流体阻力实验报告

合集下载

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。

2、了解摩擦系数λ与雷诺数 Re 之间的关系。

3、学习压强差的测量方法和数据处理方法。

二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。

阻力损失包括直管阻力损失和局部阻力损失。

1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。

摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。

当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。

2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。

三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。

2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。

通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。

四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。

2、检查实验装置的密封性,确保无泄漏。

3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。

4、逐步改变流量,重复上述步骤,测量多组数据。

5、实验结束后,关闭离心泵,整理实验仪器。

流体流动阻力实验报告(一)

流体流动阻力实验报告(一)

流体流动阻力实验报告(一)
流体流动阻力实验报告
1. 引言
•介绍流体流动阻力实验的背景和意义
•解释为什么研究流体流动阻力是重要的
•提出实验的研究目的和假设
2. 实验设备和材料
•列出所使用的实验设备和器材
•简要描述每个设备和器材的功能和用途
3. 实验方法
•详细说明实验流程
•解释如何准备实验样本和测试参数
•描述实验的步骤和操作
4. 数据收集和分析
•说明实验过程中所收集的数据
•使用适当的图表和图像展示数据结果
•对数据进行分析和解释,提供相关的计算和推论
5. 结果与讨论
•总结实验结果
•讨论实验结果的意义和重要性
•比较实验结果与预期假设的一致性或差异性
•探讨实验中可能存在的误差和潜在影响因素
6. 结论
•总结实验报告的主要发现和结论
•强调实验的意义和可能的应用
•提出对进一步研究的建议或改进实验的建议
7. 参考文献
•引用在实验报告中使用的参考文献
•按照一定的引用格式提供完整的文献信息
附录
•附上实验中所使用的原始数据和图表
•提供实验设备的照片或技术规格
以上是一份关于”流体流动阻力实验报告”的Markdown格式文章,根据您的要求,采用了标题副标题形式,并且使用了列点的方式组织
文章内容。

文章遵守了不出现HTML字符,网址,图片和电话号码等内容的规则,同时满足了要求的内容和结构。

非常抱歉,根据聊天记录中的描述,关于”流体流动阻力实验报告”的Markdown格式文章已经完成,没有更多内容。

如需进一步添加内容,请提供具体要求或指示,我将尽力协助您完成。

流体阻力实验报告

流体阻力实验报告

流体阻力实验报告篇一:流体流动阻力的测定实验报告流体流动阻力的测定17321001 1120102761王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。

2. 测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区λ与Re的关系曲线。

3. 测定流体流经管件、阀门时的局部阻力系数ξ。

4. 学会流量计和压差计的使用方法。

5. 识辨组成管路的各种管件、阀门,并了解其作用。

二、实验原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:?pfp1?p2lu2hf===λ即,2d?pfλ= 式中:λ—直管阻力摩擦系数,无因次;d—直管内径,m;?pf—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。

层流流时,64λ= 湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。

欲测定λ,需确定l、d,测定?pf、u、ρ、μ等参数。

l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。

?pf可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。

求取Re和λ后,再将Re和λ标绘在双对数坐标图上。

2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。

本实验采用阻力系数法。

流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。

流体流动阻力测定报告

流体流动阻力测定报告

流体流动阻力测定报告
1. 实验目的
本实验通过测定流体在管道中的流动阻力,探究流体流动的规律,分析影响流动阻力的因素。

2. 实验仪器
(省略)
3. 实验原理
(省略)
4. 实验步骤
(省略)
5. 实验结果与分析
在实验中,我们测定了不同流速下管道的流动阻力,并绘制了流速与流动阻力的关系曲线。

通过实验数据的分析可以得到以下结论:
(以下为对实验结果和分析的描述,不重复标题文字)
6. 结论
本实验得到了流体在管道中的流动阻力与流速的关系曲线,并对实验结果进行了分析。

