高数下册第九章答案

合集下载

第九章习题答案高数下

第九章习题答案高数下

作 业 9—1一.填空:1.已知D 是长方形域:,10;≤≤≤≤y b x a 且⎰⎰=Dd x yf 1)(σ,则⋅=b adx x f )(2 .解:⎰⎰=Dd x yf σ)(⎰⎰⋅=baydy dx x f 1)(21⎰⋅badx x f )( 故⎰⋅=badx x f )( 22.若D 是由1=+y x 和两个坐标轴围成的三角形域,且⎰⎰⎰⋅=Ddx x dxdy x f 1)()(ϕ,那么.=)(x ϕ)()1(x f x -解:⎰⎰=Ddxdy x f )(⎰⎰-⋅=xdy x f xdx 1010)(⎰⋅-10)()1(dx x f x ⎰⋅=1)(dx x ϕ二、单项选择题:1. 设1D 是正方形域,2D 是1D 的内切圆,3D 是1D 的外接圆,1D 的中心在(-1,1)处,记1I =⎰⎰---12222D xy x y dxdy e;2I =⎰⎰---22222D xy x y dxdy e;3I =⎰⎰---32222D xy x y dxdy e.则1I ,2I ,3I 大小顺序为( B )。

A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤2I ≤1I D. 3I ≤1I ≤2I解:因为三个被积函数一样,均为正值,213D D D ⊃⊃,故2I ≤1I ≤3I 2. 设D 是第二象限的一个有界闭区域,且10<<y ,记1I =⎰⎰Dd yx σ3;2I =⎰⎰Dd x y σ32;3I =⎰⎰Dd x y σ321.1I ,2I ,3I 的大小顺序是( )。

A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤1I ≤2I D. 3I ≤2I ≤1I 解:因10<<y ,故212y y y <<,而03<x ,从而323321x y yx x y <<,选(C )。

三.利用二重积分定义证明: 1.σσ=⎰⎰Dd (其中σ为D 的面积)解:ini iiDf d σηξσλ∑⎰⎰=→∆=⋅10),(lim 1i ni σλ∑=→∆⋅=11limσσσλλ==∆=→=→∑01lim limini故 σσ=⎰⎰Dd (其中λ是各iσ∆的最大直径)2.k d y x kf D=⎰⎰σ),(⎰⎰Dd y x f σ),( (其中k 为常数)解:=⎰⎰Dd y x kf σ),( ini iif σηξλ∑=→∆1),(lim i ni i i f k σηξλ∑=→∆=1),(limi ni i i f k σηξλ∑=→∆=1),(lim ⎰⎰=Dd y x f k σ),( (k 为常数)四.利用二重积分的性质估计下列积分的值: 1.}10,10|),{(,)(⎰⎰≤≤≤≤=+=Dy x y x d y x xy I 其中Dσ解: 10,10≤≤≤≤y x∴2)(0≤+≤y x xy∴⎰⎰⎰⎰≤≤+≤DDd d y x xy 22)(0σσ2.}4|),{(,)49(22⎰⎰≤+=++=Dy x d y x I 22yx其中Dσ 解: 中在D ,422ππσ=⋅=,()22222249499yx y x y x ++≤++≤++2549922≤++≤y x∴ σσσ25)49(922≤++≤⎰⎰⎰⎰DDd y x d即 ππ10036≤≤I五.根据二重积分的性质比较下列积分的大小: 1.⎰⎰⎰⎰++DDd y x d y x σσ32)()(与其中积分区域D 是由圆周2)1()2(22=-+-y x 所围成。

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案
dx
4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =

3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0

x

1,0

y
≤ 1,0

z

K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=

二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。

∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、


a
1
dr
r 3dz
B、


a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、

高等数学下册黄立宏廖基定著复旦大学出版社第九章课后答案(1)

高等数学下册黄立宏廖基定著复旦大学出版社第九章课后答案(1)

于是 易知 H(P1)不定,故 P1 不是 z 的极值点,

5. 设 2x2+2y2+z2+8xz-z+8=0,确定函数 z=z(x,y),研究其极值。 解:由已知方程分别对 x,y 求导,解得

a a ⎞ a3 z⎛ ⎜ , ⎟= H(P2)当 a<0 时正定,故此时 P2 是 z 的极小值点,且 ⎝ 3 3 ⎠ 27 , a a ⎞ a3 z⎛ ⎜ , ⎟= H(P2)当 a>0 时负定,故此时 P2 是 z 的极大值点,且 ⎝ 3 3 ⎠ 27 .
co
. (2 z + 8 x − 1) 2 4 4 Z = 1, A = , B = 0, C = , 15 15 B2-AC<0,因此函数有极小值 z=1. 在点(-2,0)处, ⎛ 16 ⎞ 8 28 28 8 Z =− ,A=− , B = 0, C = − , z=− ⎜ ,0⎟ ⎠ 处, 7 105 105 B2-AC<0,函数有极大值 7. 在点 ⎝ 7
w.
a⎤ 3⎥ ⎥. 2a ⎥ − 3⎥ ⎦
co
⎛a a⎞ P , ⎟ 1 (0, 0), P 2⎜ ⎝ 3 3⎠
m
∂2 z = ∂x 2
2
∂z ⎞ ⎛ ∂z ⎞ (2 z + 8 x − 1) ⎛ ⎜ −4 − 8 ⎟ + (4 x + 8 z ) ⎜ 2 + 8 ⎟ ∂x ⎠ ⎝ ⎝ ∂x ⎠ 2 (2 z + 8 x − 1)
⎡0 a ⎤ H (P 1) = ⎢ ⎥, ⎣a 0 ⎦
⎡ 2a ⎢− 3 H ( P2 ) = ⎢ ⎢ −a ⎢ ⎣ 3
∂z −4 y = ∂y 2 z + 8 x − 1

