35kV、10kV系统消弧线圈、小电阻接地、接地变压器的选择及计算
接地变压器及其容量计算方法
接地变压器及其容量计算方法摘要:分析了接地变压器的基本原理,介绍了一种比较合理的接地变压器容量计算方法,并给出了计算实例。
关键词:接地变压器;容量;计算方法1 前言我国电力系统中的35kV、10kV 电网一般都采用中性点不接地的运行方式。
改革开放以来,城市建设迅速发展,相应的城市电网改造任务也随之加大,其变化的最大特点是城网电缆线路剧增,电网的对地电容电流也迅速上升。
当系统发生单相接地时,接地相的接地电流是非故障相对地电容电流之和。
当接地电流超过10A时,每次电流过零点都会产生的一个暂时性熄弧过程和伴随其后的再度击穿绝缘都会引起电网中的电磁能量的剧烈震荡,使非故障相,系统中性点乃至故障相产生电弧接地过电压,这种过电压可高达4 倍或更高。
它将严重威胁电网设备的绝缘,危及电网的安全运行。
2 接线方式、分析与比较为了抑制弧光接地过电压,就必须改电网中性点不接地系统为中性点经电阻接地或经消弧线圈接地。
由于一般电网变电所的主变压器都使用Yd的接法或YNynd的联结法,特别是10kV配网系统都无中性点引出。
接地变压器的功能是为中性点不接地系统,引出一个中性点。
接地变压器的特性是在电网正常运行时有很高的励磁阻抗,绕组中只流过较小的励磁电流或因中性点电压偏移引起的持续电流(此值一般较小)。
当系统发生单相接地故障时,接地变压器绕组对正序、负序都呈现高阻抗,而对零序电流则呈低阻抗,这一零序电流经过接地变压器中性点电阻或消弧线圈起到减小电网的接地电流和抑制过电压的发生。
为此,该接地变压器的结构就必须采用曲折形的绕组联结法,并在中性线处引出中性点套管,以加装消弧线圈或接地电阻。
其联结图如图1 所示。
从图1可见,接地变压器由6个绕组组成,每一铁心柱上有 2个绕 组,然后反极性串联成曲折形的星形绕组。
即 A 绕组的末端与B 2绕组的 末端相连,同样,B 绕组末端与C 2绕组末端,C 绕组末端与A 绕组末端 相连,然后 A B 、C 2的首端相连则形成曲折变压器的中性点 Q图2表示了各绕组间的相量关系。
变电所设计中接地变、消弧线圈及自动补偿装置的原理和选择
变电所设计中接地变、消弧线圈及自动补偿装置的原理和选择1问题提出随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3-66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。
一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。
210kV中性点不接地系统的特点选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。
并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。
10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。
3系统对地电容电流超标的危害实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下:3.1当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。
3.2配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。
变电站高压系统消弧线圈接地运行方式的分析计算
>
3ωC,接地点有多余的电感电流,称为过补
偿,该方式可避免产生串联谐振过电压,但接地点的电流不能
超过规定值,否则,故障点的电弧不能可靠熄灭。广泛采用过
补偿方式。
5 消弧线圈容量的计算及选择
某新建变电站,高压侧为 110kV,低压侧为 35kV,35kV 侧采
用消弧线圈接地方式,根据现有条件,计算接地消弧线圈的容量。
3 消弧线圈接地方式的工作原理
当发生单相接地时,流过接地故障点的电流为接地电容 电流和消弧线圈电感电流的矢量和,因电感电流和电容电流 方向相反,可以相互抵消,致使总的接地电流限制在 10A 以内。 不会造成断电故障。如图 1,当 C 相发生单相接地时,作用在 消弧线圈两端的电压即升高为相电压 UC,并有电感电流 IL 通 过消弧线圈和接地点,IL 滞后于 UC 90°,由于 IL 和 IC 两者相差 180°,所以在接地点 IL和 IC起相互抵消的作用,向量如图 1。
不采用全补偿方式。
4.2 欠补偿
IL<IC,即
1 ωL
<
3ωC,接地点有未补偿的电容电流,称为欠
补偿。在该中运行方式下,如果切除部分线路,对地电容将减
小(ω1L 会增大,3ωC 减小),有可能会出现全补偿运行方式,出
现串联谐振导致过电压的情况。一般不C,即
1 ωL
2 不接地系统运行方式的特点