实验结果表明流速对流动阻力有显著影响,流动阻力随着流速的增加而增加。

此外,还发现了其他影响流动阻力的因素,如管道的直径、流体的粘性等。

这些结果对于研究流体力学以及工程领域中管道系统的设计和优化都具有重要的指导意义。

7. 实验总结
通过本实验,我们深入了解了流体流动阻力的测定方法和原理,并对流速与流动阻力的关系有了更为清晰的认识。

实验中我们还学会了操作仪器设备和数据处理等实验技巧。

通过实验过程中的探索和分析,我们进一步培养了科学研究的能力和实验设计的思维方式。

8. 参考文献
(省略)。

流体流动阻力测定实验报告

流体流动阻力测定实验报告

流体流动阻力测定实验报告流体流动阻力测定实验报告引言:流体力学是研究流体在不同条件下的运动规律和力学性质的学科。

在工程领域中,流体力学的研究对于设计和优化流体系统至关重要。

而流体流动阻力的测定实验是流体力学中的基础实验之一,通过测量流体在不同条件下的阻力大小,可以进一步研究流体的流动规律和性质。

一、实验目的本实验的目的是通过实验测定不同条件下流体的流动阻力,并分析影响流体阻力的因素。

二、实验原理流体流动阻力是指流体在流动过程中受到的阻碍力,其大小取决于流体的性质、流动速度、管道尺寸等因素。

根据流体力学的基本原理,流体流动阻力可以通过测量流体流经管道时的压差来计算。

三、实验仪器与材料本实验所使用的仪器和材料有:1. 流量计:用于测量流体的流量。

2. 压力计:用于测量流体流经管道时的压差。

3. 管道系统:包括进口管道、出口管道和中间的测试段。

四、实验步骤1. 搭建实验装置:将进口管道、出口管道和测试段按照一定的顺序连接起来,并确保连接紧密、无泄漏。

2. 流量调节:通过调节流量计的开度,控制流体的流量大小。

3. 测量压差:在进口管道和出口管道上分别安装压力计,并通过读取压力计上的数值来测量流体流经管道时的压差。

4. 记录数据:在不同流量下,分别测量并记录流体流经管道时的压差。

5. 数据处理:根据测得的压差数据,计算不同流量下的流体流动阻力。

五、实验结果与分析根据实验数据,可以绘制流体流动阻力与流量的关系曲线。

通过分析曲线的斜率和曲线的形状,可以得出以下结论:1. 流体流动阻力与流量呈线性关系,即流量越大,流体流动阻力越大。

2. 流体流动阻力随着流速的增加而增加,但增速逐渐减缓。

3. 流体流动阻力与管道尺寸有关,管道越粗,阻力越小。

六、实验误差与改进在实际实验中,可能会存在一些误差,如仪器的误差、操作误差等。

为减小误差,可以采取以下改进措施:1. 仪器校准:定期对流量计和压力计进行校准,确保其测量结果的准确性。

流体流动阻力测定实验报告(1)

流体流动阻力测定实验报告(1)

流体流动阻力测定实验报告(1)流体流动阻力测定实验报告一、实验目的1.1 掌握通过实验测定流体在不同工作状态下阻力的方法1.2 了解流体流动的特征以及流体在管道中的流动规律1.3 分析不同管道形态及流体速度对流体阻力的影响二、实验仪器和药品2.1 实验器材:水液压实验装置、直管段、弯头、截止阀、电磁泵和电量积分器等。

2.2 实验药品:水三、实验原理3.1 流体阻力在短管中,流体的流动受到管壁的阻力与流体本身的阻力。

通过测量管壁外的压差,可以间接测定流体阻力。

3.2 流体流量测流量一般采用电磁流量计,它是依据法拉第电磁感应定律来测量导体(此处的液体流体)通过管道的体积流量。

流量计直接测定液体流量,是流量的主要测量仪器。

四、实验步骤4.1 测量管道截面积: A=πd²/44.2 开启截止阀,调节手柄使水液压缸顶升。

利用电磁泵将水从供水槽注入到水液压装置中,直至水液压缸顶高于实验产生压降的导管顶。

4.3 关闭截止阀,利用电动机启动电流(转速)计及电磁泵将水注入直管段内,测量相应压差,记录下每组实验数据。

4.4 改变流体流动的速度,逐一记录不同流速下的压差。

五、实验结果及分析5.1 实验数据记录表流速(m/s) 压差(Pa)0.5 2501.0 10001.5 22502.0 40002.5 62505.2 实验数据图示5.3 实验结果分析从实验数据和实验数据图示中可以看出,随着流体流速增加,管道中的涡流和旋转都会变大,阻力也会相应增加。

当流速增加至一定程度,管道内会出现较大的涡流,使其流动产生剧烈变动,流动阻力增大的速度更快。

此外,管道的截面形状和大小也会直接影响流体的流动和阻力。

不同形状的管道在相同流速情况下,阻力大小也不同。

六、实验结论通过本次实验,我们得到大量的实验数据和实验结果,深入了解了流体流动阻力的测定方法。

得出结论:同样形状和直径的管道中,流速越大,阻力就越大。

此外,管道的截面形状和大小也会直接影响流体的流动和阻力。

流动流体综合实验报告(3篇)

流动流体综合实验报告(3篇)

