(完整)南京大学《高等代数》2013年期末考试题及答案,推荐文档
高等代数期末考试复习题及参考答案
高等代数 --复习资料一、单项选择题1、设为任意两个级方阵,则如下等式成立的是A.B.C.D.参考答案: C2、设向量组线性无关,则向量组线性无关的充分必要条件为A.B.C.D.参考答案: A3、若,则( ).A. 30mB. -15mC. 6mD. -6m参考答案: D4、实对称矩阵的特征值都是( )A. 非负整数B. 实数C. 正数参考答案: B5、实对称矩阵A的秩等于r,且它有m个正特征根,则它的符号差为 ( )A. rB. mC. 2m-rD. r-m参考答案: C6、设矩阵和分别是和的矩阵,秩,秩,则秩是A. 1B. 2C. 3D. 4参考答案: B7、是线性空间V上的线性变换,,那么关于V的基的矩阵是 ( )A.B.C.D.参考答案: B8、对于元方程组,下列命题正确的是( ).A. 如果只有零解,则也只有零解B. 如果有非零解,则有无穷多解C. 如果有两个不同的解,则有无穷多解D. 有唯一解的充分条件是参考答案: C9、若矩阵A的不变因子为,则A的全部初等因子为 ( )A.B.C.参考答案: A10、设为3次实系数多项式,则A. 至少有一个有理根B. 至少有一个实根C. 存在一对非实共轭复根D. 有三个实根.参考答案: B11、对于数域P上线性空间V的数乘变换来说 ( )不变子空间A. 只有一个B. 每个子空间都是C. 不存在参考答案: B12、下列运算中正确的是( )A. ;B. ;C. ;D. 。
参考答案: D13、为欧氏空间V上的对称变换,下面正确的是 ( )A.B.C.参考答案: C14、如果把代入实二次型都有,那么是 ( )A. 正定B. 负定C. 未必正定参考答案: C15、设向量组线性无关,线性相关,则( ).A. 一定能由线性表示B. 一定能由线性表示C. 一定不能由线性表示D. 一定不能由线性表示参考答案: B16、下列说法不正确的是( ).A. 任何一个多项式都是零次多项式的因式B. 如果f(x)∣g(x),g(x)∣h(x),则f(x)∣h(x)C. 如是阶矩阵,则D. 如是阶矩阵,则参考答案: A17、设是矩阵,是非齐次线性方程组所对应的齐次线性方程组,则下列结论正确的是( )A. 若仅有零解,则有唯一解;B. 若有非零解,则有无穷多个解;C. 若有无穷多个解,则仅有零解;D. 若有无穷多个解,则有非零解;参考答案: D18、是n维复空间V的两个子空间,且,则的维数为 ( )A.B.C.参考答案: C19、阶矩阵A可逆的充分必要条件是( ).A. ∣A∣=0B. r(A)<C. A是满秩矩阵D. A是退化矩阵参考答案: C20、设矩阵的秩为,为阶单位方阵,下述结论中正确的是( )A. 的任意个列向量必线性无关;B. 的任意一个阶子式不等于零;C. 若矩阵满足,则,或非齐次线性方程组,一定有无穷多组解D. 通过初等行变换,必可化为的形式。
高代期末考试试卷
高代期末考试试卷一、选择题(每题4分,共40分)1. 以下哪个矩阵是可逆的?A. [1 2; 3 4]B. [1 0; 0 0]C. [2 0; 0 2]D. [1 1; 1 1]2. 矩阵A的特征值是λ1和λ2,那么矩阵A^2的特征值是?A. λ1^2, λ2^2B. 2λ1, 2λ2C. λ1, λ2D. λ1+λ2, λ2+λ13. 线性方程组有非零解的条件是?A. 系数矩阵的行列式不等于0B. 系数矩阵的行列式等于0C. 增广矩阵的秩等于系数矩阵的秩D. 增广矩阵的秩不等于系数矩阵的秩4. 以下哪个向量组是线性无关的?A. [1, 0], [0, 1]B. [1, 1], [1, 2]C. [1, 2], [2, 4]D. [1, 2, 3], [4, 5, 6]5. 矩阵A的秩是3,那么矩阵A的零空间的维数是?A. 0B. 1C. 2D. 36. 以下哪个矩阵是对称矩阵?A. [1 2; 3 4]B. [1 3; 3 1]C. [2 1; 1 2]D. [1 0; 0 1]7. 以下哪个矩阵是正交矩阵?A. [1 0; 0 1]B. [1/√2 1/√2; -1/√2 1/√2]C. [1 1; 1 1]D. [1 2; 3 4]8. 以下哪个矩阵是幂等矩阵?A. [1 0; 0 1]B. [1 1; 1 1]C. [0 1; 1 0]D. [1 2; 3 4]9. 以下哪个矩阵是投影矩阵?A. [1 0; 0 0]B. [1 1; 1 1]C. [1 0; 0 1]D. [0 1; 1 0]10. 以下哪个矩阵是单位矩阵?A. [1 0; 0 1]B. [1 1; 1 1]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题(每题4分,共20分)1. 矩阵的迹是其对角线元素的______。
2. 矩阵的转置是将矩阵的行和列进行______。
3. 矩阵的行列式可以通过______展开来计算。
高等代数试题(附答案)
科目名称:《高等代数》姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌一、填空题(每小题5分,共25分)1、 在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。
2、 向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。
3、 (维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。
