量子电动力学

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子电动力学

玻尔磁子

近似值

量子电动力学(Quantum Electrodynamics,英文简写为QED)是量子场论中最成熟的一个分支,它研究的对象是电磁相互作用的量子性质(即光子的发射和吸收)、带电粒子的产生和湮没、带电粒子间的散射、带电粒子与光子间的散射等等。它概括了原子物理、分子物理、固体物理、核物理和粒子物理各个领域中的电磁相互作用的基本原理。

公式

公式

各代表λ态上电子的湮没算符及μ态上电子的产生算符。两种不同的量子化方法促使泡利研究自旋统计关系。他发现自旋为整数的粒子(例如光子)服从玻色―爱因斯坦统计,在进行场的量子化时应该用对易关系;自旋为半整数的粒子(例如电子)服从费密―狄喇克统计,在进行场的量子化时应该用反对易关系。对电子场

ψ(它满足狄喇克方程)进行场量子化以后也得到场量子(电子和正电子)的粒子图像。量子化电磁场的极限就是经典电磁场(例如无线电波),在光子数目很大时,电磁场的性质就由经典的麦克斯韦方程组描述。量子化电子场ψ却没有类似的经典极限,因为在一个状态上最多只能存在一个电子。相应的"经典"场方程就是描述单个电子的狄喇克方程,它显然不是经典的。只有在对电子的描述可以粗略到ΔpΔq?时,湖南岳阳天气预报,狄喇克电子理论才归结为满足狭义相对论的经典力学方程。相互作用的量子化场根据量子场论的观点,粒子间的相互作用都是通过场与场的相互作用实现的。相互作用场的哈密顿量可以分为两部分H=H0+HI,H0是自由电磁场

与自由电子场的哈密顿量之和。它的本征态就是具有一定光子数与一定电子及正电子数的状态。HI代表电磁场与电子场的相互作用,它与(1)

理论值

简介量子场论发展中历史最长和最成熟的分支。简写为QED。它主要研究电磁场与带电粒子相互作用的基本过程。在原则上,它的原理概括原子物理、分子物理、固体物理、核物理及粒子物理各领域中的电磁相互作用过程。它研即光子的发射和吸收)、带电粒子(例如正负电子)究电磁相互作用的量子性质( 的产生和湮没以及带电粒子之间的散射、带电粒子与光子之间的散射等。从应用范围的广泛、基本假设的简单明确、与实验符合程度的高度精确等方面看,在现代物理学中是很突出的。发展过程1925年量子力学创立之后不久,P.A.M.狄喇克于1927年、W.K.海森伯和W.泡利于1929年相继提出了辐射的量子理论,奠定了量子电动力学的理论基础。在量子力学范围内,可以把带电粒子与电磁场相互作用当作微扰,来处理光的吸收和受激发射问题,但却不能处理光的自发射问题。因为如果把电磁场作为经典场看待,在发射光子以前根本不存在辐射场。原子中处于激发态的电子是量子力学中的定态,没有辐射场作为微扰,它就不会发生跃迁。自发射是确定存在的事实,为了解释这种现象并定量地给出它的发生几率,在量子力学中只能用变通的办法来处理。一个办法是利用对应原理,把原子中处于激发态的电子看成是许多谐振子的总和,把产生辐射的振荡电流认定与量子力学的某些跃迁矩阵元相对应,用以计算自发射的跃迁几率。从这个处理办法可以得到M.普朗克的辐射公式,以此反过来说明对应原理的处理是可行的。另外一种办法是利用A.爱因斯坦关于自发射几率和吸收几率间的关系。虽然这些办法所得的结果可以和实验结果符合,但在理论上究竟是与量子力学体系相矛盾的??量子力学的定态寿命为无限大。辐射场量子化狄喇克、海森伯和泡利对辐射场加以量子化。除了得到光的波粒二象性的明确表述以外,还解决了上述矛盾。电磁场在量子化以后,电场强度E

