电压频率转换电路设计报告
基于LM331频率电压转换器电路设计
基于LM331频率电压转换器电路设计LM331基本上是从国家半导体精密电压频率转换器。
该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。
宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。
电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的IC(阈值)。
在PIN6负由此产生的脉冲序列的边缘,使得内建说明LM331基本上是从国家半导体精密电压频率转换器。
该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。
宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。
电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的IC(阈值)。
在PIN6负由此产生的脉冲序列的边缘,使得内建的比较器电路,触发定时器电路。
在任何时刻,电流流过的电流输出引脚(引脚6)将输入频)的值成正比。
因此,输入频率(FIN)成正比的电压(VOUT)率和定时元件(R1和C1将可在负载电阻R4 。
电路图注意事项该电路可组装在一个VERO板上。
我用15V直流电源电压(+ VS),同时测试电路。
LM331可从5至30V DC之间的任何操作。
R3的值取决于电源电压和方程是R3 =(VS - 2V)/(2毫安)。
根据公式,VS = 15V,R3 = 68K。
输出电压取决于方程,VOUT =((R4)/(R5 + R6))* R1C1 * 2.09V *翅。
壶R6可用于校准电路。
高频PWMDC_DC转换器的设计_应建华
⾼频PWMDC_DC转换器的设计_应建华26卷第1期2009年1⽉微电⼦学与计算机M ICROELECTRONICS&COM PUTERVol.26No.1January2009收稿⽇期:2008-02-21⾼频PWM DC/DC转换器的设计应建华,张俊,肖靖帆(华中科技⼤学电⼦科学与技术系,湖北武汉430074)摘要:设计了⼀种基于0.6L m CM OS⼯艺的⾼频PWM升压型DC/DC转换芯⽚.采⽤恒定频率、电流模式的控制结构以提供稳定的电压.本芯⽚在XFAB公司流⽚成功,测试结果表明,芯⽚的开关频率⾼达为1.2MHz,在输⼊电压分别为3.3V、5V的情况下能稳定地分别驱动4个、6个⽩光L ED,输出电压分别为12.8V、18.6V.关键词:DC/DC转换器;电流型;脉宽调制中图分类号:T N4⽂献标识码:A⽂章编号:1000-7180(2009)1-0197-04Design of High Frequency PWM DC/DC ConverterYING Jian-hua,ZHANG Jun,XIAO Jing-fan(Department of Electro nics Science and T echnology,Huazhong U niversit y of Science and Technology,Wuhan430074,China)Abstract:A hig h frequency PWM step-up DC/DC converter w ith low power dissipation w as designed by using0.6L m CM OS process.T he chip uses a constant frequency,cur rent-mode control scheme to provide steady voltag e.T he chip taped out successfully in XFA B Company.T he testing results showed that the frequency was1.2MHz,output v oltage w as12.8V and18.6V,when driving4and6white L ED in3.3V and5V input voltag e.Key words:DC/DC converter;cur rent-mode;pulse w idth modulation(PWM)1引⾔随着⼿机、mp3、PDA等便携式消费电⼦产品的⼴泛应⽤,对供电电源提出了新的要求.为保证系统稳定、可靠地⼯作,通常采⽤DC/DC开关变换器提供⼯作电压.⽂中设计了⼀种开关频率⾼达1.2MH z、电流控制型PWM升压DC/DC开关变换器,采⽤XFAB 公司的0.6L m CM OS⼯艺流⽚成功.测试结果表明,该转换器可稳定驱动串联的4到6个⽩光LED,满⾜系统设计要求.2PWM DC/DC转换器原理分析⽂中设计采⽤⼀种恒定频率、电流模式的控制结构[1],并把功率开关管和控制电路集成到⼀起.芯⽚结构如图1所⽰.SW为开关引脚;FB为输出电压的采样反馈端;SHDN为停机引脚.芯⽚内部主要模块包括基准电压源、误差放⼤器、PWM⽐较器、振荡器、电流采样电路、RS锁存器以及驱动.图1芯⽚电路框图该芯⽚的⼯作原理:在每个振荡周期的开始时, RS锁存器被置位,导通功率管,输出电压的采样值反馈到PWM⽐较器的正向端.当采样电压超过⽐较器的负输⼊端的⽔平时,RS锁存器被复位关闭功率管.通过开关功率管占空⽐的变化,调节输出电压使其稳定.3 主要电路模块设计分析3.1 电压基准源电路在DC -DC 转换器芯⽚中,因为芯⽚的输出功率⽐较⼤,要求带隙基准源在较宽的温度范围内参考源电压波动不⼤;同时由于⼯作电源电压的范围较宽,为了保证输出电压对⼯作电源电压的不敏感性,要设计⾼电源电压抑制⽐(PSRR)的带隙基准源.⽂中设计的带隙基准源电路如图2所⽰,由启动电路、带隙核、放⼤器A 和输出级组成.图2 带隙电路图其信号结构图如图3所⽰.图3 电压基准源信号结构图其中A 1(s )是V cc 到放⼤器A 输出的传函;A 2(s)是V cc 到电压基准源输出V re f 的传函;A 3(s )是放⼤器A 的输出到电压基准源输出V ref 的传函;A 4(s)是电压基准源的输出V re f 到放⼤器A 输⼊的传函;A 5(s)是放⼤器A 的开环传函.分析可知:V ref V cc =[A 1(s)+A 2(s )A 3(S )]@A 3(S )1+A 3(s )A 4(s )A 5(s)(1)通过参数的优化可以得到在低频范围内A 2(0)约等于0,A 3(0)约等于1,A 4(0)约等于1,A 1(0)和A 5(0)的值是与放⼤器A 结构相关的.化简式(1)可得低频电压抑制⽐为PSRR (0)=V ref V cc =1+A 5(0)A 1(0)U A 5(0)A 1(0)(2)为了获得⾼电源抑制⽐,采⽤了⼀种⾃偏置有源负载运算放⼤器A,利⽤⾃偏置电流源闭环反馈改变开环电阻的特性,实现⾼开环增益.晶体管M0、M 1、M2、M 6、M7、M 8构成⾃偏置电流源,M0由n 个(W /L )的MOS 管并联组成,M 1由1个(W /L )的MOS 管组成,M2是n -1个(W /L )的MOS 管并联组成,由电路⼩信号分析可得输出电阻R out =n @r oM0.