专题五 函数的周期性

合集下载

《函数的周期性》课件

《函数的周期性》课件
公式法
对于一些基本的周期函数,如正弦函数、余弦函数等,可以直接使 用其周期公式来求解。
计算法
通过计算函数在两个不同点上的值,然后比较这两个值是否相等来 确定函数的周期。
函数周期性的进一步研究
特征,如振幅、相位等。
周期函数的性质
02
研究周期函数的性质,如对称性、奇偶性等。
周期性理解
周期性是函数的一种特性,它描述了函数值重复出现的规律。周期函数在一个 周期内的变化规律与整个函数的变化规律相同。
周期性的分类
最小正周期
如果存在一个最小的正数$T$,使得 对于函数$f(x)$的定义域内的每一个 $x$,都有$f(x+T)=f(x)$,则称$T$ 为函数$f(x)$的最小正周期。
函数周期性的扩展知识
最小正周期的概念
最小正周期
对于函数$f(x)$,如果存在一个正数 $T$,使得当$x$取值在$T$的长度 内重复出现时,函数$f(x)$的值也重 复出现,则称$T$为函数$f(x)$的最 小正周期。
周期性
函数在某个固定周期内重复出现的性 质。
函数的最小正周期的求法
观察法
通过观察函数图像或性质,直接判断出函数的周期。
《函数的周期性》 ppt课件
xx年xx月xx日
• 函数的周期性概述 • 三角函数的周期性 • 函数周期性的判定 • 函数周期性的应用 • 函数周期性的扩展知识
目录
01
函数的周期性概述
周期性的定义
周期性定义
如果存在一个非零常数$T$,使得对于函数$f(x)$的定义域内的每一个$x$,都 有$f(x+T)=f(x)$,则称函数$f(x)$为周期函数,非零常数$T$称为这个函数的 周期。
常见周期函数

函数的周期性--经典例题

函数的周期性--经典例题

函数的周期性--经典例题函数的周期性周期函数的定义:对于函数()x f ,存在非0常数T ,使得对于其定义域内总有()()x f T x f =+,则称的常数T 为函数的周期。

周期函数的性质:1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

3、若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数4、y=f(x)满足f(x+a)=()x f 1(a>0),则f(x)为周期函数且2a 是它的一个周期。

5、若函数y=f(x)满足f(x+a)=()x f 1-(a>0),则f(x)为周期函数且2a是它的一个周期。

6、1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.7、1()()1()f x f x a f x ++=--,则()x f 是以4T a =为周期的周期函数.8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一个周期。

9、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;10、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;11、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。

12、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。

13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。

周期性函数

周期性函数

周期性函数函数的周期性定义:若存在一非零常数T,对于定义域内的任意x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。

函数周期性的关键的几个字“有规律地重复出现”。

当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现。

假如函数f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T是函数的一个周期.T的整数倍也是函数的一个周期。

(1)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|。

(2)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|。

(3)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a。

(4)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a。

根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。

函数周期性公式大总结:f(x+a)=-f(x)。

那么f(x+2a)=f=-f(x+a)=-[-f(x)]=f(x)。

所以f(x)是以2a为周期的周期函数。

f(x+a)=1/f(x)。

那么f(x+2a)=f=1/f(x+a)=1/[1/f(x)]=f(x)。

所以f(x)是以2a为周期的周期函数。

f(x+a)=-1/f(x)。

那么f(x+2a)=f=-1/f(x+a)=1/[-1/f(x)]=f(x)。

所以f(x)是以2a为周期的周期函数。

周期公式sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π。

cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。

tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。

secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。

函数的周期性

函数的周期性

函数的周期性
函数的周期性是指当自变量的值增加或减小一个特定的数值时,函数的值会发生重复的变化。

在数学中,周期性是函数的一个重要性质。

周期性可以应用于多个不同的数学对象,如三角函数、周期矩阵和周期函数。

其中,最常见的就是三角函数的周期性。

三角函数的周期性
三角函数是一类特殊的周期函数,其中包括正弦函数、余弦函数和正切函数等。

这类函数的周期性非常明显,它们的图像在一个特定的区间内重复出现。

以正弦函数为例,其周期性是指当自变量的值增加或减小2π时,函数的取值会发生重复的变化。

正弦函数的图像在一个周期内呈现出上升和下降的趋势,而在周期的不同区间内则重复这种趋势。

周期矩阵的周期性
周期矩阵也具有周期性。

周期矩阵是一个二维的矩阵,其中的元素具有周期性的变化。

这意味着当一个元素的索引增加或减小一个特定的数值时,元素的值会发生重复的变化。

周期函数的周期性
周期函数是指在某一特定的区间内,函数的值会以一定的规律进行重复。

这种周期性的现象往往与周期矩阵类似,当自变量的值增加或减小一个特定的数值时,函数的值会发生重复的变化。

周期函数可以用数学公式表示,其中包括正弦函数、余弦函数和周期指数函数等。

这些函数在一定的区间内重复出现,具有明显的周期性。

总结
函数的周期性是函数的一个重要性质,可以应用于三角函数、周期矩阵和周期函数等数学对象上。

在这些对象中,函数的值会以一定的规律进行重复,当自变量的值增加或减小一个特定的数值时,函数的值会发生相同的变化。

通过研究函数的周期性,我们可以更好地理解函数的变化规律和特点。

高中函数周期知识点总结

高中函数周期知识点总结

高中函数周期知识点总结一、函数的周期性1. 周期函数的概念在数学中,周期函数是指以某个值T为周期的函数。

如果对于函数f(x),存在一个正数T,使得对于任意x∈R,有f(x+T)=f(x),那么我们就称函数f(x)是周期函数,并且周期T称为f(x)的周期。

通常情况下,周期函数的图像在一定区间内重复出现相同的形状。

2. 周期函数的性质(1)周期函数的性质周期函数的基本性质包括:a. 周期函数在每一个周期内有相同的函数值。

b. 周期函数的图像可以在一个周期内被重复出现。

c. 若T为周期,则kT也是周期,其中k为非零的常数。

d. 若T1和T2都是周期,则它们的最小公倍数也是周期。

e. 三角函数sin(x)和cos(x)都是周期为2π的周期函数。

(2)求周期函数的周期当给定一个函数f(x)时,我们需要计算出它的周期。

求周期的方法主要有两种:a. 观察法:观察函数的图像,找出重复的模式,从而确定周期。

b. 利用公式法:若函数f(x)满足f(x+T)=f(x),我们可以通过解方程来求出T。

3. 常见周期函数常见的周期函数主要有三种:a. 正弦函数sin(x)和余弦函数cos(x):它们的周期都是2π。

b. 正切函数tan(x)和余切函数cot(x):它们的周期都是π。

c. 任意形式的三角函数:假设f(x)是一个周期函数,那么af(bx+c)+d也是一个周期函数,其中a、b、c、d为常数。

4. 函数的不同周期有些函数可能有多个周期,称为多周期函数。

常见的多周期函数有正弦函数和余弦函数。

此外,有些函数可能存在最小正周期和最小整数周期不相等的现象,称为非自由振荡。

(见以下部分)5. 周期函数的应用周期函数在很多领域都有广泛应用,例如在物理学、工程学、生物学和经济学中。

在物理学中,振动系统的运动可以用周期函数来描述。

在经济学中,周期函数可以描述商品价格和经济增长等现象。

二、函数周期性的相关概念1. 最小正周期对于周期函数f(x),如果存在一个最小正数T,使得对于任意x∈R,有f(x+T)=f(x),那么我们称T为函数f(x)的最小正周期。