(1)单相接地故障时,电弧会间歇性的熄灭和重燃,造成 弧光接地过电压,过电压幅值最高可能超过 4 倍的相电压峰 值,并且不容易熄灭,过电压时间持续长,对设备的绝缘要求 高,增加设备的投资。(2)电磁式电压互感器高压侧的励磁阻 抗很高,低压侧负载很小,在发生单相故障接地消失后容易产 生铁磁谐振过电压,对电压互感器、避雷器造成破坏,也会影 响电气设备的绝缘。(3)当单相接接地故障时,由于接地电流 的存在,可能会在接地点形成电弧,当接地电流不大时,接地 电流过零值时,电弧能自行熄灭。当接地电容电流超过 10A 时, 会产生一种时而熄灭时而复燃的间歇电弧,容易在电网中产生 震荡回路,进而形成过电压,此时应采用消弧线圈接地方式。
10kV系统不同接地方式的优缺点比较
10kV系统不同接地方式的优缺点比较摘要:本文简要研究比较了10kV系统不同接地方式之间的优缺点,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。
关键词:10kV系统;接地方式;优缺点一、前言本文针对工作中遇到的多个变电站10kV系统由中性点不接地系统或经消弧线圈接地系统改造为中性点经小电阻接地系统。
简要研究了10kV系统的不同接地方式的优缺点比较,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。
中性点接地的方式对电力系统稳定运行会产生影响,考虑供电的可靠性和连续性、设备安全和人身安全、过电压和设备绝缘水平、继电保护和是否准确跳闸等因素。
近年来,10kV配电网中的接地故障或者线路断线造成的社会人员伤亡等事故时有发生。
10kV配电网中,中性点接地方式不同,有的线路接地故障发生时,该线路未能及时切除,故障点未能及时与电源断开。
二、10kV系统的不同接地方式的优缺点比较1、中性点不接地方式主要优点:(1)在单相接地故障发生时,故障点流过的电流只是系统等值的电容电流。
在接地故障电流小于10A的情况下,一般息弧能自动发生。
(2)故障发生时,该相电压将降低至零,非故障相线电压将保持不变,相电压升为原来的倍,故障线路可保持1~2小时运行状态,供电的可靠性相对地提高了。
主要缺点:(1)在单相接地故障发生时,非故障相的电压会上升到线电压,且因为过电压会保持较长的一段时间,在选择设备的耐压水平时需要按线电压的电压水平考虑,提高了设备绝缘水平要求。
(2)因为线路对地的电容中积蓄的能量得不到释放,电容电压伴随每个循环会升高,因而在弧光接地过程中,中性点不接地系统的电压能达到比较高的倍数,极大地危害了系统设备的绝缘。
(3)在一定条件下,由于故障或者倒闸操作,线性谐振或铁磁谐振可能引起谐振过电压,电压互感器的绝缘容易被击穿。
探讨10kV供电系统中消弧线圈的应用
探讨10kV供电系统中消弧线圈的应用摘要:随着经济和社会的快速发展,国家在供电系统的建设力度在逐渐增加,各地出现了大量的电网改造施工,因此10kV供电系统逐渐增加,接地电容与地电容的电流逐渐加大。
针对10kV供电系统存在的安全隐患问题和老式消弧线圈存在的缺点,阐述了消弧线圈的类型,及选型标准,消弧线圈在10kV供电系统中的应用情况,消弧线圈成套装置的工作原理,以及消弧线圈成套装置对继电保护产生的影响,希冀对同行们起到一定的借鉴意义。
关键词:10kV供电系统;消弧线圈;供电系统引言随着电网规模的扩大,变电站10kV出线增多以及电缆的广泛使用,系统发生单相接地引起的电容电流随之增大。
新颁标准规定:10kV系统(含架空线路)单相接地故障电流大于10A而又需要在接地故障条件下运行时应采用消弧线圈接地方式。
因此,在变电站安装消弧线圈能减小故障点的残余电流,抑制间歇性弧光过电压及谐振过电压,对保证系统安全供电起到显著的作用。
1 设备选型1.1 消弧线圈型式的选择消弧线圈选择晶闸管调节自动跟踪补偿型式,现在常见的消弧线圈主要包含晶闸管调节消弧线圈、调容式消弧线圈和调匝式消弧线圈。
晶闸管调节弧线圈属于高短路阻抗变压器消线圈,可以利用功率较大的晶闸管来对消弧线圈的电感进行连续的调节,通过改变消弧线圈当中能够调节的晶闸管的导通角,来对消弧线圈的等值电感进行更改,实现连续调节补偿电流的效果。
调容式消弧线圈的调节范围比较广,残流比较小,可以通过增加电容器投切组数来扩大调节的范围,该方法的缺点是消弧线圈的维护工作量比较大。
调匝式消弧线圈调节范围较小,速度较慢,因此难以处理好在建站初期电容电流小、出现少以及远期电容电流增加、出线增加的矛盾。
1.2 接地变压器的选择若10kV供电系统当中不存在中性点引出,就必须配置接地变压器。
接地变压器可以使用零序阻抗小的 Z 型接线方式,容量和消弧线圈可以相互配合。
若接地变压器存在二次绕组,还能够当作变压器使用。
接地变压器及其容量计算方法
接地变压器及其容量计算方法摘要:分析了接地变压器的基本原理,介绍了一种比较合理的接地变压器容量计算方法,并给出了计算实例。
关键词:接地变压器;容量;计算方法1 前言我国电力系统中的35kV、10kV 电网一般都采用中性点不接地的运行方式。
改革开放以来,城市建设迅速发展,相应的城市电网改造任务也随之加大,其变化的最大特点是城网电缆线路剧增,电网的对地电容电流也迅速上升。
当系统发生单相接地时,接地相的接地电流是非故障相对地电容电流之和。
当接地电流超过10A时,每次电流过零点都会产生的一个暂时性熄弧过程和伴随其后的再度击穿绝缘都会引起电网中的电磁能量的剧烈震荡,使非故障相,系统中性点乃至故障相产生电弧接地过电压,这种过电压可高达4 倍或更高。
它将严重威胁电网设备的绝缘,危及电网的安全运行。
