概率论第一章概率论的基本概念第1节随机试验,样本空间、随机事件,频率与概率

合集下载

概率论第一章 概率论的基本概念

概率论第一章  概率论的基本概念

P( A1 A2 An ) = P( A1) P( A2) P( An ).
概率的有限可加性
证明 令 An1 = An2 = = , Ai Aj = , i j, i, j = 1,2,.
由概率的可列可加性得
P(A1
A2
An )
=
P(
Ak
)
=
P( Ak ) =
n
P( Ak ) 0
概率论
第一章 概率论的基本概念
第一节 随机试验 第二节 样本空间、随机事件 第三节 频率与概率 第四节 等可能概型(古典概型) 第五节 条件概率 第六节 独立性
概率论
第一节 随机试验
几个具体试验 随机试验 小结
概率论
上一讲中,我们了解到,随机现象有其偶 然性的一面,也有其必然性的一面,这种必然 性表现在大量重复试验或观察中呈现出的固有 规律性,称为随机现象的统计规律性.而概率 论正是研究随机现象统计规律性的一门学科.
nH
f
22 0.44
n = 500 nH f
251 0.502
15124
123 4 5 6 7
随3 n的增0.6大, 频率25 f 呈现0.5出0 稳定24性9 0.498
0.2 21 0.42 256 0.512
1.0
25 0.50 247 0.494
ห้องสมุดไป่ตู้
0.2
24 0.48 251 0.502
0.4
(3) 若 A1, A2, , Ak 是两两互不相容的事件,则 f ( A1 A2 Ak ) = fn( A1) fn( A2 ) fn( Ak ).
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做
7 遍, 观察正面出现的次数及频率.

