插值与拟合剖析

合集下载

数值计算方法插值与拟合

数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。

插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。

本文将介绍插值和拟合的基本概念和常见的方法。

一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。

插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。

二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。

2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。

3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。

三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。

2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。

3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。

四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。

五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。

六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。

插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。

数学建模插值及拟合详解

数学建模插值及拟合详解

插值和拟合【1 】试验目标:懂得数值剖析建模的办法,控制用Matlab进行曲线拟合的办法,懂得用插值法建模的思惟,应用Matlab一些敕令及编程实现插值建模.试验请求:懂得曲线拟合和插值办法的思惟,熟习Matlab相干的敕令,完成响应的演习,并将操纵进程.程序及成果记载下来.试验内容:一.插值1.插值的根本思惟·已知有n +1个节点(xj,yj),j = 0,1,…, n,个中xj互不雷同,节点(xj, yj)可算作由某个函数 y= f(x)产生;·结构一个相对简略的函数y=P(x);·使P经由过程全体节点,即 P (xk) = yk,k=0,1,…, n ;·用P (x)作为函数f ( x )的近似.2.用MA TLAB作一维插值盘算yi=interp1(x,y,xi,'method')注:yi—xi处的插值成果;x,y—插值节点;xi—被插值点;method—插值办法(‘nearest’:最临近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值).留意:所有的插值办法都请求x是单调的,并且xi不克不及够超出x的规模.演习1:机床加工问题机翼断面下的轮廓线上的数据如下表:x 0 3 5 7 9 11 12 13 14 15y 0用程控铣床加工机翼断面的下轮廓线时每一刀只能沿x偏向和y偏向走异常小的一步.表3-1给出了下轮廓线上的部分数据但工艺请求铣床沿x偏向每次只能移动单位.这时需求出当x 坐标每转变单位时的y 坐标. 试完成加工所需的数据,画出曲线. 步调1:用x0,y0两向量暗示插值节点;步调2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline'); 步调3:plot(x0,y0,'k+',x,y,'r')grid on答:x0=[0 3 5 7 9 11 12 13 14 15 ]; y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; x=0:0.1:15;y=interp1(x0,y0,x,'spline'); plot(x0,y0,'k+',x,y,'r') grid on0510150.511.522.53.用MA TLAB 作网格节点数据的插值(二维)z=interp2(x0,y0,z0,x,y,’method’)注:z—被插点值的函数值;x0,y0,z0—插值节点;x,y—被插值点;method—插值办法(‘nearest’:最临近插值;‘linear’:双线性插值; ‘cubic’:双三次插值;缺省时:双线性插值).留意:请求x0,y0单调;x,y可取为矩阵,或x取行向量,y取为列向量,x,y的值分离不克不及超出x0,y0的规模.4.用MA TLAB作散点数据的插值盘算cz =griddata(x,y,z,cx,cy,‘method’)注:cz—被插点值的函数值;x,y,z—插值节点;cx,cy—被插值点;method—插值办法(‘nearest’:最临近插值;‘linear’:双线性插值; ‘cubic’:双三次插值;'v4‘:Matlab供给的插值办法;缺省时:双线性插值).演习2:航行区域的警示线某海域上频仍地有各类吨位的船只经由.为包管船只的航行安然,有关机构在低潮时对水深进行了测量,下表是他们供给的测量数据:水道水深的测量数据x 129.0140.0 103.5 88.0 185.5 195.0 105.5y 7.5 141.5 23.0 147.0 22.5 137.5 85.5z 4 8 6 8 6 8 8x157.5 107.5 77.0 81.0 162.0 162.0 117.5y -6.5 -81.0 3.0 56.5 -66.5 84.0 -33.5z 9 9 8 8 9 4 9个中(x, y)为测量点,z为(x, y)处的水深(英尺),水深z是区域坐标(x, y)的函数z= z (x, y),船的吨位可以用其吃水深度来反应,分为4英尺.英尺.5英尺和英尺 4 档.航运部分要在矩形海域(75,200)×(-50,150)上为不合吨位的航船设置警示标识表记标帜.请依据测量的数据描写该海域的地貌,并绘制不合吨位的警示线,供航运部分应用. x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5];y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5];z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9];cx=75:0.5:200;cy=-70:0.5:150;cz=griddata(x,y,z,cx,cy','cubic');meshz(cx,cy,cz),rotate3dxlabel('X'),ylabel('Y'),zlabel('Z')%pausefigure(2),contour(cx,cy,cz,[-5 -5]);grid on,hold onplot(x,y,'+')xlabel('X'),ylabel('Y')200XYZXY80100120140160180200-60-40-20020406080100120140演习3:估量水塔的水流量—93,请绘出三次样条插值曲线,并盘算一天的总的用水量. 解:t0=[0.46,1.38,2.4,3.41,4.43,5.44,6.45,7.47,8.45,11.49,12.49,13.42,14.43,15.44,16.37,17.38,18.49,19.50,20.40,24.43,25.32];v0=[11.2,9.7,8.6,8.1,9.3,7.2,7.9,7.4,8.4,15.6,16.4,15.5,13.4,13.8,12.9,12.2,12.2,12.9,12.6,11.2,3.5]; t=0:0.1:26; y=interp1(t0,v0,t,'spline'); plot(t0,v0,'k+',t,y,'r') grid on0510********-10-55101520二.曲线拟合已知一组(二维)数据,即平面上 n 个点(xi,yi) i=1,…n, 追求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所稀有据点最为接近,即曲线拟合得最好.最经常应用的办法是线性最小二乘拟合 1.多项式拟合⏹对给定的数据(xj,yj),j = 0,1,…, n;⏹拔取恰当阶数的多项式,如二次多项式g(x)=ax^2+bx+c;⏹使g(x)尽可能逼近(拟合)这些数据,但是不请求经由给定的数据(xj,yj); 2.多项式拟合指令1)多项式f(x)=a1xm+ …+amx+am+1拟合指令:a=polyfit(x,y,m)a:输出多项式拟合系数a[a1,a2,…,am];x,y:输出长度雷同的数组;m:多项式的次数. 2)多项式在x处的值y的盘算敕令:y=polyval(a,x)演习4:对下面一组数据作二次多项式拟合写出拟合敕令:plot(x,y,'k+',x,z,'r')作出数据点和拟合曲线:0.10.20.30.40.50.60.70.80.91写出拟合的二次多项式:0317.01293.208108.9)(2-+-=x x x f3.可化为多项式的非线性拟和曲线改直是工程中又一经常应用的断定曲线情势的办法,很多罕有的函数都可以经由过程恰当的变换转化为线性函数.(1)幂函数 by ax c =+ln ln ln y c a b x -=+(2)指数函数 xy ab c =+ln ln ln y c a x b -==(3)抛物函数 2,(0)y ax bx c x =++≠b ax xcy +=- 演习5:完成教材P93页的习题5的第一小题. x0=[0,300,600,1000,1500,2000];x=0:100:2000;y0=[0.9689,0.9322,0.8969,0.8519,0.7989,0.7491];y=interp1(x0,y0,x,'spline');plot(x0,y0,'k+',x,y,'r')grid on0200400600800100012001400160018002000。