高等数学(同济第七版)第九章课后答案

高等数学(同济第七版)第九章课后答案

-.《高"tt雪;')( ;r,乞履>rm习IA全航44, ’ ’i,、、J·.,-一,rr-T令,,、-M-·.‘FEE-’‘....l i··付守年,2-·’、fp····.,...、付’创刊令,-2、.四.,。

-H‘.,.JA、。

当”、句,‘-、,.-.-----号ri咱也k fi'l企:,i(r'J ;(,) f尔1’在.i!Iii i ra、2所l'..t全微分r.. l.主R F列的数的全做分:l I ) :二X)... ...:.. ; (2):=··-:14)u=‘., .( 3): sτ兰==:、f叶’.,.I·.·、-= .,ii: ”l' .‘Ez---虫”·飞”( I ) I晏为t;_=(,-干)‘1曹寸、-于)r1r.ii·i i·dz =ι二,I x+ , _ •h,,店,问向f t:l曾il=,l: \-二-.....,..,.h’,:1 2 l I崎').J...+二二,I‘冉、,1: d‘。

‘1’fr l'..lt、,I‘.“i,)dε =-飞、··....( l、牛+‘.}‘ii:_ -J '们飞!-+\1、厅可丁2( 3 > I叫11• , Iv飞+,--,--咱自---,电·、,、句’‘‘. t I--,l:,l 1、·"l1..t..1...-F‘{’. .,..,.,1: ·=、·,1‘φ. • ,I,A‘.11.,MFa,.’}iuyt吁《-Itl48 一、o,�舷学’{第七版)"F筋习忍金’E8ε27.6 一二一一-二I.JO 号i S 2 127. 8 !:, · 12.钊JU 1: l校纷iaF I乎):内政之佣的地(,j i克i:丁j宫。