2 接线方式、分析与比较为了抑制弧光接地过电压,就必须改电网中性点不接地系统为中性点经电阻接地或经消弧线圈接地。
由于一般电网变电所的主变压器都使用Yd的接法或YNynd的联结法,特别是10kV配网系统都无中性点引出。
接地变压器的功能是为中性点不接地系统,引出一个中性点。
接地变压器的特性是在电网正常运行时有很高的励磁阻抗,绕组中只流过较小的励磁电流或因中性点电压偏移引起的持续电流(此值一般较小)。
当系统发生单相接地故障时,接地变压器绕组对正序、负序都呈现高阻抗,而对零序电流则呈低阻抗,这一零序电流经过接地变压器中性点电阻或消弧线圈起到减小电网的接地电流和抑制过电压的发生。
为此,该接地变压器的结构就必须采用曲折形的绕组联结法,并在中性线处引出中性点套管,以加装消弧线圈或接地电阻。
其联结图如图1 所示。
从图1可见,接地变压器由6个绕组组成,每一铁心柱上有 2个绕 组,然后反极性串联成曲折形的星形绕组。
即 A 绕组的末端与B 2绕组的 末端相连,同样,B 绕组末端与C 2绕组末端,C 绕组末端与A 绕组末端 相连,然后 A B 、C 2的首端相连则形成曲折变压器的中性点 Q图2表示了各绕组间的相量关系。
10kV小电阻接地成套装置选型计算
10kV小电阻接地成套装置选型计算摘要:本文简要介绍10kV配电网采用的小电阻接地成套装置系统特性,以及接地变及小电阻的选型计算方法。
关键词:小电阻;接地;变压器Abstract:This paper briefly introduces the characteristics of the small resistance grounding system used in 10kV distribution network, and the calculation method of grounding transformer and small resistance.Keywords:Small resistance, grounding, transformer1 引言在我国10kV配电网常采用小电流接地方式,包括不接地、经消弧线圈接地、经小电阻接地、故障相经小电抗接地和经消弧线圈并联小电阻接地等。
随着城市化进程不断加快,架空线路逐渐被电缆线路取代,系统的电容电流不断增大。
10kV电缆由铠装层和护套保护,一般不会发生瞬时故障,若发生故障多为永久性故障。
为了保护电缆绝缘及人身安全,需要快速的切除故障线路,小电阻接地方式保护的灵敏性、速动性优点就体现了出来并得以快速发展。
本文简单介绍10kV配电网采用的小电阻接地成套装置组成及系统特性,以及接地变及小电阻的选型计算。
2 小电阻接地装置的概念2.1 小电阻接地装置的产生根据《交流电气装置的过电压保护和绝缘配合设计规范》(GB50064-2014),“35kV、66kV系统和不直接连接发电机,由钢筋混凝土杆或金属杆塔的架空线路构成的6~20kV系统,当单相接地故障电容电流不大于10A时,可采用中性点不接地方式;当大于10A又需要在接地故障条件下运行时,应采用中性点谐振接地方式”。
通常10kV系统为中性点不接地系统,当系统出现单相接地故障时,在不发生谐振过电压的情况下,健全相的电压将从相电压升高到线电压,而且这种运行方式允许持续2小时。
浅谈10千伏配电网由消弧线圈接地改造为小电阻接地的实现方法
科技风2019年3月水利电力DOI:10.19392/ki.1671-7341.201907143浅谈10千伏配电网由消弧线圈接地改造为小电阻接地的实现方法董辉陈龙国网上海金山供电公司上海200540摘要!10千伏配电网由消弧线圈接地系统改造为小电阻接地系统过程中,如何利用现有设备以及如何整定保护定值是一个 难点。
本文结合实际工程,针对变电站侧、开关站侧、用户侧的设备,提出一套可行的实现方案,并给出零序电流保护的整定值。
关键词:配电网;小电阻接地系统;零序电流保护随着10千伏配电网中电容电流不断增大,消弧线圈熄灭接 地电弧能力降低,单相接地故障容易演变为相间短路故障;此 外,消弧线圈接地系统会产生较高过电压倍数的弧光接地过电 压和铁磁谐振过电压。
在此背景下,小电阻接地系统依靠零序 电流保护快速切除故障得到广泛应用。
在小电阻改造过程中,考虑到工程成本,如何最大化利用现有设备将是一个难点。
本 文通过对现场设备的研究,针对变电站设备、开关站设备以及用 户端设备,分别给出不同的解决方案。
最后,本文根据相关规定 的要求,提出一套可行的配电网零序电流保护的整定方案。
1金山地区10千伏配电网的典型接线方式金山地区10千伏配电网采用辐射型网络,中间通过联络 杆刀或者联络杆上开关联络,开环运行。
10千伏出线一般供开 关站、小区站、杆上变压器、用户自配变等。
常见接线方式如下 图所示。
210千伏配电网小电阻接地系统改造的实现方式经小电阻改造后,配电网中发生单相接地故障时,电网中 将有零序电流流通,因此,相对应的接地变压器以及零序电流 保护装置需要安装,具体实现方式如下。
变电站:改造前10千伏配电网为消弧线圈接地,没有零序 电流的流通回路,因此,需要在站内增加接地变压器;由于站内 都配置微机保护装置,该装置里具有零序电流保护功能,功能 开通即可,无需额外增加二次设备。
下级开关站:开关站内配置微机保护装置,该装置里具有 零序电流保护功能,功能开通即可。