4、 假设⎪⎪⎪⎭⎫⎝⎛-----=175131023A 的特征根是 ,特征向量分别为 。
5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为二、是非题(每小题2分,共20分)1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。
( )2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。
( )3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。
( )4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。
( )5、 令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。
其中),,,()(24232221x x x x =ξδ。
( )6、 矩阵A 的特征向量的线性组合仍是A 的特征向量。
( )7、 若矩阵A 与B 相似,那么A 与B 等价。
( ) 8、 n 阶实对称矩阵A 有n 个线性无关的特征向量。
( )9、 在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是)(2R M 的子空间。
( )10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。
高等代数期末试题及答案
高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
高代一期末考试试题及答案
高代一期末考试试题及答案一、选择题1. 设A和B都是n阶方阵,下列哪个条件可以推断出A与B一定可交换?A. AB = BAB. AB = 0C. det(A) = 0D. AB = I (单位矩阵)正确答案:A2. 设A是n阶方阵且可逆,则A^-1的列向量组是否一定线性无关?A. 是B. 否正确答案:A3. 设A是n阶对称矩阵,则A肯定满足的性质是:A. A的特征值为实数B. A的特征向量构成一组正交基C. A一定可以对角化D. A的秩等于n正确答案:A4. 设A是n阶可逆矩阵,下列哪个等式成立?A. (A^-1)^T = AB. (A^T)^-1 = AC. (A^-1)^T = (A^T)^-1D. (A^T)^-1 = (A^-1)^T正确答案:D5. 设A是n阶方阵,则A可能是可逆矩阵的充分必要条件是:A. 行列式det(A)不等于0B. 矩阵A的秩等于nC. 矩阵A有n个互不相同的特征值D. 矩阵A的伴随矩阵可逆正确答案:A二、计算题(请写出详细过程并附上最后计算结果)1. 计算矩阵相乘:A = [1 2 3; 4 5 6],B = [1 -1; 2 -2; 3 -3]解答:A *B = [1*1 + 2*2 + 3*3 1*(-1) + 2*(-2) + 3*(-3);4*1 + 5*2 + 6*3 4*(-1) + 5*(-2) + 6*(-3)]= [14 -14;32 -32]2. 计算矩阵的逆:设A = [1 2; 3 4]解答:计算A的行列式:det(A) = 1*4 - 2*3 = -2计算伴随矩阵:adj(A) = [4 -2;-3 1]计算A的逆:A^-1 = (1/det(A)) * adj(A) = (1/-2) * [4 -2;-3 1]= [-2 1;1.5 -0.5]三、证明题证明:若A是n阶对称矩阵,则A一定可以对角化。
解答:要证明A一定可以对角化,需要证明存在一个可逆矩阵P,使得P^(-1) * A * P = D,其中D是一个对角矩阵。
高等代数期末考试试卷及答案
高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
高等代数期末考试题库及答案解析
高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。
5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。
–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。
高代一期末考试试题及答案
高代一期末考试试题及答案高等代数一期末考试试题一、选择题(每题2分,共10分)1. 以下哪个不是线性代数中的基本概念?A. 向量空间B. 线性变换C. 矩阵D. 微积分2. 矩阵的秩是指:A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中线性无关行的最大数量D. 矩阵中线性无关列的最大数量3. 线性方程组有唯一解的条件是:A. 系数矩阵的行列式不为零B. 系数矩阵的秩等于增广矩阵的秩C. 系数矩阵的秩等于未知数的个数D. 所有选项都是4. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 行阶梯形矩阵D. 非方阵5. 特征值和特征向量的计算与下列哪个矩阵运算相关?A. 矩阵的加法B. 矩阵的乘法C. 矩阵的转置D. 矩阵的行列式二、填空题(每空1分,共10分)6. 一个向量空间 \( V \) 的基 \( B \) 包含 \( n \) 个线性无关向量,则 \( V \) 的维数为 _______。