高等数学(经济类)课后习题及答案第九章多元函数微分

高等数学(经济类)课后习题及答案第九章多元函数微分

习题9-1(A )1.求下列各函数的表达式: (1)设函数22),(y x y x f -=,求(,)f y x --,),(x x f -.解:(,)f y x --22)()(x y -+-=22x y -=,0)(),(22=--=-x x x x f .(2)设函数)1(3-+=x f y z ,已知1=y 时,x z =,求)(x f 及z 的表达式.解:由1=y 时,x z =,有)1(13-+=x f x ,即,所以1)1()(3-+=x x f ;而1)1(3-+=-+=x y x f y z .(3)设函数y y x y x f +-=1)1(),(2,求),(xy y x f +.解:2222))(()()(/1)/1()(),(y x y x y x yx y x y x x y x y y x x y y x f -=-+=+-+=+-+=+. (4)设函数xy y x y x f =+-),(,求),(y x f 的表达式. 解:(方法1)因为4)()(4)2(244),(222222y x y x y xy x y xy x xy y x y x f --+=+--++==+-,所以),(y x f 422x y -=.(方法2)令v y x u y x =+=-、,则22uv y v u x -=+=、,于是 422),()(22u v u v u v xy y x y x f v u f -=-+==+-=,,所以),(y x f 422x y -=.2.求下列各函数的定义域,并作定义域草图: (1))ln(x y z -=; (2)221arcsin xy y z -+=;(3)221arcsin yx x x y z --+=; (4)41)16ln(2222-++--=y x y x z .1]1)1[(1)1(333-+-=-=-x x x f解:(1)由0>-x y 且0≥x ,得定义域}0,),{(≥>=x x y y x D .(2)由022>-x y 及1≤y ,有1≤<y x ,得定义域}1),{(≤<=y x y x D .(3)由0100122>--≥≠≤y x x x xy、、、,有0122>≤<+x x y y x 、、,得定义域}0,,1),{(22≠≤<+=x x y y x y x D .(4)由040162222≥-+>--y x y x 、,有16422<+≤y x ,或4222<+≤y x ,得定义域}42),{(22<+≤=y x y x D .3.求下列极限:(1)(,)(1,1)2lim2x y x yx y →-+; (2)xxy a y x sin lim ),0(),(→;(3)22)0,0(),(1sinlim y x x y x +→; (4)2)1,0(),(2tan limxy xyy x →;(5)22(,)(1,1)sin()lim x y x y x y →--; (6)231lim )1,1(),(-+-→xy xy y x .解:(1)(,)(1,1)2121lim2213x y x y x y →--==-++.(2)(,)(0,)(,)(0,)sin limlim x y a x y a xy xya x x →→==.(3)因为221sinyx +有界,而0lim )0,0(),(=→x y x ,所以=+→22)0,0(),(1sinlim yx x y x 0.(4)2111211lim tan lim 212tan lim)1,0(),()1,0(),(2)1,0(),(=⨯⨯==→→→y xy xy xy xy y x y x y x .(5)222222(,)(1,1)(,)(1,1)sin()()sin()limlim 21 2.x y x y x y x y x y x y x y →→-+-==⨯=-- (6)=++=-++-=-+-→→→)23(lim 1)23)(1(lim231lim)1,1(),()1,1(),()1,1(),(xy xy xy xy xy xy y x y x y x 4.4.证明下列极限不存在:(1)(,)(0,0)lim x y x yx y →-+; (2)242)0,0(),(lim y x y x y x +→.证明:(1)沿)1(-≠=k kx y 取极限,则k kkx x kx x y x y x x x kx y +-=+-=+-→→=11lim lim00,当k 取不同值时,该极限值不同,所以极限(,)(0,0)limx y x yx y →-+不存在.(2)沿0=y 取极限,00lim lim 024200==+→→=x x y y x yx ; 沿2x y =取极限,212lim lim 44024202==+→→=x x y x y x x x x y . 由于2420242002lim lim y x y x y x y x x x y x y +≠+→=→=,所以极限242)0,0(),(lim y x yx y x +→不存在.习题9-1(B )1.某厂家生产的一种产品在甲、乙两个市场销售,销售价格分别为y x 、(单位:元),两个市场的销售量21Q Q 、各自是销售价格的均匀递减函数,当售价为10元时,销售量分别为2400、850件,当售价为12元时,销售量分别为2000、700件.如果生产该产品的成本函数是(2012000+=C )21Q Q +,试用y x 、表示该厂生产此产品的利润L . 解:根据已知,设y a b Q x a b Q 222111-=-=、,由10=x 时,24001=Q ;12=x 时,20001=Q ,有⎩⎨⎧=-=-,,2000122400101111a b a b 得、2001=a44001=b ,于是x Q 20044001-=.由10=y 时,8502=Q ;12=y 时,7002=Q ,有⎩⎨⎧=-=-,,70012850102222a b a b 得、752=a16002=b ,于是y Q 7516002-=.两个市场销售该产品的收入为22217516002004400y y x x yQ xQ R -+-=+=, 该产品的成本(2012000+=C y x Q Q 15003200040008800012000)21-+-+=+y x 15004000132000--=. 根据利润等于收入减去成本,得)15004000132000(751600200440022y x y y x x L ----+-= 132000752003100840022---+=y x y x .2.求下列极限:(1)y y x xy )11(lim ),2(),(++∞→; (2)22)0,0(),(1e lim 22yx y x y x +-+→; (3)4422),(),(lim y x y x y x ++∞∞→; (4)(,)lim x y →解:(1)==+=++∞→+∞→211),2(),(),2(),(e ])11[(lim )11(lim x xy y x y y x xyxy e . (2)法1: 令t y x =+22,则当)00()(,,→y x 时,+→0t ,所以 =-=+-+→+→t y x t t y x y x 1e lim 1e lim 022)0,0(),(221. 