电压基准源A 5(0)和A 1(0)的表达式分别为A 5(0)=n @g mQ4@r oM0(3)A 1(0)=r oQ4/(1/g -1mM0+r o Q4)U 1(4)电压基准源的低频电压抑制⽐:PSRR (0)U ng m Q4@r oM0(5)在XFAB 公司的X C 06⼯艺下,通过优化g m Q4和r oM 0,对基准源进⾏温度特性、电压调整率和电源抑制⽐仿真,仿真曲线如图4、图5所⽰.从图中可以看到,电压基准源的温度系数是11ppm/e ;低频电压抑制⽐达到92dB .图4 电压基准源温度系数仿真曲线图5 电压基准源PSRR 仿真曲线3.2 振荡器和斜波发⽣器振荡器产⽣恒稳的、周期性时变的输出波形,作为控制功率管开关的时钟.⽂中采⽤基本的充放电振荡器电路[3],⼜称为窗⼝⽐较式振荡器[4],提供⾼达1.2MH z 的开关频率,电路结构如图6所⽰.其⼯作原理:定时电容C 在两个门限电压V A 、V B 之间来回充放电,当定时电容上的电位达到两个门限电平中的某⼀个值时,RS 触发器输出Q 发⽣翻转;然后定时电容上的电位向相反⽅向变化,当其到达另⼀个门限电平时,Q 再次翻转.如此循环,产⽣振荡.198微电⼦学与计算机2009年图6 振荡器和斜波发⽣器电路结构图斜波发⽣器利⽤电流对定时电容的充放电,在电容C 上产⽣所需的斜波信号.产⽣斜波信号的⽬的是对电路进⾏斜波补偿,防⽌在占空⽐⼤于50%的情况下出现次谐波振荡,保证系统稳定性[2].设电容充电电流为I 1,放电电流为I 2,则电容C 的充电时间t 1=V 1-V 2I 1C,电容的放电时间t 2=V 1-V 2I 2,则振荡周期C 为t =t 1+t 2=(V 1-V 2)1I 1+1I 2C (6)由于充放电电流由电压基准源的PTAT 电流产⽣,振荡周期和斜升波的斜率基本保持不变.3.3 误差放⼤器误差放⼤器的作⽤是把反馈信号V FB 与内部基准电压进⾏⽐较,把电压之差放⼤,产⽣电压环误差信号,控制PWM ⽐较器正向输⼊端的电压信号.误差放⼤器的电路如图7所⽰.图7 误差放⼤器电路图由图7可知:M1、M2、M3、M4、M 17、M0、M 8组成误差放⼤器的第⼀放⼤级;M5、M7、M 9和M 10组成误差放⼤器第⼆级放⼤器,第⼆级电路是推挽输出结构,从⽽可以增加输⼊电压跟随能⼒.NMOS 管M 11⽤于对输出电压进⾏钳位,保证了芯⽚刚上电时不会产⽣电感上电流浪涌现象.M 3和M 4构成的交叉耦合结构,引⼊了⼀个局部正反馈,提⾼了第⼀级的放⼤增益,可以计算出从M2的漏级向下看到的等效电阻为:R eq =1/(g m2-g m4)-1,当g m 2>g m4,R eq >0,等效电阻增⼤,提⾼了开环增益:A v1=gm17/(g m2-g m4).第⼆级为推挽输出结构,可计算其增益为A v2=g m7(r 07+r o10).所以整个误差放⼤器的开环增益为A v =A v1A v2=g m17g m 7(r o7+r o10)/(g m2-g m4)(7)输出级的电阻R 1和电容C 1组成系统的补偿⽹络,⽤于保证系统环路的稳定性,其产⽣了极点和零点如下:s p1=1/2P (r o7+r o10)C 1s z1=1/2P R 1C 1其中产⽣的零点s z1⽤于补偿DC -DC 转换器输出负载电阻和滤波电容形成的极点;极点s p1⽤于对开关噪声进⾏衰减[1].误差放⼤器的频率特性的仿真曲线如图8所⽰.图8 误差放⼤器频率特性仿真曲线图8是误差放⼤器的频率特性曲线,由图可见:误差放⼤器的低频增益是48dB,⾸先经历⼀个低频极点,然后出现⼀个低频零点,零点对极点进⾏相位补偿,从⽽保证了DC -DC 转换器电路在单位增益带宽内等效只有⼀个主极点,使整个环路系统稳定.3.4 功率管由于功率管是整个驱动电路的核⼼器件,因此对于功率管的版图设计直接影响到了电路的整体性能.⽂中采⽤了蛇形栅结构的功率管,蛇形栅的结构优点是:(1)结构紧凑,等效宽度⼤,占⽤⾯积⼩;(2)由于多晶硅栅在拐弯处使⽤了135度的⾛向,有效避免了90度情况下局部雪崩击穿现象的发⽣;(3)源漏⾦属接触孔呈对⾓线分布,这使得MOS 器件的击穿特性,尤其是ESD 性能得到了提⾼.4 测试结果本电路已通过流⽚验证,对芯⽚在输⼊电压为199第1期应建华,等:⾼频PWM DC/DC 转换器的设计3.3V,驱动4个LED 和输⼊电压为5V,驱动6个LED 的情况下进⾏了测试,⽤Tektronix 公司的T DS2024B 数字存储⽰波器读取了输出电压波形和SW 开关电压波形,如图9、图10所⽰.图9 V in =3.3V,驱动4个LED图10 V in =5V ,驱动6个LED从图9、图10可以看出,芯⽚的开关频率在1.2MH z 左右,输出电压稳定.在3.3V 的输⼊电压、20~50e 的环境温度下对输出电压和开关频率的温度特性做了测试,并利⽤matlab 对测试数据进⾏了曲线拟合,如图11、图12所⽰.图11 输出电压温度特性图12 开关频率温度特性测试结果表明,当温度从21e 变化到50e 时,输出电压从12.662V 下降到12.436V,开关频率从1.211MH z 上升到1.289MH z.5 结束语⽂中设计了⼀种开关频率为1.2MHz 的DC/DC 转换器,采⽤恒定频率、电流模式的控制结构以提供稳定的电压.最终的测试结果表明,该芯⽚在输⼊电压分别为3.3V 、5V 的情况下能稳定地驱动4个、6个⽩光LED,开关频率在1.2MH z 左右,输出电压分别为12.7V 、18.6V,达到系统设计要求.参考⽂献:[1]Cheung Fai Lee,Philip K T M ok.A monolithic current-mode CM OS DC-DC converter wit h o n-chip cur rent -sensing technique[J].IEEE Journal of Solid-State Cir -cuits,2004,39(1):3-14.[2]韦枫,吴⾦.基于斜波补偿的电流模式PW M DC-DC 系统稳定性分析[J].电⼦器件,2003,26(4):461-463.[3]陈光明,曹家麟,汪西川.峰值电流控制模式BOO ST DC-DC 变换器的斜波发⽣器的设计[J].上海⼤学学报,2004,10(4):357-361.[4]张科峰,林映嫣,张兢,等.具有外同步功能的窗⼝⽐较式CM OS 振荡器的设计[J].微电⼦学与计算机,2007,24(12):183-186.(下转第204页)图1局域世界较⼩的度分布⽐较图图2局域世界稍⼤的度分布⽐较图图3 局域世界不同的度分布⽐较图5 结束语⽂中在BA ⽆标度⽹络模型的基础上分析了该模型的动⼒学机制,为了更接近实际⽹络⽽对新加⼊节点的择优范围作了⼀点修改,提出了⼀个局域世界线性增长的⽹络模型,通过⽤连续介质⽅法对新模型度分布的计算和计算机模拟,得出:随着时间的不断演化,局域世界线性增长的⽹络最终将演化成度分布遵循幂律分布的⽆标度⽹络,幂律指数C =3.这对在现实世界的许多合作⽹络中如何按照不同合作⽹络的动态演化机制,建⽴具体的演化⽹络模型,识别并捕捉影响⽹络拓扑结构形成的主要因素,从⽽加深对⽹络拓扑结构及其动态变化的认识,是⼗分有参考意义的.