电子跑表的设计与实现
电子跑表设计毕业设计

电子跑表ABSTRACT:Because of its extremely high performance-price ratio, the single-chip computer (SCC) has been paid great attention to ever since it came out in 1970s of 20th Century, and has gained an extensive applicable field and fast development. Among all kinds of SCCs, 51 SCC is the most typical and representative one. This design, adopting 80C51 chip as the core part with some necessary peripheral circuits, is a simple electronic clock which uses 5V DC as the power supply. In hardware aspect, besides the CPU, four seven-segment LED digi-tubes are used for display, which work in a dynamically scanning display mode and driven by 74SL245 chip. The LEDs can accurately indicate hour and minute and two buttons can be used to adjust the time. While in the software aspect, the programming language is assembly language. The whole electronic clock system has functions of time display, adjustment, stopwatch and reset, etc. This design enables me to have greater insight into the basic circuit of SCC, and the basic methods of timer control and interruption programming, so that is a training of my ability of learning, designing and developing software and hardward.KEY WORDS:80C51 LED digi-tubes Electronic clock Stopwatch摘要:单片机自20世纪70年代问世以来,以其极高的性能价格比,受到人们的重视和关注,应用很广、发展很快。
单片机电子表设计

目录第1章单片机和数字钟概述 (5)第2章系统总体方案设计 (6)2.1课程设计内容要求 (6)2.2设计思路简要分析 (6)第3章硬件设计 (8)3.1 结构框图 (8)3.2工作原理 (8)3.2主要硬件功能及机构介绍 (10)3.2.1、晶振电路 (10)3.2.2、AT89C51 (10)3.2.3、6位7段共阳显示器 (11)3.2.4、8255芯片 (12)第4章软件设计与调试 (13)4.1 系统软件方案的设计 (13)4.2 系统应用程序设计 (13)4.2.1主程序设计 (13)4.2.2子程序设计 (15)第5章调试和使用说明 (17)第六章总结与体会 (18)参考文献 (20)附录 (34)第1章单片机和数字钟概述单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
我们都知道,设计系统的关键是思路,而系统通常又由各个模块所组成,所以必须先把所要设计系统模块化,再把各个模块组合在一起,实现一个完整的系统。
这就要求我们先要有较扎实的理论知识,特别对芯片的各个管脚功能必须了解,这样才能进行硬件设计。
同时,又必须掌握MCS51的指令功能,通过编程实现其功能,这就能让我们更好地理解《单片机原理及应用》这门课程,也是一种理论在实践中的运用。
如果说我们以前学的都只是些理论,包括c语言,微机原理,c++,微机接口,protel,单片机,那么这次的课程设计就是一个贯穿多学科的综合性实践!单片机自20世纪70年代问世以来,以极其高的性价比受到人们的重视和关注,所以应用很广,发展很快。
单片机的优点是体积小、重量轻、抗干扰能力强,对环境要求不高,价格低廉,可靠性高,灵活性好,开发较为容易。
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
数字跑表设计eda课程设计

数字跑表设计eda课程设计摘要:一、引言1.课程背景介绍2.数字跑表设计意义二、数字跑表设计原理1.跑表系统架构2.数字跑表核心模块三、EDA工具介绍1.EDA工具的作用2.EDA工具的选择四、数字跑表设计流程1.设计输入2.设计仿真3.物理布局4.物理验证5.结果分析与优化五、数字跑表设计实践1.设计参数设定2.使用EDA工具进行设计3.设计验证与优化六、数字跑表设计成果与应用1.设计成果展示2.设计实用性分析3.设计前景展望七、总结与展望1.课程学习总结2.数字跑表设计发展趋势正文:一、引言随着科技的飞速发展,电子设计自动化(EDA)技术在电子设计领域中的应用越来越广泛。
数字跑表作为一种实用且具有较高技术含量的电子设备,其设计过程离不开EDA技术的支持。
本课程设计旨在让学生掌握数字跑表的设计方法,熟悉EDA工具的使用,提高实际动手能力和创新能力。
二、数字跑表设计原理数字跑表设计主要包括系统架构设计和核心模块设计两部分。
系统架构设计要求明确整个跑表的组成,包括时钟模块、计数模块、显示模块、控制模块等。
核心模块设计则是针对各个功能模块提出具体的实现方案,如采用何种器件、电路拓扑结构等。
三、EDA工具介绍EDA工具在数字跑表设计过程中发挥着至关重要的作用。
它能帮助设计师快速完成电路设计、仿真、验证及优化等任务。
常见的EDA工具包括原理图编辑器、布图布线工具、仿真器、时序分析工具等。
本课程将使用某款EDA工具进行数字跑表的设计。
四、数字跑表设计流程1.设计输入:根据数字跑表的功能需求,编写设计说明书,明确各个模块的功能、性能参数及接口关系。
2.设计仿真:利用EDA工具进行电路仿真,验证电路的正确性。
3.物理布局:根据电路原理图,进行物理布局设计,考虑器件摆放、连线走向等因素。
4.物理验证:对物理布局进行验证,确保电路符合制程要求。
5.结果分析与优化:分析仿真结果,找出存在的问题,对设计进行优化。
五、数字跑表设计实践1.设计参数设定:根据数字跑表的实际需求,设定各项性能参数,如时钟频率、计数范围等。
电子实验数字跑表