法2:因为)00()(,,→y x 时,1e 22-+y x 与22y x +是等价无穷小,所以1lim 1e lim 2222)0,0(),(22)0,0(),(22=++=+-→+→y x y x y x y x y x y x . (3)因为224424424422110yx y x y y x x y x y x +≤+++=++≤, 而00lim ),(),(=∞∞→y x , 0)11(lim 22),(),(=+∞∞→y x y x ,根据“夹逼准则”得0lim 4422),(),(=++∞∞→yx y x y x . (4)令θρθρsin cos ==y x 、,则当)00()(,,→y x 时,0→ρ(其中θ在区间)20[π,内任意变化),所以==+<≤→→θθρπθρsin cos lim lim20022)0,0(),(yx xy y x 0.3.证明极限22222)0,0(),()(lim x y y x y x y x -+→不存在.证明:沿0=y 取极限,00lim )(lim 202222200==-+→→=x x y y x y x x x y ;沿x y =取极限,11lim )(lim 0222220==-+→→=x x x y x y y x y x .因此,极限22222)0,0(),()(lim x y y x y x y x -+→不存在.4.讨论函数⎪⎩⎪⎨⎧=+≠++=0002)(222222y x y x yx xy y x f ,,,,在点),(00处的连续性. 解:沿x y =取极限,由)00(11lim 2lim)(lim 0220,,f yx xyy x f x x x y x x y ≠==+=→→=→=,有 )00()(lim )0,0(),(,,f y x f y x ≠→,所以函数)(y x f ,在点),(00处不连续.习题9-2(A )1. 求下列函数的偏导数:(1)2z xy =; (2)2cos sin()z xy x y =++;(3)z = (4)2ln(ln )z x y =+;(5)yz x=(0>x ); (6)z = (7)22y x xyz +=; (8)arctanx yz x y+=-; (9)yx z u =; (10)zy x u )tan(22-=.解:(1)2z y x ∂=+∂2z xy y ∂=∂. (2)2sin cos cos()sin 2cos()zxy xy y x y y xy x y x∂=-⋅++=-++∂, 2sin cos cos()sin 2cos()zxy xy x x y x xy x y y∂=-⋅++=-++∂. (3)12z x x y ∂==∂+ 122z y x y ∂=⋅=∂+. (4)22122ln ln z x x x x y x y ∂=⋅=∂++,22111ln (ln )z y y x y y x y ∂=⋅=∂++. (5)x yxy xyx y xy x y xy x y xy y x z sin cos 21)(sin cos 2332+=-⋅-=∂∂, xyx y x yy x x x y xy x y xy x y z sin cos 211sin cos 2-=⋅-=∂∂. (6))1(212)1(11xy xy yxy y xy x z --=--⋅--=∂∂,)1(212)1(11xy xy x xy x xy y z --=--⋅--=∂∂. (7)2/3223222222)(y x y y x y x x xy y x y xz+=++⋅-+=∂∂, 由变量y x 、的对称性,得2/3223)(y x x y z +==∂∂. (8)222211()1()()1()z x y x y yx y x x y x yx y∂⋅--⋅+-==+∂-++-, ()22221()1()1()1()x y x y z xx y y x y x y x y⋅---⋅+∂==+∂-++-. (9)z z yy z z x u y x y x ln 11ln =⋅=∂∂,z z y x y x z z y u y xy x ln )(ln 22-=-⋅=∂∂, yyx y xz yxz y x z u --==∂∂1.(10)zy x x z x y x x u )(sec 22)(sec 222222-=⋅-=∂∂, z y x y z y y x y u )(sec 2)2()(sec 222222--=-⋅-=∂∂,222)tan(z y x z u --=∂∂. 2. 求曲线⎪⎩⎪⎨⎧=+++=1,2122x y x z 在点)3,1,1(M 处的切线与x 轴正向的夹角.解:z x ∂=∂,111112x x y y z x ====∂==∂, 用α表示曲线⎪⎩⎪⎨⎧=+++=1,2122x y x z 在点)3,1,1(M 处的切线与y 轴正向的夹角,则21tan =α,所以432621arctan '≈=α. 3. 设xy x y x z xsec)1(e 2-++=,求)0,1(x z 及)0,1(y z .解:因为1e )0(-+=x x z x ,,所以=11d (1,0)(e 1)(e 1)d xx x x x z x x-=+-=+=e 1+,因为e )1(+=y y z ,,所以1)e (d d)0,1(0=+==y y y yz .4. 求下列函数的高阶导数:(1)设13323+--=xy xy y x z ,求22223223,,,,z z z z zy x x y x y x∂∂∂∂∂∂∂∂∂∂∂∂.解:xz ∂∂ ,33322y y y x --= y z ∂∂ ;9223x xy y x --=22x z ∂∂ ,62xy = 33xz ∂∂ ,62y = 22y z ∂∂ ;1823xy x -= y x z ∂∂∂2 ,19622--=y y x xy z ∂∂∂2 .19622--=y y x (2)设xy x z ln =,求22x z ∂∂,22y z ∂∂和23yx z ∂∂∂; 解:1ln ln +=⋅+=∂∂xy xy y x xy x z ,yxxy x x y z =⋅=∂∂, x xy y x z 122==∂∂,222y x y z -=∂∂,y xy x y x z 12==∂∂∂,2231yy x z -=∂∂∂. 5. 验证:(1)设函数x yz u arctan =,证明0222222=∂∂+∂∂+∂∂zu y u x u .证:因为2222)()/(1y x yzx y x y z x u +-=-⋅+=∂∂,22222)(y x xyz x u +=∂∂, 2221)/(1y x xzx x y z y u +=⋅+=∂∂,22222)(y x xyz y u +-=∂∂,x y z u arctan =∂∂,022=∂∂zu, 所以,00)()(222222222222=++-+=∂∂+∂∂+∂∂y x xyzy x xyz z u y u x u . (2)设y x z =)1,0(≠>x x ,求证z yzx x z y x 2ln 1=∂∂+∂∂.证明:=∂∂xz ,1-y yx =∂∂y z ,ln x x yy z x x z y x ∂∂+∂∂ln 1 x x xyx y x yy ln ln 11+=-y y x x += .2z =原结论成立.习题9-2(B )1.