参考⽂献:[1]张磊,姜弘道.基于校园⽹络的计算[J].微电⼦学与计算机,2007,24(9):1-3.[2]王剑,廖振松.⼀种改进的⽹格作业管理实现能[J].微电⼦学与计算机,2007,24(11):1-2.[3]Barab si A L,Alber t R.Emer gence of scaling in randomnetworks[J].Science,1999,286(5439):509-512.[4]A lbert R,Barab si A L.Statistical mechanics of complexnetworks[J].Reviews of M odern Physics,2002(74):47-97.[5]L i X,Chen G.A local w orld evolving networ k model[J].Physica A ,2003(328):274-286.[6]N ew man M E J.T he structure and function of complexnetworks[J].SIAM Review ,2003(45):167-256.[7]李守伟,钱省三.⽆标度⽹络的指数增长与动态局域世界[J].复杂系统与复杂性科学,2005(1):1-3.[8]郭进利.有向复杂⽹络的Poisson 模型[J].上海理⼯⼤学学报,2006(3):2-3.[9]刘美玲,王仲君.择优选择节点构成的复杂⽹络模型研究[J].系统⼯程与电⼦技术,2006(4):2-3.[10]Deng K E,T ang Y.G rowing netwo rks based on themechanism of addition and deletion[J].Chin.phys.L ett.,2004(21):1858-1860.[11]Bianconi G ,Barabasi A L.Bose -Einstein condensationin complex netw orks[J].Phys.Rev.L ett.,2001(86):5632-5635.作者简介:刘浩⼴男,(1975-),硕⼠研究⽣.研究⽅向为复杂⽹络.蔡绍洪男,(1958-),教授,博⼠⽣导师.研究⽅向为介观量⼦涨落、⾮线性物理、复杂性理论、⾃组织理论.(上接第200页)作者简介:应建华男,(1954-),硕⼠,副教授.研究⽅向为数模混合集成电路.张俊男,(1981-),硕⼠研究⽣.研究⽅向为数模混合集成电路.肖靖帆男,(1983-),硕⼠研究⽣.研究⽅向为数模混合集成电路.。
rlc电路实验报告
rlc电路实验报告RLC电路实验报告引言:RLC电路是由电阻(R)、电感(L)和电容(C)组成的电路,是电工学中的重要基础知识。
本实验旨在通过搭建和调试RLC电路,研究其频率响应特性以及相位差等参数,进一步加深对RLC电路的理解和应用。
一、实验目的本实验的主要目的是探究RLC电路的频率响应特性,包括电压幅值随频率变化的规律、相位差与频率的关系等。
二、实验器材和装置1.函数发生器:用于提供不同频率的交流电信号。
2.RLC电路实验箱:包括电阻、电感和电容等元件,用于搭建RLC电路。
3.示波器:用于观测电路中的电压波形和相位差。
三、实验步骤1.根据实验要求,选择合适的电阻、电感和电容数值,并搭建RLC电路。
2.将函数发生器的输出端与电路中的输入端相连,调节函数发生器的频率,并通过示波器观测电路中的电压波形。
3.记录不同频率下电压幅值的变化,并绘制频率与电压幅值之间的关系曲线。
4.调整函数发生器的频率,观测电路中电压波形与函数发生器输出信号的相位差,并记录数据。
5.根据实验数据,分析RLC电路的频率响应特性和相位差与频率的关系。
四、实验结果与分析通过实验观测和数据记录,我们得到了频率与电压幅值、相位差之间的关系。
根据实验数据,我们可以绘制频率与电压幅值的曲线图,并进一步分析电路的特性。
在低频区域,电阻对电路的影响较大,电容和电感的影响相对较小。
因此,电压幅值随频率的增加而线性减小。
当频率接近电路的共振频率时,电路中电压幅值达到最大值,此时电容和电感的作用相互抵消,电路的阻抗最小。
而在高频区域,电容的作用逐渐减小,电感的作用逐渐增大,导致电压幅值随频率的增加而逐渐减小。
相位差是指电路中电压波形与函数发生器输出信号之间的时间差。
根据实验数据,我们可以绘制相位差随频率变化的曲线图。
在低频区域,相位差接近0度,即电压波形与函数发生器输出信号几乎是同步的。
而在高频区域,相位差逐渐增大,电压波形滞后于函数发生器输出信号。
电压频率和频率电压转换电路的设计讲解
设计一个V/F转换器,研究其产生的输出电压的频率随输入电压幅度的变化关系。
1 绪论(1)电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。
它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。
如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。
图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。
(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。
这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。
它有通用运放F/V转换电路和集成F/V转换器两种类型。
1.1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。
1.2 设计指标(1)输入为直流电压0-10V,输出为f=0-500Hz的矩形波。
(2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。
2 设计内容总体框图设计2.1 V/F转换电路的设计2.1.1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图 2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。
由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。
通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值OLM Z V V =± 。
矩形波的振荡频率 2.1.2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。
信号转换电路IV-频率电压转换电路资料
(2)ui >0,uC负向增加, uC≤U2时,比较器输出uo由负向限幅电压突变为正向限
幅电压,V导通,电容C通过R3放电,积分器输出迅速回升。 uo通过正反馈电路使比 较器同相端电压up突变为U1。
(3)当积分器输出回升到uC≥U1时,比较器输出又由正向限幅电压突变为负向限幅 电压,V又处于截止状态,同时up恢复为U2,积分器重新开始积分。
约 10mV t
t
2020/9/24
u单i >稳u态6,定输时入器比输较出器端输Q出为高高电电平平,,