和磁场强度H都成为算符。它们的各分量满足一定的对易关系,它们的"期待值"(即实验中的测量平均值)应满足量子力学的测不准关系,它们不可能同时具有确定值(即均方差同时为零)。作为一个特例,它们不可能同时确定为零。在没有光子存在的状态(它被称为是辐射场的真空态)中,E和H的平均值为零。但E2与H2的平均

值不为零(否则均方差就同时为零了)。这就是量子化辐射场的真空涨落。它与量子力学中谐振子的零点能十分类似。场在量子化以后,产生和湮没成为普遍的、基本的过程。因此在原子处于激发态时,虽然没有光子存在,电子仍能向低能态跃迁并产生光子。从辐射场量子理论的表述出发,可以计算各种带电粒子与电磁场相互作用基本过程的截面,例如康普顿效应、光电效应、轫致辐射、电子对产生和电子对湮没等。这些结果都是用微扰论方法取最低级不为零的近似得到的,与实验有较好的符合。但不论是那一种过程,计算高一级近似的结果时,一定遇到

发散困难,即得到无限大的结果。这一点是J.R.奥本海默在1930年首先指出的。

此后十几年中,尽管在许多电磁基本过程的研究上,以及在高能辐射在物质中的贯穿和宇宙线的级联簇射等方面的研究上,量子电动力学继续有所发展,但在解决基本理论中的发散困难上仍处于相对的停滞状况。实验发现1947年实验物理学提出

了挑战。在此以前,狄喇克相对论波动方程对描述电子行为是十分成功的:它能预

指出电子自旋为1/2,磁矩此此处bλ

示意图

目录

是平面波λ的角频率。上式右方正是谐振子(角频率为ωλ)能量之和。因

可以把电磁场看成是无穷多谐振子的集合。这是一个无穷多自由度的力学体此, 系:qλ是广义坐标;pλ=?λ是广义动量。根据量子力学,体系的广义坐标算λ及?λ当作这符和正则共轭的广义动量算符应满足对易关系。如将上式中的

q样的算符,则可以把场的能量及动量算符表示为:

量子电动力学

简介发展过程辐射场量子化实验发现修正自由电磁场的量子化自由电子场的量子化相互作用的量子化场过程费因曼图重正化及辐射修正兰姆移位电子磁矩是个小量,可以把HI当作微扰处理。它的作用是在H0的本征态之间产生跃迁。跃迁可以不涉及粒子数的变化而只是改变粒子的运动状态(例如康普顿散射),也可以包括光子、电子和正电子数目的变化。相互作用HI作用在H0的某一个本征态上可以发生以下的跃迁过程(图1):过程?电子吸收或发射一个光子之后改变其运动状态,以图1a表示;?正电子吸收或发射一个光子之后改变其运

电子的反粒子);动状态,以图1b表示,图中与时间方向相反的箭头表示正电

子(?光子转变为电子―正电子对,以图1c表示;?电子―正电子对湮没为光子,以图1表示。由于能量―动量守恒的要求,单独由HI作用一次还不能构成实际过程。例如康普顿散射电子(四动量p)+光子(四动量k)?电子(四动量p')+光子(四动量k')的最低阶由图2a组成,这个图是由HI作用两次(图上相应有两个顶点),其振幅与电子电荷的二次方值e2成正比,而几率与e4即与精细结构常数的二次方值α2成正比。正负电子对湮没为两个光子最低阶由图2b组成。

费因曼图费因曼发现每个过程都可以用相应的图表示,称为费因曼图。他并给出计算有关过程跃迁几率的计算规则,称为费因曼规则。虽然早期的微扰计算也可以得出最低级近似的结果,但为了计算高阶近似就需要用重正化方法处理发散问题,用新的理论表述。费因曼规则就是最常用的方法。一个有n个顶点;而几率正比于e2n,即αn。对电子与光子相互作用的的图,其振幅正比于en 基本过程,包括对许多过程的高阶近似(称为辐射修正)已经广泛地开展了研究。下面列举一些主要的过程。?电子(正电子)与光子相互作用。束缚电子对光子的吸收和发射、康普顿散射(自由电子对光子的散射)、轫致辐射、光电效应、光子产生正负电子对,正负电子对湮没为光子、束缚电子对光子的散射等。?电子(正电

相关文档
最新文档