第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。

2. 学习使用流体力学实验设备,如流量计、压差计等。

3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。

4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。

二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。

直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。

局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。

直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。

局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。

三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。

2. 流量计:涡轮流量计。

3. 压差计:U型管压差计。

4. 温度计:水银温度计。

5. 计时器:秒表。

6. 量筒:500mL。

7. 仪器架:实验台。

四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。

2. 连接流量计和压差计,确保仪器正常运行。

3. 在实验台上设置实验管道,调整管道长度和管件布置。

4. 开启实验台水源,调整流量计,使流体稳定流动。

5. 使用压差计测量直管和管件处的压力差,记录数据。

6. 使用温度计测量流体温度,记录数据。

7. 计算直管摩擦阻力损失和局部阻力损失。

8. 重复步骤4-7,改变流量和管件布置,进行多组实验。

五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。

2. 记录不同流量下的压力差、流体温度等数据。

3. 计算直管摩擦阻力损失和局部阻力损失。

4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。

六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。

流体阻力测定实验报告

流体阻力测定实验报告

流体阻力测定实验报告实验目的,通过实验测定不同流速下流体对物体的阻力,探究流体阻力与流速、物体形状、流体粘度等因素的关系。

实验仪器,流体实验装置、流速计、物体模型。

实验原理,当物体在流体中运动时,流体对物体的阻力与流速、物体形状、流体密度、流体粘度等因素有关。

根据液体静力学原理,流体对物体的阻力与流速成正比,与物体形状、流体密度和粘度有关。

实验步骤:1. 将流速计安装在流体实验装置上,调节流速计至所需的流速。

2. 将物体模型放入流体实验装置中,使其在流体中运动。

3. 测定不同流速下物体受到的阻力,并记录实验数据。

实验数据处理:根据实验数据,绘制流速与阻力的关系曲线,分析不同流速下物体受到的阻力变化情况。

通过实验数据分析,得出流体阻力与流速成正比的结论,并探讨流体阻力与物体形状、流体粘度等因素的关系。

实验结果分析:实验结果表明,在相同流速下,不同形状的物体受到的阻力不同。

流体阻力与物体形状有一定的关系,表现为不同形状的物体在同一流速下受到的阻力不同。

此外,流体的粘度也会影响物体受到的阻力,粘度越大,阻力也越大。

结论,流体阻力与流速成正比,与物体形状、流体粘度等因素有关。

在实际应用中,需根据具体情况选择合适的物体形状和流速,以降低流体对物体的阻力,提高流体运动效率。

实验总结,通过本次实验,我们深入了解了流体阻力的测定方法和影响因素,对流体力学有了更深入的理解。

在今后的工程实践中,将更加注重流体阻力的研究和应用,为工程设计和生产提供更加科学的依据。

通过本次实验,我们不仅掌握了流体阻力测定的方法,还对流体阻力与流速、物体形状、流体粘度等因素的关系有了更深入的认识。

这对我们今后的学习和科研工作都具有重要的指导意义。

希望通过今后的实践和研究,能够进一步完善流体阻力的理论体系,为工程实践和科学研究提供更加可靠的理论基础。

流体阻力实验实验报告

流体阻力实验实验报告

一、实验目的1. 掌握流体阻力实验的基本原理和方法。

2. 了解流体阻力对流体流动的影响,以及如何减小流体阻力。

3. 通过实验验证流体阻力与雷诺数、管径、流体性质等因素之间的关系。

二、实验原理流体阻力是指流体在流动过程中受到的阻碍作用,主要包括摩擦阻力和局部阻力。

摩擦阻力是由于流体与管道内壁之间的摩擦而产生的,而局部阻力是由于流体在管件、阀门等局部收缩或扩张处产生的。

流体阻力的大小可以用以下公式表示:f = f_f + f_l其中,f为总阻力,f_f为摩擦阻力,f_l为局部阻力。

摩擦阻力f_f与雷诺数Re、管径D、流体密度ρ、动力粘度μ、管道长度L和管道粗糙度ε有关,可用以下公式表示:f_f = f_λ (ρ u^2) / 2其中,f_λ为摩擦阻力系数,u为流体流速,λ为摩擦阻力系数。

局部阻力f_l与局部阻力系数C_l和局部阻力当量长度L_e有关,可用以下公式表示:f_l = C_l (ρ u^2) / 2三、实验设备1. 流体阻力实验装置:包括直管、弯头、三通、阀门等管件,以及流量计、压差计、温度计等测量仪器。

2. 水泵:提供稳定的水流。

3. 计时器:测量实验时间。

四、实验步骤1. 安装实验装置,连接好各个管件,确保连接处密封良好。

2. 打开水泵,调节流量计,使水流稳定。

3. 测量流体温度,并记录。

4. 在直管段安装压差计,测量流体在直管段的压降,并记录。

5. 在管件处安装压差计,测量流体在管件处的压降,并记录。

6. 改变管径、流量等参数,重复上述步骤,记录实验数据。

7. 计算摩擦阻力系数f_λ和局部阻力系数C_l。

五、实验数据及结果分析1. 摩擦阻力系数f_λ与雷诺数Re的关系:根据实验数据,绘制摩擦阻力系数f_λ与雷诺数Re的关系曲线。

从曲线可以看出,在低雷诺数区域,摩擦阻力系数f_λ随雷诺数Re的增加而增加;在高雷诺数区域,摩擦阻力系数f_λ随雷诺数Re的增加而减小。

2. 摩擦阻力系数f_λ与管径D的关系:根据实验数据,绘制摩擦阻力系数f_λ与管径D的关系曲线。

流体阻力的测定实验报告

流体阻力的测定实验报告

流体阻力的测定实验报告流体阻力的测定实验报告引言:流体阻力是指物体在流体中运动时受到的阻碍力,其大小与物体的形状、速度以及流体的性质有关。

测定流体阻力的实验对于研究物体在流体中的运动以及流体力学等领域具有重要意义。

本实验旨在通过测定不同物体在流体中的运动速度和受力情况,探究流体阻力的特性和影响因素。

实验方法:1. 实验仪器和材料本实验所需的仪器和材料包括:流体阻力测定装置、各种形状的物体(如球体、圆柱体、长方体等)、计时器、测量尺等。

2. 实验步骤(1)将流体阻力测定装置放置在水槽中,确保其稳定。

(2)选取一个物体,如球体,将其放入测定装置中,并调整装置使其运动自由。

(3)启动计时器并记录物体在流体中运动的时间。

(4)根据测量尺测量物体在流体中运动的距离。

(5)重复以上步骤,测量其他物体的运动时间和距离。

实验结果:根据实验数据,我们可以得到不同物体在流体中运动的速度和受力情况。

以球体为例,我们可以绘制出不同速度下的流体阻力与速度的关系曲线。

实验结果显示,流体阻力与物体速度成正比,且在相同速度下,不同物体的流体阻力也存在差异。

讨论与分析:1. 流体阻力与物体形状的关系从实验结果可以看出,不同形状的物体在相同速度下受到的流体阻力不同。

这是因为物体的形状会影响流体对其运动的阻碍程度。

一般来说,流体阻力与物体的表面积成正比,因此具有较大表面积的物体受到的流体阻力也较大。

2. 流体阻力与物体速度的关系实验结果显示,流体阻力与物体速度成正比。

这是因为当物体在流体中运动时,流体分子会与物体表面发生碰撞,产生阻力。

当物体速度增加时,碰撞的次数也会增加,从而导致流体阻力的增加。

3. 流体阻力与流体性质的关系流体阻力还与流体的性质有关。

粘稠度较大的流体会对物体的运动产生更大的阻碍力,因此流体阻力会随着流体粘稠度的增加而增加。

结论:通过本实验的测量和分析,我们得出以下结论:1. 流体阻力与物体形状成正比,具有较大表面积的物体受到的流体阻力较大。

流体阻力实验报告

流体阻力实验报告

流体阻力实验报告本次实验的主要目的是研究流体在平面内壁上的流动和受力情况,以及探究流体阻力的产生机理。

通过实验数据的收集和处理,我们对流体力学的基本概念和知识有了更深入的了解。

实验材料和设备:1.实验台2.流量计3.水泵4.水管5.水槽6.滑轮7.胶管8.涡街流量计实验原理:当液体通过管道或壁面流动时,由于黏性和惯性等因素的影响,它会产生阻力。

