF30. (9)如图,求证:AB〃CDB直线AB、CD被直线EF所截,Zl-Z4=180",相交线与平行线基础必做好题附答案详解 參考答案与试題解析 一-选择题(共W 小题) 1-(2015*江干区二模)下列图形中,Z1与Z2不是同位角的是( 【解答】解:A 图中,Z1与Z2有一边在同一条直线上,另一条边在被截线的 同一方,是同位角,不符合题意: Z1 *jZ2有一条边在同一条直线上,另一条边在被截线的同一方,是 Z1 *jZ2的两条边都不在同一条直线上,不是同位角,符合题意; Zl 与Z2有一边在同一条直线上,另一条边在被截线的同一方,是同 位角,不符合题童•故选:C ・A. Z1 和Z2B. Z3 和Z5C. Z3 和Z4D. Z1 和Z5【解答】解:山对顶角的定义可知:Z3和Z5是一对对顶角, 故选B.3. (2015*宿迁)如图所示,直线a, b 被直线C 所截,Z1与Z2是( XI B 图中, 同位角, 不符合题意; C 图中, D 图中, 下列各组角中,是对顶角的一组是(A. B. D. /【解答】解:如图所示,Z1和Z2两个角都在两被截直线直线b 和a 同侧,并 且在第三条直线C (截线)的同旁,故Z1和Z2是直线b 、a 被C 所截而成的同 位角• 故选A.4A2016*定州市一模)如图,直线AB,CD 相交于点6E0丄CD F 点O,ZAOE=36。

相交线与平行线》基础卷(含答案)

相交线与平行线》基础卷(含答案)

相交线与平行线》基础卷(含答案)第四章《相交线与平行线》基础卷一、选择题(30分)1、如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行;B.内错角相等,两直线平行;C.同旁内角互补,两直线平行;D.两直线平行,同位角相等;答案:B2、下列四个说法中,正确的是()A.相等的角是对顶角;B.和为180°的两个角互为邻补角;C.两条直线被第三条直线所截,内错角相等;D.两直线相交形成的四个角相等,则这两条直线互相垂直;答案:C3、如图,直线a∥b,直线c分别与a、b相交,∠1=50°,则∠2的度数为()A。

150°;B。

130°;C。

100°;D。

50°;答案:B4、如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于()A。

35°;B。

40°;C。

45°;D。

50°;答案:C5、在下列实例中,①时针运转过程;②火箭升空过程;③地球自转过程;④飞机从起跑到离开地面的过程;不属于平移过程的有()A。

1个;B。

2个;C。

3个;D。

4个;答案:B6、如图,能判断直线ABCD的条件是()A.∠1=∠2;B.∠3=∠4;C.∠1+∠3=180°;D.∠3+∠4=180°;答案:C7、如图,XXX,OQ⊥PR,则点O到PR所在直线的距离是线段()的长。

A。

OQ;B。

RO;C。

PO;D。

PQ;答案:C8、如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数为()A。

30°;B。

25°;C。

20°;D。

15°;答案:D9、如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A。

30°;B。

45°;C。

相交线与平行线基础练习题附答案

相交线与平行线基础练习题附答案

求实辅导 相交线与平行线一、精心选择(20分)1.下列图形中,由A B C D ∥,能得到12∠=∠的是( )2.如图,直线L 1∥L 2 ,则∠α为( ). A.1500B.1400C.1300D.12003.下列命题:①不相交的两条直线平行; ②梯形的两底互相平行;③同垂直于一条直线的两直线平行; ④同旁内角相等,两直线平行. 其中真命题有( )A.1个B.2个C.3个D.4个4.下列命题:①两个连续整数的乘积是偶数;②带有负号的数是负数;③乘积是1的两个数互为倒数;④绝对值相等的两个数互为相反数.A CB D12 A CB D1 2 A .B .1 2 ACB DC .B DCA D .12 1100 500L 1L 2α(第2题图)其中假命题有( )A.1个B.2个C.3个D.4个5.如图,AB ∥CD ,那么∠BAE+∠AEC+∠ECD =( )A.1800B.2700C.3600D.5400二、细心填空(21分)6.观察如图所示的三棱柱.(1)用符号表示下列线段的位置关系: AC CC 1 ,BC B 1C 1 ;(2)⊿A 1B 1C 1 可看作是把⊿ABC 而得到的.7.如图三角形ABC 中,∠C = 900,AC=23,BC=32,把AC 、BC 、AB 的大小关系用“>”号连ABCD E A 1ABCB 1C 1ACBABCDEF(第6题图) (第7题图) (第8题图)接: .8.如图,直线AB 、CD 相交于点E ,DF ∥AB ,若∠AEC=1000,则∠D 的度数等于 .9.如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 .10.图中有 对对顶角.三.用心解答(52分)11.如图,AB ∥CD,AD ∥BC,∠A=3∠B.求∠A 、∠B 、∠C 、∠D 的度数.ADCBA B CDEF (第9题图)1 (第10题图)12.下面网格中每个小正方形的边长都是1.请在方格中先画一个平行四边形,再画一个和它面积相等的梯形。