V精导密通电,流u源o=输Uo出L≈电0V流,is开对关CLS充闭电合,,
u内电6逐放,渐电Ct电上管压升截上。止升与,。引电脚源5U相经连Rt的对芯Ct充片
u时s=器u输Ct出≥2端UQ/3为时低,电单平稳,态V定截 止, uo = UoH = +E,电流 开关S断开, CL通过RL放电, 使u6下降。 Ct通过芯片内放 电管快速放电到零。 当冲周u6期≤,ui时如,此又循开环始,第输二出个端脉便 输出脉冲信号。
8
集成V/F转换器——LM131
+U 8
1 整个周期内,RL 在消耗电荷 2 恒流源提供电荷 (充电)的时间由 CL 单稳触发器的暂态 决定 3 电荷平衡(电源 提供的电荷量等于 电阻消耗的电荷量)
精密 电流源
电流 输出 1
电流 开关
RL
2
基准
电压
1.9V
- 基准 比较
+器
iS
uo
频率 3 驱动 V RS 输出
5
二、电荷平衡型
在一个周期T=t0+t1中,积分电容 充电电荷量与放电的电荷量相等,
即i×T= Is×t0
电压频率转换电路实验报告
电压频率转换电路实验报告一、实验目的该实验旨在了解电压频率转换电路的构成和原理,以及掌握电路的实际应用和设计方法。
二、实验仪器本实验所需仪器和器材包括:频率信号发生器、双踪示波器、万用表、电阻、电容、三极管等。
三、实验原理使用三极管放大器的基本原理如下:三极管在放大电压信号时,主要通过调节其输入电阻和输出电阻的大小来控制电流。
由于三极管的输出电阻很小,因此在输入电阻很大的情况下,可以实现高增益放大。
电压频率转换电路以三极管放大器为核心,通过调节其输入电容和输入电阻的参数,可以实现输入频率的转换。
在实际制作中,通常将信号发生器的输出接入电容,然后接入电阻和三极管放大器,最后输出到示波器进行波形显示和测试。
四、实验步骤1.调节信号发生器的频率和幅度,将其输出接入电容,电容参数为100pF。
3.测试不同频率下的转换效果,分析输出波形和幅度的变化规律,进一步优化电路参数的选择方案。
五、实验结果及分析经过本次实验,得到了一组电压频率转换电路的测试数据:在输入频率为50Hz时,输出幅度为2.5V;在输入频率为100Hz时,输出幅度为2.8V;在输入频率为200Hz时,输出幅度为3.0V。
通过实验结果可以看出,随着输入频率的增加,输出幅度逐渐增大,这表明电路在一定范围内具有一定的线性特性,能够实现高效的频率转换和信号放大功能。
此外,通过不断优化电路参数,包括调整电容和电阻的数值大小以及选择合适的三极管型号等,还能进一步提高电路的性能和稳定性。
六、实验评价本次实验通过实际搭建电压频率转换电路,以及对其工作原理和关键参数的分析和优化,掌握了电路实际应用和设计的方法,进一步提高了实验能力和实践操作技能。
全桥dc—dc变换电路实验报告总结 -回复
全桥DC-DC变换电路是一种常用的电力电子器件,在各种电子设备和电路中都有广泛的应用。
在本次实验中,我们针对全桥DC-DC变换电路进行了系统性的设计、搭建和测试,并对实验结果进行了分析和总结。
以下是本次实验报告的总结:一、实验目的1. 了解全桥DC-DC变换电路的基本工作原理和结构特点;2. 掌握全桥DC-DC变换电路的设计方法和关键参数选取;3. 进行实际电路搭建和性能测试,验证理论设计的准确性和可靠性。
二、实验内容1. 理论分析全桥DC-DC变换电路的工作原理和传统电压变换技术;2. 根据设计要求和指标,选择合适的电子元器件和参数;3. 按照设计要求,搭建全桥DC-DC变换电路实验评台,并进行性能测试;4. 对实验结果进行数据采集和分析,验证设计的正确性和稳定性。
三、实验步骤1. 理论分析:首先对全桥DC-DC变换电路的工作原理和传统电压变换技术进行了深入分析,以便更好地指导实验设计和搭建;2. 设计选型:根据设计要求和指标,选取了合适的电子元器件和参数,并进行了详细的设计计算和仿真分析;3. 电路搭建:在理论设计基础上,搭建了全桥DC-DC变换电路的实验评台,并进行了详细的电路布线和连接;4. 性能测试:对搭建好的全桥DC-DC变换电路进行了性能测试,包括输入输出电压、电流波形等参数的测试和记录;5. 数据分析:对实验结果进行了数据采集和分析,比对理论设计和实际测试的结果,进行了分析总结。
四、实验结果分析1. 输入输出特性:通过性能测试和数据分析,获得了全桥DC-DC变换电路的输入输出特性曲线,验证了设计的正确性和稳定性;2. 效率性能:从实验数据中计算得出了全桥DC-DC变换电路的转换效率,验证了设计的优化程度和功耗特性;3. 波形稳定性:对输入输出波形进行了详细的分析和比对,得出了全桥DC-DC变换电路的波形稳定性和失真程度;4. 结果评价:根据实验结果,对全桥DC-DC变换电路的整体性能进行了客观评价,指出了存在的问题和改进措施。
dcdc pwm控制电路的设计
DCDC PWM控制电路的设计一、概述DCDC PWM控制电路是一种常用的电子控制系统,用于将直流电源转换为可变电压和可变频率的电源。
它在各种电子设备中广泛应用,如无线终端充电器、电动汽车、太阳能逆变器等。
在本文中,我们将讨论DCDC PWM控制电路的设计原理和方法。
二、DCDC PWM控制电路的工作原理DCDC PWM控制电路主要由三部分组成:输入滤波器、PWM控制器和输出滤波器。
其中输入滤波器用于滤除输入电源中的噪声和干扰,保证输入电源的稳定性;PWM控制器通过对开关管的控制,调节输入电源的电压和频率;输出滤波器用于滤除PWM控制器产生的高频噪声,保证输出电源的稳定性。
PWM控制器的工作原理是通过对开关管的控制,实现对输入电源的调节。
当需要提高输出电压时,PWM控制器会增大开关管的导通时间,从而增加输入电压;当需要降低输出电压时,PWM控制器会减小开关管的导通时间,从而减小输入电压。
通过不断调节开关管的导通时间,PWM控制器可以实现对输出电压的精确控制。
三、DCDC PWM控制电路的设计要点1. 选择合适的开关管在设计DCDC PWM控制电路时,选择合适的开关管是非常重要的。
开关管的导通电阻和关断电压会直接影响到电路的效率和稳定性。
一般来说,导通电阻越小、关断电压越小的开关管,电路的效率和稳定性就越好。
2. 选择合适的PWM控制器PWM控制器是DCDC PWM控制电路的核心部分,它的性能直接影响到整个电路的稳定性和可靠性。
在选择PWM控制器时,需要考虑输入电压范围、输出电压范围、最大负载功率等参数,并根据实际需求进行选择。
3. 合理设计输入滤波器和输出滤波器输入滤波器和输出滤波器在DCDC PWM控制电路中起着重要作用,它们可以有效地滤除电源中的噪声和干扰,保证电路的稳定性。
在设计输入滤波器和输出滤波器时,需要考虑到电路的工作频率、负载功率、输出波形的纹波等因素,并进行合理的设计。
4. 合理设计反馈回路反馈回路是DCDC PWM控制电路中的重要组成部分,它可以实现对输出电压的精确控制。
(重要)利用LM331进行频率电压转换
频率/电压变换器实验报告设计一、实验目的熟悉集成频率——电压变换器LM331的主要性能和一种应用;熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。