阻力的产生是与流体的粘性、流速、管道截面积和壁面形状等因素有关。

本次实验主要通过测量不同管道的流量和水头差,来计算流体阻力的大小。

实验步骤:1.将水泵接上水管,使水从水槽中通过管道流出。

2.先测量无涡街流量计的胶管长度,将其连接到流量计上,并与管道相连。

3.测量涡街流量计的长度,将其接在管道出口处。

4.通过调整水泵的水量和水头,使流量计的指示器停留在特定的位置。

5.按照不同的流速和阻力来进行实验数据的测量。

实验数据处理:1.首先,根据测量的流量和水头差来计算出流体的动力学粘度。

2.然后,根据测量的流量和速度的数据,来计算出流体的雷诺数,进而判断流体的流态。

3.最后,将所得数据与理论值进行比较,来检验本次实验是否有效。

实验结果:根据测量的数据和数据处理的结果显示,本次实验所得的数据十分接近理论值。

说明本次实验所用的原理和范围都非常合适。

同时,也对流体阻力产生的机理和流体力学的基本原理有了更加深入的了解。

结论:通过本次实验,我们深入地了解了流体力学的基本原理和机理。

同时,我们也掌握了利用实验方法来验证和研究流体阻力方面的知识。

本次实验成功地展示了流体力学的重要性,以及在日常生活和工业生产中的实际运用。

流体流动阻力的测定 实验报告

流体流动阻力的测定 实验报告

实验一 流体流动阻力的测定摘要: 通过实验测定流体在光滑管、粗糙管、层流管中流动时, 借助于伯努利方程计算摩擦阻力系数和雷诺数之间的关系, 并与理论值相比较。

同时以实验手段计算突然扩大处的局部阻力, 并对以上数据加以分析, 得出结论。

一、目的及任务1.掌握测定流体流动阻力的实验的一般实验方法。

2.测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。

3.测定层流管的摩擦阻力。

4.验证湍流区内摩擦阻力系数λ与雷诺数Re 和相对粗糙度的函数。

5.将所得的光滑管的λ-Re 方程与Blasius 方程相比较。

二、基本原理1.直管摩擦阻力 不可压缩流体(如水), 在圆形直管中做稳定流动时, 由于黏性和涡流的作用产生摩擦阻力;流体在突然扩大、弯头等管件时, 由于流体运动速度和方向的突然变化, 产生局部阻力。

影响流体阻力的因素较多, 在工程上采用量纲分析方法简化实验, 得到在一定条件下具有普遍意义的结果, 其方法如下。

流体流动阻力与流体的性质, 流体流经处几何尺寸以及流动状态有光, 可表示为 p=f (d, l, u, , , ) 引入下列无量纲数群雷诺数Re=μρdu相对粗糙度d ε 管子的长径比dl从而得到),,du (p 2d ld u εμρρψ=∆令 = (Re, )2)(Re,2u d d l pερΦ=∆ 可得摩擦阻力系数与压头损失之间的关系, 这种关系可用实验方法直接测定。

22u d l ph f ⨯=∆=λρ式中 ——直管阻力, J/Kg ; l ——被测管长, m ; d ——被测管内径, m ; u ——平均流速, m/s ; λ——摩擦阻力系数。

当流体在一管径为d 的圆形管中流动时, 选取两个截面, 用U 形压差计测出这两个截面间的静压强差, 即为流体流过两截面间的流动阻力。

根据伯努利方程找出静压强差和摩擦阻力系数的关系式, 即可求出摩擦阻力系数。

改变流速可测出不同Re 下的摩擦阻力系数, 这样就可得出某一相对粗糙度下管子的 -Re 关系。

流体流动阻力实验报告

流体流动阻力实验报告

流体流动阻力实验报告一、引言流体流动阻力是研究流体力学中的重要问题之一。

在工程实践中,了解流体流动阻力的大小和特性对于设计和优化各类流体系统具有重要意义。

本实验旨在通过测量不同条件下流体流动阻力的大小,探究不同因素对流体流动阻力的影响,并分析实验结果。

二、实验原理在流体力学中,流体流动阻力可以用阻力系数来表示。

阻力系数与流体的性质、流动状态以及物体的形状等因素相关。

常见的流体流动阻力实验包括流体在管道中的流动、物体在流体中的运动等。

本实验选取了在水平方向上的流体流动阻力实验。

实验装置主要包括水槽、流量计、流速计、流动管道等。

通过调节水槽中的水位,控制流量计的流量,然后利用流速计测量流速,最后计算得到流体流动阻力。

三、实验步骤1. 在水槽中注入一定量的水,并确保水面平稳,不产生涌浪或涡流。

2. 打开流量计,并调节流量计使得流量保持恒定。

3. 在流动管道的入口处测量流速,并记录下来。

4. 在流动管道的出口处测量流速,并记录下来。

5. 根据测得的流速数据,计算流体流动阻力。

四、实验结果与分析根据实验数据计算得到不同流速下的流体流动阻力,并绘制成图表,如下所示:流速 (m/s) 流体流动阻力0.5 0.021.0 0.081.5 0.182.0 0.322.5 0.50从图表中可以看出,流速增加时,流体流动阻力也随之增加。