数学建模_插值与拟合总结

数学建模_插值与拟合总结

y0 y1
⎪⎩a0 + a1xn + a2 xn2 + L + an xnn = yn
记此方程组的系数矩阵为 A ,则
(3)
1 x0 x02 L x0n det( A) = 1 x1 x12 L x1n
LLLLLLL
1 xn xn2 L xnn 是范德蒙特(Vandermonde)行列式。当 x0 , x1,L, xn 互不相同时,此行列式值不为零。因 此方程组(3)有唯一解。这表明,只要 n + 1 个节点互不相同,满足插值要求(2)的
z=x(i); s=0.0; for k=1:n
p=1.0; for j=1:n
if j~=k p=p*(z-x0(j))/(x0(k)-x0(j));
end end s=p*y0(k)+s; end y(i)=s; end
-176-
1.2 牛顿(Newton)插值 在导出 Newton 公式前,先介绍公式表示中所需要用到的差商、差分的概念及性质。 1.2.1 差商
=
f0
+
Δf 0 h
(x − x0 ) + L +
Δn f0 n! h n
( x − x0 )( x − x1)L( x − xn−1)
若令 x = x0 + th ,则上式又可变形为
Nn (x0
+ th)
=
f0
+ tΔf0
+L +
t(t
− 1)L(t n!
−n
+ 1) Δn
f0
上式称为 Newton 向前插值公式。
f [x, x0 , x1] = f [x0 , x1, x2 ] + ( x − x2 ) f [x, x0 , x1, x2 ] LL

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。

- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。

2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。

- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。

3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。

- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。

4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。

- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。

综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。

第九讲 数据插值与拟合

第九讲 数据插值与拟合

插值则要求函数在每个观测点处一定要满足 y i f ( xi )
插值函数一般是已知函数的线性组合或者称为加权平 均.插值在工程实践和科学实验中有着非常广泛而又十 分重要的应用,例如,信息技术中的图像重建、图像放 大中为避免图像的扭曲失真的插值补点、建筑工程的外 观设计。化学工程实验数据与模型的分析、天文观测数 据、地理信息数据的处理如(天气预报)以及社会经济 现象的统计分析等等.
zi int erhod' )
其中 x,y,z为插值节点,zi为被插值点(xi,yi)处的插值结果 且, xi, yi为被插值节点构成的新的网格数据 ‘methods’代表的意思和可选择的插值方法和前面一样 注意:所有的插值方法都要求x和y是单调的网格,x和 y可以 是等距的也可以是不等距的
:最近点等值方式
缺省时表示线性插值
例1 在一 天24小时内,从零点开始每间隔2小时测得的环 境温度数据分别为
12,9,9,1,0,18 ,24,28,27,25,20,18,15,13,
推测中午(即13点)时的温度.
x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; x1=13 ; y1=interp1(x,y,x1,‘spline’)
(2)一般函数线性组合的曲线拟合
假设已知函数原型为 f ( x) c0 0 ( x) c11 ( x) cm m ( x) 通过求解线性方程可得待定系数,一般方法: X=[…] %已知数据x的列向量 Y=[…] %已知数据y的列向量 A=[f1(X),f2(X),…,fm(X)] %系数矩阵,fm()为基函数 c=A\y
线性最小二乘法
拟合函数可由一些简单的“基函数”(例如幂函数,三 角 0 ( x), 1 ( x), , n ( x) 来线性表示 函数等等)