7. 若 \( A \) 是 \( m \times n \) 矩阵,\( B \) 是 \( n\times p \) 矩阵,则 \( AB \) 是 _______ 矩阵。
8. 线性变换 \( T: V \rightarrow W \) 的核是所有满足 \( T(v) = 0 \) 的向量 \( v \) 的集合,记为 _______。
9. 矩阵 \( A \) 与 \( B \) 相等,当且仅当它们具有相同的_______。
10. 一个 \( n \) 阶方阵的迹是其对角线上元素的 _______。
三、简答题(每题5分,共20分)11. 解释什么是线性相关和线性无关,并给出一个线性无关向量组的例子。
12. 描述矩阵的行列式计算的几何意义。
13. 说明如何使用高斯消元法求解线性方程组。
14. 什么是特征值分解?它在哪些领域有应用?四、证明题(每题10分,共20分)15. 证明如果矩阵 \( A \) 可逆,则 \( A \) 的行列式不为零。
南京大学高等数学期末考试试卷(含答案)
南京大学高等数学期末考试试卷(含答案)一、高等数学选择题1.由曲线,直线,轴及所围成的平面图形的面积为.A、正确B、不正确【答案】A2.设函数,则().A、B、C、D、【答案】D3.().A、B、C、D、【答案】B4.函数的图形如图示,则函数的单调减少区间为( ).A、B、C、D、【答案】D5.设函数,则().A、B、C、D、【答案】C6.设,不定积分(1)(2)(3)则上述解法中().A、第(1)步开始出错B、第(2)步开始出错C、第(3)步出错D、全部正确【答案】A7.设为上的连续函数,且,则定积分().A、B、C、D、【答案】D一、一选择题8.函数的图形如图示,则是函数的( ).A、极小值点也是最小值点B、极小值点但非最小值点C、最大值点D、极大值点【答案】A9.微分方程的通解是().A、B、C、D、【答案】A一、一选择题10.函数的定义域为.A、正确B、不正确【答案】A11.不定积分.A、正确B、不正确【答案】A12.函数的定义域为.A、正确B、不正确【答案】A13.设,则.A、正确B、不正确【答案】B14.曲线在点处切线的方程为().A、B、C、D、【答案】A一、一选择题15.函数在点处连续.A、正确B、不正确【答案】A。
(完整版)高等代数期末试卷
数学与应用数学专业本科期末考试试卷(A )课程名称: 高等代数 任课教师: 考试时间: 120 分钟 考试性质(学生填写“√”):正常考试( )缓考补考( )重修( )提前修读( )一、填空题(每小题2分)1. 设n x f =∂))((, 且)()(x f x g , )()(x g x f , 则))((x g ∂=_________.2. 在数域P 上有根, 但是在P 上不可约的多项式是__________多项式.3. )(x f 是首项系数为1的实系数三次多项式. 若0)()3(==i f f , 则)(x f =_________________.4. 在行列式55511511a a a a 中, 含有32a 且带有负号的项共有_________项.5. 在行列式1314021b a -中, b 的代数余子式为-24, 则a =________.6. 当矩阵A=______时, 秩A=0.7. 已知A 为三阶矩阵, 且A =1, 则A 2-=_________.8. 向量组{k ααα,,,21 }和{m βββ,,,21 }的秩分别是s 和t , 则{k αα,,1 ,m ββ,,1 }的秩r 与s ,t 适合关系式____________.9. 设A 为n 阶方阵, X 1, X 2均为方程组AX=B 的解, 且21X X ≠, 则A =____.10. 设A, B 都是三阶方阵, 秩A=3, 秩B=2, 则秩(AB)=____________.二、单选题(每小题2分)).(A) S 1={Z n m mn ∈,2}; (B) S 2={Z b a bi a ∈+,};(C) S 3={Z z nz ∈}; (D) S 4={Q b a b a ∈+,2}.2. 设0)(≠x f , 且)())(),((x d x g x f =, )()()()()(x d x v x g x u x f =+, 则错误的结....论.是( ). (A) 1))()(,)()((=x d x g x d x f ; (B) )())(),((x d x v x u =; (C) )())(),()((x d x g x g x f =+; (D) )())(),((m m m x d x g x f =.3. 设行列式D 1=333231232221131211a a a a a a a a a , D 2=313233212223111213a a a a a a a a a ,则下面结论正确的有( ). (A)D 2=-D 1; (B)D 2=0; (C)D 2与D 1无关; (D)D 2=D 1.4. )(x f =xx x x x111123111212-中 4x 的系数为( )(A) 1, (B) 2, (C) 0, (D) 3.5. 22)13)()(1()(--+=x i x x x f 在复数域上的标准分解式是( )(A)22)13)()(1(--+x i x x ; (B) 22)13())((--+x i x i x ;(C)22)31())((--+x i x i x ; (D) 22)31())((9--+x i x i x .6.若r ααα,,,21 是线性无关的向量组, 则r r k k k ααα,,,2211 也线性无关的条件是( )(A) r k k k ,,,21 不全为零, (B) r k k k ,,,21 全为零, (C) r k k k ,,,21 全不为零, (D)以上结论都错.7. 