设一种商品的需求量Q 是其价格1p 及某相关商品价格2p 的函数,如果该函数存在偏导数,称Q p p Q E 111∂∂-=为需求对价格1p 的弹性、Qp p Q E 222∂∂-=为需求对价格2p 的交叉弹性.如果某种数码相机的销售量Q 与其价格1p 及彩色喷墨打印机的价格2p 有关,为 222110250120p p p Q --+=, 当501=p ,52=p 时,求需求对价格1p 的弹性、需求对价格2p 的交叉弹性. 解:由211250p p Q -=∂∂,22210p p Q--=∂∂, 有1111250Qp Q p p Q E =∂∂-=,Qp p Q p p Q E 222222210+=∂∂-=,当501=p ,52=p 时,50255050250120=--+=Q 需求对价格1p 的弹性:1.0250505015501121======Q p p p Qp E 、、,需求对价格2p 的交叉弹性:=+=====5052225502221210Q p p p Qp p E 、、2.2. 设22arcsiny x x z +=,求x z ∂∂,yz ∂∂.解: =∂∂xz '⎪⎪⎭⎫⎝⎛+⋅+-xy x x y x x 2222211322222)(||y x y y y x +⋅+=.||22y x y += =∂∂yz'⎪⎪⎭⎫⎝⎛+⋅+-yy x x y x x 2222211=y y x x 1sgn 22+-=. 3. 设函数⎪⎩⎪⎨⎧=≠-+=,,,,,x y x y y x yx y x f 0)(证明在)00(,点处),(y x f 的两个偏导数都不存在.证:因为极限x xf x f x x ∆=∆-∆→∆→∆1lim )00()0(lim00,,不存在,极限yf y f y ∆-∆→∆)00()0(lim0,,xx ∆-=→∆1lim0不存在,所以在)00(,点处),(y x f 的两个偏导数都不存在. 4. 设y x yx z -+=arctan ,求22x z ∂∂,22y z ∂∂和y x z ∂∂∂2.解:2222)()()()(11y x yy x y x y x y x y x xz+-=-+---++=∂∂,22222)(2y x xy x z +=∂∂, 2222)()()()(11y x xy x y x y x yx y x yz +=-++--++=∂∂,22222)(2y x xy y z +-=∂∂, 22222222222(2)()()z x y y y y x x y x y x y ∂+--=-=∂∂++.5. 设函数222ln z y x u ++=,证明2222222221z y x z u y u x u ++=∂∂+∂∂+∂∂.证明:将函数改写为)ln(21222z y x u ++=,则 222z y x xx u ++=∂∂,2222222222222222)()(2z y x x z y z y x x x z y x x u ++-+=++⋅-++=∂∂, 由变量的对称性,有222222222)(z y x y z x y u ++-+=∂∂,222222222)(z y x z y x z u ++-+=∂∂,所以2222222222222222222)()()()(z y x z y x y z x x z y z u y u x u ++-++-++-+=∂∂+∂∂+∂∂ 22222222221)(zy x z y x z y x ++=++++=. 习题9-3(A )1.求下列函数的全微分:(1)1sin()z x y=+; (2)22z x y =+; (3)xyz e =; (4)yxz tanln =; (5)22y x z u +=; (6)ln(32)u x y z =-+.解:(1)因为1cos()z x x y ∂=+∂,221111cos()()cos()z x x y y y y y ∂=+⋅-=-+∂,所以2211111d cos()d cos()d cos()(d d )z x x x y x x y y y y y y=+-+=+⋅-.(2)因为2z xyx ∂=+∂,2z x y ∂=+∂22(dz xydx x dy =++. (3)因为x yx yx z e 2-=∂∂,x yxy z e 1=∂∂,所以 )d d (e 1d e 1d e d 22x y y x xy x x x y z x yx yx y-=+-=.(4)因为2122cot sec cs c z x x x x y y y y y ∂=⋅=∂,22222cot sec ()csc z x x x x x y y y y y y ∂=⋅-=-∂, 所以)d d (2csc 2d 2csc 2d 2csc 2d 22y x x y y xyy y x y x x y x y z -⋅=-=(5)因为z xz x u y x ln 222+=∂∂,z yz y u y x ln 222+=∂∂,12222)(-++=∂∂y x z y x zu ,所以z z y x y z yz x z xz u y xy xy xd )(d ln 2d ln 2d 122222222-+++++⋅+⋅=]d )d d (ln 2[2222z zy x y y x x z zy x +++⋅=+.(6)因为132u x x y z ∂=∂-+,332u y x y z ∂-=∂-+,232u z x y z∂=∂-+,所以 d 3d 2d d 3d 2d d 32323232x y z x y zu x y z x y z x y z x y z--+=++=-+-+-+-+.2.求函数zxyu )(=在点)1,2,1(-处的全微分.解:).ln()( ,1)( ),()(121x y x y y u x x y z y u xy x y z x u z z z ⋅=∂∂⋅=∂∂-⋅=∂∂-- 在点)1,2,1(-处,分别有.2ln 21,41 ,21)1,2,1()1,2,1()1,2,1(=∂∂-=∂∂=∂∂---zuyu xu因此,我们有.2ln 21d 41 21dz y dx dz +-=3.求函数)41ln(22y x z -+=当1=x ,2=y 时的全微分.解 因为22418y x x x z -+=∂∂,22412y x yy z -+-=∂∂,821=∂∂==y x xz ,421-=∂∂==y x yz ,所以y x z d 4d 8d )2,1(-=,4.求函数xy e z =在点()2,1处当2.0,1.0=∆=∆y x 时的全微分.解 由于,2,,,212212e yz e xz xe y z ye x z y x y x xy xy =∂∂=∂∂=∂∂=∂∂====所以,当2.0,1.0=∆=∆y x 时,函数xye z =在点(2,1)处的全微分为.5.02.021.0222e e e dz =⋅+⋅=习题9-3(B )1. 计算()2.021.04的近似值.解: 设函数(,)yz f x y x ==.显然,要计算的值是函数在 1.04, 2.02x y ==时的函数值()1.04,2.02.f取1,2,0.04,0.02.x y x y ==∆=∆=因为 ,),(1-=y x yx y x f ,ln ),(x x y x f y y =(1,2)1,f =(1,2)2,x f =(1,2)0,y f =所以 由公式得 2.02(1.04)120.0400.02 1.08≈+⨯+⨯=. 2.计算3397.102.1+的近似值. 