电子科技大学基于FPGA的数字系统设计——数字跑表的设计学生姓名:学号:指导教师:摘要本文利用XILINX-ISE开发软件和XILINX EDA教学实验开发板实现数字跑表的开始、暂停以及复位等功能。
ISE工程利用VHDL语言编写,单模块包含时钟分频进程、始能及清零进程、时钟数据产生进程、位码产生进程和显示进程;分模块设计包含时钟分频模块、控制模块、计数器模块、显示模块。
计时区间00’00’’00到59’59’’99。
课余设计的单模块源程序:library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;---- Uncomment the following library declaration if instantiating---- any Xilinx primitives in this code.--library UNISIM;--use UNISIM.VComponents.all;entity paobiao isPort ( clkin : in STD_LOGIC;enable : in STD_LOGIC;clear : in STD_LOGIC;seg : out STD_LOGIC_VECTOR (7 downto 0);wei : out STD_LOGIC_VECTOR (2 downto 0);enout : out STD_LOGIC);end paobiao;architecture Behavioral of paobiao issignal cnt100: integer range 1 to 240000;signal cnt1k: integer range 1 to 24000;signal clk100: std_logic:='0';signal clk1k : std_logic:='0';signal en: std_logic:='0';signal d1: integer range 0 to 5:=0;signal d2: integer range 0 to 9:=0;signal d3: integer range 0 to 5:=0;signal d4: integer range 0 to 9:=0;signal d5: integer range 0 to 9:=0;signal d6: integer range 0 to 9:=0;signal num: integer range 1 to 6:=1;beginenout<='0';process(clkin)beginif clkin'event and clkin='1' thenif cnt100=240000 thencnt100<=1;clk100<=not clk100;elsecnt100<=cnt100+1;end if;if cnt1k=24000 thencnt1k<=1;clk1k<=not clk1k;elsecnt1k<=cnt1k+1;end if;end if;end process;process(enable,clear)beginif clear='0' thenen<='0';elseif enable'event and enable='1' thenen<=not en;end if;end if;end process;process(clear,d1,d2,d3,d4,d5,d6)beginif clear='0' thend1<=0;d2<=0;d3<=0;d4<=0;d5<=0;d6<=0;-- en<=0;elseif en='1' and clk100'event and clk100='1' then if d6=9 thend6<=0;if d5=9 thend5<=0;if d4=9 thend4<=0;if d3=5 thend3<=0;if d2=9 thend2<=0;if d1=5 thend1<=0;elsed1<=d1+1;end if;elsed2<=d2+1;end if;elsed3<=d3+1;end if;elsed4<=d4+1;end if;elsed5<=d5+1;end if;elsed6<=d6+1;end if;end if;end if;end process;process(num)beginif clk1k'event and clk1k='1' thenif num=6 thennum<=1;elsenum<=num+1;end if;end if;end process;process(num)variable data: integer range 0 to 9;begincase num iswhen 1 => wei<="111";data:=d1;when 2 => wei<="110";data:=d2;when 3 => wei<="100";data:=d3;when 4 => wei<="011";data:=d4;when 5 => wei<="001";data:=d5;when 6 => wei<="000";data:=d6;end case;case data iswhen 0 => seg<="00000011";when 1 => seg<="10011111";when 2 => seg<="00100101";when 3 => seg<="00001101";when 4 => seg<="10011001";when 5 => seg<="01001001";when 6 => seg<="01000001";when 7 => seg<="00011111";when 8 => seg<="00000001";when 9 => seg<="00001001";end case;end process;end Behavioral;管脚分配NET "clkin" LOC = T8;NET "enout" LOC = D7;NET "seg<0>" LOC = C11;NET "seg<1>" LOC = A11;NET "seg<2>" LOC = B12;NET "seg<3>" LOC = A12;NET "seg<4>" LOC = C12;NET "seg<5>" LOC = C13;NET "seg<6>" LOC = A13;NET "seg<7>" LOC = B14;NET "wei<0>" LOC = F8;NET "wei<1>" LOC = D8;NET "wei<2>" LOC = E7;NET "clear" LOC = E4;NET "enable" LOC = G6;课时设计一、系统总体设计指标:1、跑表精度为0.01秒2、跑表计时范围为:1小时3、设置开始计时/停止计时、复位两个按钮4、显示工作方式:用六位BCD七段数码管显示读数。
eda数字跑表课程设计