在一个含有n 个未知数m 个方程的线性方程组中,若方程组有解,则( ) (A) m >n ; (B) m <n ; (C) m =n ; (D)与m ,n 的大小无关. 8. 若矩阵A 的秩为r ,则( )(A)A 有r 阶非零子式; (B)A 有r 阶非零子式且任意r +1阶子式为0; (C)A 的任意r +1阶子式为0; (D)A 的r 阶子式都不等于0. 9. 下列矩阵中( )不是初等矩阵(A)⎪⎪⎪⎭⎫ ⎝⎛-100010001; (B)⎪⎪⎪⎭⎫ ⎝⎛101010100; (C)⎪⎪⎪⎭⎫ ⎝⎛010100001; (D)⎪⎪⎪⎭⎫⎝⎛100010101.10. 若数域P 上三元齐次线性方程组0=AX 的基础解系中仅含有一个向量,则其系数矩阵的秩是( )(A) 0; (B) 1; (C) 2; (D) 3.三、判断正误(每小题2分)1. 若)()()(21x f x f x g +, 且)()()(21x f x f x g -, 则)()(1x f x g ,且)()(2x f x g .( )2. 若n 级行列式D ≠0, 则D 的n-1阶子式不全为零. ( )3. 初等矩阵的逆矩阵仍为初等矩阵. ( )4. 若A,B 均为n 阶可逆矩阵, 则A+B 也是n 阶可逆矩阵. ( )5. 等价的向量组含有相同个数的向量. ( ) 四、计算题(第1、2小题每题10分,第3小题15分)1. 计算n 阶行列式nnna a a a a a a a a a a a +++111321321321.2. 设111111022110110211X --⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求矩阵X .3. 用导出组的基础解系表出线性方程组⎪⎪⎩⎪⎪⎨⎧=+-++-=---+=-++=+-++55493123236232335432154321432154321x x x x x x x x x x x x x x x x x x x 的全部解.五、证明题(第1小题7分,第2小题8分)1. 设P[x]的多项式)(x f 与不可约多项式)(x p 有一个公共根, 则)()(x f x p .2. 若方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++++++11212111221111212111n n n n n n n n nn n n n n b x a x a x a b x a x a x a b x a x a x a 有解, 则行列式111111111+++n nn n n nnn n b a a b a a b a a=0.。
《高等代数》各章习题+参考答案 期末复习用
1A = 1000 ,B = 0001 ,|A +B |=1,|A |=0,|B |=0.|A +B |=|A |+|B |.2A = 0100,A 2=0,A =0.3A (E +A )=E A 4A = 0100 ,B = 1000,AB =0,rank (A )=1,rank (B )=1,A,B 2.1B 2A 3C 4A 5D 6B 7B 8C 9D 10A 11D 12A 13C 14D 15D 16B 17C 18C 19C 20D 21C 22C 23D 24C 25C 26A 27A 28A 1−135,93m ×s,n k =1a jk b ki 4 1b 0001612012001a n1a 20···00...···············000 (1)910411(−1)mn ab12213I n2单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。
2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。
3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。
4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。
5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。
《高等代数》习题与参考答案
《高等代数》习题与参考答案数学系第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
(完整word版)高等代数期末复习试题
数学系《高等代数》期末考试试卷年级 专业 学号 姓名注:考试时间120分钟,试卷满分100分 。