细说--接地变、消弧线圈及自动补偿装置的原理和选择
接地变、消弧线圈及自动补偿装置的原理和选择1问题提出随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。
一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。
210kV中性点不接地系统的特点选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。
并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。
10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。
3系统对地电容电流超标的危害实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下:3.1当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。
3.2配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。
南方电网公司消弧线圈并小电阻接地装置技术规范-阳光电子商务
1 消弧线圈并联小电阻接地 成套装置技术规范ICS备案号: Q/CSG中国南方电网责任有限公司企业Q/CSG ××××-2017目次1总则 (1)2规范性引用文件 (2)3消弧线圈类型 (3)3。
1按消弧补偿装置补偿电流的调节原理 (3)3.2按消弧补偿装置投入及退出补偿状态的方式 (3)3.3按一次设备绝缘介质 (3)4消弧线圈并小电阻成套装置基本功能和构成 (3)4.1基本功能 (3)4。
2装置构成 (4)4.3选线装置的配置............................................................................ 错误!未定义书签。
5使用条件 (4)5.1周围空气温度 (4)5.2海拔高度 (4)5.3风速要求 (4)5.4环境相对湿度(在25℃时) (4)5.5降雨量 (4)5.6雷暴日 (4)5。
7地震烈度 (5)5.8外绝缘 (5)5.9安装环境 (5)5.10控制器环境条件要求 (5)5.10.1正常工作大气条件 (5)5.10。
2对周围环境要求 (5)5。
10。
3储存、运输极限环境温度 (5)5。
11系统条件要求 (5)5.12控制器电源要求 (6)5.13成套装置接地要求 (6)6成套装置技术要求 (6)6.1消弧线圈并小电阻装置总体技术要求 (6)6.2 消弧线圈并小电阻控制逻辑要求 (8)6.2。
1小电阻投入 (9)6.2。
2小电阻退出 (9)6.2。
3小电阻投入失败的处理 (9)6.2。
4消弧线圈故障时小电阻的处理 (9)6。
2.5小电阻投入后接地故障未消失的处理 (9)6.2。
6对重合闸的处理 (9)6。
2。
7对间歇性接地故障的处理 (9)6。
2。
8 装置并列运行的处理 (9)6.3消弧线圈并电阻装置各部件技术要求 (9)6。
3。
1消弧线圈 (9)6。
3.2接地变压器 (10)6。
中压系统中性点接地方式选用技术导则
Q/GDW中压系统中性点接地方式选用技术导则江苏省电力公司发布Q/GDW-10-375-2008目次前言 (II)1 适用范围 (3)2 规范性引用文件 (3)3 术语和定义 (3)4 中性点接地方式选用技术原则 (4)5 中性点接地装置选择和应用原则 (5)附录A (资料性附录)常用计算公式和方法 (9)IQ/GDW-10-375-2008II前言电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的联系。
我国中压电网中,80%以上的故障是单相接地引起的,架空线为主的电网单相故障中绝大多数为瞬时性故障,而架空线供电又是中压电网的主要形式。
合理选用中性点接地方式,可以减少线路故障跳闸次数,提高供电的可靠性。
在电网发展变化比较大的地区,合理选用中性点接地方式,可以减少设备的频繁改造和更换,减少投资。
为规范管理,统一标准,指导江苏中压电网中性点接地方式的合理选用,特制订本导则。
本导则的编写格式和规则符合GB/T 1.1《标准化工作导则第1部分:标准的结构和编写规则》及DL/T 600-2001《电力行业标准编写基本规定》的要求。
本导则的附录A为资料性附录。
本导则由江苏省电力公司生产技术部提出并解释。
本导则由江苏省电力公司生产技术部归口。
本导则起草单位:江苏省电力公司生产技术部、江苏省电力试验研究院有限公司。
本导则主要起草人:李长益、付慧、张霁、黄芬、王建刚Q/GDW-10-375-2008 中压系统中性点接地方式选用技术导则1 适用范围本导则规定了10kV、20kV和35kV三个电压等级的中压系统中性点接地方式的选用技术原则,并给出了消弧线圈和小电阻装置及其配套接地变、电流互感器等设备的推荐配置原则。
本导则适用于江苏电网中压系统中性点接地方式的选用。
2 规范性引用文件本导则引用了下列标准的有关条文,当这些标准修订后,使用本导则者应引用下列标准最新版本的有关条文。