eda数字跑表课程设计一、课程目标知识目标:1. 学生能理解EDA(电子设计自动化)的基本概念,掌握数字跑表的工作原理;2. 学生能掌握数字跑表设计中所涉及的电子元件、电路图及编程知识;3. 学生能了解数字跑表在实际应用中的功能与作用。
技能目标:1. 学生能运用所学知识,设计并搭建简单的数字跑表电路;2. 学生能通过编程实现对数字跑表的调试与优化;3. 学生能运用团队协作、问题解决和创新能力,完成数字跑表的设计与制作。
情感态度价值观目标:1. 学生培养对电子科技的兴趣和热情,增强实践操作的信心;2. 学生培养团队协作精神,提高沟通与表达能力;3. 学生认识到科技对社会发展的作用,树立创新意识,增强社会责任感。
课程性质:本课程为实践性、综合性课程,结合理论知识与实际操作,培养学生的动手能力、创新能力和团队合作能力。
学生特点:六年级学生具有一定的电子知识基础和编程能力,对新鲜事物充满好奇心,善于合作与探究。
教学要求:教师需引导学生掌握EDA数字跑表的基本知识,注重实践操作,鼓励学生创新与思考,提高学生的问题解决能力。
在教学过程中,关注学生的个体差异,给予个性化指导,确保课程目标的达成。
通过本课程的学习,使学生能够将所学知识应用于实际生活中,提高综合素质。
二、教学内容1. 电子设计自动化(EDA)基础理论:- EDA概念及其发展历程;- 数字跑表的基本原理与功能。
2. 数字跑表电路设计:- 常用电子元件的特性与选型;- 电路图绘制及仿真;- 数字跑表电路搭建与调试。
3. 编程与控制:- 编程环境及编程语言介绍;- 数字跑表程序设计;- 程序调试与优化。
4. 实践操作与团队协作:- 分组进行数字跑表设计与制作;- 团队合作、问题解决与创新能力培养;- 实践成果展示与评价。
教材章节关联:本教学内容与教材中“电子设计自动化”、“数字电路设计”和“编程控制”等章节相关。
具体内容包括:- 电子设计自动化:第1章;- 数字电路设计:第3章;- 编程控制:第5章。
数字跑表的设计与仿真

EAST CHINA INSTITUTE OF TECHNOLOGY EDA设计与应用课程设计:数字跑表的设计与仿真学院:机械与电子工程学院专业:电子科学与技术班级:1221402学号:201220140223姓名:杨卡2014年11月一、实验目的:1)进一步学习更复杂的EDA项目设计,更熟练地掌握VHDL语言设计。
2)学习动态数码管的VHDL编程。
3)更加熟练计时显示、进位和校时的编程方法。
二、实验要求:1)设计一个具有、‘分'、‘秒'、‘ 1/100 秒'的十进制数字显示的数字跑表。
2)要有外部开关,控制计数器的直接清零、启动和暂停/ 连续计时功能。
三、实验内容:1)数字跑表功能:计时精度10ms,计时范围为59分59.99秒。
设置两种模式,模式一:对单个人计数,能实现暂停、显示及清零功能,并在数码管上实时显示;模式2:实现对多个人的同时计时,在数码管上实时显示,并能在液晶显示屏上回显出 6 个时间,可控制显示。
2)数字跑表分模块设计:数字跑表设置如下的子模块。
分频模块;模式 1 控制模块;模式 2 控制模块;计时模块;数码管译码模块;液晶译码模块;液晶显示模块。
百分秒、秒和分等信号即采用BCD译码计数方式,根据上述设计要求,用Verilog 对数字跑表的描述如下。
仍然采用引脚属性定义语句进行引脚的锁定。
四、设计程序(此处只写出与课本中不同的部分)为了便于显示,百分秒、秒和分钟信号皆采用BCD码计数方式,并直接输出到6 个数码管显示出来。
根据上述设计要求,用Verilog HDL 语言对数字跑表描述如下。
/* 信号定义:CLK: CLR: PAUSE: MSH,MSL:时钟信号;异步复位信号;暂停信号;百分秒的高位和低位;SH,SL :秒的高位和低位;MH,ML:分钟的高位和低位。
*/module paobiao(CLK,CLR,PAUSE,MSH,MSL,SH,SL,MH,ML); input CLK,CLR,PAUSE; output[3:0] MSH,MSL,SH,SL,MH,ML; reg[3:0] MSH,MSL,SH,SL,MH,ML;reg cn1,cn2; //cn1 为百分秒向秒进位,cn2 为秒向分进位//**************** 百分秒计数进程,每计满100,cn1 产生一个进位*******always @(posedge CLK or posedge CLR)begin if(CLR) begin {MSH,MSL}<=8'h00; cn1<=0;end // 异步复位else if(!PAUSE) //PAUSE 为0 时正常计数,为1 时暂停计数begin if (MSL==9) begin MSL<=0;if (MSH==9) begin MSH<=0;cn1<=1;endelse MSH<=MSH+1;endelse begin MSL<=MSL+1;cn1<=0;endendend秒计数进程,每计满60,cn2 产生一个进位********* always @(posedge cn1 or posedge CLR)begin if(CLR) begin {SH,SL}<=8'h00;cn2<=0; end // 异步复位else if(SL==9)begin SL<=0;if (SH==5) begin SH<=0;cn2<=1; end else SH<=SH+1;endelse begin SL<=SL+1;cn2<=0;end end //****************** 分钟计数进程,每计满60,系统自动清零********* always @(posedge cn2 or posedge CLR) begin if(CLR) begin {MH,ML}<=8'h00;end // 异步复位else if (ML==9) begin ML<=0;if(MH==5) MH<=0;else MH<=MH+1;endelse ML<=ML+1;endendmodule五、心得体会:此次课程设计,从程序设计到仿真,我经历了一个困难重重,愈挫愈勇的过程。
基于STM32的电子计步器的设计与实现