;错误的在题后的括号内打“×”.每小题2分,共18分) 1.向量空间一定含有无穷多个向量. ( )2.若向量空间V 的维数2dim ≤V ,则V 没有真子空间. ( )3. n 维向量空间中由一个基到另一个基的过渡矩阵必为可逆矩阵. ( )4.线性变换把线性无关的向量组映成线性无关的向量组. ( )5.每一个线性变换都有本征值. ( )6.若向量ξ是线性变换σ的属于本征值λ的本征向量,则由ξ生成的子空间 为σ的不变子空间. ( )7.保持向量间夹角不变的线性变换是正交变换. ( )8.两个复二次型等价的充分必要条件是它们有相同的秩. ( )9. 若两个n 阶实对称矩阵B A ,均正定,则它们的和B A +也正定. ( )号码填在题目的括号内.每小题2分,共10分)1. 下列命题不正确的是 ( ).A. 若向量组},,,{21r ααα 线性无关,则它的任意一部分向量所成的向量组也线性无关;B. 若向量组},,,{21r ααα 线性相关,则其中每一个向量都是其余向量的线性组合;C.若向量组},,,{21r ααα 线性无关,且每一i α可由向量},,,{21s βββ 线装订线性表示,则s r ≤;D. )0(>n n 维向量空间的任意两个基彼此等价.2. 下列关于同构的命题中,错误的是( ).A .向量空间V 的可逆线性变换是V 到V 的同构映射;B .数域F 上的n 维向量空间的全体线性变换所成向量空间与数域F 上的所有n 阶矩阵所成向量空间同构;C .若σ是数域F 上向量空间V 到W 的同构映射,则1-σ是W 到V 的同构映射;D .向量空间不能与它的某一个非平凡子空间同构.3.n 阶矩阵A 有n 个不同的特征根是A 与对角矩阵相似的 ( ).A .充分而非必要条件;B .必要而非充分条件;C .充分必要条件; D. 既非充分也非必要条件.4.二次型⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=21213211312),(),,(x x x x x x x q 的矩阵是( ). A .⎪⎪⎭⎫ ⎝⎛-1312; B .⎪⎪⎭⎫ ⎝⎛1112;C .⎪⎪⎪⎭⎫ ⎝⎛-000013013;D .⎪⎪⎪⎭⎫ ⎝⎛0000110125.实二次型Ax x x x x q '=),,(321正定的充分且必要条件是 ( ).A .0>A ;B .秩为3;C .A 合同于三阶单位矩阵;D .对某一,0),,(321≠'=x x x x 有0>'Ax x .1. 复数域C 作为实数域R 上的向量空间,它的一个基是________.2. 设},,2,1,),,,{(21n i F x x x x F i n n =∈=是数域F 上n 元行空间,对任意n n F x x x ∈),,,(21 ,定义),,,,0,0()),,,((22121-=n n x x x x x x σ,则σ是一个线性变换,且σ的核)(σKer 的维数等于______.3. 若A 是一个正交矩阵,则2A 的行列式2A =________.4. 在欧氏空间3R 中向量)0,0,1(1=α与)0,1,0(2=α的夹角θ=______.5. 实数域R上5元二次型可分为_______类,属于同一类的二次型彼此等价,属于不同类的二次型互不等价.42分)1.求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++=+++=+++033450220230432143243214321x x x x x x x x x x x x x x x 的解空间的一个基,再进一步实施正交化,求出规范正交基.2.设⎪⎪⎪⎭⎫ ⎝⎛--=230120001A ,求A 的特征根及对应的特征向量.问A 是否可以对角化?若可以,则求一可逆矩阵T ,使AT T 1-为对角形.3. 写出3元二次型32213214),,(x x x x x x x q +=的矩阵.试用非奇异的线性变换,将此二次型变为只含变量的平方项.五.证明题(每小题10分,共20分)1.设21,λλ为n 阶矩阵A 的属于不同特征根,21,ξξ分别是A 的属于21,λλ的特征向量,证明21ξξ+不是A 的特征向量.2.设σ是n 维欧氏空间V 的正交变换,且ισ=2为单位变换,A 是σ关于V 的某一规范正交基的矩阵,证明A 为对称矩阵.数学系《高等代数》期末考试试卷(A 卷)年级 专业 学号 姓名 注:考试时间120分钟,试卷满分100分 。
(完整word版)高等代数期末试卷
高等代数课程期末试卷命题人:审题人:姓名数学系班学号:题号一二三四五总分得分一、是非题(每小题2分,共10分)1.f(x)=ax+b (a≠0)在任意数域上不可约。
()2.行列式D=0,则行列式定有两行成比例。
()3.两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。
()4.若对于方阵A,存在0021≠≠αα,满足2211αααα-==A A ,,则21αα、线性无关.()5.设δ是n 维欧氏空间V 的一个正交变换,则δ关于V 的任一基的矩阵都为正交矩阵.()二、选择题(每小题3分,共18分)1.设f(x)∈R[x],若对任意的首项系数为1的g(x)∈R[x],都有(f(x),g(x))=g(x),则f(x)必为()A.零次多项式B.零多项式C.f(x)≡1D.不存在得分得分2.记D=ba c a cb cb a ,A=a+b+c,B=a 2+b 2+c 2,C=ab+bc+ca ,如果D=0,那么必有()A.A=0B.B-C=0C.A=0或B-C=0D.A,B,C 不确定3.若21,W W 都是n 维线性空间V 的子空间,那么()A.维()1W +维()21W W =维()2W +维()21W W +;B.维()21W W +=维()1W +维()2W ;C.维()1W +维()21W W +=维()2W +维()21W W ;D.维()1W -维()21W W =维()21W W +-维()2W 。
4.同一个线性变换在不同基下的矩阵是()A.合同的;B.相似的;C.相等的;D.正交的。
5.设V 是n 维欧氏空间,那么V 中的元素具有如下性质()A 若()()γβγαβα=⇒=,,;B 若βαβα=⇒=;C 若()11,=⇒=ααα;D 若()βα,>βα=⇒0。