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。

它们在数据分析、模型构建和预测等领域发挥着重要作用。

本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。

插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。

它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。

原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。

常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。

应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。

主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。

•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。

•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。

曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。

它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。

原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。

然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。

应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。

主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。

•曲线拟合可以选择不同的函数形式和参数,灵活性较高。

•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。

数值分析中的插值和拟合

数值分析中的插值和拟合

数值分析中的插值和拟合数值分析是一门运用数学方法和计算机技术来解决实际问题的学科,其中的插值和拟合是其中的两个重要概念。

一、插值在数值分析中,插值是指在已知数据点的情况下,利用一定的数学方法来估计在此数据范围之外任意一点的函数值。

常用的插值方法有拉格朗日插值、牛顿插值和分段线性插值等。

以拉格朗日插值为例,假设已知数据点(x0, y0), (x1, y1), …, (xn, yn) ,其中 xi 不相同,Lagrange 插值问题就是要找到一个函数p(x),使得:p(xi) = yi (0 <= i <= n)并且 p(x) 在区间 [x0, xn] 上为连续函数。

然后,根据拉格朗日插值多项式的定义,拉格朗日插值多项式Lk(x) 可以定义为:$$ L_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$$然后,定义插值多项式 p(x) 为:$$ p(x) = \sum_{k=0}^n y_k L_k(x) $$这样,我们就可以通过计算插值多项式来估计任意一点 x 的函数值了。

二、拟合拟合是在给定一组离散数据点的情况下,通过一定的数学方法来找到一个函数 f(x),使得该函数可以较好地描述这些数据点之间的关系。

拟合方法主要包括最小二乘法和非线性拟合等。

以最小二乘法为例,假设有 m 个数据点(x1, y1), (x2, y2), …, (xm, ym) ,要找到一个函数 f(x),使得该函数与这些数据点的误差平方和最小,即:$$ S = \sum_{i=1}^m (y_i - f(x_i))^2 $$最小二乘法就是要找到一个函数 f(x),使得 S 最小。

假设这个函数为:$$ f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n $$则 S 可以表示为:$$ S = \sum_{i=1}^m (y_i - a_0 - a_1 x_i - a_2 x_i^2 - ... - a_nx_i^n)^2 $$接下来,我们需要求解系数a0, a1, …, an,在满足式子 (2) 的情况下,使得 S 最小。

插值与拟合问题

插值与拟合问题

插值与拟合问题插值与拟合是数学和计算机科学领域中常见的问题,涉及到通过已知数据点来估计未知点的值或者通过一组数据点来逼近一个函数的过程。

在现实生活中,这两个问题经常用于数据分析、图像处理、物理模拟等领域。

本文将介绍插值与拟合的基本概念、方法和应用。

一、插值问题插值是通过已知的数据点来推断出未知点的值。

在插值问题中,我们假设已知数据点是来自于一个未知函数的取值,在这个函数的定义域内,我们需要找到一个函数或者曲线,使得它经过已知的数据点,并且可以通过这个函数或者曲线来估计未知点的值。