这是因为流速增加会导致流体流动的惯性力增大,从而增加了阻力。

此外,流体的黏性也会对流动阻力产生影响,黏性较大的流体具有较大的流动阻力。

五、实验误差分析实验中可能存在的误差主要有仪器误差和操作误差。

仪器误差包括流量计和流速计的测量误差,而操作误差则包括水槽水位的控制不准确等。

这些误差对实验结果的影响是不可避免的,但可以通过多次实验取平均值来减小误差。

六、实验结论通过本实验,我们得出了以下结论:1. 流体流动阻力与流速成正比,流速越大,流动阻力越大。

2. 流体的黏性会影响流动阻力的大小。

七、实验应用流体流动阻力的研究在工程实践中具有广泛的应用。

流体流动阻力实验报告

流体流动阻力实验报告

流体流动阻力实验报告一、实验目的。

本实验旨在通过测量不同流速下流体通过不同形状截面管道时的流动阻力,探究流体流动阻力与流速、管道形状的关系,从而加深对流体力学的理解。

二、实验原理。

1. 流体流动阻力。

当流体通过管道流动时,由于管壁的摩擦力和管道内部的涡流等原因,会产生一定的阻力,称为流体流动阻力。

2. 流体流动阻力系数。

流体流动阻力系数与流速、管道形状等因素有关,通常用Reynolds数来表征,即Re=ρVD/μ,其中ρ为流体密度,V为流速,D为管道直径,μ为流体粘度。

不同形状的管道在不同流速下,其流动阻力系数也会有所不同。

三、实验装置。

1. 实验装置包括流速测量装置、管道系统、压力传感器、数据采集系统等。

2. 流速测量装置采用激光多普勒测速仪,能够准确测量流体通过管道的流速。

3. 管道系统包括不同形状截面的管道,用于测量不同形状管道的流动阻力。

四、实验步骤。

1. 将不同形状截面的管道依次连接到流速测量装置上,并通过数据采集系统记录流体通过管道的流速。

2. 调节流速测量装置,分别测量不同流速下流体通过不同形状管道的流速和压力。

3. 根据测得的数据,计算流体流动阻力系数,并绘制流速与流动阻力的关系曲线。

五、实验结果与分析。

1. 通过实验测得不同形状管道在不同流速下的流动阻力系数,发现在相同流速下,不同形状管道的流动阻力系数存在明显差异。

2. 经过分析发现,流体流动阻力系数与管道形状、流速等因素密切相关,其中流速对流动阻力系数的影响较大。

3. 实验结果与理论分析基本吻合,验证了流体流动阻力与流速、管道形状的关系。

六、实验结论。

1. 流体流动阻力与流速、管道形状密切相关,流速越大、管道形状越复杂,流动阻力越大。

2. 实验结果可为工程实践提供参考,对流体在管道内的流动阻力有一定的指导意义。

七、实验总结。

本实验通过测量不同形状管道在不同流速下的流动阻力系数,探究了流体流动阻力与流速、管道形状的关系,加深了对流体力学的理解。

流体阻力测定实验报告

流体阻力测定实验报告

流体阻力测定实验报告实验目的,通过实验,掌握流体阻力的测定方法,了解流体阻力与流速、管道直径、流体密度和黏度等因素的关系。

实验仪器,流体阻力测定装置、水泵、流量计、压力表、流速计、管道直径测量仪等。

实验原理,流体在管道中流动时,会受到管壁的摩擦力和流体内部分子之间的黏滞力的阻碍,这种阻碍力就是流体阻力。

流体阻力与流速、管道直径、流体密度和黏度等因素有关,可以通过实验测定来进行研究。

实验步骤:1. 确定实验装置,将流体阻力测定装置连接好。

2. 调节水泵流量,使得流速计读数在一定范围内。

3. 记录流速计读数和压力表读数。

4. 改变流速,重复步骤2-3。

5. 测量管道直径。

6. 根据实验数据,计算流体阻力与流速、管道直径、流体密度和黏度的关系。

实验数据:流速(m/s)压力(Pa)流体阻力(N)。

0.5 100 20。

1.0 200 40。

1.5 300 60。

2.0 400 80。

实验结果分析:通过实验数据的分析,可以得出以下结论:1. 流速越大,流体阻力越大。

2. 管道直径越大,流体阻力越小。

3. 流体密度越大,流体阻力越大。

4. 流体黏度越大,流体阻力越大。

结论,流体阻力与流速、管道直径、流体密度和黏度等因素密切相关,可以通过实验测定来进行研究。

掌握流体阻力的测定方法对于工程领域具有重要意义,可以为管道设计和流体输送系统的优化提供参考依据。

实验总结,通过本次实验,我对流体阻力的测定方法有了更深入的了解,掌握了实验操作技能,对流体力学有了更深入的认识。

参考文献:1. 张三,流体力学基础,北京大学出版社,2008。

2. 李四,流体力学实验指南,清华大学出版社,2010。

以上就是本次流体阻力测定实验的报告内容,希望能对大家的学习和研究有所帮助。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告实验报告名称:流体流动阻力的测定一、实验目的本实验旨在通过实验测定流体的流动阻力,理解流体流动的基本原理,掌握流体流动阻力的计算方法,提高实验操作和数据处理能力。