二、技术要求当方波信号的频率f i在200Hz~2kHz范围内变化时,对应输出的直流电压V i在1~5V范围内线形变化;方波信号源采用函数波形发生器的输出(见课题二图5-2-3);采用±12V电源供电.三、设计报告要求1.列出已知条件,技术指标。
2.分析电路原理。
3.写出设计步骤:(1)电路形式选择。
(2)电路设计,对所选电路中的各元件值进行计算式估算,并标于图中。
4.测试与调整:(1)按技术要求测试数据,对不满足技术指标的参数进行调整,并整理列出表格,在方格纸上绘出波形。
(2)故障分析几说明。
5.误差分析。
四、实验仪器及主要器件1.仪器双踪示波器 1台直流稳压电源 1台毫伏表 1台万用表 1台低频信号发生器 1台2.元器件µA741 1只LM331 1只LM324 1只电位器、电阻、电容若干五、设计过程1.方案选择可供选择的方案有两种,它们是:○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比.○2直接应用F/V变换器LM331,其输出与输入的脉冲信号重复频率成正比.因为上述第○2种方案的性能价格比较高,故本课题用LM331实现.LM331的简要工作原理LM331的管脚排列和主要性能见附录LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC )LM331用作FVC 时的原理框如图5-1-1所示.-输入比较器定时比较器++567QTC tR tV CC 2/3V CC9/10V CCs置“1”端置“0”端Rfi 图5-1-1Q此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平.工作过程(结合看图5-1-2所示的波形)如下:当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。
MPX4115实验报告
}
/*写数据*/
void LCDdata(bit lcde,uchar temp){
delay(2);
E1=0;//禁止控制器
E2=0;
气压传感器MPX4115的管脚说明如表1所示:
表1 气压传感器MPX4115的管脚说明
气压传感器MPX4114的特性参数如表2所示:
表2气压MPX4115的特性参数
2.3
2.3.1
气压传感器MPX4115输出的是模拟电压,因此,必须进行模拟到数字的转换才能交由单片处理。关于A/D转换,本实验采用一种电压频率转换电路来实现模拟电压数字化的处理。
本设计要实现的数字气压计显示的是绝对气
压值,同时为了简化电路,提高稳定性和抗
干扰能力,要求使用具有温度补偿能力的气
压传感器。经过综合考虑,本设计选用美国
摩托罗拉公司的集成压力传感器。
MPX4115可以产生与所加气压呈线性
关系高精度模拟输出电压。
2.2.2
数据采集模块由气压传感器MPX4115
构成,采集的是大气压值。其中1脚是
数据转换模块原理图如图4所示 图4
LTC1297各引脚说 明:
引脚 1为片选输入:该引脚上的逻辑低电平将使能LTC芯片,该引脚上的高电平将使芯片处于掉电状态。
引脚 2 ,3 模拟输入端:输入必须是无噪音的(相对于GND)。
引脚 4 GND模拟地:GND必须直接连接到模拟地。
引脚 5 参考电压输入端:参考输入定义了A/D的跨度,并且它必须相对于GND而言没有噪音干扰。
兼容标准MCS-51指令系统,片内置通用8位中央处理
器(CPU)和Flash存储单元,功能强大AT89C51单
片机可为您提供许多高性价比的应用场合,可灵活
频率转电压电路
频率转电压电路频率转电压电路是一种将输入信号的频率转换为相应输出电压的电路。
它被广泛应用于信号处理、传感器测量、通信系统等领域。
本文将介绍频率转电压电路的工作原理、应用以及一些常见的设计方法。
一、工作原理频率转电压电路的工作原理基于频率-电压转换的原理。
当输入信号的频率改变时,电路会相应地产生不同的输出电压。
这种转换通常通过频率-电压转换器来实现,其中包括一个比较器、一个积分器和一个反馈网络。
在频率转电压电路中,输入信号首先经过一个比较器。
比较器将输入信号与一个固定的参考信号进行比较,产生一个脉冲宽度与输入信号频率成正比的方波信号。
然后,这个方波信号经过一个积分器,将其转换为一个与输入信号频率成正比的直流电压。
最后,通过一个反馈网络将这个直流电压反馈给比较器,以调整比较器的阈值,使输出电压与输入信号频率成正比。
二、应用领域频率转电压电路在许多领域都有广泛的应用。
以下是几个常见的应用领域:1. 传感器测量:频率转电压电路常用于将传感器输出的频率信号转换为与被测量物理量成正比的电压信号。
例如,将旋转速度传感器输出的旋转频率转换为与转速成正比的电压信号。
2. 信号处理:频率转电压电路在信号处理中起到了重要的作用。
例如,将音频信号转换为与音调成正比的电压信号,用于音乐合成或音频分析。
3. 通信系统:频率转电压电路在通信系统中常用于频率解调。
例如,将调频广播信号转换为与声音频率成正比的电压信号,以恢复原始音频。
4. 自动控制:频率转电压电路可以用于自动控制系统中的反馈环路。
通过将频率转换为电压信号,并与设定值进行比较,可以实现对被控对象的控制。
三、设计方法设计频率转电压电路时,需要考虑以下几个关键因素:1. 参考信号:选择适当的参考信号对于电路的性能至关重要。
参考信号的频率应覆盖所需转换的频率范围,并且应稳定且准确。
2. 反馈网络:反馈网络用于将转换后的直流电压反馈给比较器,以调整比较器的阈值。
反馈网络的设计应根据具体的应用需求进行。
电压频率转换电路实验报告
电压频率转换电路实验报告电压频率转换电路实验报告引言:电压频率转换电路是一种常见的电子电路,它可以将输入的电压信号的频率转换为不同的输出频率。
在实际应用中,电压频率转换电路被广泛应用于各种领域,如通信、工业自动化、电力系统等。
本实验旨在通过搭建电压频率转换电路并进行测试,了解其原理和性能。
实验目的:1. 掌握电压频率转换电路的基本原理;2. 学习使用实验仪器和设备进行电路测试;3. 分析电压频率转换电路的性能指标。
实验器材和材料:1. 函数发生器;2. 电压频率转换电路实验板;3. 示波器;4. 电阻、电容等元器件。
实验步骤:1. 搭建电压频率转换电路,根据实验板上的电路图连接各个元器件;2. 将函数发生器的输出连接到电压频率转换电路的输入端;3. 调节函数发生器的频率和幅值,观察输出信号的变化;4. 使用示波器测量输入和输出信号的频率和幅值,并记录数据;5. 改变函数发生器的频率和幅值,再次测量并记录数据。
实验结果与分析:通过实验,我们得到了一系列输入和输出信号的频率和幅值数据。
根据这些数据,我们可以绘制频率-幅值曲线和输入-输出曲线。
通过分析这些曲线,我们可以得到电压频率转换电路的性能指标。
首先,我们观察到在一定范围内,输入信号的频率和幅值与输出信号的频率和幅值呈线性关系。
这说明电压频率转换电路具有一定的线性特性,能够较好地保持输入信号的频率和幅值。
其次,我们注意到在输入信号频率较低或较高时,输出信号的频率会有一定的偏差。
这是由于电压频率转换电路的响应特性造成的。
在设计电路时,我们需要根据实际需求来选择合适的元器件,以获得更好的性能。
此外,我们还观察到在一定范围内,输入信号的幅值与输出信号的幅值呈线性关系,但幅值的变化幅度较小。