6、设u 是正交矩阵,则()A u 的行列式等于1B u 的行列式等于-1C u 的行列式等于±1D u 的行列式等于0三、填空题(每小空3分,共21分)1.2i 是多项式f(x)=x 7+x 5+2x 4-8x 3+8x 2-12x+8的二重根,f(x)的其他根是。
(完整word版)南京大学《高等代数》2013年期末考试题及答案
南京大学高等代数2013年期末考试试卷及答案(A 卷)一、 填空题(每小题3分,共15分)1、线性空间[]P x 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基,由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵,则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B)数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间.2、( )设是非零线性空间 V 的线性变换,则下列命题正确的是:(A )的核是零子空间的充要条件是是满射;(B )的核是V 的充要条件是是满射;(C )的值域是零子空间的充要条件是是满射;(D )的值域是V 的充要条件是是满射.3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵.4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为: 2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
大学高等代数试题及答案
大学高等代数试题及答案一、单项选择题(每题2分,共10分)1. 设矩阵A为3阶方阵,且|A|=1,则矩阵A的逆矩阵的行列式是()。
A. 0B. 1C. -1D. 32. 若线性方程组有唯一解,则该方程组的系数矩阵的秩与增广矩阵的秩()。
A. 不相等B. 相等C. 相差1D. 相差23. 以下哪个矩阵是正交矩阵?()A. \[\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\]B. \[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\]C. \[\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\]D. \[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\]4. 矩阵A的特征值是λ,那么矩阵A的转置的特征值是()。
A. λB. -λC. 0D. 不确定5. 设A是n阶方阵,且A^2=I(I是单位矩阵),则A的行列式是()。
A. 1B. -1C. 0D. 不确定二、填空题(每题3分,共15分)6. 若矩阵A的秩为2,则A的行最简形矩阵中非零行的个数为_________。
7. 设A是3×3矩阵,且A的迹等于3,则A的对角线元素之和为_________。
8. 若线性方程组的系数矩阵A和增广矩阵B的秩相等,则该方程组有_________解。
9. 设矩阵A的特征多项式为f(λ)=λ^2-5λ+6,则A的特征值为_________。
10. 若矩阵A与B相似,则A与B有相同的_________。
三、解答题(每题10分,共20分)11. 给定矩阵\[A=\begin{pmatrix} 2 & 1 \\ 1 & 2\end{pmatrix}\],求矩阵A的特征值和特征向量。
高等代数期末考试题库及答案解析 (2)
高等代数期末考试题库及答案解析1. 矩阵运算1.1 矩阵加法考察矩阵的相加,要求加法可交换。
题目:已知矩阵 A = \(\begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}\),矩阵 B = \(\begin{bmatrix} 5 & 2 \\ 1 & 3 \end{bmatrix}\)。
求 A + B 的结果。
答案解析:根据矩阵加法的定义,对应位置的元素相加,即有:\[ A + B = \begin{bmatrix} 3+5 & 1+2 \\ 2+1 & 4+3 \end{bmatrix} =\begin{bmatrix} 8 & 3 \\ 3 & 7 \end{bmatrix} \]1.2 矩阵乘法考察矩阵的相乘,要求乘法满足结合律。
题目:已知矩阵 A = \(\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}\),矩阵 B = \(\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}\)。
求 A * B 的结果。
答案解析:根据矩阵乘法的定义,对应位置元素相乘并求和,即有:\[ A \times B = \begin{bmatrix} 2 \cdot 5 + 3 \cdot 3 & 2 \cdot 2 + 3 \cdot 1 \\ 1 \cdot 5 + 4 \cdot 3 & 1 \cdot 2 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 19 & 8 \\ 17 & 6 \end{bmatrix} \]2. 矩阵的特征值和特征向量2.1 特征值和特征向量的定义考察特征值和特征向量的定义和性质。