函数周期知识点总结

函数周期知识点总结

函数周期知识点总结一、函数的周期性函数的周期性是指函数在特定区间内具有重复性的性质。

如果函数在一个区间内满足f(x+T)=f(x),其中T为正数,则称函数f(x)在该区间上有周期T,T称为函数f(x)的周期。

函数的周期性是函数中非常重要的一种性质,对于周期函数而言,其周期性是其定义的本质。

二、周期函数的性质1. 周期函数的定义周期函数是指函数的取值在每个周期内具有重复性。

周期函数的周期是指函数在一个区间内具有重复性。

设f(x)是定义在一定区间上的函数,如果存在正数T,使得任意x∈[a,a+T],都有f(x+T)=f(x),则称函数f(x)为周期函数,T为周期。

周期函数的周期一般是不唯一的。

2. 周期函数的图像特点周期函数的图像表现出在一个周期内具有重复性的特点。

周期函数的图像通常是具有规律的波动,在一定周期内呈现出反复的形状。

3. 周期函数的基本性质周期函数在一个周期内具有相同的性质,包括最大值、最小值、零点等。

周期函数还具有周期平移、镜像对称等性质。

周期函数的和、差、积、商也是周期函数。

4. 周期函数的分类周期函数根据周期的不同可以分为正弦函数、余弦函数、正切函数、余切函数等等。

根据周期的形式还可以分为奇函数和偶函数。

5. 周期函数的应用周期函数在自然界和各种科学领域有着非常广泛的应用,如物理学、工程学、生物学等等。

周期函数的研究对于理解自然规律和解决实际问题具有重要的意义。

三、常见周期函数1. 正弦函数正弦函数是最基本的周期函数之一。

其函数表达式为y=Asin(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。

正弦函数的图像是一条连续的曲线,具有周期性。

2. 余弦函数余弦函数也是最基本的周期函数之一。

其函数表达式为y=Acos(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。

3. 正切函数正切函数的函数表达式为y=A tan(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。

函数周期性的题型和解题方法

函数周期性的题型和解题方法

函数周期性的题型和解题方法在高一数学教材中,函数的基本性质重点讲了函数的单调性和奇偶性,对于函数的另一个重要性质——周期性却基本没怎么涉及,但是不管是平时考试还是高考,函数周期性都是非常重要的考点,并且以不同方式告诉函数的周期。

在函数周期性的学习中,我们首先要能快速识别给出的函数是否是周期函数,其次需要学会利用函数周期性来解题。

一、判断周期函数若f(x+T)=f(x),那么f(x)就是以T为周期的周期函数。

在学习过程中,需要重点掌握以下几个函数的周期:①f(x+a)=f(x+b),T=|a-b|;特别地,f(x+a)=f(x-a),T=|2a|;②f(x+a)=-f(x),T=|2a|;③f(x+a)=±1/f(x),T=|2a|;④若f(x)的图像有两条对称轴x=a和x=b,那么f(x)的一个周期为T=2|a-b|;⑤若f(x)的图像有两个对称中心(x1,y1)和(x2,y2),那么f(x)的一个周期为T=2|x1-x2|;⑥若f(x)的图像既是轴对称又是中心对称图形,若对称轴是x=a,对称中心是(b,c),则T=4|a-b|。

二、求值利用函数周期性求函数值,通常会告诉函数在某个区间上的解析式,但是所求的函数值是在已知区间外的,此时需要利用周期性将所求函数值转换到已知的区间内。

比如上面的例题,利用周期性将f(-6)转化为f(0),将f(6)转化为-f(-1)的值。

三、求周期求函数的周期,除了掌握周期性的定义以及(一)中所讲的几种基本类型外,作出函数也是一个非常重要的方法。

作出图像后,直接在图像上找到图像循环部分对应点的横坐标之间的最小距离就是该函数的最小正周期,也是解题中最常用到的周期值。

四、周期性+奇偶性本题中,先根据关系式f(x-4)=-f(x)算出f(x)的周期为T=8,再根据单调性和奇偶性作出满足要求的一个函数图像,并根据函数图像分析解决问题。

如果f(x)的对称轴是直线x=a,其图像与直线y=b相交于x1,x2两点,那么必有x1+x2=2a。

2022年高考文数热点题型和提分秘籍 专题05 函数的单调性、最值、奇偶性与周期性(解析版)

2022年高考文数热点题型和提分秘籍 专题05 函数的单调性、最值、奇偶性与周期性(解析版)