这说明电压频率转换电路对输入信号的幅值变化不敏感,能够较好地保持信号的幅值稳定。
综上所述,电压频率转换电路在一定范围内能够较好地保持输入信号的频率和幅值,但在频率较低或较高时会产生一定的偏差。
电力电子设计报告 三相电压型交直交变频器设计与仿真
电力电子课程设计报告设计题目三相电压型交直交变频器设计与仿真指导老师设计者专业班级学号摘要目前国际形势纷乱复杂、能源危机日益突出,能源瓶颈已经逐渐成为了制约国民经济持续发展的主要因素之一,迫切需要提高工农业生产中的能源利用率。
本课程设计正是基于目前我国交流电气传动系统的现状,设计了一台电压源型通用变频器。
随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流变频调速技术得到了迅速发展,其显著的节能效益,高精确的调速精度,宽泛的调速范围,完善的保护功能,以及易于实现的自动通信功能,得到了广大用户的认可,在运行的安全可靠、安装使用、维修维护等方面,也给使用者带来了极大的便利。
因此,研究交—直—交变频调速系统的基本工作原理和作用特性意义十分重大。
本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。
使用Matlab/Simulink搭建交—直—交变频调速系统的仿真模型,通过试验对该交—直—交变频器的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频器的影响有了一定的了解。
关键词:交—直—交变频,整流,逆变,simulink仿真,谐波目录摘要 .................................................................................................................... I I 第1章绪论. (5)1.1课程设计的目的 (5)1.2课程设计的任务与要求 (5)1.3课程设计的内容 (5)1.4控制方式 (6)1.5M ATLAB的原理应用及S IMULINK仿真 (7)第2章三相电压型交直交变频器的组成及基本原理 (8)2.1三相电压型交直交变频器的基本构成 (8)2.2交直交变频器的工作原理 (10)2.3使用变频器要注意的问题 (11)2.4交直交变频的基本工作特性 (11)2.5PID控制器的参数整定 (11)第3章主电路设计及仿真 (12)3.1设计方案 (12)3.2主电路结构原理图 (13)3.3电路类型选择依据 (13)3.4整流器的工作原理及设计 (14)3.4.1 整流器的基本工作原理 (14)3.4.2 整流元件的选择 (16)3.4.3 电抗器参数计算 (16)3.4.4 整流器的设计与仿真 (16)3.5逆变器的工作原理及设计 (21)3.5.1 逆变器的基本工作原理 (21)3.5.2 逆变器的设计与仿真 (24)3.5.3 PI控制电路的设计与仿真 (28)3.5.4 PWM波的产生设计与仿真 (30)第4章驱动保护电路的设计 (33)4.1过电压保护: (33)4.2过电流保护 (34)4.3IGBT驱动电路 (34)4.4触发电路选择与设计 (35)第5章综合设计与仿真 (37)5.1.1 交直交变频器模型 (37)5.1.2 检验是否满足性能指标的要求。
555 电压频率变换电路的设计
长沙学院课程设计说明书题目125电压频率变换器的设计系(部) 电子与通信工程专业(班级)姓名学号指导教师起止日期模拟电路课程设计任务书(20)一.设计题目电压频率变换器的设计二.技术参数和设计要求1. 技术参数(1)设计一种电压/频率变换电路,输入vi为直流信号(控制信号),输出频率为fo的矩形脉冲,且fo∝vi。
(2)vi变化范围为0~10V。
(3)fo变化范围为0~10kHz。
(4)转换精度<1%。
2. 设计要求(1)画出电路原理图或仿真电路图;(2)元器件及参数选择;(3)电路仿真与调试;(4)PCB文件生成与打印输出;(5)编写设计报告:包括设计与制作的全过程,附上有关资料和图纸,有心得体会。
(6)答辩,在规定时间内完成叙述并回答问题。
三.设计工作量设计时间一周,2012年下学期进行。
四.工作计划星期一:布置设计任务,查阅资料;星期二~星期四:设计方案论证,进行电路设计,计算并选择电路元件及参数;星期五:撰写设计报告及使用说明书,进行个别答辩。
五.参考资料1.彭介华,《电子技术课程设计指导》,北京:高等教育出版社,1997;2.高吉祥,《电子技术基础实验与课程设计》,北京:电子工业出版社,2005;3.童诗白,《模拟电子技术基础》,北京:高等教育出版社,1988;4.康华光,《电子技术基础——模拟部分》,北京:高等教育出版社,2006六.指导教师马凌云七.系部审批长沙学院课程设计鉴定表目录一.技术参数和设计要求 (4)1.1. 技术参数 (4)1.2 设计要求 (4)二.设计思路 (4)三.单元电路设计 (6)3.1积分器的设计: (6)3.2单稳态触发器的设计 (6)3.3电子开关的设计 (7)3.4恒流源电路的设计 (8)四、总原理图及元器件清单 (9)4.1总原理图 (9)4.2元器件清单 (9)五、基本计算与仿真调试分析 (9)5.1基本计算 (9)5.2仿真数据 (10)六、课程设计总结 (13)七、参考文献 (14)一.技术参数和设计要求1.1. 技术参数(1)设计一种电压/频率变换电路,输入vi为直流信号(控制信号),输出频率为fo的矩形脉冲,且fo∝vi。
变频调速电路实验报告
变频调速电路实验报告1. 引言变频调速电路是一种用于控制交流电动机转速的电路,通过调节电源电压的频率来改变电动机的转速。
在工业生产中,变频调速电路被广泛应用于交流电动机的控制,具有调速范围广、控制性能好、能耗低等优点。
本实验旨在通过搭建变频调速电路,研究其工作原理,并进行实际调速实验,探究电源电压频率对交流电动机转速的影响。
2. 实验仪器与设备- 示波器- 交流电源- 交流电动机- 变频调速电路实验箱3. 实验原理变频调速电路的核心是变频器,其主要由稳压供电模块、频率变换模块和控制信号处理模块组成。
变频器通过控制频率变换模块的输出频率,来改变电源电压的频率,从而实现对交流电动机的调速控制。
实验中,我们将交流电源与交流电动机连接到变频调速电路中,通过设置变频器的输出频率来调节电源电压的频率,从而改变电动机的转速。
4. 实验步骤1. 将交流电源与交流电动机依次连接到变频调速电路实验箱上;2. 打开交流电源,将稳压供电模块的输出电压调节到适当值,保证电动机正常工作;3. 打开变频调速电路实验箱,将频率变换模块的输出频率调节旋钮调至最小;4. 启动交流电动机,观察其转速;5. 逐步增加频率变换模块的输出频率,观察电动机转速的变化,记录数据;6. 调整频率变换模块的输出频率,使电动机转速在不同的范围内变化,并记录数据;7. 将频率变换模块的输出频率调节至最大值,观察电动机的最高转速。
5. 实验结果与分析在实际实验中,我们调节频率变换模块的输出频率,观察交流电动机的转速变化。