相交线与平行线练习题

相交线与平行线练习题

相交线与平行线练习题一、选择题1. 两条直线相交成直角,这两条直线叫做互相()。

A. 垂直B. 平行C. 相交D. 重合2. 同一平面内,不相交的两条直线叫做()。

A. 垂直线B. 平行线C. 相交线D. 重合线3. 直线a和直线b相交,如果a与b的交点是A,那么a和b的交点A叫做()。

A. 交点B. 垂足C. 端点D. 焦点4. 如果直线a和直线b平行,那么a与b之间的距离()。

A. 相等B. 不相等C. 无法确定D. 为零5. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线()。

A. 平行B. 垂直C. 相交D. 重合二、填空题6. 如果两条直线相交所构成的同位角不相等,那么这两条直线_________。

7. 两条平行线之间的距离是指这两条平行线中任意一点到另一条平行线的_________。

8. 两条直线相交,如果它们的交角是锐角,那么这两条直线_________。

9. 在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也_________。

10. 当两条直线相交,如果它们的对顶角相等,那么这两条直线_________。

三、判断题11. 如果两条直线相交成直角,那么这两条直线一定平行。

()12. 两条直线相交,它们的交点只有一个。

()13. 两条直线相交所成的同旁内角互补,那么这两条直线一定垂直。

()14. 两条直线平行,同位角相等,内错角相等,同旁内角互补。

()15. 如果两条直线被第三条直线所截,同位角不相等,那么这两条直线不平行。

()四、简答题16. 解释什么是平行线,并给出两条直线平行的判定条件。

17. 描述什么是垂线,并说明垂线的性质。

18. 给出两条直线相交时,同位角、内错角和对顶角的定义。

19. 解释什么是相交线,并描述相交线的性质。

20. 举例说明如何判断两条直线是否平行。

五、解答题21. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+1。

相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc一、选择题(每题5分,共20分)1. 在同一平面内,两条直线的位置关系有几种?A. 一种B. 两种C. 三种D. 四种答案:B2. 下列说法中,正确的是:A. 同一平面内,两条直线不相交,则它们一定平行B. 同一平面内,两条直线相交,则它们一定垂直C. 同一平面内,两条直线平行,则它们永不相交D. 同一平面内,两条直线相交,则它们一定平行答案:C3. 如果两条直线都与第三条直线平行,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 无法确定答案:B4. 两条直线相交,交点处的夹角为90°,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 重合答案:C二、填空题(每题5分,共20分)1. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线____。

答案:平行2. 在同一平面内,两条直线不相交,则它们是____。

答案:平行3. 垂直于同一直线的两条直线一定是____。

答案:平行4. 两条平行线被第三条直线所截,同位角相等,内错角互补,同旁内角和为____。

答案:180°三、解答题(每题10分,共20分)1. 已知直线AB与直线CD相交于点O,且∠AOB=∠COD=90°,求证:AB∥CD。

证明:因为∠AOB=∠COD=90°,所以AB⊥OB,CD⊥OD。

根据垂直于同一条直线的两条直线平行,所以AB∥CD。

2. 已知直线l1与直线l2相交于点P,且l1∥l3,l2∥l4,求证:l3与l4相交。

证明:因为l1∥l3,l2∥l4,所以∠l1P=∠l3P,∠l2P=∠l4P。

根据同位角相等,两直线平行,所以l3∥l1,l4∥l2。

又因为l1与l2相交,所以l3与l4相交。

四、计算题(每题10分,共40分)1. 在同一平面内,直线m与直线n相交,交点为O。

已知∠1=45°,求∠2的度数。

答案:∠2=180°-45°=135°2. 已知直线a与直线b平行,直线c与直线a相交于点A,且∠BAC=60°,求∠ABC的度数。

(完整版)相交线与平行线常考题目及答案(绝对经典)

