用电信息采集系统的终端设计与应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用电信息采集系统的终端设计与应用

【摘要】用电信息采集系统是集电能计量采集、传输和处理的系统,本文概述了用电采集系统的结构和功能,并着重介绍了用电信息采集终端的设计,最后简述了用电采集系统在电力中的应用。

【关键词】用电信息采集;终端;电能计量

1 引言

用电信息采集系统是将电能计量数据自动采集、传输和处理的系统,是电力系统信息化、智能化的产物,它有效地解决了传统人工抄表效率低、出错率相对较高等特点,提高了电能计量管理系统的管理水平,安全性更好,透明程度更高,是实现用电管理的信息化、自动化、互动化的基础。

2 用电信息采集系统概述

2.1 用电信息采集系统总体结构

用电信息采集系统主要由采集主站、通信信道、现场终端组成。实用的用户是全面的,包括六大类型:100KV A及以上的大型专变用户、100KV A以下的中小型专变用户、三相一般工商业用户、单相一般工商业用户、居民用户和公用配变考核计量点等。从物理结构上可以分为5层,如图1所示。

主站层位于用电信息采集系统的最上层,是整个系统的管理中心,负责管理整个系统的数据传输、数据处理和数据应用以及系统的运行和安全,并管理与其它系统的数据交换。其主要有两个方面的功能:数据的传输功能和数据的处理功能。①数据的传输功能负责以一定的方式与电力用户的各种类型用电信息采集终端通信,可以定时自动、人工手动、主动上传等工作方式接收各用电信息采集终端的各类数据;②数据的处理功能是对各类型终端上传的数据进行判读,解包分析、处理及储存,为综合应用层提供数据分析结果,并通过用户界面直观显示。

通信网络层通过一定的数据接口(如WEB、RS232等)实现主站和数据采集层设备间的数据传输和交互功能,并可以以组网的形式存在,有远程通信网络和本地通信网络。远程通信网络用于主站与远距离的采集终端间通信,因此远程通信的带宽、可靠性和实时性都有一定要求,一般以光纤专网和230MHz无线专网为主。本地通信网络是短距离的数据传输,如现场采集终端、智能表计和监控设备之间的通信,可以采用低压电力线载波、微功率无线、RS485总线以及各种有线网络。

数据采集层和监控设备层与用电用户设备之间相连,是对用电信息数据的采集和监控。监控设备层包括智能电能表和其他智能计量监控设备,这些设备连接于用电信息采集终端。而数据采集层是用电信息采集终端,它负责管理电能信息

数据、数据上传至主站和执行或转发主站下发的控制命令和信息。

2.2 用电信息采集系统研究现状

我国的用电信息采集系统起于上世纪90年代,网络搭建较为多元化,包括光纤专网、GPRS/CDMA无线网络、230MHz无线专网等。由于各网省或地市公司各自自行建设,受到规划、运行管理及资金投入等各方面因素制约,以及全国不能组网互通信息等缺陷,使其采集系统的大量数据利用率不高、覆盖面积不大。国家电网公司针对这些情况与2009年9月份,审议通过了《电力用户用电信息采集系统系列标准》,为用电信息采集系统的推广和全国信息的互通提高技术依据。

西方国家起步较早,美国于1986年成立了自动抄表协会(AMRA),之后使AMR(Automatic Meter Reading)系统更加智能化、低功耗、低成本和通信标准化。2003的统计数据显示,北美己经有49311372个单位使用自动抄表。上世纪80年代日本开始试用电力载波于远程抄表,高度重视智能电网相关技术标准的制定,其智能电网战略工作组在智能电网的宏观和微观领域开展了系统研讨,其中包括用电信息采集系统。

3 用电信息采集终端的设计

3.1 用电信息采集终端设计原则和依据

用电信息采集终端设计应满足可靠性、通信接口多样化、数据完整性、高精度性及经济适用性。其中可靠性一般采用平均无故障工作时间MTBF表示,,为系统工作总时间,m表示故障次数。

用电信息采集终端的设计依据主要是《电力用户用电信息采集系统系列标准》,该标准包括功能规范、技术规范、型式规范、检验规范、通信规范、设计导则等24个标准。根据该系列标准可以实现系统的互动互通。

3.2 用电信息采集终端设计方案

采集终端实现的功能包括数据采集、安全防护、数据处理、人机交互、终端维修、数据通信控制功能和数据存储,其总体结构图如图2所示。

用电信息采集终端采用32位Cortex--M3的AMR作为控制单元,电能计量芯片采用MAXQ3180。设计的原理结构图如图3所示。FLASH用于MAX3180采集数据的缓存,以太网实现与主站的通信,USB用于代码更新和系统升级。

MAXQ3180是专用三相电能计量芯片,外部采用3.3V供电,内置数字滤波、数字积分、数字温度传感器和事件中断。用作用电数据的采集,并提供分相和合相的电压、电流、功率、电能量、相位角和功率因数等几乎所有电气量参数,最突出优点是具有基波、谐波测量和事件监控功能。与AMR通信接口为SPI总线

接口,对电流电压的测量是通过3个PT方式电压通道和4个CT方式的电流通道。

MAXQ3180的外围电路如图4所示。MAXQ3180的电流通道使用10Ω采样电阻,电压通道使用200Ω采样电阻。工作的频率通过XTAL1和XTAL2接晶振,晶振一般采用8MHZ的无源石英。

电压信号进入MAX3180前需要进行信号调理。调理电路如图5所示。电压经过电压互感器需要滤波与分压,滤波是为了防止噪声信号对采集数据的干扰;电压通道选用2mA/2mA的电压互感器,为弱电的信号处理进行电气隔离实,电压互感器的采样电阻为200K,其下级为三端滤波器。

4 用电信息采集的应用

用电信息采集系统对于电力公司的营销业务有很重要的作用。其营销上的应用主要有以下几种:

①市场策划分析专业应用:用电信息采集系统可以及时、有效和准确提供用户用电情况,有利于电力公司的市场分析人员对用户类型、电力模型有较好的分析,有助于市场销售和电网设计的更好规划;

②电度、电费管理应用:避免传统人工的抄表的效率低、准确性和实时性差等特点,也避免抄表员与用户可能的工作冲突,可以建立更好的预结算机制和催费机制,丰富了电费回收和电费定价手段;

③电力监测应用:可以有效的分析线损情况,及时发现情况并制定措施,并可以利用系统科学合理的进行主动错峰避峰、负荷分解等。同时,可以通过电压、电流、相序、时钟及时段等数据及时分析发现如电能表故障、线路故障等相关。

5 结束语

用电信息采集系统提高了电能计量的实时性和高准确性,可以有效的降低或避免人为造成的电费损失,同时为电力公司的市场策划提高数据支持,满足客户的信息透明化和服务质量要求,有很好的经济效益和社会效益。

相关文档
最新文档