【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和争辩函数的性质.3.结合具体函数,了解函数奇偶性的含义.4.会运用函数的图象理解和争辩函数的奇偶性. 【热点题型】题型一 函数单调性的推断例1、(1)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x -xD .f (x )=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”).解析 (1)由(x 1-x 2)[ f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)是减函数,f (x )=1x -x 求导,f ′(x )=1x 2-1<0,∴f (x )=1x -x 在(0,+∞)是减函数.(2)任取x 1,x 2∈(-1,+∞),且x 1<x 2, 则y 1-y 2=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1x 1+1x 2+1.∵x 1>-1,x 2>-1,∴x 1+1>0,x 2+1>0, 又x 1<x 2,∴x 2-x 1>0, ∴x 2-x 1x 1+1x 2+1>0,即y 1-y 2>0.∴y 1>y 2,所以函数y =x +2x +1在(-1,+∞)上是减函数.答案 (1)C (2)减函数 【提分秘籍】 (1)图象法作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→推断f ′x 正、负→单调性区间 (4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,肯定要留意定义域优先原则. 【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)题型二 求函数的单调区间 例2、求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解析 (1)由于y=⎩⎪⎨⎪⎧-x 2+2x +1x ≥0,-x 2-2x +1x <0,即y =⎩⎪⎨⎪⎧-x -12+2x ≥0,-x +12+2x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1). 【提分秘籍】(1)求函数的单调区间与确定单调性的方法全都.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:假如f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f (x )的定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必需在定义域内或给定的范围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a >0且a ≠1);(2)y =log 12(4x -x 2).题型三 函数单调性的应用例3、已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=e x +sin x ,则( ) A .f (1)<f (2)<f (3) B .f (2)<f (3)<f (1) C .f (3)<f (2)<f (1) D .f (3)<f (1)<f (2)解析:由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称,又当x ∈⎝⎛⎭⎫-π2,π2时,f ′(x )=e x +cos x >0恒成立,所以f (x )在⎝⎛⎭⎫-π2,π2上为增函数,f (2)=f (π-2),f (3)=f (π-3),且0<π-3<1<π-2<π2,所以f (π-3)<f (1)<f (π-2),即f (3)<f (1)<f (2).答案:D 【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式消灭,有时也应用于解答题中的某一问中. 2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题. (3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f ”号不等式的解法首先依据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后依据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要留意g (x )与h (x )的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性全都外,还要留意两段连接点的连接.【举一反三】已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝⎛⎭⎫12=1,假如对于0<x <y ,都有f (x )>f (y ).(1)求f (1)的值;(2)解不等式f (-x )+f (3-x )≥-2. 解析:(1)令x =y =1, 则f (1)=f (1)+f (1),f (1)=0.(2)由题意知f (x )为(0,+∞)上的减函数,且⎩⎪⎨⎪⎧-x >0,3-x >0,∴x <0, ∵f (xy )=f (x )+f (y ),x 、y ∈(0,+∞)且f ⎝⎛⎭⎫12=1. ∴f (-x )+f (3-x )≥-2可化为f (-x )+f (3-x )≥-2f ⎝⎛⎭⎫12,即f (-x )+f ⎝⎛⎭⎫12+f (3-x )+f ⎝⎛⎭⎫12≥0=f (1)⇔f ⎝⎛⎭⎫-x 2+f ⎝⎛⎭⎫3-x 2≥f (1)⇔f ⎝⎛⎭⎫-x 2·3-x 2≥f (1), 则⎩⎪⎨⎪⎧x <0,-x 2·3-x 2≤1,解得-1≤x <0.∴不等式的解集为{x |-1≤x <0}. 【变式探究】已知f (x )=⎩⎪⎨⎪⎧3-a x -a x <1log a x x ≥1是(-∞,+∞)上的增函数,则a 的取值范围是( )A .(1,+∞)B .(1,3)C.⎣⎡⎭⎫32,3D.⎝⎛⎭⎫1,32题型四 函数奇偶性的判定例4、(1)下列函数不具有奇偶性的有________. ①f (x )=(x +1) 1-x1+x; ②f (x )=x 3-x ; ③f (x )=x 2+|x |-2; ④f (x )=lg x 2+lg 1x 2;⑤f (x )=⎩⎪⎨⎪⎧x 2+x x <0,-x 2+x x >0(2)对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析 (1)①由1-x1+x ≥0可得函数的定义域为(-1,1],所以函数为非奇非偶函数.②∵x ∈R ,f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x )=-f (x ).∴f (x )=x 3-x 是奇函数. ③∵x ∈R ,f (-x )=(-x )2+|-x |-2=x 2+|x |-2=f (x ),∴f(x)=x2+|x|-2是偶函数.④定义域为(-∞,0)∪(0,+∞),f(x)=lg x2+lg 1x 2=lg x2+lg(x2)-1=lg x2-lg x2=0,∴f(x)既是奇函数又是偶函数.⑤当x>0时,-x<0,f(x)=-x2+x,∴f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x);当x<0时,-x>0,f(x)=x2+x,∴f(-x)=-(-x)2-x=-x2-x=-(x2+x)=-f(x).所以对于x∈(-∞,0)∪(0,+∞),均有f(-x)=-f(x).∴函数为奇函数.(2)若f(x)是奇函数,则对任意的x∈R,均有f(-x)=-f(x),即|f(-x)|=|-f(x)|=|f(x)|,所以y=|f(x)|是偶函数,即y=|f(x)|的图象关于y轴对称.反过来,若y=|f(x)|的图象关于y轴对称,则不能得出y=f(x)肯定是奇函数,比如y=|x2|,明显,其图象关于y轴对称,但是y=x2是偶函数.故“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件.答案(1)①(2)B【提分秘籍】(1)判定函数奇偶性的常用方法及思路:①定义法:②图象法:③性质法:a.“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;b.“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;c.“奇·偶”是奇,“奇÷偶”是奇.(2)推断函数奇偶性时应留意问题:①分段函数奇偶性的推断,要留意定义域内x取值的任意性,应分段争辩,争辩时可依据x的范围取相应的解析式,推断f(x)与f(-x)的关系,得出结论,也可以利用图象作推断.②“性质法”中的结论是在两个函数的公共定义域内才成立的.③性质法在小题中可直接运用,但在解答题中应给出性质推导的过程.【举一反三】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数解析:由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.答案:C题型五函数的周期性例5、已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (2)=2,则f (2 014)的值为( )A .2B .0C .-2D .±2解析 ∵g (-x )=f (-x -1),∴-g (x )=f (x +1). 又g (x )=f (x -1),∴f (x +1)=-f (x -1), ∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ),则f (x )是以4为周期的周期函数,所以f (2 014)=f (2)=2. 答案 A 【提分秘籍】函数周期性的推断要结合周期性的定义,还可以利用图象法及总结的几个结论,如f (x +a )=-f (x )⇒T =2a . 【举一反三】函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数解析:易知函数的定义域为{x |x ≠k π,k ∈Z},关于原点对称,又f (-x )=lg|sin(-x )|=lg|-sin x |=lg|sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg|sin x |是最小正周期为π的偶函数.答案:C题型六 函数奇偶性、周期性等性质的综合应用例6、设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________.解析:依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0) =212-1+21-1+20-1 = 2. 答案: 2 【提分秘籍】1.函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中经常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.归纳起来常见的命题角度有: (1)求函数值.(2)与函数图象有关的问题. (3)奇偶性、周期性单调性的综合. 2.应用函数奇偶性可解决的问题及方法 (1)已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性,求函数解析式中参数的值经常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.(4)应用奇偶性画图象和推断单调性. 【举一反三】设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎭⎫121-x,则下列命题:①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增; ③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=⎝⎛⎭⎫12x -3.其中正确命题的序号是________.【高考风向标】1.【2021高考四川,文15】已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中真命题有___________________(写出全部真命题的序号). 【答案】①④【解析】对于①,由于f '(x )=2x ln 2>0恒成立,故①正确对于②,取a =-8,即g '(x )=2x -8,当x 1,x 2<4时n <0,②错误 对于③,令f '(x )=g '(x ),即2x ln 2=2x +a 记h (x )=2x ln 2-2x ,则h '(x )=2x (ln 2)2-2存在x 0∈(0,1),使得h (x 0)=0,可知函数h (x )先减后增,有最小值. 因此,对任意的a ,m =n 不肯定成立.③错误 对于④,由f '(x )=-g '(x ),即2x ln 2=-2x -a令h (x )=2x ln 2+2x ,则h '(x )=2x (ln 2)2+2>0恒成立, 即h (x )是单调递增函数, 当x →+∞时,h (x )→+∞ 当x →-∞时,h (x )→-∞因此对任意的a ,存在y =a 与函数h (x )有交点.④正确2.【2021高考陕西,文10】设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C【解析】1()ln ln 2p f ab ab ab ===;()ln22a b a b q f ++==;11(()())ln 22r f a f b ab =+= 由于2a b ab +>,由()ln f x x =是个递增函数,()()2a b f f ab +>所以q p r >=,故答案选C3.【2021高考浙江,文12】已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .【答案】1;2662--4.【2021高考上海,文20】(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数xax x f 1)(2+=,其中a 为实数. (1)依据a 的不同取值,推断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,推断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增.1.(2022·北京卷)下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3C.y=ln x D.y=|x|【答案】B【解析】由定义域为R,排解选项C,由函数单调递增,排解选项A,D. 2.(2022·湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2B.f(x)=x2+1C.f(x)=x3D.f(x)=2-x【答案】A【解析】由偶函数的定义,可以排解C,D,又依据单调性,可得B不对.3.(2022·江苏卷)已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.【解析】(1)证明:由于对任意x∈R,都有f(-x)=e-x+e-(-x)=e-x+e x=f(x),所以f(x)是R上的偶函数.(2)由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,所以m≤-t-1t2-t+1=-1t-1+1t-1+ 1对任意t>1成立.由于t-1+1t-1+1≥2 (t-1)·1t- 1+1=3, 所以-1t-1+1t-1+ 1≥-13,当且仅当t=2, 即x=ln 2时等号成立.因此实数m的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数g(x)=e x+1e x-a(-x3+3x),则g′(x) =e x-1e x+3a(x2-1).当x≥1时,e x-1e x>0,x2-1≥0.