(完整版)相交线与平行线常考题目及答案(绝对经典)
相交线与平行线
一.选择题(共3小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行B.垂直C.平行或垂直D.无法确定
2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有( )
26.几何推理,看图填空:
(1)∵∠3=∠4(已知)
∴∥()
(2)∵∠DBE=∠CAB(已知)
∴∥()
(3)∵∠ADF+=180°(已知)
∴AD∥BF()
27.如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.
7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.
评卷人
得分
三.解答题(共43小题)
8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.
(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.
(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
15.如图,已知AB∥PN∥CD.
(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.
16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°

相交线与平行线测试题及答案

相交线与平行线测试题及答案

相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。

A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。

1) 平行线没有交点。

2) 相交线可以有无数个交点。

3) 两条垂直线的交点一定是直角。

A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。

答案:90度5. 判断题:两条平行线的夹角为180度。

答案:错误6. 判断题:两条相交直线一定不平行。

答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。

答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。

答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。

答案:相交线是指两条直线或线段在平面上有唯一一点相交。

例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。

平行线是指在平面上没有任何交点的两条直线。

例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。

10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。

两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。

总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。

相交线与平行线基础测试题及答案

相交线与平行线基础测试题及答案
B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;
C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;
D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;
故选:B.
【点睛】
此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.
【详解】
∵a∥b∥c

∵直角三角板的直角顶点落在直线b上

∵∠1=30°Βιβλιοθήκη ∴故答案为:B.【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
13.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
如图做如下标记abcdcefefbcegegb两直线平行内错角相等cefefbcegfegefhbfhcegnegfegmenegbagp对顶角相等cegfegefhmennedegfagp等量替bfh相等的角有点睛本题主要考查直线平行的性质对顶角的性质对顶角相等角平分线的性质角平分线把角分为两个大小相等的角还有等量替换把所学知识灵活运用是解题的关键105答案解析分析2的对顶角标记为3根据对顶角的性质得到3得关系再根据直线平行的性质得到详解解
②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;
③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;
④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;
⑤∠1和∠3是直线BC和直线AB被直线AC截得的同旁内角,所以⑤正确.
故答案选D.
点睛:

相交线与平行线基础测试题含答案解析

相交线与平行线基础测试题含答案解析

相交线与平行线基础测试题含答案解析一、选择题1.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠4【答案】B【解析】【分析】 在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角2.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.3.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F ,可得AB//EF ,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.4.如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=56°,则∠2等于( )A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.5.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.6.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.7.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.8.如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.9.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.10.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 的最小值为342=2348a ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC 23∵23a =14×2312a ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =23a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵DE=3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=3a ∴DE 的最小值为3×3a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.13.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.14.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.15.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..16.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.19.若a⊥b,c⊥d,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对【答案】D【解析】【分析】分情况讨论:①当b∥d时;②当b和d相交但不垂直时;③当b和d垂直时;即可得出a与c的关系.【详解】当b∥d时a∥c;当b和d相交但不垂直时,a与c相交;当b和d垂直时,a与c垂直;a和c可能平行,也可能相交,还可能垂直.故选:D.【点睛】本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.20.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.。

七年级下册数学相交线与平行线基础题人教版(含答案)

七年级下册数学相交线与平行线基础题人教版(含答案)

七年级下册数学相交线与平行线基础题人教版一、单选题(共13道,每道5分)1.如图,∠1和∠2是对顶角的是()A.B.C.D.答案:C试题难度:三颗星知识点:邻补角、对顶角2.下列说法正确的个数是()①若∠1与∠2是对顶角,则∠1=∠2;②若∠1与∠2是邻补角,则∠1=∠2;③若∠1与∠2不是对顶角,则∠1≠∠2;④若∠1与∠2不是邻补角,则∠1+∠2≠180°.A.0个B.1个C.2个D.3个答案:B试题难度:三颗星知识点:邻补角、对顶角3.如图,直线AD、BC交于O点,∠AOB+∠COD=110°,则∠AOC的度数为()A.55°B.125°C.135°答案:B试题难度:三颗星知识点:邻补角、对顶角4.给出条件:①两条直线相交成直角;②两条直线互相垂直;③一条直线是另一直线的垂线,下列说法中正确的个数有()个(1)由①可以得到②③结论(2)由②可以得到①③结论(3)由③可以得到①②结论A.0个B.1个C.2个D.3个答案:D试题难度:三颗星知识点:垂线5.如图,P是直线L外一点,A,B,C在直线L上,且PB⊥L,那么下列说法中不正确的是()A.线段BP的长度叫做点P到直线L的距离B.PA,PB,PC三条线段中,PB最短C.PA是点P到直线L的垂线段D.线段AB的长是点A到直线PB的距离答案:C试题难度:三颗星知识点:点到直线的距离6.如图,下列说法正确的是()A.∠1和∠8互为内错角B.∠2与∠8互为同位角C.∠2和∠6互为同旁内角D.以上说法都不正确试题难度:三颗星知识点:同位角、内错角、同旁内角7.如图所示,当∠1+∠3=180°时,下列说法正确的是()A.a∥bB.l∥mC.l∥nD.m∥n答案:C试题难度:三颗星知识点:平行线的判定8.如图,AB//CD,BC//DE,则∠B+∠D的值为( ).A.50°B.40°C.130°D.180°答案:D试题难度:三颗星知识点:平行线的性质9.如图所示,已知∠1=∠2,则能够判定CD∥EF,我们判断的依据是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行答案:B试题难度:三颗星知识点:平行线的判定10.下列说法中正确的是()A.两条相交的直线叫做平行线B.在直线外一点,只能画出一条直线与已知直线平行C.如果a∥b,b∥c,则a不与c平行D.两条不平行的射线,在同一平面内一定相交答案:B试题难度:三颗星知识点:平行公理11.下列语句中,是命题的是()A.有公共顶点的两个角是对顶角B.在一条直线上任取一点OC.过点O作直线MN的垂线D.两点确定一条直线吗答案:A试题难度:三颗星知识点:命题12.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线答案:B试题难度:三颗星知识点:命题与定理13.在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④B.①②③④⑤C.①②③⑤D.①③④⑤答案:D试题难度:三颗星知识点:平移。