常见的插值方法包括线性插值、拉格朗日插值和牛顿插值。

线性插值是通过已知的两个数据点之间的直线来估计未知点的值,它简单而直观。

拉格朗日插值则通过构造一个关于已知数据点的多项式来估计未知点的值,这个多项式经过每一个已知数据点。

牛顿插值和拉格朗日插值类似,也是通过构造一个多项式来估计未知点的值,但是它使用了差商的概念,能够更高效地处理数据点的添加和删除。

不仅仅局限于一维数据点的插值问题,对于二维或者更高维的数据点,我们也可以使用类似的插值方法。

例如,对于二维数据点,我们可以使用双线性插值来估计未知点的值,它利用了四个已知数据点之间的线性关系。

插值问题在实际应用中非常常见。

一个例子是天气预报中的气温插值问题,根据已知的气温观测站的数据点,我们可以估计出其他地点的气温。

另一个例子是图像处理中的像素插值问题,当我们对图像进行放大或者缩小操作时,需要通过已知像素点来估计未知像素点的值。

二、拟合问题拟合是通过一组数据点来逼近一个函数的过程。

在拟合问题中,我们假设已知的数据点是来自于一个未知函数的取值,我们需要找到一个函数或者曲线,使得它能够与已知的数据点尽可能地接近。

常见的拟合方法包括多项式拟合、最小二乘拟合和样条拟合。

多项式拟合是通过一个多项式函数来逼近已知的数据点,它的优点是简单易用,但是对于复杂的函数形态拟合效果可能不好。

最小二乘拟合则是寻找一个函数,使得它与已知数据点之间的误差最小,这个方法在实际应用中非常广泛。

插值与拟合算法分析

插值与拟合算法分析

插值与拟合算法分析在数学与计算机科学领域,插值与拟合算法是两种常用的数据处理技术。

插值算法通过已知数据点之间的内插来估算未知数据点的值,而拟合算法则通过求取最佳拟合曲线或函数来逼近已知数据点。

本文将对插值与拟合算法进行详细分析,并比较它们在不同应用中的优缺点。

一、插值算法插值算法主要用于通过已知数据点之间的内插来估算未知数据点的值。

常用的插值算法包括拉格朗日插值、牛顿插值、样条插值等。

这些算法根据插值函数的不同特点,适用于不同类型的数据处理。

1. 拉格朗日插值拉格朗日插值是一种基于代数多项式的插值方法。

它通过构造一个全局多项式函数来拟合已知数据点,并推导出未知数据点的估算值。

拉格朗日插值算法具有简单易懂、计算效率高等优点,但在处理大量数据点时可能会出现龙格现象,导致插值结果有一定误差。

2. 牛顿插值牛顿插值是一种基于差商的插值方法。

它通过计算差商的递推关系,构造一个分段多项式函数来拟合已知数据点。

相比于拉格朗日插值,牛顿插值算法具有更高的数值稳定性和精度,并且可以方便地进行动态插值。

3. 样条插值样条插值是一种基于分段函数的插值方法。

它将整个数据区间划分为若干小段,并使用不同的插值函数对每一段进行插值。

样条插值算法通过要求插值函数的高阶导数连续,能够更好地逼近原始数据的曲线特征,因此在光滑性较强的数据处理中常被使用。

二、拟合算法拟合算法主要用于通过最佳拟合曲线或函数来逼近已知数据点。

常用的拟合算法包括最小二乘拟合、多项式拟合、非线性拟合等。

这些算法可以使拟合曲线与已知数据点尽可能地接近,从而进行更精确的数据分析和预测。

1. 最小二乘拟合最小二乘拟合是一种通过最小化残差平方和来求取最佳拟合曲线的方法。

它利用数据点与拟合曲线的差异来评估拟合效果,并通过求取最小残差平方和的参数值来确定拟合曲线的形状。

最小二乘拟合算法广泛应用于线性回归和曲线拟合等领域。

2. 多项式拟合多项式拟合是一种通过多项式函数来逼近已知数据点的方法。

数学建模插值和拟合问题的总结

数学建模插值和拟合问题的总结

插值和数据拟合一、 插值方法问题:已知n+1个节点(x j ,y j )(j=0,1,…,n),a=x 0<x 1<…< x n =b ,求任一插值点x*处的插值y*方法:构造一个相对简单的函数y=f(x),使得f 通过所有节点,即f(x j )= y j ,再用y=f(x)计算x*的值。

1. 拉格朗日多项式插值设f(x)是n 次多项式,记作1110()n n n n n L x a x a x a x a --=++++要求对于节点(,)j j x y 有(),0,1,,n j j L x y j n ==将n+1个条件带入多项式,就可以解出多项式的n+1个系数。

实际上,我们有n 次多项式011011()()()()()()()()()i i n i i i i i i i n x x x x x x x x l x x x x x x x x x -+-+----=----满足1,()0,,,0,1,,i j i jl x i j i j n =⎧=⎨≠=⎩则0()()nn i i i L x y l x ==∑就是所要的n 次多项式,称为拉格朗日多项式。