题目:设矩阵 \(A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}\),求 A 的特征值和特征向量。
-01-02解答-13高等代数1期末试卷
12013学年第一学期 高等代数Ⅰ(A 卷)一、选择题(本大题共 5 小题,每小题 3 分,共 15 分) 1. 下列关于多项式理论的说法中正确的是( C ).A. 零多项式整除任意多项式B. 零多项式不整除零多项式C. 零多项式只能整除零多项式D. 零多项式的次数为零 分析:任意多项式整除零多项式;零多项式只能整除零多项式; 零多项式是唯一不定义次数的多项式2. 设有n 维向量组(I ):r ααα,,,21 和(II ):)(,,,21r m m >ααα ,则( C ).A. 向量组(I )线性无关时,向量组(II )线性无关B. 向量组(I )线性无关时,向量组(II )线性相关C. 向量组(I )线性相关时,向量组(II )线性相关D. 向量组(I )线性相关时,向量组(II )线性无关 分析:部分相关,则整体相关; 整体无关,则部分无关3. 设A 为n m ⨯矩阵,齐次线性方程组0=Ax 仅有零解的充要条件是( B ). A. A 的列向量线性相关 B. A 的列向量线性无关 C. A 的行向量线性相关 D. A 的行向量线性无关分析:齐次线性方程组0=Ax 仅有零=⇔系数矩阵的秩未知数个数,即R(A)=nA n ⇔的个列向量无关4. 设,A B 为n 级方阵,0A ≠,且0AB =,则有( ).A. 0A =或0B =B. 0BA =C. 222()A B A B -=-D. 0B =2分析:矩阵乘法不满足交换律,消去律,即=BA =0B==AB AB AB AC B C =不一定成立;不一定得到A=0或0;不一定有,0=0=0AB AB A B =⇒⇒5. 设A 和B 都是n 级实对称矩阵, 通过非退化线性替换能将实二次型12(,,,)T n f x x x X AX =化为实二次型12(,,,)T n g y y y Y BY =的充分必要条件是( D ).A. A 与B 具有相同的秩B. A 与B 具有相同的符号差C. A 与B 具有相同的正惯性指数D. A 与B 具有相同的负惯性指数, 并且A 与B 具有相同的符号差 分析:非退化线性变换保证二次型的矩阵合同,即A 与B 合同, 在实数域上相当于,A B p 有相同的正惯性指标和秩r 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)1. 设四级行列式D 的第四列元素分别为1,0,2,3,且它们对应的余子式分别为2,3,1,2-,则D =__________.注意:行列式按本行(列)展开的值为A ,串行(列)展开的值为“0”内容见课本78页定理3.4+14+24+34+4=1-2+0--+-+-=2D⋅⋅⋅⋅按第四列元展开(1)(1)(3)2(1)13(1)2,展开需用代数余子式。
高代期末考试题及答案解析
高代期末考试题及答案解析一、选择题(每题2分,共20分)1. 设矩阵A是一个3x3的方阵,且|A| = 3,那么矩阵A的伴随矩阵的行列式是:A. 9B. 27C. 81D. 243答案:B解析:矩阵A的伴随矩阵记为adj(A),根据行列式的性质,|adj(A)| = |A|^(n-1),其中n是矩阵的阶数。
因此,|adj(A)| = 3^(3-1) = 9。
2. 向量空间V中,若向量v1和v2线性无关,则下列哪个向量与v1和v2都线性无关?A. v1 + v2B. 2v1C. 3v2D. v1 - v2答案:A解析:线性无关意味着任何向量不能表示为另一个向量的倍数。
选项B、C和D都是v1或v2的倍数,因此它们与v1或v2线性相关。
选项A是v1和v2的和,它既不是v1的倍数也不是v2的倍数,因此与v1和v2都线性无关。
二、填空题(每空1分,共10分)1. 设线性方程组的系数矩阵为A,增广矩阵为[A|b],若|A| = 0且b 不在A的列空间中,则该方程组有____个解。
答案:无穷解析:当系数矩阵A的行列式为0时,表示A不是满秩矩阵,方程组可能无解或有无穷多解。
如果增广矩阵的列向量b不在A的列空间中,则方程组无解。
2. 矩阵B的特征值是λ1和λ2,那么矩阵B的特征多项式是____。
答案:(λ-λ1)(λ-λ2)解析:矩阵的特征多项式是其特征方程的展开式,特征方程为|λI - B| = 0,其中I是单位矩阵。
对于有两个特征值的矩阵B,其特征多项式通常为(λ-λ1)(λ-λ2)。
三、简答题(每题10分,共20分)1. 请简述什么是矩阵的秩,并说明如何计算一个矩阵的秩。
答案:矩阵的秩是指矩阵中线性无关的行或列的最大数目。
计算矩阵的秩通常有两种方法:一是利用初等行变换将矩阵转换为行简化阶梯形矩阵(或简化行阶梯形),秩即为非零行的数目;二是通过高斯消元法,将矩阵转换为行简化阶梯形,秩即为主元所在的行数。
2. 解释什么是线性变换,并给出一个线性变换的例子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数 2013 年期末考试试卷及答案(A 卷)
一、 填空题(每小题 3 分,共 15 分)
1、线性空间 Px的两个子空间的交 L 1 x L 1 x
2、设
1
,
2
,
...,
n
与
1
,
2
,
...,
n
是
n
维线性空间
V 的两个基,
由
1
,
2
,
...,
n
到
1
,
2
,
...,
n
的过渡矩阵是
C,列向量
X