第一章 概率论的基本概念

第一章 概率论的基本概念

第一章 概率论的基本概念一、随机事件其运算1.随机试验、样本点和样本空间(1)随机试验随机试验具有如下特点的试验.1、在相同的条件下,试验可以重复进行.2、试验的所有可能结果是预先知道的,并且不止一个.3、每一次试验出现那一个结果事先不能确定. (2)样本点和样本空间随机试验的每一个可能的(不可分解的)结果,称为这个随机试验的一个样本点,记为ω.随机试验的所有样本点组成的集合,称为这个随机试验的样本空间,记为. Ω2.随机事件、基本事件、必然事件和不可能事件在随机试验中,可能发生也可能不发生的事情称为该试验的随机事件,记为A ,B 等. 随机试验的随机事件可以表示为它的一些样本点组成的集合.在一次试验中,若试验结果是随机事件A 中的一个样本点,则称在一次试验中事件A 发生. 只包含一个样本点的事件称为基本事件. 在任何一次试验中都发生的事件,称为必然事件,它就是Ω所表示的事件,因而用Ω表示必然事件.在任何一次试验中都不发生的事件,称为不可能事件,它就是由φ所表示的事件,因而用φ表示不可能事件.3.事件之间的关系和运算 (1)包含关系设A ,B 为二事件,若A 发生必导致B 发生,则称事件A 包含于事件B ,或事件B 包含事件A ,记为B A ⊂.B A ⊂⇔A ∈∀ω必有B ∈ω,见图1—1. (2)相等关系设A ,B 为二事件,若B A ⊂并且A B ⊂,则称A 与B 相等,记为B A =,见图1—2.(3)事件的并设A ,B 为二事件,称事件“A ,B 至少一个发生(A 发生或B 发生)”为A ,B 的并(或和),记为.B A ∪B A ∪}|{B A ∈∈=ωωω或.见图1—3.(4)事件的交设A ,B 为二事件,称事件“A ,B 同时发生(A 发生且B 发生)”为A ,B 的交(或积).记为或B A ∩AB .AB }|{B A ∈∈=ωωω且.见图1—4. (5)事件的差设A ,B 为二事件,称事件“A 发生且B 不发生”为A 减去B 的差,记为B A −.B A − }|{B A ∉∈=ωωω且.见图1—5.(6)互不相容关系设A ,B 为二事件,若A ,B 不能同时发生,称A ,B 互不相容或互斥,记为AB φ=. A ,B 互不相容⇔AB φ=,见图1—6. (7)对立事件设A 为一事件,称事件“A 不发生”为A 的余事件或A 的对立事件,记为A .A =A −Ω,即φ=Ω=+A A A A ,,见图1—7.(8)完备事件组 构成完备事件组,若,,,,21n H H H )( 21j i H H H H H j i n ≠=Ω=++++φ, .换句话说,如果有限个或可数个事件两两不相容,并且“所有事件的和”是必然事件,则称它们构成完备事件组. ,,,,21n H H H 4.事件的运算法则对于任意事件,,有C B A ,, ,,,,21n A A A (1) 交换律 A B B A A B B A ∩∩∪∪==,.(2) 结合律 C B A C B A ∪∪∪∪)()(=;C B A C B A ∩∩∩∩)()(=.(3) 分配律 ;)()()(C A B A C B A ∩∪∩∪∩=)()()(C A B A C B A ∪∩∪∩∪=.() ∪∩∪ ∪∩ ∪∪ ∪∩)()(11n n A A A A A A A =. (4) 对偶律 ,;B A B A B A B A ∪∩∩∪==∩∩ ∩ ∪∪ ∪n n A A 11=; ∪∪ ∪ ∩∩ ∩n n A A 11=.下列关系和运算要熟记:Ω⊂⊂A φ;;B A B A B A ∪∩⊂⊂)(或B B A A B A B A ==⇒⊂∪∩且;A B A ⊂−;φ=−⇒⊂B A B A ;φφ=A ∩;A A =∪φ;φ=Ω;Ω=φ;A B B A ⊂⇒⊂;AB A B A B A −==−∩;)(A B A B A ∪∪=.【例1】写出下列随机试验的样本空间: (1)从袋中任取3个球,记录取球的结果.(2)从袋中不放回地接连取出3个球,记录取球的结果. (3)从袋中有放回地接连取出3个球,记录取球的结果.(4)从袋中不放回地一个一个地取球,直到取得白球为止录取球的结果.【例2】今有3个球、4个盒子.写出下列随机试验的样本空间:(1)将3个球任意地放入4个盒子中去、每个盒子放入的球数不限,记录放球的结果. (2)将3个球放入4个盒子中去,每个盒子至多放入1个球,记录放球的结果.【例3】写出下列随机试验的样本空间: (1)在上任取一点,记录其坐标. )1,0((2)将一尺之捶折成三段,记录三段的长度 (3)在上任取三点,记录三点的坐标.)1,0(【例4】写出下列随机试验的样本空间,用样本点的集合表示所述事件,并讨论它们之间的相互关系.(1)袋中有3个白球和2个黑球,从其中任取2个球,令A 表示 “取出的全是白球”,B 表示“取出的全是黑球”,表示“取出的球颜色相同”, (C i A 2,1=i )表示“取出的2个球中恰有i 个白球”,表示“取出的2个球中至少有1个白球”. D (2)袋中有2个正品和2个次品,从袋中有放回地接连抽取产品3次,每次任取1件,令 ()表示“第次取出的是正品”,i A 3,2,1=i i B 表示“3次都取得正品”. (3)从l,2,3,4这4个数字中,任取—数,取后放回,然后再任取一数.先后取了3次,令A 表示“3次取出的数不超过3”,B 表示“3次取出的数不超过2”,表示“3次取出的数的最大者为3”.C (4)将3个球任意地放入4个盒子中去,令A 表示“恰有3个盒子中各有1球”,B 表示“至少有2个球放入同1个盒子中”.【例5】设为3事件,试用表示下列事件: C B A ,,C B A ,,(1)至少有1个发生. C B A ,, (2)都不发生.C B A ,,(3)不都发生.C B A ,,(4)不多于1个发生. C B A ,,【例6】什么样的事件X 满足下列等式: (1)B A X A X =)()(∪∪∪. (2).B A X A ∪∪=(3). )()(C B C A X AB ∪∩∪∪=二、事件的概率及其性质1.事件概率的定义(1)古典概型满足下列条件的随机试验,称为古典概型.10 有限性:样本点的总数是有限的;20等可能性:所有基本事件是等可能的;①概率的定义:设随机试验为古典概型,样本空间为},,{1n ωω =Ω,A 是一个事件.},,{1r i i A ωω =,则事件的概率为含样本点的个数含样本点的个数Ω==A n r A P )(. ②概率的性质:对于古典概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30有限可加性:若两两互不相容,则n A A A ,,,21 ∑===ni i n i i A P A P 11)()(∪.(2)几何概型满足下列条件的随机试验,称为几何概型.10有限性:样本空间是直线、二维或三维空间中度量(长度、面积或体积)有限的区间或区域.20均匀性:样本点在样本空间上是均匀分布的(可通俗地称为是等可能的) .①概率的定义:在几何概型中,Ω为样本空间,A 是一个事件,定义事件A 的概率)()()(Ω=L A L A P . 其中,分别是)(A L )(ΩL A ,的度量.Ω②概率的性质:对于几何概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(3)事件的频率和性质以及概率的统计定义①事件的频率:将试验重复独立地进行次,若其中事件n A 发生了次,则称为A n A n A 在这n 次试验中出现的频数,称比值为n n A /A 在这次试验中出现的频率,记为,即.n )(A f n =)(A n f n n A /②频率的性质:事件的频率有如下性质: 101)(0≤≤A f n . 20.1)(=ΩP 30 若两两互不相容,则m A A A ,,,21 ∑===mi i n m i i n A f A f 11)()(∪.2.概率的公理化定义及性质(1)概率的公理化定义设随机试验E 的样本空间为,以ΩE 的所有随机事件组成的集合(即的一些子集组成的集合)为定义域,定义一个函数(Ω)(A P A 为任意随机事件),即任意一个随机事件A 与一个实数,且满足:)(A P 10.0)(≥A P 20.1)(=ΩP 30 可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(2)概率的性质 100)(=φP .20 有限可加性:若两两互不相容,则.n A A A ,,,21 ∑===ni in i iA P A P 11)()(∪30可减性:如果B A ⊂,则)()()(A P B P A B P −=−,)()(B P A P ≤⇒. (无条件等式)()()(AB P B P A B P −=−) 40对于任意事件A ,有1)(≤A P . 50一般加法公式:==)(1∪n i i A P ∑=ni i A P 1)(∑≤<≤−nj i j i A A P 1)( ++∑≤<<≤nk j i k j i A A A P 1)()()1(211n n A A A P −−+【例7】袋中有3个白球及5个黑球,(1)从袋中任取4个球,求取得2个白球及2个黑球的概率.(2)从袋中不放回地接连取出4个球,求取得2个白球及2个黑球的概率. (3)从袋中有放回地接连取出 4个球,求取得2个白球及2个黑球的概率.【例8】设有个人,每个人都等可能地被分配到个房间中的任一间(),求下列事件的概率:n N N n < 事件:某指定的间房中各有1个人. 1A n 事件:恰有间房各有1个人. 2A n 韦件:某指定的房间中有个人.3A k 事件:当4A N n =时,恰有一间房空着.【例9】编号为1,2,3,4,5,6,7,8,9的车皮随机地发往三个地区,和的各2,3和4节,求发往同一地区的车皮编号相邻的概率. 