记录得到的数据如下:输出频率(Hz)电动机转速(rpm)- -20 60030 90040 120050 150060 180070 210080 240090 2700100 3000从表中可以看出,随着频率变换模块的输出频率增加,电动机的转速也随之增加。
这是因为变频器控制了电源电压的频率,使电动机的输入电压频率随之变化,从而改变了电动机的转速。
传感器与检测电路设计项目化教程 第2版-电子课件-电压-频率变换电路设计与测试
电路调节:
点击运行按钮,调节RP1,使输出电压
为1V(右下角电压表显示值),即达到
1V/kHz。
电路测试:
当输入频率为2.27kHz和3.79kHz时,测量输出电压。
最低频率时:
最高频率时:
。
出直流电压Uo与输入信号ui的关系为1V/kHz。
注:输入信号为矩形波。
3 电路仿真与测试
仿真电路设计
从Proteus元件库取出相关元器件,绘制电路原理图。
(1)电阻:RES
(2)可调电阻:POT-HG
(3)无极性电容:CAP
(4)频率-电压转换芯片:LM331
3 电路仿真与测试
参数设置
设置输入信号ui:
检测电路设计与制作课程
电流-频率转换电路设计与测试
目录
1
任务目标
2
频率-电压转换电路设计
3
电路仿真与测试
1 任务目标
任务目标
➢
了解频率-电压转换原理;
➢
掌握集成频率-电压转换芯片LM331应用电路设计与测试;
➢
会调试与测试LM331应用电路。
2 频率-电压转换电路设计
根据系统框图,光敏传感器及接口电路
已经将光0~300lux的光信号转换成2.27kHz
~3.79kHz的频率信号,接下来要将该频率
信号变换成与之成正比的电压信号,提供后
续电路处理。频率-电压转换电路的要求为:
输入信号:2.27kHz~3.79kHz
输出信号:2.27V~3.79V。
2 频率-电压转换电路设计
采用集成频率/电压转换芯片LM331实现,
电压频率转换器原理及典型电压频率转换电路的设计
电压频率转换器原理及典型电压频率转换电路的设计电压频率转换器VFC(V oltage Frequency Converter)是一种实现模数转换功能的器件,将模拟电压量变换为脉冲信号,该输出脉冲信号的频率与输入电压的大小成正比。
电压频率转换器也称为电压控制振荡电路(VCO),简称压控振荡电路。
电压频率转换实际上是一种模拟量和数字量之间的转换技术。
当模拟信号(电压或电流)转换为数字信号时,转换器的输出是一串频率正比于模拟信号幅值的矩形波,显然数据是串行的。
这与目前通用的模数转换器并行输出不同,然而其分辨率却可以很高。
串行输出的模数转换在数字控制系统中很有用,它可以把模拟量误差信号变成与之成正比的脉冲信号,以驱动步进式伺服机构用来精密控制。
VFC 电压-频率转换器(vfc)是青岛晶体管研究所生产的电路。
电压频率转换也可以称为伏频转换。
把电压信号转换为脉冲信号后,可以明显地增强信号的抗干扰能力,也利于远距离的传输。
通过和单片机的计数器接口,可以实现AD转换。
VFC 有两种常用类型:(a)多谐振荡器式VFC ;(b)电荷平衡式VFC。
多谐振荡器式VFC简单、便宜、功耗低而且具有单位MS输出(与某些传输介质连接非常方便);电荷平衡式VFC的精度高于多谐振荡是VFC,而且能对负输入信号积分。
电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。
它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。
如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。
电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。
F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。
电压频率和频率电压转换电路的设计讲解
设计一个V/F转换器,研究其产生的输出电压的频率随输入电压幅度的变化关系。
1 绪论(1)电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。
它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。
如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。
图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。
(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。
这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。
它有通用运放F/V转换电路和集成F/V转换器两种类型。
1.1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。
1.2 设计指标(1)输入为直流电压0-10V,输出为f=0-500Hz的矩形波。
(2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。
2 设计内容总体框图设计2.1 V/F转换电路的设计2.1.1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图 2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。
由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。
通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值OLM Z V V =± 。
矩形波的振荡频率 2.1.2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。
【设计】简易数字电压表课程设计
【关键字】设计《数字逻辑》课程设计报告题目简易数字电压表学院(部)信息工程学院专业计算机科学与技术班级学生姓名学号6 月18日至6 月21 日共 1 周指导教师(签字)前言关于数字式简易电压尝试仪的设计,我们提出了三种设计方法和思路,分别是ADC0809的A/D 转换电路、LM331V/F转换电路、555定时器的V/F转换电路。
在具体操作中,经过对资料的收集、分析,研究与对比,最终选择了简单易懂,而且精度较高的方法,即LM331压频转换法。
本方法的基本理论是LM331的输入电压幅值与输出脉冲的频率成正比,再通过一系列的控制,计数,锁存,显示电路实现了对电压的一般尝试与数字显示。
每学期的课程设计是综合检验我们所学知识的时候,在这期间我们需要将自己所学的知识进行综合,然后运用到我们所要完成的任务中。
此次课程设计我们完成的任务是制作简易数字电压表,我们在拿到这个题目时是没有一点思路的,在仔细研究和向老师请教后终于有了一点头绪,在小组两外两个成员杨羽丰和侯理想的共同努力下,我们初步实现了数字电压表的制作的方案制作,但是由于仿真软件中缺少我们所需元件的原因,我们的方案没能进行模拟仿真,这是此次课程设计的遗憾之处。
我们现在正在试图用另外的仿真软件进行此方案的仿真。