基于STM32的电子计步器的设计与实现随着生活节奏的不断加快,留给人们的锻炼时间越来越少,走路和跑步成为人们日常生活中为数不多的运动之一。
计步器携带方便,能很好地完成量化运动量的目标。
因此,最近几年各种计步器以及计步软件大量出现。
鉴于人们对于步数检测准确度的要求以及使用便利的需求,十分有必要设计一套计步算法并应用于相关的计步器。
本设计的研究目的是设计出一款高精度、便携的计步器。
本设计的主要难点在于数据滤波算法以及计步检测算法的研究。
首先,本设计分析了几种数据滤波的方法,选择了比较适合的卡尔曼滤波算法。
接着,分析了现有的几种计步检测算法,包括动态阈值算法和峰值检测算法。
发现这些算法都不是很准确,所以本文设计了一种新的计步检测算法,提高了计步检测的精度,为其他研究者在步数检测方面提供了一种较好的解决方案。
最后,本设计还采用了TFT彩屏的人机交互界面,可以实时显示卡路里、时间以及步数。
通过实际调试过程中的不断改进,实现了计步器的准确检测。
关键词:计步器MEMS传感器滤波步数检测目录1 绪论 (1)1.1 研究背景和意义 (1)1.2 国内外研究现状 (1)1.3 章节安排 (2)2 系统总体设计方案 (3)2.1 设计目标 (3)2.2 系统架构分析 (3)2.3 系统方案分析 (3)2.3.1 佩戴位置选择 (3)2.3.2 MEMS惯性传感器的数据读取 (4)2.3.3 数据融合与滤波 (5)2.3.4 计步算法 (8)3 系统硬件设计 (9)3.1 系统硬件电路总体设计 (9)3.2 单片机最小系统设计 (9)3.3 MEMS传感器 (10)3.4其他外围电路 (11)3.4.1 电源转换 (11)3.4.2 TFT彩屏电路 (11)3.4.3 无线串口通信 (12)4 系统软件设计 (13)4.1 系统软件总体设计 (13)4.2中断设计 (14)4.2.1 定时器中断 (14)4.2.2 串口中断 (15)4.2.3 中断优先级判断 (16)4.3 MPU6050原始数据采集 (16)4.3.1 陀螺仪和加速度计的配置工作 (16)4.3.2 串行口的配置工作 (17)4.3.3 IIC读取姿态传感器数据 (17)4.4 数据处理 (18)4.4.1 数据类型统一 (18)4.4.2 卡尔曼滤波 (19)4.5 计步算法 (21)4.6 无线串口通信 (22)5 系统调试 (23)5.1 系统调试上位机 (23)5.2 标定MPU6050零点 (23)5.3 卡尔曼滤波参数调试 (23)5.4 计步测试 (24)6 总结与展望 (25)6.1 总结 (25)6.2 展望 (25)6.3 课题研究对环境以及社会的影响 (26)附录 (27)附录一系统硬件原理图和PCB (27)附录二系统实物图 (28)附录三系统核心 (28)1 绪论1.1 研究背景和意义随着社会不断进步以及生活水平不断提高,人们逐渐开始重视自身的健康。
数字跑表设计

学号:课程设计题目数字跑表设计学院自动化学院专业班级姓名指导教师年月日课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 数字跑表设计初始条件:1.运用所学的模拟电路和数字电路等知识;2.用到的元件:实验板、电源、连接导线、74系列芯片、555芯片或微处理器等。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.设计一个具有、‘分’、‘秒’、‘1/100秒’的十进制数字显示的计时器。
2.要有外部开关,控制计数器的直接清零、启动和暂停/连续计时功能;3.严格按照课程设计说明书要求撰写课程设计说明书。
时间安排:第1天下达课程设计任务书,根据任务书查找资料;第2~4天进行方案论证,软件模拟仿真并确定设计方案;第5天提交电路图,经审查后领取元器件;第6~8天组装电路并调试,检查错误并提出问题;第9~11天结果分析整理,撰写课程设计报告,验收调试结果;第12~14天补充完成课程设计报告和答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录引言 (1)1设计意义及要求 (2)1.1设计意义 (2)1.2设计要求 (2)2方案设计 (3)2.1设计思路 (3)2.2 方案设计 (4)2.2.1设计方案一(个人方案)电路图 (4)2.2.2设计方案二(小组方案)电路图简单说明 (5)2.3方案比较 (6)3部分电路设计 (7)3.1计数单元 (7)3.2开始和暂停单元 (11)3.3清零功能单元 (12)3.4脉冲输出电路 (14)3.5译码及显示电路 (15)4调试与检测 (18)4.1调试中故障及解决办法 (18)4.2 调试与运行结果 (18)5仿真操作步骤及使用说明 (19)结束语 (20)参考文献 (21)附录1 (22)附录2 (23)本科生课程设计成绩评定表......................... 错误!未定义书签。
引言过去的三个世纪,我们经历了第一次工业革命,人类开始进入蒸气时代,第二次工业革命,人类开始进入电气时代并在信息革命资讯革命中达到顶峰。
EDA课程设计——数字跑表