1E 2E 3E【例10】从0,1,2,…,9这10个数字中任取1个,取后放回,先后取了6个数字,求下列事件的概率:事件:6个数字全不相同. 1A 事件:不含0与9. 2A 事件:0恰好出现2次. 3A 事件:至少出现2个0.4A 事件:6个数字中最大的是6. 5A 事件:6个数字的总和是20.6A【例11】有5名插班生,其中有3名男生、2名女生.现将他们按每班1人任意地分配到编号为1—5的5个班中去,求下列事件的概率:事件:3名男生被分到班号相连的3个班中.1A 事件:至少有2个男生被分到的班号或2个女生被分到的班号相连. 2A【例12】从n 双尺码不同的鞋子中任取r 2 (n r ≤2)只,求下列事件的概率: 事件:所取1A r 2只鞋子中只有2只成双 事件:所取2A r 2只鞋子中至少有2只成双.事件:所取3A r 2只鞍子恰成r 双.【例13】在线段AB 上任取一点,该点将AB 分成两段,求下列事件的概率: 事件:其中一段大于另一段的倍. 1A m 事件:其中每一段都小于另一段的倍.2A m【例14】设只1个泊位的码头有甲、乙两艘船停靠,2船各自可能在1昼夜的任何时刻到达.设两艘船停靠的时间分别为1小时和2小时,求下列事件的概率: 事件:码头空闲超过2小时.1A 事件:一艘船要停靠必须等待一段时间. 2A【例15】在线段上任取3个点,求下列事件的概率: AC 321,,A A A 事件:位于与之间.1B 2A 1A 1A 事件:能构成1个三角形. 2B 321,,AA AA AA【例16】若,5.0)(=A P 4.0)(=B P ,3.0)(=−B A P ,求和)(B A P ∪)(B A P ∪.【例17】对于任意两个互不相容的事件A 与B ,以下等式中只有一个不正确,它是: (A) ;)()(A P B A P =−(B) )()(A P B A P =−1)(−+B A P ∪; (C) )()()(B P A P B A P −=−; (D) ; (E) )())()((A P B A B A P =−∩∪)()()(B A P A P B A P ∪−=−.三、条件概率和乘法公式1.条件概率的定义及性质(1)条件概率的定义设为两个事件,,则称B A ,0)(>B P )()()|(B P AB P B A P =为B 发生的条件下A 的条件概率.(2)条件概率的性质 条件概率满足: 10. 0)|(≥B A P 20.1)|(=ΩB P 30可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)|()|(i i i i B A P B A P ∪.2.关于条件概率的三个定理(1)乘法公式若,则0)(>A P )()()(A B P A P AB P =. 推广 若,则0)(21>n A A A P )()()()(12112121−=n n n A A A A P A A P A P A A A P .(2)全概率公式设是样本空间的一个划分(或称为完备事件组),即两两不交:n B B B ,,,21 Ωn B B B ,,,21 j i B B j i ≠=,φ,且Ω=n B B B ∪ ∪∪21.则∑==ni i i B P B A P A P 1)()|()(.(3)贝叶斯公式设是样本空间Ω的一个划分,若事件n B B B ,,,21 A 满足:,则有0)(>A P n i B P BA PB P B A P A B P nj j ji i i ,,2,1,)()|()()|()|(1==∑=.)(i B P (),通常叫先验概率.,(n i ,,2,1 =)|(A B P i n i ,,2,1 =),通常称为后验概率.如果我们把A 当作观察的“结果”,而理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断.n B B B ,,,21【例18】在3重努利试验中,设5.0)(=A P ,若已知A 至少出现1次,求A 至少出现1次的概率.【例19】口袋个装有个白球、个黑球,一次取出球,发现都是同一颜色的球,求它们都是黑球的概率. 12−n n 2n【例20】假设一个人在一年内患感冒的次数X 服从参数为5的泊松分布;正在销售的一种药品A 对于75%的人可以将患感冒的次数平均降低到3次,而对于25%的人无效.现在有某人试用此药一年,结果在试用期患感冒两次,试求此药有效的概率α.【例21】对产品作抽样检验时,每100件为一批,逐批进行.对每批检验时,从其中任取1件作检查,如果是次品,就认为这批产品不合格;如果是合格品,则再检查下件.检验过的产品不放回.如此连续检查5件.如果检查5件产品都是合格品,则认为这批产品合格而被接受.假定一批产中有5%是次品,求这批产品被接受的概率.【例22】加工零件需要经过两道工序,第—道工序出现合格品的概率为0.9,出现次品的概今为0.1第一道工序加工出来的合格的,在第二道工序中出现合格品的概率为0.8,出现次品的概率为0.2;第一道工序加工出来的次品,在第二道工序出现次品或出现废品的概率都是0.5.分别求经过两道工序加工出来的零件是合格品、次品、废品的概率.【例23】在某工厂中有甲、乙、丙3台机器生产同样的产品,它们的产量各占25%,35%,40%,并且在各自的产品中.废品各占5%,4%,2%,从产品中任取1件,求它是废品的概率.若取出的是废品,分别求它是甲、乙、丙机器生产的概率.【例24】乒乓球盒内有12个球,其中9个是新球.第一次比赛时任取3个使用,用后放回.第二次比赛时再任取3个球,求此3个球全是新球的概率.若第二次取出的3个球全是新球,求第一次取出使用的3个球也是新球的概率.【例25】袋中装有5个白球和2个黑球,从中任取5个放入一个空袋中.再从这个袋的5个球做任取3个球放入另一个空袋个.最后从第三个袋中任取1球,求从第三个袋中取出白球的概率.若从第三个袋取出的是白球,分别求从第一个袋中取出放入第二个袋的5个球全是白球的概率、从第二个袋中取出放入第三个袋的3个球全是白球的概率.四、事件的独立性1.二事件的独立性定义 设为二事件,若B A ,)()()(B P A P AB P =,则称相互独立. B A , 性质 若,则相互独立的充要条件是)0(>A P B A ,)()|(B P A B P =. 定理 若相互独立,则B A ,A 与B ,A 与B ,A 与B 均独立. 2.三个或三个以上事件的独立性(1)三个事件相互独立 设为三个事件,若满足: C B A ,,)()()(B P A P AB P =; )()()(C P A P AC P =;)()()(C P B P BC P =;)()()()(C P B P A P ABC P =,则称相互独立,简称独立.C B A ,,C B A ,,若只满足上面的前三个式子,称两两独立.两两独立,未必相互独立. C B A ,,C B A ,,(2)个事件相互独立 如果n 个事件满足:n n A A A ,,,21 )()()(j i j i A P A P A A P =, n j i ≤<≤1, 共个等式; 2nC )()()()(k j i k j i A P A P A P A A A P =, n k j i ≤<<≤1 共个等式; 3nC … … … … … … … … … … … … … … … … … …)()()()(2121n n A P A P A P A A A P = 共个等式 nn C 这等式成立,则称相互独立,简称独立.1232−−=+++n C C C n nn n n n A A A ,,,21 n A A A ,,,21 若相互独立,是中的个事件,则相互独立.n A A A ,,,21 k i i i A A A ,,,21 n A A A ,,,21 k k i i i A A A ,,,21若相互独立,将任意n A A A ,,,21 m )1(n m ≤≤个事件换成它的对立事件后,所得个事件仍独立.n 若相互独立,则.n A A A ,,,21 ∏==−−=ni in i iA P A P 11))(1(1)(∪3.独立试验序列概型贝努利试验 对一个试验E ,如果只考虑两个结果A 和A ,且,p A P =)(q p A P =−=1)(,则称E 为贝努利试验.n 重贝努利试验 将贝努利试验E 重复独立地做次,称为n 重贝努利试验.n 二项概率公式 在n 重贝努利试验中,若用表示在n 次试验中k n A ,A 出现次,则k kn k k n k n q p C A P −=)(,,,n k ,,1,0 =p q −=1.【例26】设有两门高射炮,每—门击中飞机的概率都是0.6,求同时射击一发炮弹能击中飞机的概率.若欲以99%的概率击中飞机,求至少需要多少门高射炮同时射击.【例27】今有甲、乙两名射手轮流对同一目标进行射击,甲命中的概率为,乙命中的概率为,甲先射,谁先命中谁得胜,分别求甲、乙获胜的概率. 1p 2p【例28】甲、乙二人进行下棋比赛,假设每局甲胜的概率为α,乙胜的概率为β,且1=+βα,在每局比赛中谁获胜谁得1分.如果谁的积分多于对方2分,谁就获得全场的胜利,分别求甲、乙二人获得全场胜利的概率.【例29】检查产品质量时,从其中连续抽查若干件,如果废品不超过2件,则认为这批产品合格而被接收.现有一大批产品,其废品率为0.1. (1)若连续抽查10件.求这批产品被接收的概率.(2)为使这批产品被接收的概率不超过0.9.应至少抽查多少件产品.【例30】保险公司为某年龄段的人设计一项人寿保险,投保人在1月1日向保险公司交纳保险费10元,1年内若投保人死亡,家属可向保险公司领取5000元,已知在1年内该年龄段的人的死亡率为0.0005,(1)若有10000人投保,水保险公司获利不少于50000元的概率. (2)若有7000人投保,求保险公司亏损的概率.。