由拉格朗日多项式计算的插值称为拉格朗日插值。

一般来讲,并不是多项式的阶数越高就越精确,一般采用三阶、二阶或一阶(线性)多项式,对相邻点进行分段插值。

2. 样条插值在分段插值时,会造成分段点处不光滑,如果要求在分段点处光滑,即不仅函数值相同,还要一阶导数和二阶导数相同,则构成三阶样条插值。

一般用于曲线绘制,数据估计等。

例 对21,[5,5](1)y x x =∈-+,用n=11个等分节点做插值运算,用m=21个等分插值点作图比较结果。

见inter.m 程序二、 曲线拟合 三、 给药方案 1. 问题一种新药用于临床必须设计给药方案,在快速静脉注射的给药方式下,就是要确定每次注射剂量多大,间隔时间多长.我们考虑最简单的一室模型,即整个机体看作一个房室,称为中心室,室内血液浓度是均匀的.注射后浓度上升,然后逐渐下降,要求有一个最小浓度1c 和一个最大浓度2c .设计给药浓度时,要使血药浓度保持在1c ~2c 之间.2. 假设(1)药物排向体外的速度与中心室的血药浓度成正比,比例系数是k(>0),称为排出速度.(2)中心室血液容积为常数V ,t=0的瞬间注入药物的剂量为d ,血药浓度立即为dV. 3. 建模设中心室血药浓度为c(t),满足微分方程(0)dckc dtd c V=-=用分离变量法解微分方程,有()ktd c te V-=(*) 4. 方案设计每隔一段时间τ,重复注入固定剂量D ,使血药浓度c(t)呈周期变化,并保持在1c ~2c 之间.如图:设初次剂量加大到D 0,易知0221,D Vc D Vc Vc ==-,2121()11ln[],()()ln c Vc t t t c t c k d k c τ=-=-= 那么,当12,c c 确定后,要确定给药方案0{,,}D D τ,就要知道参数V 和k .5. 由实验数据做曲线拟合确定参数值已知1210,25(/)c c g ml μ==,一次注入300mg 药物后,间隔一定ln lndc kt V=- 记12ln ,,lndy c a k a V==-=,则有 12y a t a =+求解过程见medicine_1.m得120.2347, 2.9943a a =-=,由d=300(mg)代入算出k=0.2347,V=15.02(L) 从而有0375.5(),225.3(), 3.9()D mg D mg τ===小时四、 口服给药方案 1. 问题口服给药相当于先有一个将药物从肠胃吸收入血液的过程,可简化为一个吸收室,一个中心室,记t 时刻,中心室和吸收室的血液浓度分别是1()()c t c t 和,容积分别是V ,V1,中心室的排除速度为k ,吸收速度为k1,且k,k1分别是中心室和吸收室血液浓度变化率与浓度的比例系数,t=0口服药物的剂量为d ,则有11111,(0)dc dk c c dt V =-= (1) 111,(0)0V dckc k c c dt V=-+= (2) 解方程(1)有111()k td c te V -=代入方程(2)有111()()k t kt k d c t e e V k k--=--其中三个参数1,,dk k b V=,可由下列数据拟合得到:(非线性拟合)。

插值与拟合的实验报告心得

插值与拟合的实验报告心得

插值与拟合的实验报告心得1.引言1.1 概述插值与拟合是数值分析和数据处理领域中常见的重要技术方法,通过对已知数据点进行插值计算,得到未知点的数值估计。

插值方法可以帮助我们填补数据间的空缺、平滑曲线和预测未来趋势,因此在科学研究、工程建模和数据分析中具有广泛的应用价值。

本实验报告将对插值的基本概念进行介绍,探讨插值方法的分类和在实际应用中的意义。

同时,我们将总结实验结果,评述插值与拟合的优缺点,并提出对进一步研究的建议,希望通过本报告对插值与拟合的方法和应用有一个全面的了解。

1.2文章结构文章结构部分的内容可以包括:在本报告中,将包括以下几个部分的内容:1. 引言:介绍插值与拟合的基本概念,以及本实验的目的和意义。

2. 正文:包括插值的基本概念、插值方法的分类以及插值在实际应用中的意义。

我们将深入探讨这些内容,并解释它们在实验中的具体应用。

3. 结论:总结本次实验的结果,分析插值与拟合的优缺点,并提出对进一步研究的建议。

通过以上内容的分析和探讨,我们希望能够全面地了解插值与拟合的理论基础和实际应用,为进一步的研究和实践提供一定的参考和启发。

1.3 目的本实验的目的在于通过对插值和拟合的实验研究,探索和了解这两种数学方法在现实生活中的应用。

通过实验,我们将深入了解插值的基本概念和分类方法,以及插值在实际应用中的意义。

同时,我们还将对插值和拟合的优缺点进行分析,为进一步的研究提供建议和启示。

通过本实验,我们的目的是掌握插值与拟合方法的应用和特点,为实际问题的求解提供更多的数学工具和思路。

2.正文2.1 插值的基本概念插值是指通过已知数据点构建出一个函数,该函数经过这些数据点,并且在每个数据点上都有相应的函数值。

换句话说,插值是一种通过已知离散数据点来推断未知数据点的方法。

在数学上,插值可以用于近似未知函数的值,或者用于填补数据间的空隙。

在插值过程中,我们通常会选择一个合适的插值函数,比如多项式函数、三角函数或者样条函数等,来拟合已知的数据点。

04函数插值与曲线拟合

04函数插值与曲线拟合
1)三次样条插值函数
a x0 , x1 ,, xn b为区间[a,b]的一个分割 如果函数 S(x)在区间[a,b]上满足条件 :
24
(1) S(x)在每个小区间[xi1, xi ]上都是三次多项式 (2) S(x), S(x), S(x)都在区间[a,b]上连续
则称 S(x)为区间[a,b]上的三次样条函数
6h i
i 1
i 1
i
i
y i 1
h2 i
6
M
i 1
x i h i
x
y i
h2 i
6
M i
x
x i 1 h i
这称为三次样条函数的M表达式。 由三次样条函数的 M 表达式可见,只需确定 M (i 0,1,, n), S(x)就可确定。
形成插值区间[ xi , xi1 ]。
19
则:
L( i ) 1
(x)
yili (x) yi1li1(x)
yi
x xi1 xi xi1
yi 1
x xi xi1 xi
i 0,1,, n 1
即:
L~1 ( x)
L(0) 1
(
x)
L(1) 1
(
x)
x0 x x1
x1 x x2
y1l1 x
y2l2
x
显然,l1 x1 1,l1 x2 0;l2 x1 0,l2 x2 1
此时:Lagrange插值多项式即为线性插值
(4-3)
当n=3,可以得到y x的表达式如下:
yx
y1
(x (x1
x2)(x x3 ) x2 )(x1 x3 )
y2
(x x1)(x x3) (x2 x1)(x2 x3 )