又a>0,故g′(x)>0,所以g(x)是[1,+∞)上的单调递增函数,因此g(x)在[1,+∞)上的最小值是g(1)=e+e-1-2a.由于存在x0∈[1,+∞),使e x0+e-x0-a(-x30+3x0 )<0 成立,当且仅当最小值g(1)<0,故e+e-1-2a<0, 即a>e+e-12.令函数h(x) =x-(e-1)ln x-1,则h′(x)=1-e-1x. 令h′(x)=0, 得x=e-1.当x∈(0,e-1)时,h′(x)<0,故h(x)是(0,e-1)上的单调递减函数;当x∈(e-1,+∞)时,h′(x)>0,故h(x)是(e-1,+∞)上的单调递增函数.所以h(x)在(0,+∞)上的最小值是h(e-1).留意到h(1)=h(e)=0,所以当x∈(1,e-1)⊆(0,e-1)时,h(e-1)≤h(x)<h(1)=0;当x∈(e-1,e)⊆(e-1,+∞)时,h(x)<h(e)=0.所以h(x)<0对任意的x∈(1,e)成立.故①当a∈⎝⎛⎭⎫e+e-12,e⊆(1,e)时,h(a)<0,即a-1<(e-1)ln a,从而e a-1<a e-1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1. 4.(2022·四川卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ; ④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出全部真命题的序号) 【答案】①③④【解析】若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,肯定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),假如存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,肯定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=x x 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确5.(2022·四川卷)已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.【解析】(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b . 综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不行能单调递增,也不行能单调递减. 则g (x )不行能恒为正,也不行能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点. 由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.6.(2021·北京卷)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x<1的值域为________.【答案】(-∞,2)【解析】函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log 12x 的值域为(-∞,0];函数y=2x 在R 上是增函数,当x<1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).7.(2021·北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -xC .y =-x 2+1D .y =lg |x| 【答案】C【解析】对于A ,y =1x 是奇函数,排解.对于B ,y =e -x 既不是奇函数,也不是偶函数,排解.对于D ,y =lg |x|是偶函数,但在(0,+∞)上有y =lgx ,此时单调递增,排解.只有C 符合题意.8.(2021·新课标全国卷Ⅱ] 若存在正数x 使2x (x -a)<1成立,则a 的取值范围是( ) A . (-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞) 【答案】D【解析】由题意存在正数x 使得a>x -12x 成立,即a>⎝⎛⎭⎫x -12x min .由于x -12x是(0,+∞)上的增函数,故x -12x >0-120=-1,所以a>-1.答案为D. 9.(2021·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的微小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f ′(x 0)=0 【答案】C【解析】x →-∞时,f(x)<0,x →+∞时,f(x)>0,又f(x)连续,x 0∈R ,f(x 0)=0,A 正确.通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确.若x 0是f(x)的微小值点,可能还有极大值点x 1,若x 1<x 0,则f(x)在区间(x 1,x 0)单调递减,C 错误.D 正确.故答案为C.10.(2021·四川卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,ln x ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线相互垂直,且x 2<0,证明:x 2-x 1≥1;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.【解析】(1)函数f(x)的单调递减区间为(-∞,-1 ),单调递增区间为[-1,0),(0,+∞). (2)证明:由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2). 故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)·f ′(x 2)=-1. 当x<0时,对函数f(x)求导,得f ′(x)=2x +2. 由于x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0,因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1.当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立所以,函数f(x)的图像在点A ,B 处的切线相互垂直时,有x 2-x 1≥1. (3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1),即y =(2x 1+2)x -x 21+a. 当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.② 由①及x 1<0<x 2知,0<1x 2<2.由①②得,a =ln x 2+⎝⎛⎭⎫12x 2-12-1=-ln 1x 2+14⎝⎛⎭⎫1x 2-22-1. 令t =1x 2,则0<t<2,且a =14t 2-t -ln t.设h(t)=14t 2-t -ln t(0<t<2).则h ′(t)=12t -1-1t =(t -1)2-32t <0.所以h(t)(0<t<2)为减函数. 则h(t)>h(2)=-ln 2-1, 所以a>-ln2-1,而当t ∈(0,2)且t 趋近于0时,h(t)无限增大,所以a 的取值范围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).11.(2021·四川卷)设函数f(x)=e x +x -a(a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f(f(b))=b 成立,则a 的取值范围是( )A .[1,e]B .[1,1+e]C .[e ,1+e]D .[0,1] 【答案】A【高考押题】1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ). A .y =x 2B .y =|x |+1C .y =-lg|x |D .y =2|x |解析 对于C 中函数,当x >0时,y =-lg x ,故为(0,+∞)上的减函数,且y =-lg |x |为偶函数. 答案 C2.已知函数f (x )为R 上的减函数,则满足f (|x |)<f (1)的实数x 的取值范围是( ) A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 ∵f (x )在R 上为减函数且f (|x |)<f (1), ∴|x |>1,解得x >1或x <-1. 答案 D3.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx 的对称轴方程x =-b2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数. 答案 B4.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是 ( ).A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析 g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).故选B.答案 B5.函数y =-x 2+2x -3(x <0)的单调增区间是( ) A .(0,+∞) B .(-∞,1] C .(-∞,0)D .(-∞,-1]解析 二次函数的对称轴为x =1,又由于二次项系数为负数,拋物线开口向下,对称轴在定义域的右侧,所以其单调增区间为(-∞,0).答案 C6.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ). A .3 B .1 C .-1 D .-3解析 由f (-0)=-f (0),即f (0)=0.则b =-1, f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D7.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎡⎦⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x是一个满足条件的函数,所以f (6)=sin 3π=0,故选B.答案 B8.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式肯定成立的是( ).A .f ⎝⎛⎭⎫cos 2π3>f ⎝⎛⎭⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝⎛⎭⎫sin π6<f ⎝⎛⎭⎫cos π6D .f (cos 2)>f (sin 2)9.已知函数f (x )=⎩⎪⎨⎪⎧1-2-x ,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x-1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x=-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数.答案 C10.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x -1,则f (-5.5)的值为( ) A .2 B .-1 C .-12D .1解析f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D11.设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是 ( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数解析 明显D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误.答案 C12.已知函数f (x )=x 2+ax (x ≠0,a ∈R ).(1)推断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围.13.已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0. (1)若ab >0,推断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时的x 的取值范围.解 (1)当a >0,b >0时,由于a ·2x ,b ·3x 都单调递增,所以函数f (x )单调递增;当a <0,b <0时,由于a ·2x ,b ·3x 都单调递减,所以函数f (x )单调递减.(2)f (x +1)-f (x )=a ·2x +2b ·3x >0. (i)当a <0,b >0时,⎝⎛⎭⎫32x >-a2b , 解得x >log 32⎝⎛⎭⎫-a 2b ; (ii)当a >0,b <0时,⎝⎛⎭⎫32x <-a2b,解得x <log 32⎝⎛⎭⎫-a 2b . 14.函数f (x )对任意的a 、b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1. (1)求证:f (x )是R 上的增函数; (2)若f (4)=5,解不等式f (3m 2-m -2)<3.15.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1, (1)求证:f (x )是周期函数; (2)当x ∈[1,2]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2021)的值.解析 (1)证明 函数f (x )为奇函数,则f (-x )=-f (x ),函数f (x )的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),所以f (4+x )=f [(2+x )+2]=-f (2+x )=f (x ),所以f (x )是以4为周期的周期函数.(2)当x ∈[1,2]时,2-x ∈[0,1],又f (x )的图象关于x =1对称,则f (x )=f (2-x )=22-x -1,x ∈[1,2]. (3) ∵f (0)=0,f (1)=1,f (2)=0, f (3)=f (-1)=-f (1)=-1 又f (x )是以4为周期的周期函数. ∴f (0)+f (1)+f (2)+…+f (2021) =f (2 012)+f (2 013)=f (0)+f (1)=1.16.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ). (1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2 014]上的全部x 的个数.(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴f (x )是以4为周期的周期函数. (2)解 当0≤x ≤1时,f (x )=12x ,设-1≤x ≤0,则0≤-x ≤1, ∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ), ∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1).又设1<x <3,则-1<x -2<1, ∴f (x -2)=12(x -2).又∵f (x )是以4为周期的周期函数∴f (x -2)=f (x +2)=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎨⎧12x ,-1≤x ≤1,-12x -2,1<x <3.由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数, ∴f (x )=-12的全部x =4n -1(n ∈Z ).令0≤4n -1≤2 014,则14≤n ≤2 0154.又∵n ∈Z ,∴1≤n ≤503(n ∈Z ),∴在[0,2 014]上共有503个x 使f (x )=-12.。