理学概率论与数理统计浙江大学第四版盛骤概率论部分

理学概率论与数理统计浙江大学第四版盛骤概率论部分

例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
9
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第十二章 平稳随机过程
• 12.1 平稳随机过程的概念 • 12.2 各态历经性 • 12.3 相关函数的性质 • 12.4 平稳过程的功率谱密度
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
7
§1 随机试验
确定性现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。

概率论第一章

概率论第一章
例如:在检查某些圆柱形产品时, 例如:在检查某些圆柱形产品时,如果规定只有它的长度及直径 都合格时才算产品合格,那么“产品合格” 直径合格” 都合格时才算产品合格,那么“产品合格”与“直径合格”、 长度合格”等事件有着密切联系。 “长度合格”等事件有着密切联系。
下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。

第1章 概率论的基本概念

第1章 概率论的基本概念

试验者
德•摩根 蒲 丰 K•皮尔逊 K•皮尔逊 维 尼
n
2048 4040 12000 24000 30000
nH
1061 2048 60199 12012 14994
fn(H)
0.5181 0.5069 0.5016 0.5005 0.4998
nA 频率 f n ( A) 具有如下基本性质: n
统计概率的性质
1. 非负性:对每个事件A有 1 P ( A) 0; 2. 规范性:对必然事件S有 P ( S ) 1;
3. 有限可加性:设A1,A2,…An是两两互不相容事件 则 P( A1 A2 ... An ) P( A1 ) P( A2 ) ... P( An )


交换律 A B B A
A B B A
结合律 ( A B) C A ( B C )
( A B) C A ( B C )
分配律 ( A B) C ( A C ) ( B C )
A ( B C ) ( A B) ( A C )
其结果可能为:
正品、次品。
其结果可能为: 红、黄、绿。
实例6 “出生的婴儿可能是男,也可能是 女”。
实例7 “明天的天气可能是晴 , 也可能是多云 或雨 ”。
在我们所生活的世界上, 充满了不确定性
如何来研究随机现象?
随机现象是通过随机试验来研究的。
问题 什么是随机试验?
1. 试验(Experiment):包括各种各样的科学实 验,也包括对客观事物的“观察”、“测量”等。 2. 随机试验(E,Random experiment):具有以 下三个特征的试验: (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果 会出现。

1概率论的基本概念

1概率论的基本概念
试验E5:记录电话台(某固定)一分钟内接到的呼叫次数. S5={0,1,2,…} 试验E6:在一批灯泡中任意抽取一只, 测试其寿命. S6={t | t≥0} (t表示灯泡的寿命)
[注样本空间是相对于某个随机试验而言,而其元 ]
素取决于试验的内容和目的.
二、随机事件
1.随机事件: 试验E的样本空间S的子集. 简称事件. 通常用字母A,B,C表示.
A的对立事件记作 A .
ASA
B A
A
[注]
(1) 事件之间的关系可用文氏图表示; (2) 对于任意事件A,显然
AA , A
A S,
A S A, A A
(3) 基本事件都是互不相容的; A与B-A也是互不相容的. (4) B A B A B AB
B
A
A U B A U ( B A )
S1={H, T}(H表示出现正面, T表示出现反面)
试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.
S2= {HHH,HHT,HTH,THH, HTT,THT,TTH,TTT}
试验E3:将一枚硬币抛掷三次,观察反面出现的次数. S3={0,1,2,3} 试验E4:抛掷一枚骰子, 观察出现的点数. S4={1,2,3,4,5,6}
第一章 概率论的基本概念
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 随机试验 样本空间、随机事件 频率与概率 等可能概型(古典概型) 条件概率 独立性
第一章 概率论的基本概念
引言:概率论是研究什么的?
研究和揭示随机现象的统计 在一定条件下必然发生的现象 确定现象 规律性的数学学科 例:向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; 放射性元素发生蜕变; … … 例:抛一枚硬币,结果可能正(反)面朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数;… …

第一章概率论基本概念

第一章概率论基本概念

在古典概型中, 2.概率的古典定义: 概率的古典定义: 概率的古典定义 在古典概型中,设 Ω={ω1, 2, , n} A = {ωi , i , , i } ω Lω ω2 L ωm 1 则
m 事件 包含的样本点数 事件A P( A) = . = n 样本点总数
n
事实上, 事实上, Q Ω = U {ω k } ∴ P (Ω ) = ∑ P ({ω k }) = nP ({ω k }) k =1 k =1 1 又 P (Ω ) = 1,所以 P ({ω 1 }) = P ({ω 2 }) = L = P ({ω n }) = . n
指每次试验都发生的事 件, Ω表示 5. 必然事件: 必然事件: . 用
6. 不可能事件: 不可能事件: 事件, 指每次试验都不发生的 事件,
用φ表示 .
注意: 必然事件和不可能事件不具有随机性, 注意: 必然事件和不可能事件不具有随机性, 但为了今后研究的方便, 但为了今后研究的方便,我们把它们作为随机事件 的特殊情形来处理。 的特殊情形来处理。
随机事件、 第一节 随机事件、频率与概率
样本空间与随机事件 一、
1、随机试验:指满足以下条件的试验 、随机试验: 1)试验可以在相同条件下重复进行; )试验可以在相同条件下重复进行; 2)试验的可能结果不止一个,但事先知道试验 )试验的可能结果不止一个, 的所有可能结果; 的所有可能结果; 3)每次试验恰好出现所有可能结果中的一个, )每次试验恰好出现所有可能结果中的一个, 但究竟出现哪个结果,试验前不能确切预言 不能确切预言。 但究竟出现哪个结果,试验前不能确切预言。 2、样本点:指随机试验中每一个可能的结果 、样本点: 也称基本事件, 也称基本事件, 通常用ω表示, 3、样本空间:指样本点的全体组成的结果; 、样本空间:指样本点的全体组成的结果; 结果