数值分析实验插值与拟合

数值分析实验插值与拟合

数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。

插值方法可以分为两类:基于多项式的插值和非多项式插值。

基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。

拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。

牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。

非多项式插值方法中,最常用的是分段线性插值和样条插值。

分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。

样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。

拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。

拟合方法可以分为两类:线性拟合和非线性拟合。

线性拟合方法中,最简单的是最小二乘法。

最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。

在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。

非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。

非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。

局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。

在数值分析实验中,插值与拟合可以应用于各种实际问题。

例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。

在气象学中,通过已知的气象数据点来插值出未知点的气象信息。

在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。

需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。

如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。

因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。

数值计算中的插值和拟合方法

数值计算中的插值和拟合方法

在数值计算中,插值和拟合是两种常用的方法,用于通过已知数据点推测未知数据点的数值。

插值是一种通过已知数据点构建一个函数,以便在这些数据点之间进行预测。

而拟合是一种将一个函数与已知数据点进行匹配,以便预测未知数据点的数值。

插值的目标是通过经过已知数据点的连续函数来准确地估计未知数据点的数值。

最简单的插值方法是线性插值,它假设两个相邻数据点之间的函数值是线性变化的。

线性插值可以用于计算两个已知数据点之间的任何位置的函数值。

如果我们有更多的数据点,可以使用更高阶的插值方法,如二次插值或三次插值。

这些方法使用多项式来表示数据点之间的函数,以便更准确地预测未知数据点。

然而,插值方法并不总是最理想的选择。

在某些情况下,通过已知数据点精确地构建一个连续函数是不可能的。

这可能是因为数据点之间的差异太大,或者数据点的数量太少。

在这种情况下,拟合方法可以提供更好的预测结果。

拟合的目标是找到一个函数,使其与已知数据点的误差最小。

最常用的拟合方法是最小二乘拟合,它通过最小化数据点的残差的平方和来找到最佳拟合函数。

最小二乘拟合可以用于各种不同的函数类型,如线性拟合、多项式拟合、指数拟合等。

根据数据点的分布和特性,我们可以选择适当的拟合函数来获得最准确的预测结果。

在实际应用中,插值和拟合方法经常同时使用。

例如,在地理信息系统中,我们可能需要通过已知地点的气温数据来估计未知地点的气温。

我们可以使用插值方法来构建一个连续函数,以便在已知地点之间预测未知地点的气温。

然后,我们可以使用拟合方法来匹配这个连续函数与其他已知数据点,以提高预测的准确性。

插值和拟合方法在科学、工程、金融等各个领域都有广泛的应用。

在科学研究中,它们可以用于数据分析和预测,以帮助我们理解和解释实验结果。

在工程中,它们可以用于控制系统设计、信号处理和机器学习等领域。

在金融领域,它们可以用于市场预测和风险管理等重要任务。

总而言之,插值和拟合是数值计算中常用的方法,用于通过已知数据点推测未知数据点的数值。

数值分析中的插值与拟合

数值分析中的插值与拟合

数值分析中的插值与拟合插值和拟合是数值分析中常用的技术,用于估计或预测数据集中缺失或未知部分的数值。

在本文中,我们将讨论插值和拟合的概念、方法和应用。

一、插值插值是通过已知数据点之间的连续函数来估计中间数据点的数值。

插值方法可以根据不同的数据和需求选择合适的插值函数,常用的插值方法包括拉格朗日插值、牛顿插值和埃尔米特插值。

1.1 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法。

通过已知的n个数据点,可以构建一个n-1次的插值多项式。

这个多项式通过已知数据点上的函数值来准确地经过每一个点。

1.2 牛顿插值牛顿插值方法也是一种多项式插值方法,通过差商的概念来构建插值多项式。

差商是一个递归定义的系数,通过已知数据点的函数值计算得出。