变电所设计方案中接地变、消弧线圈及自动补偿装置原理和选择
关键字:接地变消弧线圈中性点不接地系统自动跟踪消弧线圈1问题提出随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。
一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。
2 10kV中性点不接地系统的特点选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。
并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。
10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。
3 系统对地电容电流超标的危害实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下:3.1当发生间歇弧光接地时,可能引起高达 3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。
3.2 配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。
风电场升压站35kV侧接地方式选择及接地变容量计算探讨
1 ) 电缆 线路 电容 电流 I . 计算 交联 聚 乙烯 电缆每 千米 单 相接地 电容 电流平 均值 见 下表 :
额 定 电压 ( k v )
3 5 1c3 x( /c ×, )
单 相 接 地 电流 ( A / k m )
O.1 6
1 电容电流计算
1 . 1 电容 电流 计 算原 则 确 定3 5 k V 母线侧接地 方式时 ,应计算3 5 k V 集 电线路 的单相接地 电 容 电流 。电网 的电容 电流 ,应 当包括有 电气连 接的所 有架 空线路 、电 缆线 路、箱式变压 器的电容 电流 ,并计及 升压站母线和 电器 的影响。 1 - 2 原始 资料 安 徽 某 风 电场 , 安 装2 2 台2 . 2 MW 风机 ,集 电线 路 电压 等 级 为 3 5 k v, 额 定线 电压 为3 7 k v,采 用 电缆 与 架空 线 路 混合 敷 设方 式 。 集 电线 路 统计 如下 : l 1 电缆 线路
, = - f- v_  ̄ . xI O 一
=1 1 3 x 44 78
=
5 06 0 . 4
其中:
=2
式 中: I 一 一 单 相接 地 电容 电流 ( A) ;U 一一 系 统 额定 线 电 压 ( k V) : u一 ~ 角频 率 r a d / s ; 一 一 额 定频 率 ( H z ) :c ~一 系 统 每相 对地 电容 (u F )。 本工程 采 用 以下方 式计 算 电容 电流 1 . 3 . 1 风 电场 线路 电容 电流 计 算 风 电场 线 路分 为 : 电缆线 路 、单 回路 架 空线 路 、同塔 双 回路 架 空线 路 。 风 电场 线路 部 分单 相接 地 电容 电流计 算 公式 :
接地变及接地小电阻计算书
光伏发电站接地变及接地小电阻选择计算书大型光伏电站、风电场等场内集电线路较长的发电厂,中性点接地方式对电站的安全稳定运行至关重要。
场内集电线路较长的电厂,易发生单相对地短路故障,由于集电线路较长单相对地电容电流较大,如不采取合适的接地方案极易造成短路一、35kV电缆对地电容电流计算光伏电阻35kV电缆总长度约为L=16km,35Kv系统对地电容电流I c=0.1*U L*L*1.13=0.1*35*16*1.13=63.28A:二、接地电阻值计算根据IEEE Stec62.92.3–1993 IEEE Guide for theApplication of Neutral Grounding in Electrical Utility 第6.2.1 条,低电阻接地系统的接地电阻值选择原则。
限制暂态过电压到可以接受的数值;限制故障电流大小使短路危害降到最低;电阻值选取应向保护装置提供足够大的电流,使保护装置可靠、快速动作。
中性点电阻接地网络中,暂态过电压的倍数k 与系统单相接地电流I R 和单相接地电容电流I C的比值关系。
当I R = I C时,可将健全相的过电压限制在2.5 倍的相电压以下;当I R= 1.5I C时,可将健全相的过电压限制在2.26倍相电压以下;当I R = 2I C时,可将健全相的过电压限制在2.2 倍。
根据大量运行实践表明当I R>3I C 时,从限制过电压效果来看,已变化不大。
一般I R = (2 - 3) I C。
但是考虑到电阻性电流大于100 A 可以保证接地保护的灵敏度和可靠性,当然应加大一点接地电流,由于是瞬动跳闸,对设备危害不大,又可以减少保护的死区,但不必加大到1000 A,以避免使故障点损害加重和接地变容量选择得过大。
故建议电阻性电流值为I R = K I C,式中K 为配合系数,当I C≥100 A 时,K = 1 ~ 2 ;当I C<100 A 时,K = 2 -6。
电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!