一概率论的基本概念

一概率论的基本概念

2)将一枚硬币抛掷二次,观察出现正面的次数。
3)在一批电视中任抽取一次,测试它的寿命。
注: 样本空间是一个有限或无限的点集。 样本空间的元素是由试验的目的所确定。
随机事件(简称事件):
随机试验E的样本空间 的子集称为E的随机事件。
通常用大写字母A,B,…表示。 当且仅当这一子集中的一个样本点出现时,称这一
20 同色球无区别。 k
例4 两封信任意地向标号为1,2,3,4的四个邮筒投寄, 求 1)第3个邮筒恰好投入1封信的概率; 2)有两个邮筒各有一封信的概率。 解 1)设事件A表示“第三个邮筒只投入1封信” 两封信任意投入4个邮筒,共有 42 种 而事件A的不同投法有
2)设事件B表示“有两个邮筒各有1封信”
P(A )
r P365 r
例6 设有n个球每个球都以同样的概率 格子(N≥ n)的每个格子中,试求 1)某指定的n个格子中各有一球的概率。
落到N个
2)任何n个格子中各有1球的概率。 解 设 A ={某指定的n个格子中各有一球}
B ={任何n个格子中各有一球} 1 2 3 n
N
例7:从0,1,2, …,9共10个数字中随机地有放回地接连取4 个数字,并按其出现的先后排成一行.试求下列事件的概 率
例(5) 有r 个人,设每个人的生日是365天的 任何一天是等可能的,试求事件“至少有两 人同生日”的概率.
解:令 A={至少有两人同生日} 则 A ={ r 个人的生日都不同} 为求P(A), 先求P( A )
(365) r P365 P(A ) 1 P(A ) 1 r (365)
于是 P ( A) 1 P ( A ) 1 1 1 2! 3! 3
1 1 n1 1 1 (1 ( 1) ) 2! 3! n! 1 1 n 1 ( 1) 2! 3! n!

概率论整理

概率论整理

第一章概率论的基本概念 第一节随机试验一、随机试验E1.试验可以在相同的条件下重复进行; 2.试验的可能结果不止一个,并且能事先 明确试验的所有可能结果;3.进行试验之前不能确定哪一个结果会出现。

说明:随机试验简称为试验,随机试验通常用E 来表示.实例:“抛掷一枚硬币,观察字面,花面出现的情况”.分析:1) 试验可以在相同的条件下重复地进行;2) 试验的所有可能结果:正面、反面;3) 进行一次试验之前不能确定哪个结果会出现故为随机试验同理可知下列试验都为随机试验:掷骰子观察点数;一批产品任选三件其正品与次品数;某地平均气温等第二节随样本空间、随机事件一、 样本空间 样本空间Ω随机试验的所有可能结果组成的集合. 样本空间Ω 中的元素,即E 的每个结果,称为样本点.样本点一般用ω表示,可记为Ω = { ω } 例:说明1. 同一试验, 若试验目的不同,则对应的样 本空间也不同.例如对于同一试验: “将一枚硬币抛掷2次”. 若观察正面H 、反面T 出现的情况,则样本空间为S = {HH , HT , TH , TT }.若观察正面出现的次数, 则样本空间为S={0,1,2,3}2. 建立样本空间,事实上就是建立随机现象的数学模型. 因此, 一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间S = {H ,T }它既可以作为抛掷硬币出现正面或出现反面的模型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型等.例:1. 同时掷三颗骰子,记录三颗骰子之和. S = {3, 4, 5,……, 18}.2. 生产产品直到得到10件正品,记录生产产品的总件数S = {10 , 11 , 12 ,……}. 二、 随机事件随机试验E 的样本空间Ω的子集称为E 的随机事件,简称事件。

例如,随机试验“抛骰子观察点数”的样本空间是S={1,2,3,4,5,6}对于“骰子的点数是偶数点”,它是一个事件,即{2,4,6},显然,它是样本空间的一个子集。

概率论

概率论

S 7 : { ( x , y ) | T 0≤ x ≤ y ≤ T 1 }
返回主目录
第一章 概率论的基本概念
2、 随 机 事 件
定义: 定义: •随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件 随机事件; 可能发生,也可能不发生) 随机事件; 可能发生,也可能不发生) ( •基本事件 : 有一个样本点组成的单点集; 基本事件 有一个样本点组成的单点集; ( •必然事件 : 样本空间 S 本身; 必然发生) 必然事件 本身; 必然发生) •不可能事件 : 空集∅。 不可能事件 空集∅ (必然不发生) 必然不发生)
返回主目录
第一章 概率论的基本概念 2 ) 频率的稳定性 n=500时 时 nA 251 249 256 253 251 246 fn(A) 0.502 0.498 0.512 0.506 0.502 0.492
244 0.488
0.002 -0.002 0.012 0.006 0.002 -0.008 -0.012 实验者 德•摩根 摩根 蒲 丰 n 2048 4040 nH 1061 2048 6019 fn(H) 0.5181 0.5096 0.5016 0.5005
A U A = A, A I A = A
A U B = B U A, A I B = B I A
( A U B ) U C = A U (B U C ) ( A I B ) I C = A I (B I C )
A U (B I C ) = ( A U B ) I ( A U C ) Morgan定律 定律: De Morgan定律: U A α = I Aα , I A α = U A α
不能同时发生 与 不能同时发生” 50 互不相容 A I B = ∅ “A与B不能同时发生” 60 对立(互逆)事件 A I B = ∅ 且 A U B = S 对立(互逆)

第一、二章习题课(概率论)

第一、二章习题课(概率论)