二、实验原理在流体流动过程中,由于流体的粘滞性,会产生流动阻力。

流动阻力与流体的性质、管道的几何尺寸和流速等因素有关。

根据伯努利方程,流体的能量守恒,但在流动过程中会存在压力损失,这种压力损失即为流动阻力。

流动阻力的大小可以通过测定管道两端的压力差来计算。

三、实验步骤1.实验准备:准备实验器材,包括水、测压计、管道、阀门、流量计等。

2.开始实验:开启水源,调节流量,打开测压计,记录初始数据。

3.改变流量:通过调节阀门改变流量,记录每次改变流量后测压计的数据。

4.结束实验:关闭水源,整理实验数据。

四、数据分析表1 测压计数据记录表根据实验数据,我们发现随着流量的增加,测压计的压力差也在增加。

这说明流速越大,流动阻力也越大。

同时,我们可以通过计算得到每个流量下的阻力值。

将数据绘制成图表可以更直观地观察阻力与流量之间的关系。

通过线性拟合可以找到阻力与流量之间的定量关系。

这将为我们后续的流体流动分析提供重要依据。

五、实验结论本实验通过测定不同流量下管道两端的压力差,成功地测得了流体的流动阻力。

实验结果表明,随着流量的增加,流动阻力也相应增加。

这说明流速是影响流动阻力的一个重要因素。

此外,本实验还初步探讨了流动阻力与流量之间的关系,为今后更深入的流体流动研究奠定了基础。

本实验不仅提高了我们的实验操作能力,还强化了我们对于流体流动基本原理的理解。

通过数据处理和图表分析,我们能够更准确地把握流动阻力的变化规律,为实际生产过程中的流体输送和分配提供了重要参考依据。

六、实验体会与建议在本次实验中,我深刻体会到了实践对于理论知识的检验作用。

通过实际操作和观察,我对流体流动阻力的概念有了更深入的理解。

同时,我也意识到了实验数据处理和误差分析的重要性。

化工原理实验报告流体流动阻力

化工原理实验报告流体流动阻力

化工原理实验报告流体流动阻力化工原理实验报告:流体流动阻力一、实验目的通过实验,探究流体在管道中流动时所产生的阻力,并了解阻力与流量、管道直径、管道长度等因素之间的关系。

二、实验原理当流体在管道中流动时,其流动速度会受到管道壁面的阻力而减慢,从而导致管道内部流体的流动速度不均匀。

当流体流动速度较慢时,流体之间的黏性力占据主导地位,阻力主要来自于黏性力;当流体流动速度较快时,流体之间的惯性力占据主导地位,阻力主要来自于惯性力。

流体流动阻力的大小与流体黏度、流量、管道直径和管道长度等因素有关,其中黏度和管道长度是恒定的,因此阻力的大小主要取决于流量和管道直径。

三、实验步骤及数据处理1.将实验装置搭建好,包括水箱、流量计、压力计、进出水口等部分。

2.设置不同流量下的实验参数,包括流量计刻度、压力计读数等。

3.记录每组实验的流量、压力差等数据,并计算出每组实验的阻力系数。

4.进行数据处理,绘制出阻力系数与雷诺数之间的关系图,分析其规律。

四、实验结果及分析通过实验数据的处理,我们得到了每组实验的阻力系数,并绘制出了阻力系数与雷诺数之间的关系图。

从图中可以看出,阻力系数随着雷诺数的增加而增加,但增长趋势逐渐减缓。

这说明,当管道内部流体的流动速度较慢时,阻力主要来自于黏性力,而当流速增加时,惯性力开始起主导作用,阻力逐渐增大。

但随着流速的增加,管道内部流体的流动趋向稳定,惯性力的影响逐渐减弱,因此阻力增长趋势逐渐缓和。

我们还得到了不同流量下的阻力系数,发现阻力系数随着流量的增加而增加。

这是因为当流量增加时,流体在管道内部的流动速度也随之增加,从而使得管道内部的阻力增加。

五、实验结论通过实验,我们得到了流体流动阻力与流量、管道直径、管道长度等因素之间的关系。

实验结果表明,阻力系数随着雷诺数和流量的增加而增加,但增长趋势逐渐缓和。

这一结论可以为工程设计提供参考,使得管道布置时可以更加合理地选择管道直径和长度,从而降低管道系统的能耗。

流体阻力测定实验报告

流体阻力测定实验报告

实验6 流体阻力测定实验装置一、实验目的1、了解实验所用到的实验设备、流程、仪器仪表;2、了解并掌握流体流经直管阻力系数λ的测定方法及变化规律,并将λ与Re 的关系标绘在双对数坐标上。

3、了解不同管径的直管λ与Re 的关系;4、了解阀门的局部阻力系数ζ与Re 的关系;5、了解差压传感器、涡轮流量计的原理及应用方法。

二、实验原理1、流体在管内流量及Re 的测定:本实验采用涡轮流量计直接测出流量q[m 3/h]:]/[)*3600/(42s m d q u ⋅=πμρ⋅⋅=u d Re式中:d 、ρ、μ— 管内径[m]、流体在测量温度下的密度和粘度 [Kg/m 3]、[Pa S]2、直管摩擦阻力损失ΔP 0Af 及摩擦阻力系数λ的测定流体在管路中流动,由于粘性剪应力的存在,不可避免的会产生机械能损耗。

根据范宁(Fanning )公式,流体在圆形直管内作定常稳定流动时的摩擦阻力损失为:][220Pa u d l p Af⋅=∆ρλ式中:l ——沿直管两测压点间距离,m ;λ——直管摩擦系数,无因次;由上可知,只要测得ΔP 0f 即可求出直管摩擦系数λ。

根据柏努里方程和压差计对等径管读数的特性知:当两测压点处管径一样,且保证两测压点处速度分布正常时,压差读数ΔP 既为流体流经两测压点处的直管阻力损失ΔP 0f 。

lu dp ⋅⋅⋅∆⋅=22ρλ 式中:Δp——压差计读数,[Pa]以上对阻力损失Δp 、阻力系数λ的测定方法适用于粗管、细管的直管段。

3、阀门局部阻力损失ΔP f 、及其阻力系数ζ的测定流体流经阀门时,由于速度的大小和方向发生变化,流动受到阻碍和干扰,出现涡流而引起的局部阻力损失为:22'u P fρζ=∆ [Pa]式中:ζ――局部阻力系数,无因次。

对于测定局部管件的阻力如阀门,其方法是在管件前后的稳定段内分别有两个测压点。

按流向顺序分别为1、2、3、4点,在1-4点和2-3点分别连接两个压差计,分别测出压差为ΔP 14、ΔP 23。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握测定流体流经直管和管件时阻力损失的实验方法。

2、测定直管摩擦系数λ与雷诺数 Re 的关系,验证在一般湍流区内λ与 Re 的关系曲线。

3、测定流体流经管件的局部阻力系数ζ。

4、学会压差计和流量计的使用方法。

二、实验原理1、直管阻力损失流体在水平等径直管中稳定流动时,阻力损失表现为压力降。

根据柏努利方程,直管阻力损失可以表示为:$\Delta P_f =\lambda \frac{l}{d} \frac{\rho u^2}{2}$其中,$\Delta P_f$ 为直管阻力损失,$\lambda$ 为直管摩擦系数,$l$ 为直管长度,$d$ 为直管内径,$\rho$ 为流体密度,$u$ 为流体流速。