电⼒系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地⼤全!电⼒系统中性点运⾏⽅式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。
我国电⼒系统⽬前所采⽤的中性点接地⽅式主要有三种:即不接地、经消弧线圈接地和直接接地。
⼩电阻接地系统在国外应⽤较为⼴泛,我国开始部分应⽤。
1、中性点不接地(绝缘)的三相系统各相对地电容电流的数值相等⽽相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位⼀致。
这时中性点接地与否对各相对地电压没有任何影响。
可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运⾏状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。
这种现象的产⽣,多是由于架空线路排列不对称⽽⼜换位不完全的缘故造成的。
在中性点不接地的三相系统中,当⼀相发⽣接地时:⼀是未接地两相的对地电压升⾼到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘⽔平应根据线电压来设计。
⼆是各相间的电压⼤⼩和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运⾏⼀段时间,这是这种系统的最⼤优点。
但不许长期接地运⾏,尤其是发电机直接供电的电⼒系统,因为未接地相对地电压升⾼到线电压,⼀相接地运⾏时间过长可能会造成两相短路。
所以在这种系统中,⼀般应装设绝缘监视或接地保护装置。
当发⽣单相接地时能发出信号,使值班⼈员迅速采取措施,尽快消除故障。
⼀相接地系统允许继续运⾏的时间,最长不得超过2h。
三是接地点通过的电流为电容性的,其⼤⼩为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发⽣电弧。
弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场⽽产⽣过电压,损坏电⽓设备或发展成相间短路。
故在这种系统中,若接地电流⼤于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。
2、中性点经消弧线圈接地的三相系统中性点不接地三相系统,在发⽣单相接地故障时虽还可以继续供电,但在单相接地故障电流较⼤,如35kV系统⼤于10A,10kV系统⼤于30A时,就⽆法继续供电。
10kV配电网小电阻接地方式探讨
10kV配电网小电阻接地方式探讨摘要:本文对城市10kV配电网接地运行方式分析,比较了中性点不同接地方式的特点,阐述了小电阻接地方式的优点及合理性,并提出在其应用中需要注意的问题,指出中性点经电阻接地方式已逐步成为行业接地方式的一种趋势。
关键词:配电网;中性点;小电阻;接地方式随着城市经济的发展及市政建设要求,配电房架空线供电逐步被电缆所取代,配电网的电容电流不断增大,城市10kV配电网曾广泛采用的中性点经消弧线圈接地方式己不再适合发展需要。
目前,合肥市10kV配电网中配置的消弧线圈最大容量为1000kVA,且随着电缆线路的增加,通常需要配置两组及以上的消弧线圈,造成消弧线圈的投资增加、消弧线圈分接头调整频繁、设备绝缘水平居高不下等问题。
一般而言,电缆故障大多为永久性故障,不允许带故障运行,由此借助于消弧线圈实现电缆故障的灭弧、选线将非常困难。
国内外众多研究运用已表明中性点经小电阻接地方式更适合以电缆线路为主的城市10kV配电网,采用小电阻接地有利于继电保护装置迅速可靠的切除故障回路,降低接地故障时的内部过电压,大大减少发生人身安全事故的机会。
同时,城市配电网大多数环网布置开环运行,大多都满足N-1原则,若发生单相接地故障时可及时切除故障。
可见,在不影响供电可靠性的前提下,将10kV配电网中性点接地方式逐步调整为小电阻接地方式是可行的,小电阻取代消弧线圈已成为城市10kV配电网中性点运行方式的发展趋势。
一.中性点的接地方式中性点的运行方式主要分两类:直接接地和不接地。
1.直接接地中性点直接接地(包括经小电阻接地)的系统为大接地电流系统,大接地系统中一相接地时,出现除中性点以外的另一个接地点,构成了短路回路,接地故障相电流很大,为了防止设备损坏,必须迅速切断电源,因而供电可靠性相对较低。
但这种系统上发生单相接地故障时,由于系统中性点的钳位作用,使非故障相的对地电压不会有明显的上升,非故障相电压不升高,设备和线路对地电压可以按照相电压设计,从而降低了造价,减少了投资。
消弧线圈、接地电阻、接地变压器容量选择
消弧线圈、接地变压器容量选择1. 消弧线圈的选择1.1 电容电流的估算10kV系统的接地电容电流与供电线路的结构、布置、长度有关, 主要取决电缆线路的截面和长度, 具体工程设计时应按工程条件计算,变电站10kV出线为电缆线路或架空线路, 根据《电力工程电气设计手册》第1册(电气一次部分) 电容电流的估算如下:对于电缆线路电容电流估算为:I1=0.1U e×L=1.05L [L为电缆线路总长度(三相)]对于架空线路电容电流的估算值为:I2=2.7U e L·10-3=0.02835L [L为架空线路总长度(三相)]I C∑=I1+I2对于10kV系统, 附加的变电站电容电流为16%故I c=1.16I C∑1.2 消弧线圈容量选择消弧线圈的容量配置采用过补偿方式, 取补偿系数K=1.35。
补偿容量: Q=KI c U e/3根据消弧线圈容量的系列性及考虑部分余量, 选用消弧线圈容量为S X=1.20Q。
2. 接地变压器选择:由于本变电站主变压器接线组别为YNd11, 低压侧无中性点引出, 故考虑装设专用接地变压器, 将其中性点引出后用来引接消弧线圈或引接接地电阻。
接地变压器兼作站用变压器。