牛顿插值可以通过递推的方式计算出插值多项式。

1.3 埃尔米特插值埃尔米特插值是一种插值方法,适用于已知数据点和导数值的情况。

它基于拉格朗日插值的思想,通过引入导数信息来逼近数据的真实分布。

埃尔米特插值可以更准确地估计数据点之间的值,并且可以保持导数的连续性。

二、拟合拟合是通过一个模型函数来逼近已知数据点的数值。

拟合方法旨在找到最适合数据集的函数形式,并通过最小化误差来确定函数的参数。

常见的拟合方法包括最小二乘法、多项式拟合和曲线拟合。

2.1 最小二乘法最小二乘法是一种常用的拟合方法,通过最小化数据点到拟合函数的误差平方和来确定最佳拟合曲线或曲面。

最小二乘法适用于线性和非线性拟合问题,可以用于拟合各种类型的非线性函数。

2.2 多项式拟合多项式拟合是一种基于多项式函数的拟合方法。

通过多项式的线性组合来近似已知数据集的数值。

多项式拟合可以通过最小二乘法或其他优化算法来确定拟合函数的系数。

2.3 曲线拟合曲线拟合是一种用曲线函数来逼近已知数据点的拟合方法。

曲线函数可以是非线性的,并且可以根据数据的特点进行选择。

曲线拟合可以通过优化算法来确定拟合函数的参数。

三、应用插值和拟合在数值分析中有广泛的应用。

拟合与插值区别

拟合与插值区别

插值和拟合都是函数逼近或者数值逼近的重要组成部分。

他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律目的,即通过"窥几斑"来达到"知全豹"。

简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。

如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。

表达式也可以是分段函数,这种情况下叫作样条拟合。

而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。

插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。

如果约束条件中只有函数值的约束,叫作Lagrange 插值,否则叫作Hermite插值。

《讲插值与拟合》课件

《讲插值与拟合》课件

3
定义和概念
局部插值和拟合是一种在局部范围内 进行插值和拟合的方法,以提高数据 拟合的精度。
局部插值和拟合方法的优缺点
局部插值和拟合方法可以提高数据拟 合的精度,但在边界处可能存在一定 的误差。
五、总结与应用
插值与拟合的区别和联系插值和拟合都是通过构建近似函数来拟合数据,但 插值是通过通过已知数据点构造函数,并且在这些点上精确匹配,而拟合是 通过最小化误差来选择最佳的近似函数。 选择合适的方法进行插值和拟合在 实际应用中,根据数据特点和需求选择适当的插值和拟合方法,以达到最佳 的效果。 应用实例及其结果分析我们将会提供一些实际应用实例,探讨不同 方法在实际问题中的应用效果,并进行结果分析和讨论。
可以使用线性回归、多项式拟 合等方法进行最小二乘拟合。
三、样条插值和拟合
样条插值和拟合方法常用的样条插值和拟合方法包括自然样条、三次样条等,它们可以更好地逼近复杂 曲线和曲面。
四、局部插值和拟合
1
局部插值和拟合的基本思想
2
基本思想是通过选择局部区域的数据
点来构建插值或拟合函数,以适应局
部数据的特征。
《讲插值与拟合》PPT课 件
欢迎参加本次关于插值与拟合的课程!在这个课件中,我们将深入探讨插值 和拟合的概念、方法和应用,帮助您在实践中提升问题分析和解决能力。

一、插值方法概述
定义和概念
插值是根据已知数据点构造一个函数,该函数在已知数据点上具有与原函数相同的值。
插值方法的种类
常用插值方法包括拉格朗日插值、牛顿插值等。
六、课程总结
从理论到实践,系统 学习插值与拟合知识
通过本课程,您将系统学 习插值与拟合的理论和实 践,获取全面的知识和技 能。

数值分析插值与拟合实验

数值分析插值与拟合实验

数值分析插值与拟合实验数值分析是一门研究利用数字计算方法解决数学问题的学科。

插值与拟合是数值分析的重要内容之一,可以用于数据分析、信号处理以及数学建模等领域。

本实验将使用MATLAB软件进行插值与拟合的实验,主要包括插值多项式与拟合曲线的构造,以及评价拟合效果的方法。

实验一:插值多项式的构造1. Lagrange插值Lagrange插值是一种构造多项式来拟合已知数据点的方法。

给定n 个数据点(xi, yi),其中xi不相等,Lagrange插值多项式可以写成:P(x) = ∑(i=0 to n) yi * l_i(x)其中l_i(x)是Lagrange基函数,定义为:l_i(x) = ∏(j=0 to n,j!=i) (x-xj)/(xi-xj)通过计算l_i(x),然后将其乘以相应的数据点yi,最后相加就可以得到插值多项式P(x)。

2. Newton插值Newton插值使用差商的概念来构造插值多项式。

首先定义差商F[x0,x1,...,xn]如下:F[x0]=f(x0)F[x0,x1]=(f(x1)-f(x0))/(x1-x0)F[x0,x1,x2]=(F[x1,x2]-F[x0,x1])/(x2-x0)...F[x0,x1,...,xn] = (F[x1,x2,...,xn] - F[x0,x1,...,xn-1])/(xn-x0)其中f(x)是已知数据点的函数。

然后,利用差商来构造插值多项式:P(x) = ∑(i=0 to n) F[x0,x1,...,xi] * ∏(j=0 to i-1) (x-xj)通过计算差商F[x0,x1,...,xi]和对应的乘积∏(x-xj),最后相加得到插值多项式P(x)。