函数的周期性的知识点总结

函数的周期性的知识点总结

函数的周期性的知识点总结一、周期函数的定义周期函数是指具有周期性的函数,即在一定的区间内,函数的数值在一定的时间间隔内重复出现。

更具体地说,对于函数f(x)来说,如果存在一个常数T>0,使得对任意的x,有f(x+T)=f(x),那么函数f(x)就是周期函数,而这个常数T被称为函数的周期。

二、周期函数的性质1. 周期函数的性质:周期函数的周期T是一个正数,且函数的周期性对于所有的自变量都成立,即对于任意的x,有f(x+T)=f(x)成立。

2. 周期函数的图像性质:周期函数的图像通常具有重复出现的特点,这使得它在图像上形成规律的波形。

3. 周期函数的特殊性质:有些周期函数具有特殊的对称性,比如正弦函数、余弦函数等。

三、周期函数的分类1. 固定周期函数:在一个确定的周期内,函数的数值是固定的,比如正弦函数、余弦函数等。

2. 变周期函数:在一个周期内,函数的数值是变化的,比如三角函数的变型函数、指数函数、对数函数等。

四、周期的求法对于周期函数,我们通常需要求解它的周期T,有以下几种方法:1. 观察法:通过观察函数的图像特征,找到函数的周期性。

2. 公式法:对于一些已知的周期函数,可以直接利用其性质和公式来求解周期。

3. 方程求解法:将周期函数的周期T代入函数的周期性公式中,得到关于T的方程,然后求解方程得到周期T。

五、周期函数的图像特征1. 周期函数的波形特点:周期函数的图像通常呈现出规律性的波形,如正弦函数、余弦函数的波形特点。

2. 周期函数的振幅:周期函数的振幅代表了波形的最大振幅,它决定了函数波形的高低。

3. 周期函数的相位:周期函数的相位代表了波形的平移特征,它决定了函数波形的水平位置。

六、周期函数的应用周期函数在很多领域都有重要的应用,如物理、工程、经济等,常见的应用包括:1. 物理波动:周期函数常常用于描述物理中的波动现象,如声波、光波等。

2. 电路分析:在电路分析中,周期函数可用于描述电流、电压的周期性变化。

函数周期性—搜狗百科

函数周期性—搜狗百科

函数周期性—搜狗百科1.概念的提出:将日历中“星期”随日期变化的周期性的出现和正弦函数值随角的变化周期性的出现进行对比,寻求出两者实质:当“自变量”增大某一个值时,“函数值”有规律的重复出现。

出示函数周期性的定义:对于函数y=f(x),假如存在一个非零常数T,使得当x取定义域内的任何值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

“当自变量增大某一个值时,函数值有规律的重复出现”这句话用数学语言的表达.2.定义:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)概念的具体化:当定义中的f(x)=sinx或cosx时,思考T的取值。

T=2kπ(k∈Z且k≠0)所以正弦函数和余弦函数均为周期函数,且周期为T=2kπ(k∈Z 且k≠0)展示正、余弦函数的图象。

周期函数的图象的形状随x的变化周期性的变化。

(用课件加以说明。

)强调定义中的“当x取定义域内的每一个值”令(x+T)2=x2,则x2+2xT+T2=x2所以2xT+T2=0, 即T(2x+T)=0所以T=0或T=-2x强调定义中的“非零”和“常数”。

例:三角函数sin(x+T)=sinxcos(x+T)=cosx中的T取2π3.最小正周期的概念:对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。

对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得。

所以正弦函数和余弦函数的最小正周期是2π。

(说明:如果以后无特殊说明,周期指的就是最小正周期。

)在函数图象上,最小正周期是函数图象重复出现需要的最短距离。

4.例:求下列函数的周期:(1)y=3cosx分析:cosx中的自变量只要且至少增加到x+2π时,函数cosx的值才重复出现,因而函数3cosx的值也才重复出现,因此y=3cosx的周期是2π.(说明cosx前面的系数和周期无关。