第一章引言数字电子技术的应用一直在向着广度和深度扩展。
时至今日,“数字化”的浪潮几乎席卷了电子技术应用的一切领域。
由于电子产品的更新周期日益缩短,新产品开发速度日益加快,因而对电子设计自动化(EDA)提出了更高的要求,也有力地促进了EDA技术的发展和普及。
在数字集成电路方面,电路的集成度如摩尔定律(Moore’s Law)所预言的那样,以每1-2年翻一番的速度增长,使电路的复杂程度越来越高、规模越来越大。
同时,在基本技能方面,对使用EDA工具的能力也提出了更高的要求。
因此,学好EDA课程设计至关重要。
第二章 设计说明1.器件介绍-集成十进制加法计数器74160集成同步十进制加法计数器74160。
图2-1给出了74160的引脚排列图和逻辑符号图。
除了具有十进制加法计数功能外,还具有异步复位、同步预置数和计数状态保持、对输入的时钟信号进行分频等功能。
CLRN 为异步复位端,LDN 为预置数控制端,A-D 为预置状态输入端,RCO 为进位输出端,ENT 和ENP 为工作状态控制端(双使能端)。
图2-1 74160逻辑符号图 表2-1 74160功能特性 表2-2是74160的功能表,它给出了各种控制信号作用下计数器的工作状态,具体如下。
序号 CLK CLRN LDN ENP ENT 工作状态 1 × 0 × × × 复位 2 ↑ 1 0 × × 预置数 3 ↑ 1 1 1 1 正常计数 4 × 1 1 × 0 保持,且C=0 5×110 1保持表2-2 74160的功能表⑴当CLRN=0时,无论其他功能端为何状态,计数器都将复位,有QD ~QA=0000(注:QD 为状态端最高位)。
⑵当CLRN=1、LDN=0时,计数器处于预置数状态。
在出现此情况后的第一个CLK 上升沿,将预置输入端加载的数据送入计数器,即有QD ~QA=D ~A(注:D 为置入端最高位)。
51单片机跑表课程设计

51单片机跑表课程设计一、课程目标知识目标:1. 学生能理解51单片机的基本原理,掌握其编程方法。
2. 学生能掌握跑表功能实现的硬件设计,包括定时器/计数器的工作原理和应用。
3. 学生能了解并运用中断系统,实现跑表的精确计时功能。
技能目标:1. 学生能够运用C语言编写程序,实现对51单片机的控制。
2. 学生能够设计并搭建简单的跑表电路,进行功能调试和优化。
3. 学生能够通过课程学习,培养动手实践能力,提高问题解决技巧。
情感态度价值观目标:1. 学生在课程学习中,培养对电子技术和编程的兴趣,提高学习积极性。
2. 学生在团队协作中,学会相互沟通、合作,培养集体荣誉感。
3. 学生通过课程实践,认识到科技对社会发展的作用,树立正确的价值观。
课程性质:本课程为实践性较强的课程,注重培养学生的动手能力和实际问题解决能力。
学生特点:学生具备一定的电子技术基础和C语言编程能力,对单片机有一定了解。
教学要求:结合学生特点,注重理论与实践相结合,引导学生通过动手实践掌握课程内容,提高学生的综合运用能力。
在教学过程中,关注学生的个体差异,因材施教,确保每位学生能够达到课程目标。
将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 51单片机基础原理回顾:包括51单片机的内部结构、工作原理,重点复习定时器/计数器、中断系统等关键知识点。
相关教材章节:第一章《单片机概述》和第二章《51单片机结构及原理》。
2. C语言编程基础:回顾数据类型、运算符、控制语句等基础语法,为编写跑表程序打下基础。
相关教材章节:第三章《51单片机C语言编程基础》。
3. 跑表功能硬件设计:讲解跑表电路的设计方法,包括时钟电路、复位电路、显示电路等。
相关教材章节:第四章《51单片机接口技术》。
4. 跑表程序设计:教授如何利用定时器/计数器、中断系统编写跑表程序,实现计时功能。
相关教材章节:第五章《51单片机定时器/计数器与中断系统》。
数字跑表模块设计