线性空间同构: (A)数域 P 上所有二级对角矩阵作成的线性空间; (B)数域 P 上所有二级对称矩阵作成的线性空间; (C)数域 P 上所有二级反对称矩阵作成的线性空间;
8
(D)复数域 C 作为复数域 C 上的线性空间。
2、( D )设是非零线性空间 V 的线性变换,则下列命题正确的是:
(A)的核是零子空间的充要条件是是满射; (B)的核是 V 的充要条件是是满射; (C)的值域是零子空间的充要条件是是满射; (D)的值域是 V 的充要条件是是满射。
5
2、设是数域 P 上线性空间 V 的线性变换,证明W L 1,2 ,...,r 是的不变子空间的兖要条件是 A i W i 1, 2,..., r
6
3、已知 A E 是 n 级正定矩阵,证明:
(1)A 是正定矩阵;
(2) A 2E 3n
7
参考答案
一、 填空题(每小题 3 分,共 15 分)
是
V
中向量
在基
1
,
2
,
...,
n
下的坐标,则
在基
1
,
2
,
...,
n
下
的坐标是
3、设 A、B 是 n 维线性空间 V 的某一线性变换在不同基下的矩阵, 则 A 与 B 的关系是
4、设 3 阶方阵 A 的 3 个行列式因子分别为:1, , 2 1,
则其特征矩阵 E A 的标准形是
5、线性方程组 AX B 的最小二乘解所满足的线性方程组是:
(1) 证明:这是 R2 的一个内积。 (2) 求 R2 的一个标准正交基。
五、 证明题(每小题 10 分,共 30 分)
1、设 P3 的两个子空间分别为:
W1 x1, x2, x3 x1 x2 x3 0 ,W2 x1, x2, x3 x1 x2 x3 0
证明:(1) P3 W1 W2 ; (2)W1 W2 不是直和。
A a,b,c, d a,b, a c,b d a,b,c, d P4
(1)求该线性变换在自然基: 1 1, 0, 0, 0 ,2 0,1, 0, 0 3 0, 0,1, 0 ,4 0, 0, 0,1 下的矩阵 A;
(2)求矩阵 A 的所有特征值和特征向量。
2、(1)求线性空间
1
(A)的核是零子空间的充要条件是是满射; (B)的核是 V 的充要条件是是满射; (C)的值域是零子空间的充要条件是是满射; (D)的值域是 V 的充要条件是是满射。
3、( ) 矩阵 A 可逆的充要条件是:
A A 0; B A 是一个非零常数;
C A 是满秩的; DA 是方阵。
4、( )设实二次型 f X AX (A 为对称阵)经正交变换后化为:
P x 3
中从基 I
:
1, x
1, x
12
到基
3
II : 1,x 1,x 12 的过渡矩阵;
(2)求线性空间
P x 3
中向量
f
x 1
2x
3x2
在基
I : 1,x 1,x 12 下的坐标。
3、在 R2 中, a1, a2 , b1, b2 ,规定二元函数:
4
, a1b1 a1b2 a2b1 4a2b2
的矩阵是一对角矩阵。
2
3、( )同阶方阵 A 与 B 相似的充要条件是 E A 与 E B
等价。 4、( )n 维欧氏空间的正交变换在任一基下的矩阵都是正交矩阵。
5、( )欧氏空间的内积是一对称的双线性函数。
四、 解答题(每小题 10 分,共 30 分)
1、在线性空间 P4 中,定义线性变换:
B
1 0
2 0
0 2
;
C
1 0
2 1
02 ;
D 以上各情形皆有可能。
三、 是非题(每小题 2 分,共 10 分)
(请在你认为对的小题对应的括号内打“√”,否则打“”)
1、(
V1 V2 0
)设 V1,V2 均是 n 维线性空间 V 的子空间,且
则V V1 V2 。
2、( )n 维线性空间的某一线性变换在由特征向量作成的基下
二、 单项选择题(每小题 3 分,共 15 分)
1、( )复数域 C 作为实数域 R 上的线性空间可与下列哪一个 线性空间同构:
(A)数域 P 上所有二级对角矩阵作成的线性空间; (B)数域 P 上所有二级对称矩阵作成的线性空间; (C)数域 P 上所有二级反对称矩阵作成的线性空间; (D)复数域 C 作为复数域 C 上的线性空间。 2、( )设是非零线性空间 V 的线性变换,则下列命题正确的是:
3、( B ) 矩阵 A 可逆的充要条件是:
A A 0; B A 是一个非零常数;
C A 是满秩的; DA 是方阵。
4、( C )设实二次型 f X AX (A 为对称阵)经正交变换后化为:
4、设 3 阶方阵 A 的 3 个行列式因子分别为:1, , 2 1,
1 0 0
则其特征矩阵 E A 的标准形是
0
0
0 0 1
5、线性方程组 AX B 的最小二乘解所满足的线性方程组是: AAX AB
二、 单项选择题(每小题 3空间可与下列哪一个
1、线性空间 Px的两个子空间的交 L 1 x L 1 x 0
2、设
1
,
2
,
...,
n
与
1
,
2
,
...,
n
是
n
维线性空间
V 的两个基,
由
1
,
2
,
...,
n
到
1
,
2
,
...,
n
的过渡矩阵是
C,列向量
X
是
V
中向量
在基
1
,
2
,
...,
n
下的坐标,则
在基
1
,
2
,
...,
n
下
的坐标是 C 1 X
3、设 A、B 是 n 维线性空间 V 的某一线性变换在不同基下的矩阵, 则 A 与 B 的关系是 相似关系
1 y12 2 y22 ... n yn2 , 则其中的 1, 2 ,...n 是:
A1; B全是正数; C 是 A 的所有特征值; D不确定。
5、( )设 3 阶实对称矩阵 A 有三重特征根“ 2 ”,则 A 的若当
标准形是:
2 0 0
2 0 0
2 0 0
A
0 0
2 0
0 2
;