第二章 随机变量及其分布
♦1. 基本概念:随机变量,离散型随机变量,连续型随 基本概念:随机变量,离散型随机变量,
机变量 ♦2.离散型随机变量及其分布律 离散型随机变量及其分布律 (1)如何求解 ) 设离散型随机变量X的可能取值为 的可能取值为x 设离散型随机变量 的可能取值为 k (k=1,2,…),事 事 件 发生的概率为 pk ,
P ( A) = 0.3, P ( B ) = 0.8, P (C ) = 0.6, P ( A U B ) = 0.9,
n−1
P ( AC ) = 0.1, P ( BC ) = 0.6, P ( ABC ) = 0.1.
试求: 试求:(1) P ( AB ) ) (2) P ( A U B U C )
1.若事件 若事件A,B是互不相容的 且 P ( A) > 0, P ( B ) > 0 是互不相容的,且 若事件 是互不相容的 则事件A,B一定不相互独立 一定不相互独立. 则事件 一定不相互独立 2. 若事件 若事件A,B相互独立 且 P ( A) > 0, P ( B ) > 0 相互独立,且 相互独立 则事件A,B一定相容 一定相容. 则事件 一定相容
事件A发生但事件 不发生 称为事件A与事件 与事件B的 事件 发生但事件B不发生 称为事件 与事件 的 发生但事件 不发生, 差事件。 差事件。 A B
S
显然有: 显然有:
A− B −
对于任意两事件A, 总有如下分解 总有如下分解: 对于任意两事件 ,B总有如下分解:
5 AI B =∅
0
则称A和 是互不相容的或互斥的 指事件A与 不 是互不相容的或互斥的,指事件 则称 和B是互不相容的或互斥的 指事件 与B不 可能同时发生。 可能同时发生。

概率论.pdf

概率论.pdf

考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@参考教材概率论与数理统计第四版(浙江大学主编)重要定理、性质、公式、结论经典例题、重要例题及不需要做的题目第一章概率论的基本概念(考小题)第一节随机试验(了解)第二节样本空间,随机事件(了解)第三节频率与概率(频率可以不用看,了解)第四节等可能概率(古典概论)(难点非重点,做一些基本题即可)第五节条件概率(重要,考小题为主,考大题有时会用到)第六节独立性(重要,考小题为主,大题经常会用到)第二章随机变量及其分布(至少考小题,考大题一定会用到)第一节随机变量(了解)第二节离散型随机变量及其分布律(重要,经常考)第三节随机变量的分布函数(重要,每年必考)第四节连续型随机变量及其概率密度(重要,每年必考)第五节随机变量的函数分布(重要,大题的命题点)第三章多维随机变量及其分布(考大题可能性极大)第一节二维随机变量(了解)第二节边缘分布(理解)第三节条件分布(理解)第四节概率独立的随机变量(重要,基本每年必考)第五节两个随机变量函数的分布(重要,大题的经典命题点)第四章随机变量的数字特征(重要)第一节数学期望(重要,每年必考)第二节方差(重要,每年必考)第三节协方差与相关系数(重要,经常考)第四节矩,协方差矩阵(矩,了解,协方差矩阵不用看).第五章大数定律及中心极限定理(了解)第一节大数定律(了解,关注定律的前提条件与结论)第二节中心极限定理(了解,关注定理的前提条件与结论)考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@第六章样本及抽样分布(考小题为主)第一随机样本(了解,其中有重要概念,简单随机样本)第二直方图和箱线图(重要,考小题)第三抽样分布(重要,考小题)第七章参数估计(重要,考大题经典章节)第一节点估计(极其重要,矩估计:重点非难点,最大似然估计(重点且难点))第二节基于截尾样本的最大似然估计(不用看)第三节估计量的评选标准(数一重要,数三不用看)第四区间估计(数一理解,考的比较少)第五正态总体均值与方差的区间估计(数一理解,考的比较少)第六(0-1)分布参数的区间估计(不用看)第七单侧置信区间(理解,一般不考)(第四-第七,只有数一考,数三均不用看)第八章假设检验(理解,一般不考,只有数一有要求,数三不考)第一假设检验(理解)第二正态总体均值的假设检验(理解)第三正态总体方差的假设检验(理解)第四,第五,第六,第七,第八(均不用看).考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学概率统计的重点难点必考点及重要例题和习题不用做的例题和习题第一章概率论的基本概念P3最后4行的小写字体不用看P5例3不用做(一)频率不用看P6-7 例 1 与例 2 均不用做,P7 概率重点看P9 等可能概率一般都不单独考,考大题经常会用到,P13 例 6 不用做,P14 例 8 不用做 P14 条件概率重点看,P15 例 2 不用做,P16 例 3 不用做,P17 例 4 重点做P17(三)全概率公式和贝叶斯公式为难点P19例5不用做,P20独立性为考研数学的绝对重点,P22例2与例3均不用做P23例4重点做P24-29 不用做的习题是 1、5、6、10、12、15、16、18、19、20、21、23、25、26、29、32、34、35、38、39、40第二章随机变量及其分布P30 例 1 不用看P37 泊松定理只需要记住结论,证明可以不用看P38 随机变量的分布函数为考研必考概念P42 连续性随机变量概率密度为考研必考点P50 随机变量的函数的分布是考大题的重要命题点P53 例 5 不用做P55-59 不用做的习题 1、5、6、7、9、10、11、13、15、16、19、22、27、28、30、31、38、39第三章多位随机变量及其分布P63 性质 4 的解释不用看P65 例 1 不用做,P66 例 3 重点做一下(提升计算能力)P68 例 1 不用做,P72 相互独立的随机变量为重点章节P76 两个随机变量的函数的分布为考大题的重要备考章节P78 例 3 不用做,P81 例 5 不用做P84-89 不用做的习题是 3、6、7、10、11、12、13、28、31第四章随机变量的数字特征P91 例 1 不用做,P92 例 3 与例 4 不用做,P93 例 5 不用做P95 中间的证明不用看,P96 例 8 与例 10 不用做P97 例 11 不用做,P100 例 13 不用做,P105 不用做P107 XY的两条重要性质的推导及含义不用看考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@P108 只需要看前四行即只需要记住定理 4 证明可以不用看P109 例 2 重点做(提升计算能力)P110 矩为一般考点,协方差矩阵不用看P113-118 不用做的习题是 1.4.5.12.13.15.16.18.19.22.23.24.35.36.37.38第五章大数定律及中心极限定理(难点非重点)P124 例 1 不用做P126-127 不用做的习题是 2、4、5、10、11、13第六章样本及抽样分布(一般考点考小题)P130 第四行简单随机样本为重要概念P130 第二节直方图和箱线图不用看P135 第三节抽样分布(考小题),P136 统计量定义及几个常见统计量要重点看而且要牢记其表达式P137 经验分布函数只有数三同学稍微了解P138-141 数理统计所有的三大分布的典型模式要牢记但三种分布的概率密度表达式可以不用记P145-147 定理 2 的证明与推广均不用看P147-148 不用做的习题是 1、5、6、10、11第七章参数估计(数一数三的绝对的重点和难点)P149 点估计数一数三的绝对重点矩估计重点非难点,最大似然估计重点且难点P163-155 例 4 例 5 例 6 重点做P156-158 第二节基于截尾样本的最大似然估计不用看P158 估计量的评选标准数一重点看,数三大纲上虽然没有但建议数三看一下最好P161-168 区间估计,正态总体均值与方差的区间估计,只有数一看,为一般考点P168 0-1 分布参数的区间估计数一数三均不用看P169 单侧置信区间,只有数一看,为一般考点P193-177 数三不用做的习题为 4(3)、6、7、8、9、10、11-27 均不用做数一不用做的习题为4(3)、6、7、8、9、15、17、20、21、22、23、26、27第八章假设检验(数一特有的考点,难点非重点)数一只需要看前四节P178-193从第五节以后均不需要看P218-223 习题只需要做 1、2、3、4 其余的题目可以不用做考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@。