可以带一个容量低于额定容量的次级绕组, 作为变电站的站用电源。
经站用电负荷统计计算, 站用变压器计算容量为108kVA, 选择接地变压器的次级绕组容量(连续负载)为S S =160kVA, 电压为400/230V 。
接地变压器的容量应与消弧线圈或接地电阻相匹配。
为满足接地变压器零序阻抗低, 空载阻抗高, 损失小的特性要求, 采用曲折形接法的接地变压器, 接线组别为ZN, yn1或ZN, yn112.1 接地变压器的容量与消弧线圈及站用电容量匹配:消弧线圈运行系统电压为10kV, 消弧线圈额定电压为10/3kV 。
取站用电cos φ=0.8 sin φ=0.6则接地变一次线圈容量计算为:S jj =2S 2s x )cos (S )sin S (S φφ++例如当工程设计选择S X =300kVA 消弧线圈时, 接地变压器计算容量为430kVA, 接地(所用)变压器应能同时满足接地和站用电两种工况: 即2h 负载和连续负载,根据产品系列宜选用较接近的接地变压器容量(2h 负载)S j =450kVA 的接地变压器。
正确选择10kV系统的接地方式
正确选择10kV系统的接地方式摘要:本文以一家企业的发、供、用电有2家设计单位分别设计,企业投产后在发生10kV单相接地时电弧先后造成的后果以及先后采取的不同措施来说明10kV中性点接地方式选择的重要性。
关键词:10kV系统;接地方式目前中性点非有效接地方式可分为中性点不接地方式、中性点低电阻接地方式、中性点高电阻接地方式和中性点谐振接地方式。
35kV、66kV系统和不直接连接发电机,由钢筋混凝土杆或金属杆塔的架空线路构成的6kV-20kV系统,当单相接地故障电容电流不大于10A时,可采用中性点不接地系统;当大于10A又需在接地故障条件下运行时,应采用中性点谐振接地方式。
不直接连接发电机、由电缆线路构成的6kV-20kV系统,当单相接地故障电容电流不大于10A时,可采用中性点不接地方式;当大于10A又需在接地故障条件下运行时,宜采用中性点谐振接地方式。
6kV-35kV主要由电缆线路构成的配电系统、发电厂厂用电系统、风力发电场集电系统和除矿井的工业企业供电系统,当单相接地故障电容电流较大时,可采用中性点低电阻接地系统。
对于发电机系统,发电机定子绕组发生单相接地故障,故障电流不超过允许值不要求瞬时切机时(发电机额定电压10.5kV时,接地电流允许值为3A),可采用不接地方式;当超过最高允许值时,将烧伤定子铁芯,进而损坏定子绕组绝缘,引起匝间或相间短路,故需要在发电机中性点采取经消弧线圈;当发电机内部发生单相接地故障要求瞬时切机时,宜采用中性点经高电阻接地的方式。
中性点不接地方式最简单,单相接地时允许带故障运行2小时,供电连续性好,接地电流仅为线路及设备的电容电流。
但电容电流不能超过允许值,否则接地电弧不能自熄,易产生较高的弧光过电压。
这种过电压一般不超过3.5p.u电压,但在具有限流电抗器、电动机负荷且设备参数配合不利的6kV和10kV某些不接地系统,发生单相间歇性接地故障时,可能产生大于3.5p.u的过电压,这种过电压会造成设备的绝缘损坏或开关柜绝缘子闪络,电缆绝缘击穿等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35kV、10kV系统消弧线圈、小电阻接地、接地变压器的
选择及计算
我国电力系统中, 10kV、35kV电网中一般都采用中性点不接地的运行方式。
电网中主变压器配电电压侧一般为三角形接法,没有可供接地的中性点。
当中性点不接地系统发生单相接地故障时,线电压三角形保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A《一次设计手册》P81页)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。
由于该运行方式简单、投资少,所以在我国电网初期阶段一直采用这种运行方式,并起到了很好的作用。
但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果:
1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U 为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。
2)持续电弧造成空气的离解,拨坏了周围空气的绝缘,容易发生相间短路;
3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。
为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。
为了解决这样的办法。
接地变压器(简称接地变)就这样的情况下产生了。
接地变压器就是人为制造了一个中性点接地电阻,它的接地电阻一般很小。
另外接地变压器有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。
由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。
也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。
该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。
接地变压器的工作状态,由于很多接地变压器只提供中性点接地小电阻,而不需带负载。
所以很多接地变压器就是属于无二次的。
接地变压器在电网正常运行时,接地变压器相当于空载状态。
但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变
压器只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电阻和接地变才会通过IR= (U为系统相电压,R1为中性点接地电阻,R2为接地故障回路附加电阻)的零序电路。