函数周期性的五类特性分析

函数周期性的五类特性分析

函数周期性的五类特性分析函数的周期性是指函数在一定范围内以一定的规律重复出现。

下面将对函数周期性的五类特性进行分析。

1. 周期长度周期长度是指函数的一个周期所占据的长度或时间跨度。

对于周期函数,其周期长度是固定的。

周期函数中常见的周期长度有:常数周期、正弦周期、余弦周期等。

2. 周期性的数学表示周期函数可以用数学表达式进行表示,从而体现其周期性。

常见的周期函数的数学表达式有:- 常数周期函数:$f(x) = C$,其中C为常数。

- 正弦函数:$f(x) = A\sin(Bx + C)$,其中A为振幅,B为角频率,C为相位。

- 余弦函数:$f(x) = A\cos(Bx + C)$,其中A为振幅,B为角频率,C为相位。

3. 周期性的图像特点周期函数的图像在一个周期内具有一定的规律性。

常见的周期函数的图像特点有:- 常数周期函数:图像为一条水平线段。

- 正弦函数:图像为连续的波形,振幅决定了波形的高度,角频率决定了波形的周期。

- 余弦函数:图像也为连续的波形,振幅决定了波形的高度,角频率决定了波形的周期,相位决定了波形在横向上的位置。

4. 周期性的应用周期函数的周期性特点在许多应用中起到重要作用。

例如,在物理学中,周期函数可以用来描述物体的振动或波动;在电子技术中,周期函数可以用来描述电流和电压的变化。

5. 周期性的拓展除了常见的周期函数外,还存在其他类型的周期函数,如三角函数的变种,指数函数的周期性等。

这些拓展的周期函数在实际问题的模型建立中也会起到重要作用。

以上是对函数周期性的五类特性的分析。

通过理解函数的周期性特点,我们可以更好地理解和应用周期函数。

高中数学函数周期性总结

高中数学函数周期性总结

( 4) y f ( x 3) 与 y f (3 x) 的图象关于直线 x 3 对称。
其中正确命题的序号为

11、若 f ( x) 为定义在 R 上的函数, 且 f (10 x) f (10 x) , f (20 x) f (20 x) ,则 f ( x) 为(

A. 奇函数且周期函数;
B.
奇函数且非周期函数;
f(x)=C(C 为常数 ) 是周期函数吗?有最小正周期吗? 三、抽象函数的周期总结
1、 f ( x T ) f ( x)
y f (x) 的周期为 T
2、 f ( x a) f (b x) (a b)
y f (x) 的周期为 T b a
3、 f ( x a) f (x)
y f ( x) 的周期为 T 2a
(C)1
(D)2
4、定义在 R 上的函数 f ( x) ,给出下列四个命题:
( 1)若 f ( x) 是偶函数,则 f ( x 3) 的图象关于直线 x 3 对称
( 2)若 f ( x 3) f (3 x), 则 f (x) 的图象关于点 (3,0) 对称
( 3)若 f ( x 3) = f (3 x) ,且 f (x 4) f (4 x) ,则 f ( x) 的一个周期为 2。
11 、 y f (x) 有两个对称中心 (a,0) 和 (b,0)
y f (x) 周期 T 2(b a)
12 、 y f (x) 有一条对称轴 x a 和一个对称中心 (b,0) y f (x) 周期 T 4(b a)
13 、奇函数 y f ( x) 满足 f (a x) f (a x)
y f ( x) 周期 T 4a 。
f (x)
f ( x)

函数周期性总结

函数周期性总结

函数周期性总结函数的周期性是指函数在一定的规律下重复出现的性质。

周期性是函数的重要特点之一,在数学和物理等领域中有着广泛的应用。

本文将对函数周期性进行总结,包括周期函数的定义、性质和应用。

首先,周期函数是指满足下列条件的函数:存在正数T,使得对于函数的定义域内的任意实数x,都有f(x+T)=f(x)成立。

其中T称为函数的周期。

周期函数是以一定的周期不断重复的函数。

周期函数的性质包括以下几个方面:1. 周期的唯一性:周期函数可能有多个周期,但这些周期一定是存在一个最小的正数T,使得对于任意实数x,都有f(x+T)=f(x)成立。

该最小的正数T称为函数的最小整周期,且它唯一确定。

2. 函数值的重复性:对于周期函数f(x),当x和x+T(T为周期)属于函数的定义域时,有f(x)=f(x+T)。

也就是说,函数在一个周期内的函数值是相同的。

3. 趋于零的性质:当x趋于正无穷或负无穷时,周期函数f(x)也具有相应趋于零的性质。

周期函数的应用范围广泛,主要有以下几个方面:1. 物理学中的应用:周期函数在物理学中有广泛的应用,如描述物体的运动规律、电磁波的传播等。

例如,正弦函数和余弦函数分别描述了振动和电磁波的传播规律。

2. 信号处理中的应用:周期函数在信号处理中有重要的应用。

例如,通过对周期性信号进行频谱分析,可以了解信号中的频率成分,进而用于信号处理和信息传输等领域。

3. 经济学中的应用:周期函数在经济学中的应用非常广泛,如经济波动的周期性。

周期性的经济波动可以通过周期函数进行建模和预测,为经济决策提供依据。

4. 生物学中的应用:周期函数在生物学中也有重要的应用,如描述生物体的生理规律、生物节律等。

生物体的某些生理过程和行为往往具有周期性规律。

综上所述,函数周期性是函数的一种重要特点,周期函数满足一定的周期重复性,并具有性质和应用。

通过对周期函数的研究和应用,可以更好地理解和描述自然界和社会现象中的周期性规律,为相关领域的研究和应用提供支持和指导。

函数的周期性。经典例题

函数的周期性。经典例题

函数的周期性。

经典例题函数的周期性周期函数的定义:对于函数f(x),存在非常数T,使得对于其定义域内总有f(x+T)=f(x),则常数T为函数的周期。

周期函数的性质:1.若f(x)=f(x+a),则y=f(x)是以T=a为周期的周期函数。

2.若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a是它的一个周期。

3.若函数f(x+a)=f(x-a),则f(x)是以T=2a为周期的周期函数。

4.若函数y=f(x)满足f(x+a)=f(x),则a为它的一个周期。

5.若函数y=f(x)满足f(x+a)=f(x-a),则2a为它的一个周期。

6.若f(x+a)= (1-f(x))/(1+f(x))(a>0),则f(x)是以T=2a为周期的周期函数。

7.若f(x+a)=-(1+f(x))/(1-f(x))(a>0),则f(x)是以T=4a为周期的周期函数。

8.若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a)是它的一个周期。

9.函数y=f(x)(x∈R)的图象关于两点A(a,y)、B(b,y)(a<b)都对称,则函数f(x)是以2(b-a)为周期的周期函数。

10.函数y=f(x)(x∈R)的图象关于A(a,y)和直线x=b(a<b)都对称,则函数f(x)是以4(b-a)为周期的周期函数。

11.若偶函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且2a是它的一个周期。

12.若奇函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且4a是它的一个周期。

13.若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a是它的一个周期。

14.若奇函数y=f(x)满足f(x+T)=f(x)(x∈R,T≠0),则f(x)=0.例1、(2006年山东卷)已知定义在R上的奇函数f(x)满足f(x+2)=2-f(x),则f(6)的值为(B)。