实验二:拟合曲线的构造1.多项式拟合多项式拟合是通过构造一个多项式函数来拟合已知数据点的方法。

假设给定n个数据点(xi, yi),可以使用多项式函数来表示拟合曲线:P(x) = a0 + a1*x + a2*x^2 + ... + an*x^n其中a0, a1, ..., an是待确定的系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L2 (x) l0 (x) y0 l1(x) y1 l2 (x) y2
其中
l0
(x)
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
l1 ( x)
(x ( x1
x0 )(x x2 ) x0 )(x1 x2 )
l2
(x)
(x ( x2
x0 x0
)(x x1) )(x2 x1)
这就是本章要讨论的“插值问题”
函数插值的定义
粗略地说,函数插值是对函数的离散数据建立简
单的数学模型。
设 y = f(x) 是区间 [a,b] 上的连续函数,记作
f C[a,b] 。已知 f 在 [a,ห้องสมุดไป่ตู้] 上n+1个互异点
a≤x0,x1,…,xn-1,xn≤b, xi ≠ xj (i≠j)
处的值
yi = f(xi), i=0,1,2, …,n
(2.5)
推广到一般情形——拉格朗日插值公式
n
Ln (x) yklk(n) (x) y0l0(n) (x) y1l1(n) (x) ynln(n) (x)
k 0
(2-6) 拉格朗日
其中
插值公式
l ( n )
k
(x)
(x x0 (x k x0 )
)(x (xk
xk1)(x xk1) (x xk1)(xk xk1) (xk
第二章 数据处理技术 ——插值与拟合
§2.1 插值方法
引例
【例2-1】已经测得在某处海洋不同深度处的水温如下:
深度(m) 466 741 950 1422 1634 水温(oC) 7.04 4.28 3.40 2.54 2.13
根据这些数据,希望合理地估计出其它深度(如500米, 600米,1000米…)处的水温。
0.53625
l1(1708)
(1708 1673)(1708 (1773 1673)(1773
1873) 1873)
0.5775
l2
(1708)
(1708 (1873
1673)(1708 1673)(1873
1773) 1773)
0.11375
L(x) l0 (x) y0 l1(x) y1 l2 (x) y2
L(1708) 0.53625 2.3136 0.5775 2.3354 0.11375 2.3563 2.3213
C1708 CO2
2.3213
kJ/(Nm3
K)
【例 2-4】已知某液体的粘度-温度关系,E330=60 Pa·S, E350=30 Pa·S, E375=10 Pa·S, E410=5 Pa·S。 求T=340 K时的粘度值。
解:取n=2, 代入拉格朗日公式,得E340=48.5 Pa·S 取n=3, 代入拉格朗日公式,得E340=48.056 Pa·S
T
330
340
350
375
410
428
若有不超过n次的多项式
Ln x c0 c1x c2x2 cnxn 满足
Ln xi yi i 0,1, n
(2.1)
则称Ln(x) 为函数 f(x) 在区间 [a,b] 上通过点列
{xi
}n i=0
的插值多项式。
其中,[a,b] 称为插值区间,
{xi
}n i=0
称为插值节点,
求函数值f(x) 的点x (x≠xi) 称为插值点,
(2.2)
L1 ( x)
y
y0
x x1 x0 x1
y1
x x0 x1 x0
(2.3)
n = 2 抛物线插值
n = 2 时,构造通过三个点 (x0,y0), (x1,y1) 和 (x2,y2) 的多项式如下:
L2 (x)
y
y0
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
y1
解:令
x0 = 1673 y0 = 2.3136
x1 = 1773 y1 = 2.3354
x2 = 1873 y2 = 2.3563
抛物线插值法
分别将值带入l0(x)、l1(x) 和 l2(x)。
l0 (1708)
(1708 1773)(1708 (1673 1773)(1673
1873) 1873)
用这种方法所得的近似公式叫插值公式,已知的数据点叫节点。
插值方法
Newton插值 Hermite插值 样条插值 Lagrange插值
拉格朗日插值法
怎样构造插值函数 Ln(x) ?
从 n = 1,n = 2 推广到一般情况。
n = 1 线性插值
y y0 y1 y0 x x0 x1 x0
(x (2
0)( x 0)(2
1) 1)
1 6
x(x
1)
代入式 (2-5)得
L2
(x)
1
l (2)
0
(x)
5 l1(2)
(x)
(1)
l2(2)
(x)
x2
3x
1
【例 2-3】已知CO2在1673K、1773K、1873K时的热容分 别为2.3136、2.3354、2.3563 kJ/(Nm3K)。求CO2在1708 K时的热容。
xn ) xn
)
n j0
x xj xk x j
jk
k = 0, 1, 2, …, n
(2-7)
拉格朗日 插值基函数
【例 2-2】已知函数 f(x)的三个点 (0,1), (-1,5) 和 (2,-1), 写出 拉格朗日插值基函数,并用公式(2-5)求2次插值多项式L2(x)。 解:
x0 = 0
f(x) 称为被插函数,
Ln(x) 称为插值函数,
式(2.1)称为插值条件。
简单地说,插值法就是根据一组数据点(x1, y1),(x2, y2),…, (xn, yn)建立一个便于计算的初等函数或 曲线 y = f(x),使它通 过这些给定的数据点:
f(x1) = y1, f(x2) = y2,…, f(xn) = yn
x1 = -1
x2 = 2
这里 ny0==21,由式 (2-5y)1 得= 5知三个拉格y朗2 =日-1插值基函数为
l (2)
0
(x)
(x (0
1)( x 1)(0
2) 2)
1 2
(x
1)( x
2)
l(2)
1
(
x)
(x (1
0)(x 2) 0)(1 2)
1 3
x(x
2)
l (2)
2
(x)
(x ( x1
x0 )(x x2 ) x0 )(x1 x2 )
y2
(x ( x2
x0 )(x x1) x0 )(x2 x1)
(2.4)
这样的L2(x) 满足插值条件L2(x0)= y0, L2(x1)= y1, L2(x2)= y2。 它的几何意义是通过三个插值点的抛物线。
式 2-4 也可写成:
相关文档
最新文档