显示内容
可显示当前时间、已用时间、剩余时间、距离、 速度等比赛和训练数据。
显示亮度与对比度
具备可调节的显示亮度与对比度,以适应不同光线环境。
控制模块设计
控制方式
采用微控制器进行系统控制,实现各种功能的逻辑处理。
数据处理
对采集的数据进行实时处理,确保计时和显示的准确性。
人机交互
通过按键或触摸屏实现人机交互,方便用户进行功能设置和操作。
数字跑表的重要性
提高训练效果
通过精确记录运动数据,数字跑 表可以帮助运动员了解自己的训 练状态,制定合理的训练计划, 提高训练效果。
比赛成绩记录
在比赛中,数字跑表可以精确记 录运动员的成绩,保证比赛的公 平性和准确性。
健康监测
数字跑表还可以监测运动者的心 率、步数等健康数据,帮助运动 者了解自己的身体状况,预防运 动损伤。
低功耗设计技术
节能模式
支持低功耗模式,在非 使用状态下自动进入节 能状态。
硬件优化
采用低功耗硬件设计和 电路优化,降低功耗。
电源管理
采用智能电源管理系统, 根据需求合理分配电源。
可靠性设计技术
故障检测与恢复
具备故障检测和恢复机制,确保在异常情况 下仍能保持正常运行。
防抖动设计
防止因按键或触摸产生的抖动对计时精度的 影响。
采用先进的计时算法,如分段计时法,以提高计 时精度。
校准与同步
定期校准和与标准时钟同步,以保持计时准确性。
人机交互技术
1 2
显示界面
提供清晰、易读的显示界面,包括计时、计圈、 计分等功能。
输入方式
支持多种输入方式,如触摸屏、按键等,方便用 户操作。
3
语音提示
电子跑表

单片机电子跑表的设计一方案设计及原理1.1设计方案电子跑表的设计有多种方法,例如,可用中小规模集成电路组成电子跑表;也可用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子跑表;还可以利用单片机来实现等等。
本次单片机综合实验需要进行硬件设计与软件设计。
1.2 设计原理(1)本系统采用AT89C51单片机、4位LDE显示、两块块74LS244芯片、2个调节按键、共同构成我的单片机电子跑表的硬件。
(2)计时单元由单片机内部的定时器/记数器来实现。
(3)时间显示功能通过LED数码管动态扫描来实现。
由于数码管要显示时钟,还要显示跑表,因此,我分别用31H、32 H计时钟,用R5、R6计跑表,当要显示哪一个的时候,就把哪一个地址送到显示地址35 H、36 H中,达到跑表显示与时钟显示互不影响。
(4)电子跑表的启动/复位/清零功能由软件来实现。
P1.1表示清零、启动、和复位键, P1.2实现时钟和跑表的转换功能。
(5)由于跑表和时钟的中断服务程序有冲突,我们就把跑表的中断服务程序写成另外的子程序了,这样就必须要引入标志位了,我们在此用42H标志位,用标志位来给跑表计数。
二系统硬件设计2.1 硬件电路的设计方案及框图根据设计要求和设计思路,确定该系统的设计方案,图1所示为该系统设计方案的硬件电路设计框图。
硬件电路有五部分组成,即单片机按键输入电路,单片机时钟电路,复位电路,LED显示器段码驱动电路,4位LED显示器电路。
图一系统框图2.2 单片机的选择根据初步设计方案的分析,设计这样一个简单的应用系统,可以选择带有EPROM的单片机,应用程序直接存储在片内,不用在外部扩展程序存储器,电路可以简化。
本系统选用AT89C51单片机。
该芯片的功能与MCS-51系列单片机完全兼容。
2.3 时钟与复位电路的设计2.3.1 时钟电路单片机工作的时间基准是由时钟电路提供的。
在单片机的XTAL1和XTAL2两个管脚,接一只晶振及两只电容就构成了单片机的时钟电路,电路中,电容器C1和C2对振荡频率有微调作用,通常的取值范围(20-40)pF。
单片机电子跑表课程设计