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难一、选择题1. 在同一平面内,两条直线的位置关系是()。

A. 相交或平行B. 相交或重合C. 平行或重合D. 相交、平行或重合答案:D2. 如果两条直线都与第三条直线平行,那么这两条直线的关系是()。

A. 相交B. 平行C. 重合D. 不确定答案:B3. 两条直线相交成90度角,这两条直线是()。

A. 相交线B. 垂直线C. 平行线D. 异面直线答案:B二、填空题4. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线()。

答案:平行5. 在平面几何中,如果两条直线不相交,则它们被称为()。

答案:平行线三、判断题6. 两条平行线被第三条直线所截,同位角相等。

()答案:正确7. 垂直于同一直线的两条直线一定平行。

()答案:错误四、解答题8. 已知直线AB与直线CD相交于点O,且∠AOB=90°,求证:AB⊥CD。

证明:因为∠AOB=90°,所以AB与CD相交成直角,根据垂直的定义,AB⊥C D。

9. 若直线m平行于直线n,直线n平行于直线p,求证:直线m平行于直线p。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

因此,直线m平行于直线p。

五、综合题10. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+5,求证:l1与l2相交。

证明:首先,我们可以将两个方程联立求解。

\begin{cases}y = 2x + 3 \\y = -x + 5\end{cases}将第一个方程中的y代入第二个方程,得到:2x + 3 = -x + 5解得:x = 1将x=1代入任意一个方程求得y,例如第一个方程:y = 2(1) + 3 = 5因此,l1与l2的交点为(1,5),所以l1与l2相交。

11. 已知直线l1平行于直线l2,直线l2平行于直线l3,求证:直线l1平行于直线l3。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线与相交线测试题及答案