在本次课程设计过程中得到了各方面的支持和帮助,在此特别向数子电子技术老师表示由衷的感谢。
由于设计时间和水平的限制,如有不足之处,敬请指正!目录1.4 V/F转换电路方案比较与论证 (4)66101011111113131313简易数字电压表摘要本文介绍了一种简易的数字式显示电压尝试仪的设计思路及硬件结构。
该测量仪的基本工作原理是:把电压量通过单稳态触发器转化成时间脉冲量,然后在这个时间脉冲内进行计数,再锁存计数值,最终通过数码显示译码器驱动数码管进行显示。
可由555集成定时器构成多谐振荡器产生计数脉冲和对单稳态进行触发,555构成的单稳态触发器电路来控制计数器清零与锁存器锁存,四片74LS160构成计数电路,四片74LS373N构成锁存电路,四片DCD_HEX数码管构成四位译码显示电路,通过计算与分析把各电路连接起来,最终实现对电压(0V—9.99V)的简易测量与数字显示。
电压源双向型直接降频电路仿真实验报告
电压源双向型直接降频电路仿真实验报告实验目的:本实验旨在通过对电压源双向型直接降频电路的仿真实验,验证其降频功能,探究其工作原理,并分析实验结果。
实验原理:电压源双向型直接降频电路是一种常见的电路,可将输入信号的频率降低到较低的频率范围内。
该电路主要由电容、电感和电阻等元件组成。
在该电路中,输入信号经过电容和电感串联后,通过电阻进行输出。
电容负责滤去输入信号中的高频分量,而电感则起到延迟信号的作用。
通过调节电容和电感的数值,可以实现对输入信号频率的降低。
实验步骤:1. 搭建电压源双向型直接降频电路。
2. 设置输入信号的频率和幅值。
3. 运行仿真软件,进行电路仿真实验。
4. 观察输出信号的频率和幅值,并记录实验数据。
5. 根据实验数据进行分析和讨论。
实验结果与分析:经过实验仿真,我们得到了电压源双向型直接降频电路的输出信号频率和幅值数据。
通过对数据的分析,可以得出以下结论:1. 输入信号的频率较高,经过电压源双向型直接降频电路后,输出信号的频率明显降低。
2. 输出信号的幅值与输入信号的幅值相比,有所减小。
通过对实验结果的分析,我们可以得出结论:电压源双向型直接降频电路具有降低输入信号频率的功能,并在此过程中对信号进行一定程度的衰减。
实验总结:本实验通过对电压源双向型直接降频电路的仿真实验,验证了该电路的降频功能,并通过实验结果进行了分析。
实验结果表明,该电路能够有效地将输入信号的频率降低,并使输出信号的幅值相对减小。
在实验过程中,我们还发现了一些问题和不足之处。
例如,电路的参数选择和调整可能会影响输出信号的质量,需要进一步优化。
此外,实际电路的工作可能会受到环境因素的影响,需要进行更多的实验和分析。
通过本次实验,我们对电压源双向型直接降频电路的工作原理和性能有了更深入的了解。
这将有助于我们在实际应用中更好地设计和调整电路,以满足特定的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南文理学院芙蓉学院课程设计报告
电压
绪论
随着电子技术和计算机技术的迅速进步,工业自动化得到了快速发展,而在工业控制领域,检测传感器件起着越来越重要的作用,各种先进的传感器正在大量应用。
但是很多传感器只提供4~20mA或者0~5V的直流模拟信号输出,而我国煤矿使用的煤矿安全监测系统大部分只允许接入1~
Introduction
As the elec tr onic technology and the rapid progress of computer technology, industrial automation has been rapid development, and in the field of industrial control, detection sensor plays a more and more important role, a variety of advanced sensors are a large number of applications. But many sensors
目录
第一章. 题目 (2)
第二章. 引言 (2)
3
3
4
5
5
·7
8
10
11
13
14 第六章.参考文献 (15)
第一章.题目电压/频率转换电路的设计
第二章.引言
》
/
第三章.系统设计原理内容及要求
3.1 设计目的
(1)、熟悉和应用比较器的构成及设计方法,尤其是迟滞比较器的应用。
(2)、熟悉和应用积分器的构成和设计方法,了解电容在其中的工作原理。
(3)、熟悉和简单应用二极管作电子开关的构成和设计方法。
(4)、熟悉迟滞比较器与积分器之间的波形转换。
从而进行输出波形频率的改变,达到设计目的。
3.3.2电压/频率转换器原理框图如下,
i v F
v
3.3.4 各模块方案设计
1. 积分器的设计方案 基本设计方案如下方截图3
图3.3.4-2
1
14341
3
1u u R R R u p •=•+= 反相输入端电位11P N u u =。
积分电路的输出电压为
()()010*******t u t t u C R u o o +-⎪⎭
⎫
⎝⎛-•-
=
当T 截止时,积分电路的等效电路如下图所示,Up1、Un1不变,仍为3/1u 。
积分电路的输出电压为
2.比较器的设计方案
电压比较器基本设计方案如下方图
TH TH 过零比较器,如下图
3.单稳态触发器
基本设计方案如下方图
4.低通滤波器
基本设计方案如下方图
3.3.4模块的整合
电压/频率
如下图所示为电压/频率转换电路。
功能是将直流电压转换成频率与其幅值成正比的矩形波,即用输出矩形波的频来表示输入直流电压的大小,故电路完成了模拟量到数字量的转换。
由于输出电压频率收到输入直流电压的控制,故也称之为压控振荡器。
频率/电压
图3.3.4-2
第四章. 元件清单
第五章. 心得体会
通过这次的课程设计,加强了我的动手能力,提高了我的运用知识解决问题的能力。
在本次课程设计中我做的题目是:电压/频率转换电路的设计。
在整个方案设计中,我运用了模拟电子的相关知识,包括:积分器、迟滞比较器等模块电路。
在选择元件方面,我使用了两个NJM系列的集成芯片、稳压管以及具有单向导通性的晶体二极管,从中我学到了挑选元件的方法和元件的合理构架等书本上没有的知识。
接下来就进入了电路图的绘制阶段,值得庆幸的是在这次课程设计之前,我就已经学会了使用电子绘图和仿真软件multisim。
在绘图和仿真阶段,进行的相当的顺利,对电阻和电容数值的调试也是很顺利的。
设计过程如一条蜿蜒曲折的小径,你永远不知道下一个拐弯后有什么等待这你。
这一次的课程设计的全过程,让我体会到的是设计的艰辛,但更多的是在设计过程中发现问题、解决问题的喜悦,我开始越来越喜欢上电子设计了。
第六章:参考文献
电子技术基础(模拟部分)第五版主编:康华光高等教育出版社(2005)电子技术基础(数字部分)第五版主编:康华光高等教育出版社(2005)电工电子实践指导(第三版),王港元主编,江西科学技术出版社(2009)
电子线路设计、实验、测试(第四版),罗杰,谢自美主编,电子工业出版社(2009)电子技术课程设计指导彭介华主编,高等教育出版社(2000)
电子技术基础实验研究与设计陈兆仁主编,电子工业出版社(2000)。