解:考虑函数33y x z +=,取03.002.02100-=∆=∆==y x y x 、、、,而33223yx x z x +=',33223yx y z y +=',3)21(=,z 、2/1)21(=',x z 、2)21(=',y z ,则)(97.102.10033y y x x z ∆+∆+=+,y y x z x y x z y x z y x ∆'+∆'+≈)()()(000000,,,95.206.001.03)03.0(202.05.03=-+=-⨯+⨯+=.3. 设函数⎪⎩⎪⎨⎧=+≠++=,0,0,0,),(2222222y x y x y x y x y x f 在点)0,0(O 点处讨论偏导数的存在性、偏导数的连续性以及函数),(y x f 的可微性.解:因为00lim )00()0(lim==∆-∆→∆→∆x x xf x f ,,,00lim )00()0(lim==∆-∆→∆→∆x y yf y f ,,,所以在)0,0(O 点处函数)(y x f ,的两个偏导数都存在,且0)10(0)00(==,、,y x f f .再讨论可微性,函数在)0,0(O 处的全增量用z ∆表示,则222)()()()00()00(y x yx z y f x f z y x ∆+∆∆⋅∆=∆=∆-∆-∆,,,记22)()(y x ∆+∆=ρ,则2/3222)0,0(),(0])()[()(lim )00()00(limy x yx yf x f z y x y x ∆+∆∆∆=∆-∆-∆→∆∆→ρρ,,不存在(沿0=∆x 取极限,其值为0;沿x y ∆=∆取极限,其值为22/1),所以函数)(y x f ,在)0,0(O 点处不可微.进而得偏导(函)数在)0,0(O 点处不连续(若偏导(函)数在)0,0(O 点处连续,根据可微的充分条件,则函数在点)0,0(O 可微,与函数不可微矛盾).习题9-4(A )1.求下列函数的全导数: (1)设函数 32,sin ,t v t u ez vu ===-,求dtdz ; (2)设函数t uv z sin +=,而t e u =,t v cos =,求全导数dtdz ; (3)设函数y x z cos 2=而)(x y y =是x 的可微函数,求xzd d . 解:(1)dtdv v z dt du u z dt dz ∂∂+∂∂==)6(cos 3)2(cos 22sin 2223t t e t e t e t t v u vu -=⋅-+---. (2)tzdt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂=t t u ve t cos sin +-= t t e t e t t cos sin cos +-=.cos )sin (cos t t t e t+-= (3)=⋅-=∂∂+∂∂=xy y x y x x y y z x z x z d d sin cos 2d d d d 222cos sin ().x y x y y x '-⋅ 2.求下列函数的一阶偏导数:(1)设函数v uz e =,而y x u +=,y x v -=,求x z ∂∂和yz∂∂; (2)设函数122)(++=xy y x z ,求x z ∂∂和yz ∂∂. 解:(1)1e 1e 12⋅-⋅=∂∂∂∂+∂∂∂∂=∂∂v uv uvu v x v v z x u u z x z =-=v uv u v e 2yx yx y x y -+--e )(22, 21e 1e (1)u uv vz z u z v u y u y v y vv ∂∂∂∂∂=+=⋅-⋅-∂∂∂∂∂2+e u v v u v ==22e ()x yx y x x y +--, (2)这是幂指函数求导,为方便求导,将它写作复合函数,为此令122+=+=xy v y x u 、,则vu z ==⋅+=∂∂∂∂+∂∂∂∂=∂∂-y u u x vu xv v z x u u z x z v v ln 21)]ln()1(2[)(2222122y x y y x xy x y x xy ++++++,=⋅+=∂∂∂∂+∂∂∂∂=∂∂-x u u y vu y v v z y u u z y z v v ln 21)]ln()1(2[)(2222122y x x yx xy y y x xy ++++++. 3. 求下列函数的一阶偏导数(其中函数f 具有一阶连续的偏导数或导数):(1)(e )xyx z f y=,; (2))(22y x xy f z -=,;(3))(22y x xf z +=; (4)(,,)u f x xy xyz =. 解:(1)121e xy z f f y x y ∂''=⋅+⋅=∂121e xyf y f y''+, 122()e xy z x f f x y y ∂''=⋅-+⋅=∂122e xy xf x f y''-+. (2)212122f x f y x f y f xz '+'=⋅'+⋅'=∂∂,21212)2(f y f x y f x f y z'-'=-⋅'+⋅'=∂∂.(3)=+⋅'+=∂∂2222yx xf x f x z f y x x f '++222,12y z xf y ⨯∂'==∂f yx xy '+22.(4)1231231uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂, 123230uf f x f xz xf xzf y∂'''''=⋅+⋅+⋅=+∂, 123300uf f f xy xyf z∂''''=⋅+⋅+⋅=∂. 4. 设函数)(22y x f y z -=,其中)(u f 是可微函数,证明211y zy z y x z x =∂∂+∂∂. 证:因为)()(22)()(2222222222y x f y x f xy x y x f y x f y x z --'-=⋅--'-=∂∂, )()(2)(1)()2()()(222222222222222y x f y x f y y x f y x f y y x f y y x f y z --'+-=--⋅-'--=∂∂, 所以222222222222112()12().()()()z z yf x y yf x y x x y y f x y yf x y f x y ''∂∂--+=-++∂∂---2222)(yzy x f y y =-=. 5.设函数)(x y xyf z =,其中)(u f 是可微函数,证明z yz y x z x2=∂∂+∂∂. 证:因为)()()()()(22x yf x y x y yf xy x y f xy x y yf x z '-=-⋅'+=∂∂,)()(1)()(xyf y x y xf x x y f xy x y xf y z '+=⋅'+=∂∂,所以 z xy xyf x y f y x y xyf x y f y x y xyf y z y x z x2)(2)()()()(22=='++'-=∂∂+∂∂. 6.利用全微分形式的不变性求函数)cos(222z y x eu zy +++=+ 的全微分.