单片机电子跑表课程设计一、课程目标知识目标:1. 学生能理解单片机的基本原理,掌握其编程方法。
2. 学生能掌握电子跑表的工作原理,了解各部分功能及其相互关系。
3. 学生能运用所学知识设计并实现一个简单的单片机电子跑表。
技能目标:1. 学生能够运用C语言或汇编语言进行单片机编程,实现电子跑表的基本功能。
2. 学生能够运用电路设计软件绘制电子跑表的原理图和PCB图。
3. 学生能够运用调试工具对单片机程序进行调试,解决常见问题。
情感态度价值观目标:1. 学生培养对电子制作的兴趣,激发创新意识和动手能力。
2. 学生在团队协作中,学会沟通与交流,培养合作精神。
3. 学生能够关注单片机技术在生活中的应用,认识到科技发展对生活的影响。
课程性质:本课程为实践性较强的课程,结合理论知识与实际操作,培养学生动手能力。
学生特点:学生具备一定的电子基础知识,对单片机有一定了解,但编程和实际操作经验不足。
教学要求:结合学生特点,注重理论与实践相结合,强调动手实践,培养学生解决问题的能力。
在教学过程中,关注学生的个体差异,提供个性化指导。
通过课程学习,使学生能够独立完成单片机电子跑表的设计与制作。
二、教学内容1. 单片机原理与编程基础- 单片机结构及工作原理- C语言或汇编语言基础- 单片机编程环境搭建2. 电子跑表原理与设计- 电子跑表功能需求分析- 电路设计原理及元件选择- 原理图和PCB图绘制方法3. 单片机与外围电路接口技术- 按键输入接口设计- 数码管显示接口设计- 定时器/计数器应用4. 程序设计与调试- 程序框架设计- 功能模块编写- 程序调试与优化5. 实践操作- 电子跑表组装与调试- 故障分析与排除- 课程项目展示与评价教学内容安排和进度:第一周:单片机原理与编程基础第二周:电子跑表原理与设计第三周:单片机与外围电路接口技术第四周:程序设计与调试第五周:实践操作(含课程项目展示与评价)教学内容与教材关联性:本教学内容紧密结合教材,按照教材章节逐步展开,使学生能够循序渐进地掌握单片机电子跑表的设计与制作。
数字跑表设计

学号:课程设计题目数字跑表设计学院自动化学院专业班级姓名指导教师年月日... .课程设计任务书学生:专业班级:指导教师:工作单位:题目: 数字跑表设计初始条件:1.运用所学的模拟电路和数字电路等知识;2.用到的元件:实验板、电源、连接导线、74系列芯片、555芯片或微处理器等。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.设计一个具有、‘分’、‘秒’、‘1/100秒’的十进制数字显示的计时器。
2.要有外部开关,控制计数器的直接清零、启动和暂停/连续计时功能;3.严格按照课程设计说明书要求撰写课程设计说明书。
时间安排:第1天下达课程设计任务书,根据任务书查找资料;第2~4天进行方案论证,软件模拟仿真并确定设计方案;第5天提交电路图,经审查后领取元器件;第6~8天组装电路并调试,检查错误并提出问题;第9~11天结果分析整理,撰写课程设计报告,验收调试结果;第12~14天补充完成课程设计报告和答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日..目录引言 (1)1设计意义及要求 (2)1.1设计意义 (2)1.2设计要求 (2)2方案设计 (3)2.1设计思路 (3)2.2 方案设计 (4)2.2.1设计方案一(个人方案)电路图 (4)2.2.2设计方案二(小组方案)电路图简单说明 (5)2.3方案比较 (7)3部分电路设计 (8)3.1计数单元 (8)3.2开始和暂停单元 (13)3.3清零功能单元 (14)3.4脉冲输出电路 (16)3.5译码及显示电路 (17)4调试与检测 (20)4.1调试中故障及解决办法 (20)4.2 调试与运行结果 (21)5仿真操作步骤及使用说明 (21)结束语 (22)参考文献 (23)附录1 (24)..附录2 (26)本科生课程设计成绩评定表......................... 错误!未定义书签。
..引言过去的三个世纪,我们经历了第一次工业革命,人类开始进入蒸气时代,第二次工业革命,人类开始进入电气时代并在信息革命资讯革命中达到顶峰。
数字跑表设计eda课程设计

数字跑表设计eda课程设计【原创版】目录1.数字跑表设计概述2.EDA 课程设计的目的和意义3.数字跑表的主要功能和特点4.数字跑表的设计流程5.EDA 课程设计对数字跑表设计的影响和应用正文数字跑表设计是电子设计自动化 (EDA) 课程设计中的一个重要项目,目的是让学生通过实践了解和掌握数字电路的设计方法和技巧。
数字跑表是一种能够记录跑步时间和距离的电子设备,主要功能是计时和计数,同时还具备闹钟、计时器等附加功能。
数字跑表的设计流程主要包括需求分析、系统设计、电路设计、PCB 设计、测试和调试等步骤。
在 EDA 课程设计中,学生需要使用 EDA 软件来完成数字跑表的设计。
EDA 软件能够提供可视化的电路设计和仿真环境,学生可以通过绘制原理图、PCB 图等来实现数字跑表的设计。
同时,EDA 软件还能够提供多种工具和函数库,帮助学生快速实现数字跑表的各种功能。
数字跑表的主要功能是计时和计数。
计时功能是指数字跑表能够准确地记录跑步时间,同时能够在跑步过程中实时显示跑步速度和距离。
计数功能是指数字跑表能够记录跑步的圈数和步数等信息,以便用户了解自己的跑步情况。
数字跑表还具备闹钟、计时器等附加功能,方便用户进行更多的运动训练。
EDA 课程设计对数字跑表设计具有重要的影响和应用。
通过 EDA 课程设计,学生能够学习和掌握数字电路的设计方法和技巧,提高数字电路设计和实现的能力。
同时,EDA 软件提供的可视化设计和仿真环境,能够帮助学生更好地理解数字跑表的工作原理和电路结构,加快数字跑表的设计和测试进度。
数字跑表设计是 EDA 课程设计中的一个重要项目,能够帮助学生学习和掌握数字电路的设计方法和技巧。
数字跑表的主要功能是计时和计数,同时还具备闹钟、计时器等附加功能。
跑表器原理