高中数学-函数的周期性

高中数学-函数的周期性

高中数学——函数的周期性一、知识回顾1.周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.关于函数周期性常用的结论(1)若满足()()f x a f x +=-,则()(2)[()]()f x a f x a a f x a f x +=++=-+=,所以2a 是函数的一个周期(0a ≠);(2)若满足1()()f x a f x +=,则(2)[()]f x a f x a a +=++= 1()f x a +=()f x ,所以2a 是函数的一个周期(0a ≠);(3)若函数满足1()()f x a f x +=-,同理可得2a 是函数的一个周期(0a ≠). (4)如果)(x f y =是R 上的周期函数,且一个周期为T ,那么))(()(Z n x f nT x f ∈=±.(5)函数图像关于b x a x ==,轴对称)(2b a T -=⇒.(6)函数图像关于()()0,,0,b a 中心对称)(2b a T -=⇒.(7)函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T -=⇒.二、方法规律技巧1.求函数周期的方法求一般函数周期常用递推法和换元法,形如y =Asin(ωx +φ),用公式T =2π|ω|计算.递推法:若f(x +a)=-f(x),则f(x +2a)=f[(x +a)+a]=-f(x +a)=f(x),所以周期T =2a.换元法:若f(x +a)=f(x -a),令x -a =t ,x =t +a ,则f(t)=f(t +2a),所以周期T =2a .2.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.3.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.4.关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题,体现了转化思想.三、例题讲解:1、设定义在R 上的函数()f x 满足()()22012f x f x ⋅+=,若()12f =,则()99________f =.2、已知f (x )是R 上的奇函数,对x ∈R 都有f (x+4)=f (x )+f (2)成立,若f (﹣1)=﹣2,则f (2013)等于( )A .2B .﹣2C .﹣1D .20133、定义在R 上的函数的图象关于点3,04⎛⎫- ⎪⎝⎭成中心对称,且对任意的实数x 都有f(x)=-f 32x ⎛⎫+ ⎪⎝⎭,f(-1)=1,f(0)=-2,则f(1)+f(2)+…+f(2013)=( ) A .0 B .-2C .1D .-44、已知周期函数f(x)的定义域为R ,周期为2,且当-1<x≤1时,f(x)=1-x 2.若直线y =-x +a 与曲线y =f(x)恰有2个交点,则实数a 的所有可能取值构成的集合为( )A .{a|a =2k +34或2k +54,k ∈Z} B .{a|a =2k -14或2k +34,k ∈Z} C .{a|a =2k +1或2k +54,k ∈Z} D .{a|a =2k +1,k ∈Z}5、设f(x)是定义在R 上且周期为2的函数,在区间[-1,1]上,f(x)=1,102,01ax x bx x x a+-≤<⎧⎪+⎨≤≤⎪+⎩,其中a ,b ∈R.若f 12⎛⎫⎪⎝⎭=f 32⎛⎫ ⎪⎝⎭,则a +3b 的值为________.四、新题变式探究【变式一】已知定义在R 上的函数()f x 满足条件;①对任意的x R ∈,都有()()4f x f x +=;②对任意的[]()()121212,0,2x x x x x f x ∈<<且,都有f ;③函数()2f x +的图象关于y 轴对称.则下列结论正确的是( )A.()()()7 6.5 4.5f f f <<B.()()()7 4.5 6.5f f f <<C.()()()4.5 6.57f f f <<D.()()()4.57 6.5f f f <<【变式二】设g(x)是定义在R 上,以1为周期的函数,若函数f(x)=x+g(x)在区间[0,1]上的值域为[-2,5],则f(x)在区间[0,3]上的值域为 .【综合点评】充分利用周期函数的定义将所求函数值的问题转化为已知区间的求值问题是解题关键.五、易错试题常警惕易错典例1:若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________. 易错典例2:定义在R 上的函数f(x)既是奇函数,又是周期函数,T 是它的一个正周期.若将方程f(x)=0在闭区间[-T ,T]上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .5 【变式】设()f x 是连续的偶函数,且当0x >时,()f x 是单调函数,则满足3()()4x f x f x +=+的所有x 之和为 ( )A .-3B .3C .-8D .8练习:A 基础测试1.【江苏省南京市2014届高三9月学情调研】设函数()f x 是定义在R 上的偶函数,当0x ≥时,()21xf x =+.若()3f a =,则实数a 的值为 . 2.【2014届吉林市普通高中高中毕业班复习检测】给出下列函数①cos y x x =②2sin y x =③2y x x =-④x x y e e -=-,其中是奇函数的是( )A. ①②B. ①④C. ②④D. ③④3.【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知)(x f y =是定义在R 上的偶函数,且在),0[∞+上单调递增,则满足)1()(f m f < 的实数m 的范围是 .4.【吉林市普通中学2013-2014学年度高中毕业班摸底测试理】()tan sin 1f x x x =++,若2)(=b f ,则=-)(b f ( )A. 0B. 3C. -1D. -25. 【安徽省示范高中2014届高三上学期第一次联考数学(理)】已知偶函数()f x 对任意x R ∈均满足(2)(2)f x f x +=-,且当20x -≤≤时,3()log (1)f x x =-,则(2014)f 的值是 .B 能力提升训练1. 【江西省2014届高三新课程适应性考试理科数学】已知函数()y f x =是周期为2的周期函数,且当[1,1]x ∈-时,||()21x f x =-,则函数()()|lg |F x f x x =-的零点个数是( )A .9B .10C .11D .122. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】定义在R 上的奇函数)(x f y =满足0)3(=f ,且不等式)()(x f x x f '->在),0(+∞上恒成立,则函数)(x g =1lg )(++x x xf 的零点的个数为( )A. 4B. 3C. 2D. 13. 【广东省中山市一中2014届高三第二次统测】奇函数()f x 满足对任意x R ∈都有()()2f x f x +=-成立,且()18f =,则(2012)(2013)(2014)f f f ++的值为( )A . 2B . 4C . 6D . 8 4. 【广东省广州市海珠区2014届高三入学摸底考试数学理试题】已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 ( ) A .1- B. 2- C. 2 D.15.【2014届山东省日照市高三校际联考】已函数()f x 是定义在[]1,1-上的奇函数,在[0,1]上时()()2ln 11xf x x =++- (Ⅰ)求函数()f x 的解析式;(Ⅱ)解不等式2(21)(1)0f x f x -+-≥.C 思维扩展训练1. 【湖北孝感高中2014届高三年级九月调研考试】已知()y f x =是定义在R 上周期为4的奇函数,且02x ≤≤时,2()2f x x x =-则1012x ≤≤时,()f x =_________________2. 【2014届新余一中宜春中学高三年级联考数学(理)】已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或-12C .-14或-12D .0或-14 3. 定义在R 上的奇函数()f x ,满足(3)()f x f x +=,(2)0f =,则函数()y f x =在区间()0,6内零点个数的情况为( )A .2个B .4个C .6个D .至少6个4. 已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤< 时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 的取值范围是 .5. 【2014届上海市青浦区高三上学期末】定义在R 上的奇函数()f x 有最小正周期4,且()0,2x ∈时,142)(+=x xx f (1)判断并证明()f x 在()0,2上的单调性,并求()f x 在[]2,2-上的解析式;(2)当λ为何值时,关于x 的方程()f x λ=在[]6,2上有实数解?.。