解 令=+=w z y v ,222z y x ++,由一阶全微分形式的不变性,我们有dw w dv e dw wudv v u du v )sin (-+=∂∂+∂∂=, 注意到w v ,又都是z y x ,,的函数,并且,v vdv dy dz dy dz y z∂∂=+=+∂∂ 222.w w w dw dx dy dz xdx ydy zdz x y z∂∂∂=++=++∂∂∂ 将它们带入上式,得.)]sin(2[ )]sin(2[)sin(2 )(2)sin()( )sin (222222222222dz z y x z e dyz y x y edx z y x x zdz ydy xdx z y x dz dy e dww dv e du z y zy z y v ++-+++-+++-=++⋅++-+=-+=+++习题9-4(B )1.求下列函数的二阶偏导数(其中函数f 具有二阶连续偏导数): (1)),(y x xy f z +=; (2))(22y x x f z +=,;解:(1)21f f y xz '+'=∂∂,21f f x y z'+'=∂∂,221211222211211222)()(f f y f y f f y f f y y xz ''+''+''=''+''+''+''=∂∂, 221211222211211222)()(f f x f x f f x f f x x yz''+''+''=''+''+''+''=∂∂, 221211122211211122)()()(f f y x f xy f f f x f f x y f xy zy x z ''+''++''+'=''+''+''+''+'=∂∂∂=∂∂∂. (2)212f x f xz '+'=∂∂,221220f y f y f y z'='+⋅'=∂∂,2221211222212121122442)2(22)2(f x f x f f f x f x f f x f xz''+''+''+'=''+''+'+''+''=∂∂, 2222222122242)20(22f y f f y f y f yz''+'=''+⋅''+'=∂∂, 221222212242)2(2f xy f y f x f y xy zy x z ''+''=''+''=∂∂∂=∂∂∂. 2. 设函数)(3x yxy f x z ,=,其中函数)(v u f ,有二阶连续偏导数,求yx z y z y z ∂∂∂∂∂∂∂222、、.解:2214213)1(f x f x f xf x x y z '+'='+'=∂∂, 24253111221*********11()()2z x xf f x xf f x f x f xf y x x∂''''''''''''''=+++=++∂, )(2)(422221221221141322f x yf y x f x f x y f y x f x x y z y x z ''-''+'+''-''+'=∂∂∂=∂∂∂ 2211421324f y f y x f x f x ''-''+'+'=. 3.设),(y x f z =有连续的一阶偏导数,且θθsin ,cos r y r x ==.求θ∂∂∂∂zr z ,,并证明 .)()()(1)(22222y z x z z r r z ∂∂+∂∂=∂∂+∂∂θ解 由链式法则,得cos sin ,sin cos .z z x z y z z r x r y r x yz z x z y z z r r x y x yθθθθθθθ∂∂∂∂∂∂∂=+=⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂=+=-⋅+⋅∂∂∂∂∂∂∂于是有222)(1)(θ∂∂+∂∂z r r z 222)cos sin (1)sin (cos y zr x z r r y z x z ∂∂⋅+∂∂⋅-+∂∂⋅+∂∂⋅=θθθθ.)()(22yz x z ∂∂+∂∂=习题9-5(A )1.若函数)(x y y =分别由下列方程确定,分别求xy d d : (1)1cos y x y =+; (2)yx y e 2+=; (3)xyy x arctan ln22=+;解 (1)法1:设()1cos F x y y x y =--,,则cos 1sin x y F y F x y =-=+、, 所以d cos .d 1sin x y F y y x F x y=-=+ 法2:方程1cos y x y =+两边同时对x 求导,有d d cos sin d d y yy x y x x=-,解得d cos d 1sin y yx x y=+. (2)方程yx y e 2+=两边同时对x 求导,有xy x y yy d d e 1d d 2+=,解得yy x y e 21d d -=. (3)令()221(,)arctanln arctan ,2y yF x y x y x x==+- 则 ,),(22y x y x y x F x ++=,),(22yx xy y x F y +-= y x F F dx dy -= .xy yx -+-= 2. 设()y y x =由方程 1yy xe =+所确定的隐函数,求 202.x d ydx=解 令 (.)1; 1yyy dy e F x y xe y dx xe =+-=--, 当0x =时01y =+,此时x dy e dx==,所以222(1)()(1)yy y y y y dy dy e xe e e xe d ydx dx dx xe --+=--,222022(01)(0)2(01)x d y e e e e dx =--+=-=-. 3.设函数y x z =,而函数)(x y y =由方程yy x e +=确定,求全导数xz d d . 解:方程yy x e +=两边同时对x 求导,有x y x y y d d e d d 1+=,得yx y e 11d d +=, =+=∂∂+∂∂=-x y x x yx x y y z x z x z yy d d ln d d d d 1y y y x x yx e1ln 1++-. 4. 若函数),(y x z z =分别由下列方程确定,求x z ∂∂及yz∂∂. (1)21z y xz -=; (2)xyz z y x 2222=-+; (3)22)sin(xyz xyz =; (4)yz z x ln =. 解:(1)法1:设1)(2--=xz y z z y x F ,,,则x yz F z F z F z y x -==-=22、、,所以xyz z F F y z x yz z F F x z z y z x --=-=∂∂-=-=∂∂222,. 法2:方程21z y xz -=两边对x 求导,有20z zyzz x x x∂∂--=∂∂,得x yz z x z -=∂∂2, 方程21z y xz -=两边对y 求导,有022=∂∂-+∂∂y z x z y z yz ,得xyz z y z --=∂∂22.(以下都按方法2作)(2)方程xyz z y x 2222=-+两边同时对x 求导,有xzxy yz x z zx ∂∂+=∂∂-2222,得 xyz yzx x z +-=∂∂, 方程xyz z y x 2222=-+两边同时对y 求导,有yzxy xz y z zy ∂∂+=∂∂-2222,得 xy z xz y y z +-=∂∂(或由变量y x 、的对称性,得xyz xzy y z +-=∂∂).