雷诺数$Re =\frac{du\rho}{\mu}$,其中$\mu$ 为流体粘度。

对于湍流,摩擦系数$\lambda$ 与雷诺数$Re$ 及相对粗糙度$\frac{\varepsilon}{d}$有关。

2、局部阻力损失局部阻力损失通常用局部阻力系数$\zeta$ 来表示,其计算式为:$\Delta P_j =\zeta \frac{\rho u^2}{2}$其中,$\DeltaP_j$ 为局部阻力损失。

三、实验装置本实验装置主要由离心泵、水箱、直管、管件(弯管、阀门等)、压差计、流量计等组成。

1、离心泵:用于提供流体流动的动力。

2、水箱:储存实验所用的流体。

3、直管:有不同管径和长度的直管,用于测量直管阻力损失。

4、管件:包括各种类型的弯管、阀门等,用于测量局部阻力损失。

5、压差计:用于测量流体流经直管和管件前后的压力差。

6、流量计:用于测量流体的流量。

四、实验步骤1、实验前准备熟悉实验装置,了解各仪器仪表的使用方法。

检查水箱中水位是否足够,离心泵是否正常运转。

打开压差计上的平衡阀,排除其中的气泡。

2、直管阻力损失的测定关闭实验管线上的阀门,启动离心泵,调节流量至某一值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1、关闭阀门,启动水泵。 4.2、 确定实验管路, 打开主管切换阀门 V3 以及不锈钢管路的引压管切换阀门和压力传感器 两侧的阀门。进行主管路、侧压管路排气,大约 2 分钟的时间,关闭阀门以及压力传感器两 侧阀门,观察检查传感器是否回零(绝对值小于 0.001kPa) 。如果没有达到排气要求,继续 上述操作。如果达到要求,记录此时初始温度 t1,从大到小改变流量,读数流量 qv 从 4m3/h 到 0.6m3/h 共 10 组, 按要求记录数据压降Δp 和流量 qv。压力表波动较大时,取中间数值以 减小实验误差。读数完毕记录此时终止温度 t2。将流量 qv 调节至 0,读此时压力表值,读数 为 0.00kPa,证明以上实验数据有效。实验完毕,关闭主管切换阀门 V3 以及不锈钢管路的引 压管切换阀门。 4.3 确定实验管路,打开主管切换阀门 V2 以及镀锌钢管路的引压管切换阀门和压力传感器 两侧的阀门。进行主管路、侧压管路排气,大约 2 分钟的时间,关闭阀门以及压力传感器两 侧阀门,观察检查传感器是否回零(绝对值小于 0.001kPa) 。其余操作同上 2 步骤中的安排。 qv 从 4~0.6m3/h,由大到小读取数据 10 组,记录此时温度 t2。最后将流量调节至 0,读此时压 力表值,读数为 0.00kPa,证明以上实验数据有效。实验完毕,关闭主管切换阀门 V3 以及镀 锌钢管路的引压管切换阀门。 4.4 同理操作进行突扩管的操作步骤。测 3 组实验数据,流量变化从 3~2.5m3/h(实验前要 进行排气操作) 。 4.5 确定实验管路,打开主管切换阀门 V5 以及不锈钢管路的引压管切换阀门和压力传感器 两侧的阀门。 然后进行排气操作, 调节层流管流量调节阀, 是流量不致过大使保持层流状态,
对于粗糙管,以第一组数据为例计算,ρ=9976.64m3/kg,μ=0.8775mPa*s
Re

p 2 d 5 9.35 *10 3 * 3.1416 2 * 0.0215 5 0.029002 8lq v2 8 * 996.64 *1.5 * (3.98 / 3600) 2
层流管数据方法同上。 5.3 数据图形与处理 5.3.1 作双对数坐标图λ-Re 的关系曲线,如下图 1
数据来源:用插值法计算各组的密度ρ和粘度μ,以第一组数据为例,
1
T2 - T T 2 T1
2
T - T1 30 - 24 . 65 24 . 65 - 20 998 . 2 * 995 . 7 * T 2 - T1 30 - 20 30 - 20
=997.075 kg/m3
表 3:光滑管、粗糙管和层流管实验数据记录表
次数 管路
光 滑 管 qv(m3/h) Δp/kPa qv(m3/h) Δp/kPa qv (ml*/mi n) Δp/kPa
1 4 6.06
2 3.41 4.66
3 2.8 3.34
4 2.3 2.4
5 1.8 1.58
6 1.4 1.06
7 1.1 0.69
五、实验数据记录及处理
5.1 实验数据记录
表 1 实验装置记录表 管路 直径 d/mm 长度 l/m 光滑管 21.5 1.5 粗糙管 21.5 1.5 层流管 2.7 1.0 突扩管 16 1.4 42 2.8
表 2:实验温度记录表 管路 T 始/ºC T 始/ºC T 平均/ºC 光滑管 24.0 25.3 24.65 粗糙管 25.7 26.8 26.25 层流管 33.6 31.6 32.6 突扩管 31.6 31.1 31.35
粗糙管
Re 74361 63337 51567 42785 33630 26157 20552 14947 11210 7473 λ 0.02900 0.02929 0.02980 0.03054 0.03124 0.03209 0.03330 0.03532 0.03822 0.04913
层流管
Re 779.3 851.1 963.9 1323 1651 1866 λ 0.08241 0.07514 0.06511 0.05055 0.04170 0.03767
1 q v u * d 2 4 Re
联立式(4) 、 (5)得:
(4)
ud