根据上述分析,接地变压器的运行特点是;长时空载,短时过载。
总之,接地变压器是人为的制造一个中性点,用来连接接地电阻。
当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。
一、电容电流的计算
此计算作为是否安装消弧线圈/小接地电阻的判据,小于10A不需要,大于10A需要1.1架空线路的电容电流可按下式估算:
1.1.1 根据单相对地电容,计算电容电流
Ic=√3×UP×ω×C×103
式中:
UP━电网线电压(kV)
C━单相对地电容(F)
一般架空线单位电容为5-6pF/m。
1.1.2 根据经验公式,计算电容电流
10 《一次设计手册》P261
Ic=(2.7~3.3)×Ue×L×3
式中:L-线路长度(公里)
Ue-额定电压(kV)
Ic-架空线路的电容电流(A)
2.7-系数,无架空地线的线路
3.3-系数,有架空地线的线路
同杆双回线路的电容电流为单回线路的1.3~1.6倍
注:(1.3-对应10kV线路,1.6-对应35kV线路,Ic-单回线路电容电流)
1.2电缆(具有金属保护层的三芯电缆)线路的电容电流可按下式估算:
1.2.1根据单相对地电容,计算电容电流
Ic=√3×UP×ω×C×103
式中:UP━电网线电压(kV)
C━单相对地电容(F)
一般电缆单位电容为200-400pF/m左右(可查电缆厂家样本)。
1.2.2 根据经验公式,计算电容电流
Ic=0.1×Ue ×L 不太准 《一次设计手册》P262 式中:L-线路长度(公里) Ue-额定电压(kV ) Ic-架空线路的电容电流(A)
1.3 10kV 电缆线路单相接地电容电流可按下式计算:
Ic=
Ue s
S
23.0220044.195++ 《一次设计手册》81
式中:S-电缆截面(m ㎡) Ue-额定电压(kV ) Ic-电缆线路的电容电流(A)
1.3.1 10~35kV 电缆线路的电容电流(A/km )可按下表计算: 表1.3-1
备注:10kV ,35kV 电缆为具有金属保护层的三芯电缆。
1.3.2 110~220kV 电缆线路的电容电流(A/km )可按下表计算: 表1.3-2
备注:110kV 、220kV 电缆为单芯交联聚乙烯绝缘皱纹铝护套电缆。
1.4 电容电流计算完毕后,还需要根据不同电压等级的系统,附加如下表的变电站接地电
容电流系数:
表1.4-1 《一次设计手册》P262
二、消弧线圈及配合的接地变压器的选择
消弧线圈作用:单相接地故障时,中性点的位移电压产生感性电流流过接地点,补偿电容电流,将接地点的综合电流限制在10A 以下,达到自动息弧、继续供电的要求。
安装在Y/∆接线的双绕组变压器或者Y/Y/∆接线三绕组变压器中性点上的消弧线圈的容量,不应超过变压器三相总容量的50%,且不得大于三绕组变压器任何一绕组的容量。
安装在Y/Y 接线的变压器上的消弧线圈的容量不应超过变压器三相总容量的20%。
如变压器无中性点或者中性点未引出,应装设专用接地变压器。
其容量应与消弧线圈的容量相配合,并采用相同的定额时间,而不是连续时间。
接地变压器的特性要求是:零序阻抗低,空载阻抗高,损失小。
一般采用曲折形接法(Z 形)的变压器。
消弧线圈一般采用油浸式。
装设在屋内小于80%湿度的场合可以用干式。
2.1 消弧线圈选择计算
2.1.1 根据架空线或电缆参数计算公式计算电容电流Ic
消弧线圈补偿容量计算: Q=KIc
3
Ue
《一次设计手册》P261 式中:Q-补偿容量(kVA ) K-系数,过补偿选择1.35 Ue-额定线电压 Ic-电网电容电流
消弧线圈应避免在谐振点运行。
一般需将分接头调谐到接近谐振点的位置,以提高补偿成功率。
脱谐度V=
Ic
Il
Ic -不大于10%,Il 为消弧线圈中的电感电流。
为便于运行调谐,选用的容量宜接近于计算值。
消弧线圈的分接头一般不小于5个。
2.1.2 接地变压器的容量(此式中接地变同时作为所用变,二次侧接所用电)计算:
Sj=2
2
)()(Φ⨯+Φ⨯+Cos S Sin S Q 式中:Q-消弧线圈容量(kVA ) S-二次侧接所用电的容量(kVA ) Φ-功率因数角(°)
Sj-接地变容量(kVA ),需除以10.5
接地变10s 的允许过载系数为额定容量的10.5倍,所以计算出来的接地变容量除以10.5就是接地变的容量。
2.1.3 实例
例如某110kV 变电所,二台主变,10kV 单母线分段,共24回电缆出线,两套装置补偿,一回电缆平均长度按2kM 计算,所变容量100kVA ,COSФ=0.8.根据式(4-1)或式(4-2)有:
Ic=0.1×UP×L
=0.1×10.5×2×12=25.2(A )
变电所增加电容电流为16%故Ic=25.2×1.16=29.23(A ) 根据式上式: Q=K×Ic×UP/√3 =1.35×29.23×10.5/√3 =239(kVA )
根据消弧线圈容量系列性及最大电容电流Ic ,确定相应的Q=300KVA ,补偿电流调节范围为25—50A
根据上式:
因此整套装置,可调电抗器选用了型号为XHDCZ-300/10/25-50A (九档),容量为300kVA ,系统电压10kV ,额定电压6.062kV ,补偿电流调节范围为25-50A.接地变压器选用了型号为DKSC-400/100/10.5,10.5±5%、容量为400kVA ,二次容量为100kVA ,系统电压10.5kV 。
三、小接地电阻及配合的接地变压器的选择
小接地电阻的作用:经小电阻接地产生足够的零序电压或者零序电流,使接地保护可靠动作。
小电阻阻值RN=
3
Id Ue
, 式中:Id-短路电流(Id=IN 相电压流过接地电阻电流+IC 电容电流)一般取1000A (此值为
经验值)
Ue-额定电压
RN-小接地电阻的电阻值
接地变容量kVA :Se=相数×相电压×5.108秒过负荷倍数相数接地电流。