概率论1-1、2

概率论1-1、2
C=“点数之和不小于2”=S D=“点数之和大于12” =
三. 事件之间的关系及运算
随机事件的关系和运算雷同集合的关系和运算
事件
事件之间的关系与事件的运算
集合
集合之间的关系与集合的运算
给定一个随机试验,设S为其样本空间,事件A, B,Ak ( k =1 , 2 , 3 , ... ) 都是S的子集.
BA
例:
✓ 记A={明天天晴},B={明天无雨} B A
✓ 记A={至少有10人候车},B={至少有5人候车} B A
✓ 一枚硬币抛两次,A={第一次是正面},B={至少有一次正面17}
BA
相等事件(Equal)
B A且 A B A=B
S B A
事件A与事件B含有相同的样本点 例如:在投掷一颗骰子的试验中,事件“出现偶数点”
AB=Φ
S A
如A={1,2,3},B={1,3,5}, C={4,5}
A与C是互不相容的。
B
A与B是相容的。
5. 事件的对立
AB , AUB S
—— A 与B 互相对立
每次试验 A、 B中有且
只有一个发生
B A S
A
称B 为A的对立事件(or逆事件),
记为 B A
注意:“A 与B 互相对立”与“A 与B 互不相容” 是不同的概念。若A 与B 互相对立则A 与B 一定互
随机试验:抛掷两颗骰子
Rolling two die 随机试验
抛掷两颗骰子,观察出现的点数 试验的样本点和基本事件
样本空间 S={(1,1),(1,2),(1,3),(1,4), (1,5),(1,6),...,(6,1),(6, 2),...,(6,6)}.
随机事件

概率论与数理统计(第3版)(谢永钦)第1章 概率论的基本概念

概率论与数理统计(第3版)(谢永钦)第1章  概率论的基本概念
(3)分配律:A ∩ (B∪C)= (A∩B)∪( A ∩ C )
(4)
A∪(B ∩ C)=(A∪B)∩(A∪C)
(5)
概率论与数理统计
02
第2节 概率、古典概率
概率论与数理统计
1. 概率 定义1.1
在相同条件下,进行了n次试验.若随机事件A在这n次试验中发 生了k次,则比值 称为事件A在n次实验中发生的频率,记为
并按其出现的先后排成一行.试求下列事件的概率
概率论与数理统计
P(A2 )
C19 103 104

0.9
P(A3 )
C24 92 104
0.0486
概率论与数理统计
例题
(一个古老的问题)一对骰子连掷25次.问出现双 6与不出现双6的概率哪个大?
概率论与数理统计
4. 几何概型
若试验具有如下特征:
频率具有下列性质:
(1)对于任一事件A,有 (2)
概率论与数理统计
概率论与数理统计
定义1.2 设事件A在n次重复试验中发生了k次, n很大时,频率 k/n稳定在某一数值p的附近波动,而随着试验次数n的增 加,波动的幅度越来越小,则称p为事件A发生的概率, 记为:P(A)=p.
概率论与数理统计
历史上著名的统计学家德·摩根(De Morgan)蒲丰(Buffon)和皮尔逊
对于任意的事件A,B只有如下分解:
概率论与数理统计
AB

A B
AB

AB
A B

AB
A B

AB
A B

概率论与数理统计
A
AB
B

A
A

概率论与数理统计

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B
S
A
BA
S
事件A和B不能同时发生 。
事件A和B必有一个发生 , 且仅有一个发生,A的对立
注:基本事件是两两互不相容的 。 事件记为 A,A S A 。
返回主目2录1
第一章 概率论的基本概念
随机事件的运算规律
幂等律: A A A, A A A
交换律: A B B A, A B B A
下列条件:
概率是随机事件发生大小的可能
10 0 P( A) ; 非负性 性的数字表征,是事件的“函数”!
20 P(S ) 1 ; 规范性
30 若A1, A2 , 是两两互不相容事件 ,则 可列可加性
P( A1 A2 ) P( A1) P( A2) 返回主目2录9
第一章 概率论的基本概念
f n ( A1 A2 Ak) f n ( A1) f n ( A2) f n ( Ak)
返回主目2录6
第一章 概率论的基本概念
2 ) 频率的稳定性 n=500时(硬币正面朝上的次数)
nA 251 249 256 253 251 246 244 fn(A) 0.502 0.498 0.512 0.506 0.502 0.492 0.488
A B S
A B S
事件A发生必然导致事件B发 生,也可说A是B的子事件。
返回主目1录6
第一章 概率论的基本概念
20 和事件 A B
推广:n个事件的和
A1发生或A2发生或 An发生
A
B A1, A2, , An至少有一个发生
S
称为 A1, A2 , , An 的和。记为:
n
A1 A2 An或 Ak
产生的结果);
•必然事件 : 样本空间 S 本身(随机试验中必然发生的事件); •不可能事件 : 空集(在随机试验中不可能发生的事件)。
我们称一个随机事件发生当且仅当它所包 含的一个样本点在试验中出现. 返回主目1录4
第一章 概率论的基本概念
例如:S2 中事件 A={HHH,HHT,HTH,HTT} 表示 “第一次出现的是正面”
0.002 -0.002 0.012 0.006 0.002 -0.008 -0.012
实验者 n 德•摩根 2048 蒲 丰 4040 K •皮尔逊 12000 K •皮尔逊 24000
nH 1061 2048 6019 12012
fn(H) 0.5181 0.5096 0.5016 0.5005
确定性现象的特征 条件完全决定结果
返回主目录5
第一章 概率论的基本概念
2. 随机现象
在生活当中,经常接触到事件的概率,
比如: 掷硬币于平面正面朝上 概率为 50% , 某强队对弱队 赢球 的概率为 80% , 某人远距离射击击中目标的概率为:60% ;
这种在个别实验中其结果呈现出不确定性; 在大量重复实验中其结果又具有统计规律性的现象, 我们称之为随机现象。
关于德摩根(De Morgan)律的说明: A1A2 An A1, A2, , An同时发生
A1, A2, , An都不发生
A1, A2, , An至少有一个发生
A1 A2 An
24
第一章 概率论的基本概念
三、频 率 与 概率
1) 频率的定义和性质 定义 在相同的条件下,进行了n 次试验, 在这
这些试验具有以下特点:
•可以在相同的条件下重复进行;(试验的可重复性)
•每次实验的可能结果不止一个,并且能事先明确 实验的所有可能结果;(全部试验结果的可知性)
•进行一次实验之前不能确定哪一个结果会出现。
(一次试验结果的随机性)
返回主目录9
在概率论中,把具有上述三个特 点的试验称为随机试验。
• 注:1、以后我们讲的试验都是随机
2
这样,自己所得应是梅累的一半,即他得64个金币的三分之一, 而梅累得三分之二。梅累争辩说:即使下一次赌友掷出了“4 点”,两人也是平分秋色,各自收回32个金币。何况那一次自 己还有可能得到所有的金币呢。所以,他主张自己应得更多的 赌金。梅累的这个问题把数学家帕斯卡难住了。为了寻求解答 这类问题的方法,帕斯卡冥思苦想了三年,终于在1654年想出 一些眉目。于是,他把自己的想法告诉了当时数学界的“怪杰” 费尔马,两人对此进行了深入研究,得出了许多有用的结论, 奠定了一门数学分支的基础,这门分支叫-------概率论。人们确 认,1654年7月29日帕斯卡写信给费尔马的日子是概率论的诞 生之日。
P( ABC)
B
2) P(B A) P(B) P( AB)