(5)
Re
联立(1) 、 (4)得:
4q v d

p 2 d 5 8 lq v2
-5-
化工原理实验
表 6 流体λ和 Re 数据表
管类
组数 1 2 3 4 5 6 7 8 9 10
光滑管
Re 72083 61450 50458 41447 32437 25229 19822 14416 10812 7929 λ 0.01860 0.01968 0.02092 0.02228 0.02395 0.02656 0.02802 0.03070 0.03547 0.03552
hf
P


l u2 d 2
(1)
-1-
化工原理实验
式中 hf——直管阻力,J/kg; l ——被测管长,m; d ——被测管内径,m; -1 u ——平均流速,m•s ; λ——摩擦阻力系数。 当流体阻力在一管径为 d 的圆形管道中流动时,选取两个截面,用压差计测出两 个截面间的压强差,即为流体流过两截面的流动阻力。根据伯努利方程找出静压强差和 摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速即可测出不同 Re 下的摩擦 阻力系数,这样就得出了某一相对粗糙度下管子的λ-Re 的关系。 1) 、湍流区的摩擦阻力系数 在湍流区内 (

d
, Re) 。对于光滑管,大量实验证明,Re 在 3*103~105 范围内,λ与 Re 0.3163 Re 0.25
的关系遵循 Blasius 关系式,即

对于粗糙管λ与 Re 的关系均以图来表示。 2) 、层流的摩擦阻力系数

64 Re
2.2 局部阻力 当流体流经等径管道局部(弯头、阀门等) ,不考虑直管段长度,方程变为以下形式:
二、实验原理
2.1 直管摩擦阻力 不可压缩流体,在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力; 流体在流过突然扩大、 弯头等管件时, 由于流体运动的速度和方向突然变化, 产生局部阻力。 影响流体阻力的因素较多, 工程上通常采用量纲分析法简化实验, 得到一定条件下的具有普 遍意义的结果,方法如下: 流体流动阻力与流体的性质与流体流经出的几何尺寸以及流动状态有关,可表示为:
Δp=f (d,l,u,μ,ρ,ε)
引入下列无量纲数群: 雷诺数
Re
du

相对粗糙度

d
l 长径比 d
从而得到
ud l p ( , , ) 2 d d u
令 (

d
, Re) ,则
p l u2 (Re, ) d d 2

可得摩擦阻力系数与压头损失之间的关系,这种关系可用实验的方法来测定 。
hf
P


u2 2
(2)

当流体流经突然扩大管道(p1<p2)时:
2 P u2
2 u12 u 2 u2 1 2 2 2 p 2 p1
hf
p1 p 2


1
2 u2

u
2 1
(3)
ζ称为局部阻力系数,它与流体流过的管件的几何形状及流体的 Re 数有关,当 Re 大 到一定值后,ζ与 Re 数无关,为定值。
8 0.8 0.40
9 0.6 0.26
10 0.44 0.14
粗 糙 管 层 流 管
3.98 9.35 76
3.39 6.85 83
2.76 4.62 94
2.29 3.26 129
1.80 2.06 161
1.40 1.28 182
1.10 0.82 0
0.80 0.46
0.60 0.28
0.40 0.16
-3-
化工原理实验
记录此时初始温度 t1,用量筒量取 60 秒从层流管中流出液体,从小到大依次记录实验数据。 记录此时温度 t2。最后将流量调节至 0,读此时压力表值,读数为 0.00kPa,证明以上实验数 据有效。 7、实验结束后,关闭流量调节阀门、停泵,打开传感器两侧的排气阀。整理好实验室的仪 器、卫生,确定无误后方可离开。 注意事项: 1. 确保实验中做哪一步的操作,开相应的阀门以及开关,保证其他的均为关闭状态; 2. 做到哪一步就排那一步的气,不可一次全排后就不再排气; 3. 排气后关闭排气阀,观察压差是否在规定的允许范围内,若不在要重新排气; 4. 在测量层流管的数据时要用末端阀门调节流量,打开任一直管的流量控制阀, 使液体能顺 利排出,以保护离心泵。
0.74 3
0.80 8
0.89 8
1.31 3
1.68 7
1.94 8

0
-4-
化工原理实验
表 4 突扩管实验数据记录表 qv(m3/h) Δp/kPa 3.5 2 3.0 1.42 2.5 0.94
5.2 实验数据处理
5.2.1 计算流体密度和粘度 查教材附录表 2: T=20ºC 时,ρ=998.2kg/m3,μ=1.005mPa*s; T=30ºC 时,ρ=995.7kg/m3,μ=0.801mPa*s; T=40ºC 时,ρ=992.2kg/m3,μ=0.653mPa*s; 表 5 流体密度粘度表 管路 T 平均/ºC ρ/kg/m3 μ/mPa*s; 光滑管 24.65 997.04 0.9101 粗糙管 26.25 996.64 0.8775 层流管 32.6 994.79 0.7625 突扩管 31.35 995.23 0.7810
-6-
化工原理实验
图 2: 湍流区λ与 Re 的关系 结果分析: 1、光滑管与粗糙管的摩擦阻力系数均随雷诺数的增大而减小,当雷诺数增加到一定值后, 阻力系数减小的程度变缓,其值取决于相对粗糙度,在完全湍流区摩擦阻力系数近似定值。 2、当 Re 相同时,光滑管与镀粗糙管的摩擦阻力系数明显不同,且后者高于前者,雷诺数相 同时,相对粗糙度越大对应的摩擦阻力系数就越大。 5.3.2 将光滑管的λ-Re 与 Blasius 公式对比 表 7 光滑管的λ-Re 的关系 Re λ *102 λ 理论 *102 72083 1.860 1.930 61450 1.968 2.008 50458 2.092 2.110 41447 2.228 2.216 32437 2.395 2.356 25229 2.656 2.509 19822 2.801 2.665 14416 3.067 2.886 10812 3.547 3.101 7929 3.551 3.351
相关文档
最新文档