平行线与相交线测试题及答案

平行线与相交线测试题及答案第一篇:平行线与相交线测试题及答案一、选择题1、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°C.第一次左拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°D.第一次右拐50°,第二次右拐50°2、如图3,AB∥CD,那么∠A,∠P,∠C的数量关系是()A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A3、一个人从点A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.135°ABABBACFEDCCD图3D图4 图54、如图5所示,已知∠3=∠4,若要使∠1=∠2,则需()A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD5、下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个6、如图6,O是正六边形ABCDEF的中心,下列图形:△OCD,△ODE,△OEF,△OAF,•△OAB,其中可由△OBC平移得到的有()A.1个B.2个C.3个D.4个二、填空题7、命题“垂直于同一直线的两直线平行”的题设是是.8、三条直线两两相交,有个交点.EDBDAC43BADCACB图7图8图99、如图8,已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=_______.10、如图10所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD=______,∠AOC=_______,∠BOC=________.11、如图11所示,四边形ABCD中,∠1=∠2,∠D=72°,则∠BCD=_______.12、如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是_________,那么这两个角分别是度.三、作图题13、如图,(1)画AE⊥BC于E,AF⊥DC于F.(2)画DG∥AC交BC 的延长线于G.(3)经过平移,将△ABC的AC边移到DG,请作出平移后的△DGH.AD四、解答题BC14、已知:AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P.求∠P的度数15、如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.16、已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大小关系?试说明理由.参考答案:一、1.B2.C3.C4.D5.B6.B二、7.两条直线都和同一条直线垂直,这两条直线平行;8.1,3;9.70°,70°,110°;10.65°,65°,115°;11.108°;12.相等或互补;三、13.如下图:FADBE14.如图,过点P作AB的平行线交EF于点G。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《相交线与平行线》测试题
姓名成绩
一、选择题(每小题3分,共30分)
1、下面四个图形中,∠1与∠2是对顶角的图形()
A、B、C、D、
2、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是
()
A、第一次右拐50 o,第二次左拐130 o
B、第一次左拐50 o,第二次右拐50 o
C、第一次左拐50 o,第二次左拐130 o
D、第一次右拐50 o,第二次右拐50 o
3、同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()
A、a∥d
B、b⊥d
C、a⊥d
D、b∥c
4、如图,若m∥n,∠1=105 o,则∠2= ()
A、55 o
B、60 o
C、65 o
D、75 o
5、下列说法中正确的是()
A、有且只有一条直线垂直于已知直线
B、从直线外一点到这条直线的垂线段,叫做这点到这条直线距离
C、互相垂直的两条线段一定相交
D、直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长是3cm,则点A到直线c的距离是3cm
6、两条直线被第三条直线所截,下列条件中,不能判断这两条直线平行的的是()
A、同位角相等
B、内错角相等
C、同旁内角互补
D、同旁内角相等
7、下列句子中不是命题的是()
A、两直线平行,同位角相等。

B、直线AB垂直于CD吗?
C、若︱a︱=︱b︱,则a 2 = b 2。

D、同角的补角相等。

8、下列说法正确的是()
A、同位角互补
B、同旁内角互补,两直线平行
C、内错角相等
D、两个锐角的补角相等
9、如图,能判断直线AB∥CD的条件是()
A、∠1=∠2
B、∠3=∠4
C、∠1+∠3=180 o
D、∠3+∠4=180 o
10、如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段()的长
A、PO
B、RO
C、OQ
D、PQ
二、填空题(每空1.5分,共45分)
1.如图(1)是一块三角板,且︒
=
∠30
1,则____
2=
∠。

2.若,
90
2
1︒
=

+
∠则2
1∠
∠与的关系是。

3.若,
180
2
1︒
=

+
∠则2
1∠
∠与的关系是。

4.若,
90
2
1︒
=

+
∠,
90
2
3︒
=

+
∠则3
1∠
∠与的关系是,理由是。

5.若,
180
2
1︒
=

+
∠,
180
2
3︒
=

+
∠则3
1∠
∠与的关系是,理由是。

6.如图(3)是一把剪刀,其中︒
=
∠40
1,则=
∠2,
其理由是。

7.如图(4),,
35
2
1︒
=

=
∠则AB与CD的关系是
,推理过程:。

8.如图(5),∠1的同位角是,∠1的内错角是,若∠1=∠BCD,
则∥,根据是。

若∠1=∠EFG,则∥,根据是。

图(3)
2
1
图(4)
3
2
1
A B
C D
E
F
A
B C
D E
1
F
G
图(5)
图6
D
C
B
A
图7
b
a
62︒
62︒
图(1)
2
1
C
B
A
1
9.已知:如图6,∠B+∠A=180°,则∥,理由是。

∵∠B+∠C=180(已知),∴∥()。

10.如图7,直线a与b的关系是。

11. 23°30′=______°13.6°=_____°_____′
三、仔细想一想,完成下面的推理过程(每空1分,共10分)
1、如图EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。

解:∵EF∥AD,
∴∠2= ()
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥()
∴∠BAC+ =180 o()∵∠BAC=70 o,∴∠AGD= 。

2、如图,已知∠BED=∠B+∠D,试说明AB与CD的关系。

解:AB∥CD,理由如下:
过点E作∠BEF=∠B
∴AB∥EF()
∵∠BED=∠B+∠D
∴∠FED=∠D
∴CD∥EF()
∴AB∥CD()
四、画一画(每题5分,共10分)
1、如图,一辆汽车在直线形公路AB上由A向B行驶,M、N是分别位于公路AB两
侧的村庄。

设汽车行驶到点P时,离村庄M最近,汽车行驶到点Q时,离村庄N
最近,请在图中公路AB上分别画出点P、Q的位置。

2、把下图中的小船向右平移,使得小船上的点A向右平移5cm到A′。

五、解答题(共7分)
1、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。

2、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度数。

2。

相关文档
最新文档