S
n
注: Ai A1 A1A2 A1A2 A3 A1A2 An1An i 1 返回主目3录2
第一章 概率论的基本概念
加法公式的推广
对任意n 个事件 A1, A2 , , An , 有
n 次试验中,事件 A 发生的次数 nA 称为 事件 A 发生的频数。比值 n A / n 称为事件 A 发生的频率,并记成 fn(A) 。
返回主目2录5
第一章 概率论的基本概念
它具有下述性质:
1 0 f n ( A) 1 ; 2o f n(S) 1;
3o 若A1, A2,L , Ak是两两互不相容事件,则
返回主目2录7
第一章 概率论的基本概念
事件发生 的频繁程度
频率 频率的性质
事件发生 的可能性的大小
稳 定值
概率
概率的公理化定义
返回主目2录8
第一章 概率论的基本概念
3) 概率的定义
定义 设 E 是随机试验,S 是它的样本空间,对于
E 的每一个事件 A 赋予一个实数,记为P( A) ,
称为事件 A 的概率,要求集合函数P(•) 满足
4 ) 概率的性质与推广
性质 1 P() 0 ; 性质 2 若A1, A2 , , An 是两两互不相容事件 ,则
P( A1 A2 An) P( A1) P( A2) P( An)
性质 3 A B P(B A) P(B) P(A) P(B) P(A)
A B S
返回主目3录0
随机现象的特征 条件不能完全决定结果 6
概率论与数理统计是研究和揭示随机现象 统计规律性的一门学科。
如何来研究随机现象?
• 随机现象是通过随机试验来研究的。 问题: 什么是随机试验?
7
第一章 概率论的基本概念
随机试验(Experiment )
这里试验的含义十分广泛,它包括各种各样 的科学实验,也包括对事物的某一特征的观察。 其典型的例子有:
S6 中事件 B1={t|0≤t<1000} 表示 “灯泡是次品”
事件 B2={t|t ≥ 1000} 表示 “灯泡是合格品”
事件 B3={t|t≥1500} 表示“灯泡是一级品”
返回主目1录5
第一章 概率论的基本概念
二 、 事件间的关系与运算
10 包含关系 A B
20 和事件 A B
30 积事件 A B 40 差事件 A B 50 互不相容 A B 60 对立事件 A B
返回主目1录3
第一章 概率论的基本概念
随 机 事 件(Randon event)
•随机事件 : 称试验 E 的样本空间 S 的子集为 E 的随机事件,
简称事件,用A,B,C等或一种叙述来表示(由一个或者若干 个基本事件组成的随机试验的结果);
•基本事件 : 由一个样本点组成的单点集(随机试验中每个可能
返回主目1录1
E1:抛一枚硬币,观察正面H(Heads)、反面T (Tails)出现的情况。
E2 :将一枚硬币抛掷三次,观察正面、反面出现 的情况。
E3:将一枚硬币抛掷三次,观察出现正面的次数。 E4:抛一颗骰子,观察出现的点数。
S1 : { H , T } S2 : { HHH, HHT, HTH, THH,
HTT, THT, TTH, TTT }
S3 : { 0, 1, 2, 3 } S4 : { 1, 2, 3, 4, 5, 6 }
12
第一章 概率论的基本概念
E5:记录寻呼台一分钟内接到的呼唤次数。 E6:在一批灯泡中任意抽取一只,测试它的寿命。 E7:记录某地一昼夜的最低温度和最高温度。
S5 : {0,1,2,3……} S6 : { t | t 0 } S7 : { ( x , y ) | T 0 x , y T1 }
k 1
事件A和B至少有一个发生,
也可说A发生或者B发生。
返回主目1录7
第一章 概率论的基本概念
30 积事件 A B
推广:n个事件的积
A1, A2 , , An同时发生
A
B
称为 A1, A2 , , An 的积。记为:
S
n
A1 A2 An或 Ak或A1A2 An
k 1
事件A和B同时发生。也记AB.
显然: AB A(B) A B
返回主目1录8
第一章 概率论的基本概念
40 差事件 A B
A B
A B
A AB S
A
B
S
事件A发生且B不发生, 也记A-AB或者AB 。
注: A B A B AB B A
三个不相交的事件之和!
返回主目1录9
第一章 概率论的基本概念
次品
0
1000
一等品 1500
概率论与数理统计
1
概率论的诞生
公元1651年夏天,数学家帕斯卡在旅途中偶然遇到赌徒梅 累,梅累向帕斯卡请教一个他亲身经历的“分赌金”的问题。 问题是这样的:一次梅累和赌友投骰子,各押赌注32个金币。约 定的赌规是:梅累若先掷出三次“6点”,或赌友先掷出三次“4 点”,就算赢了对方。赌博进行了一段时间,梅累先掷出了两 次6点,赌友也掷出了一次“4点”。这时梅累奉命要立即去晋 见国王,赌博只好中断。那么,两人应该怎样分这64枚金币呢? 赌友说:梅累还要再掷一次“6点”才算赢,而他自己如果能掷出 两次“4点”也就赢了。
相关文档
最新文档