跑表器原理跑表器是一种常用的计时器,它可以精确地测量时间,广泛应用于运动员训练、比赛计时、实验室实验等领域。
跑表器的原理是基于计时装置和显示装置的结合,通过精密的机械装置或电子装置来实现时间的测量和显示。
本文将从跑表器的结构、工作原理和应用领域等方面进行介绍。
首先,跑表器的结构通常包括计时装置、显示装置和控制装置。
计时装置是跑表器的核心部件,它可以通过机械装置或电子装置来实现时间的计时。
机械装置通常采用摆轮、摆轮轴、摆轮轴承等部件来实现时间的计时,而电子装置则采用晶振、计数器、控制电路等部件来实现时间的计时。
显示装置用于显示计时结果,通常采用液晶显示屏或数码管来显示时间。
控制装置用于控制计时装置和显示装置的工作,保证计时的准确性和稳定性。
其次,跑表器的工作原理主要分为计时和显示两个步骤。
在计时过程中,计时装置开始工作,记录起始时间;当计时结束时,计时装置停止工作,记录结束时间。
在显示过程中,显示装置将计时结果以数字或字符的形式显示出来,供用户观看。
整个工作过程需要控制装置的协调配合,确保计时的准确性和稳定性。
跑表器在运动员训练中被广泛应用,可以帮助运动员掌握自己的训练进度,提高训练效果。
在比赛计时中,跑表器可以准确地记录运动员的成绩,为裁判员提供客观的计时依据。
在实验室实验中,跑表器可以帮助科研人员精确地测量实验时间,保证实验结果的准确性。
除此之外,跑表器还可以应用于日常生活中的计时需求,如烹饪计时、运动计时等。
总之,跑表器作为一种常用的计时器,具有精准、稳定、可靠的特点,广泛应用于运动员训练、比赛计时、实验室实验等领域。
通过对跑表器的结构、工作原理和应用领域的介绍,相信读者对跑表器有了更深入的了解。
希望本文能为大家对跑表器有所帮助。
基于51单片机的跑表设计

4种工作方式 (方式0-方式3):
选用方式1——16位定时 /计数器,由TH的8位和TL的 8位组成。选用工作方式1, 则为16位的定时/计数器, 其最长计时为65536。若要 定时时间为50ms,则初值为
TH0=(65536-50000)/256;
TR0、TR1——计数运行控制位
TL0=(65536-50000)%256;
P0=b[ms/10];
//十位
P2=0xfd;
//11111101
delay(2);
P0=b[ms%10];
//个位
P2=0xfe;
//11111110
delay(2);
}
பைடு நூலகம்
相关程序:(中断-定时器0程序)
void time0_TSR(void) interrupt 1 {
TF0=0; TH0=(65536-10000)/256; //高4位 TL0=(65536-10000)%256; //低4位 ms++; if(ms==100) { ms=0; s++; if(s==60) { s=0; m++; if(m==60) m=0; } }
任务要求:
1.使用6位数码管显示时间,时间包括分、秒、 0.01秒,格式如下:mm.ss.ms 2.可以通过按键启动或者停止跑表。按键只能使 用四个独立键。 3.时间通过定时器产生
数码管显示原理:
数码管由7个发光二极管组 成,形成一个日字形,它们可以 共阴极,也可以共阳极,通过解 码电路得到的数码接通相应的发 光二极管而形成相应的字。
动态显示的亮度比静态显示要差一些,所 以在选择限流电流时应小于静态显示电路中的。
按键识别原理:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合性、设计性实验报告
姓名学号
专业通信工程班级通信1101班
实验课程名称EDA技术与Verilog HDL
指导教师及职称
开课学期2013 至_2013 学年_第一_学期
上课时间2013 年 5 月7 日
湖南科技学院教务处编印
数码管结构图说明:
1 在此模式下,数码管1—4采取译码驱动,
而5—8采取分段驱动,驱动电平及对应数码管
各段如左图所示。
结构图中,“PIO46-PIO40 接g、f、e、d、c、
b、a”表示PIO46、PIO45..PIO40 分别与数码
管的7 段输入g、f、e、d、c、b、a相接。
在译码驱动情况下,输入端为D、C、B、
A,D 为最高位,A 为最低位。
例如,若
所标输入的口线为PIO19~16,表示PIO19
接D、18 接C、17 接B、16 接A。
2 图表示高低电平发生器,每按键一次,输出电平由高到低、
或由低到高变化一次。
实验原理图
五实验内容:
1)设计方案:
(一)主模块
(二)时钟模块
2)实验程序:。