函数周期性的五类经典题型

函数周期性的五类经典题型
2.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.
解析:因为f(x)为奇函数并且f(x-4)=-f(x).(对称轴)
所以f(x-4)=-f(4-x)=-f(x),即f(4-x)=f(x),且f(x-8)=-f(x-4)=f(x),
由y=,得x2-2x+y2=0,
即(x-1)2+y2=1,
画出函数f(x)和直线y=k(x+1)的图象.
因为直线kx-y+k=0(k>0)与函数f(x)的图象有且仅有三个交点,所以根据函数图象xx,<k<.
2.已知f(x)是Rxx最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]xx与x轴的交点个数为________.
A.-1B.-2
C.2D.1
解析:选A 因为f(x)是奇函数,且周期为2,所以f(-2 013)+f(2 014)=-f(2 013)+f(2 014)=-f(1)+f(0).又当x∈[0,2)时,f(x)=log2(x+1),所以f(-2 013)+f(2 014)=-1+0=-1.
2.若偶函数y=f(x)为R上的周期为6的周期函数,且满足f(x)=(x+1)(x-a)(-3≤x≤3),则f(-6)等于________.(对定义域的运用)
即y=f(x)的图象关于x=2对称,并且是周期为8的周期函数.
因为f(x)在[0,2]上是增函数,
所以f(x)在[-2,2]上是增函数,在[2,6]上为减函数,据此可画出y=f(x)的图象.
其图象也关于x=-6对称,

专题函数周期性

专题函数周期性

专题 函数的周期性一 知识点精讲1 .周 期函 数的定 义:对 于 f (x) 定 义域内 的每 一个 x,都存在非零 常数 T ,使得f (x T ) f ( x) 恒成立,则称函数 f ( x) 拥有周期性, T 叫做 f (x) 的一个周期,则 kT ( k Z, k 0 )也是 f (x) 的周期, 所有周期中的最小正数叫 f (x) 的最小正周期. 周期函数的定义域必然是无量集 2 性质①若 f ( x ) 的周期中,存在一个最小的正数,则称它为 f ( x ) 的最小正周期;②若周期函数 f ( x ) 的周期为 T ,则 f (x) (0) 是周期函数,且周期为T 。

||3.几种特其他拥有周期性的抽象函数:函数 yf x 满足对定义域内任一实数 x (其中 a0 为常数)( 1)( 2)fx f xa ,则 yf x 的周期 Ta . fx af x ,则 f x 的周期 T2a .(3) fx a1 x 的周期 T 2a .f ,则 fx( 4) fx a f x a ,则 f x 的周期 T2a . (5) f ( xa) 1f ( x) ,则 f x 的周期 T 2a .1 f ( x)(6) f ( xa)1f (x),则 f x 的周期 T 4a 数.1 f (x)(7) f ( xa) 1 f ( x) ,则 f x 的周期 T 4a .1 f ( x)( 8)函数 y f (x) 满足 f ( a x) f (a x) ( a 0 ),若 f ( x) 为奇函数,则其周期为T 4a ,若 f (x) 为偶函数,则其周期为T2a .(9)函数 yf ( x) x R 的图象关于直线 xa 和 xb a b 都对称,则函数 f (x) 是以 2 b a 为周期的周期函数.(10)函数 yf ( x) x R 的图象关于两点A a, y 0 、B b, y 0ab 都对称, 则函数f ( x) 是 2 b a 为周期的周期函数.( 11)函数 yf (x)x R 的图象关于 A a, y 0和直线 xb ab 都对称,则函数f (x) 是以 4 ba 为周期的周期函数.(12)f ( x a)f ( x)f (x - a) ,则 f (x) 的周期 T6a .二典例解析1.设 f(x) 是 ( -∞ , +∞ ) 上的奇函数, f(x+2)=-f(x) ,当 0≤ x ≤1 时,f(x)=x ,则 f=()B.-D. -2.若 y =f (2 x ) 的图像关于直线 xa和 xb(ba) 对称,则 f ( x ) 的一个周期为()2 2A .a bB . 2(b a)C .ba D . 4(b a)223.已知在 R 上是奇函数满足 f (x 3)f ( x), f (1) 2 ,则 f (5)4.已知定义在 R 上的奇函数 f (x) 满足 f ( x 2) f (x) ,则 f (2008) =例 5.已知函数 y f (x) 是定义在 R 上的周期函数, 周期 T 5 ,函数 yf ( x)( 1 x 1)是奇函数又知 y f ( x) 在 [0,1] 上是一次函数, 在 [1,4] 上是二次函数, 且在 x2 时函数取得最小值 5 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题五 函数的周期性
一、定义
二、结论:
1. 若对f(x)定义域内的任意x ,恒有下列条件之一成立:
①f(x+a)=-f(x) ②f(x+a)=)x (f 1 ③f(x+a)= -)
x (f 1 ④f(x+a)= f(x -a) ⑤f(x+a)=11+-)x (f )x (f ⑥f(x+a)=)x (f )x (f +11- 则f(x)是周期函数,____________是它的一个周期。

2.若f(x)同时关于直线x=a 与直线x=b 对称(a <b ),则f(x)是周期函数,____________是它的一个周期,若f(x)关于直线x=a 对称同时关于点(b ,0)对称(b ≠a ),则f(x)是周期函数,____________是它的一个周期,若f(x)关于点(a ,0)对称同时关于点(b ,0)对称(b ≠a ),则f(x)是周期函数,____________是它的一个周期。

三、应用
例1.设函数f(x)(x ∈R)是以3为周期的奇函数,且f(1)>1,f(2)=a ,则( ) A.a >2 B.a <-2 C.a >1 D.a <-1
例2.设f(x)是(-∞,+∞)上的奇函数,f(x+2)= -f(x),当0≤x ≤1时,f(x)=x ,则 f(7.5)等于( )
A.0.5 B.-0.5 C.1.5 D.-1.5
例3.已知函数f(x)满足:f(1)=
4
1,4f(x) .f(y)=f(x+y)+f(x -y) (x ,y ∈R),则f (2014)=________。

例4.在数列{n a }中,1a =2
1,1+n a =1-n a 1,则2014a =________。

例5.设f(x)是定义域在R 上的偶函数,其图象关于直线x=1对称,对任意1x ,2x ∈[0,2
1]都有f(1x +2x )=f(1x ).f(2x )。

(1) 设f(1)=2,求f(21)、f (4
1)的值。

(2) 证明:函数f(x)是周期函数。

例6.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)图象关于直线x=1对称,当x ∈[0,1]
时,f(x)=-x 2 1.
(1) 求证:f(x)是周期函数。

(2) 当x ∈[1,2]时,求f(x)的解析式。

(3) 计算f(0)+f(1)+f(2)+f(3)+ …+f(2014)的值。

四、作业
1.f(x)(x ∈R)是以5为周期的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=__________。

2.已知定义在R上的奇函数f(x)满足f(x+2)= -f(x),则f(6)的值为( )
A.-1 B.0 C.1 D.2
3.已知f(x)是R 上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x x -3,则函数y=f(x)的图象在区间[ 0,6 ]上与x 轴的交点个数为( )
A.6 B.7 C.8 D.9
4.在数列{n a }中,1a =1,2a =5,2+n a =1+n a -n a (n ∈+N ),则2014a =__________。

5.f(x)是定义在R 上的奇函数,且满足f(x+2)= f(x),又当x ∈(0,1)时,f(x)=-x 21,求 )(log f 62
1的值。

相关文档
最新文档