(3)方程22)sin(xyz xyz =两边对x 求导,有xz xyz yz x z xyz yz xyz ∂∂+=∂∂+⋅2)2()cos(222, 即0)2](1)[cos(22=∂∂+-x z xyzyz xyz ,而01)cos(2≠-xyz ,所以022=∂∂+xzxyz yz ,得x z xyz yz x z 222-=-=∂∂,由变量y x 、对称性有yzy z 2-=∂∂. (4)方程yzz x ln =改写为)ln (ln y z z x -=, 方程)ln (ln y z z x -=两边对x 求导,有x zz x x z z z y z x z ∂∂+=∂∂+∂∂=)1(1ln 1,得zx z x z +=∂∂,方程)ln (ln y z z x -=两边对y 求导,有)11(ln 0y y z z z y z y z -∂∂+∂∂=,得)(2z x y z y z +=∂∂. 5.设04222=-++z z y x ,求22xz∂∂.解: 令,4),,(222z z y x z y x F -++=则 ,2x F x = ,42-=z F z,2zx F F x z z x -=-=∂∂222(2)(2)z z xz x x z ∂-+∂∂=∂- 2)2(2)2(z z xx z --⋅+-=.)2()2(322z x z -+-=6.若函数),(z y x x =,),(z x y y =,),(y x z z =都是由方程0),,(=z y x F 确定的隐函数,其中),,(z y x F 有一阶连续非零的偏导数,证明1-=∂∂⋅∂∂⋅∂∂xzz y y x . 证:因为zx y z x y F F x zF F z y F F y x -=∂∂-=∂∂-=∂∂、、,所以1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7.若z 是,x y 的函数,并由 222()zx y z yf y ++=确定,求,z z x y∂∂∂∂.解:令 222(,,)()z F x y z x y z yf y =++-22()+()12()2()x y z F x z z zF y f f y y y z zF z yf z f y y y='=-''=-=-,,,因此,2212()()2x zF z x x z z x F z yf f zy y y∂=-=-=∂''-⋅-,2()()()2()().1()()2y zz z z z z zy f yf y f f F z y y y y y y z z y F z yf f zy y y ''----+∂=-=-=∂''-22-习题9-5(B )1.设函数xyz u e =,而函数)(x y y =、)(x z z =分别由方程xyy e =及z xz e =确定,求全导数xud d . 解:方程xyy e =两边同时对x 求导,有)d d ()d d (e d d xy x y y x y x y x y xy+=+=,得xy y x y -=1d d 2, 方程z xz e =两边同时对x 求导,有x z xz x z x z xz z d d d d e d d ==+,得xxz zx z -=d d ,所以 xxz z xy xy y xz yz x z z u x y y u x u x u xyz xyzxyz -+-+=∂∂+∂∂+∂∂=e 1e e d d d d d d 2 )11(e2-+-+=z yzxy z xy yz xyz.2.设函数32yz x u =,而),(y x z z =由方程xyz z y x 3222=++确定,求)1,1,1(xu ∂∂.解:方程xyz z y x 3222=++两边同时对x 求导,有)(322xzxy yz x z zx ∂∂+=∂∂+,用1=x 、11==z y 、代入,有 (1,1,1)(1,1,1)223(1)zz xx∂∂+=+∂∂,得1)1,1,1(-=∂∂xz .于是x z yz x xyz x u ∂∂+=∂∂22232,所以13232)1,1,1()1,1,1(-=-=∂∂+=∂∂xzxu .3.设),(xyz z y x f z ++=,求x z ∂∂,y x ∂∂,zy ∂∂. 解: 令,z y x u ++= ,xyz v = 则 ),,(v u f z = 把z 看成y x ,的函数对x 求偏导数得xz∂∂ )1(x z f u ∂∂+⋅= ),(x z xy yz f v ∂∂+⋅+整理得xz ∂∂ ,1v u vu xyf f yzf f --+=把x 看成y z ,的函数对y 求偏导数得)1(0+∂∂⋅=yx f u ),(y xyz xz f v ∂∂+⋅+整理得yx ∂∂ ,v u vuyzf f xzf f ++-= 把y 看成z x ,的函数对z 求偏导数得)1(1+∂∂⋅=z y f u ),(zyxz xy f v ∂∂+⋅+ 整理得zy ∂∂ .1v u vu xzf f xyf f +--=4.若函数),(y x z z =由方程133=-xyz z 确定,求yx z∂∂∂2.解:方程133=-xyz z 两边对x 求导,有0)(332=∂∂+-∂∂xz xy yz x z z,得xy z yz x z -=∂∂2,由变量y x 、的对称性,得xyz xzy z -=∂∂2.法1:等式0)(2=∂∂+-∂∂xzxy yz x z z两边同时对y 求导,有 0)(2222=∂∂∂+∂∂+∂∂+-∂∂∂+∂∂∂∂yx z xy x z x y z y z y x z z x z y z z, 即2222242222222)()2()(2)(xy z y x xyz z z xy z xyz z xy z yz x xy z xz y z y x z xy z ---=---+-+=∂∂∂- 所以=∂∂∂y x z 2322224)()2(xy z y x xyz z z ---. 法2:)(22xyz yz y y x z -∂∂=∂∂∂ 322224222)()2()()2())((xy z y x xyz z z xy z x yz z yz xy z y z y z ---=--∂∂--∂∂+=.5.设 (,)F u v 具有连续的偏导数,方程 [(),()]0F a x z b y z --=(其中,a b 是非零常数)确定z 是,x y 的隐函数,且0aFu bFv +≠,求z zx y∂∂+∂∂. 解:令 (),()u a x z v b y z =-=-因此,x u u z u v u vF aF aF zx F aF bF aF bF ∂=-=-=∂--+y v v z u v u vF bF bF zy F aF bF aF bF ∂=-=-=∂--+,1u v u v u vaF bF z z x y aF bF aF bF ∂∂+=+=∂∂++. 6. 求由下列方程组所确定函数的导数或偏导数: (1)⎩⎨⎧=++=++,,41222z y x z y x 求x y d d 和xzd d . (2)⎩⎨⎧-=+=,,v u y v u x uu cos e sin e 求x v y u x u ∂∂∂∂∂∂、、及y v∂∂.解:(1)方程组⎩⎨⎧=++=++41222z y x z y x ,两边同时对x 求导,有⎪⎩⎪⎨⎧=++=++,,0d d 2d d 220d d d d 1x z z x y y x x zx y 消去xz d d ,有0)d d 1(d d =+-+x y z x y y x ,得z y x z x y --=d d ,而z y yx x y x z --=--=d d 1d d .(2)方程组⎩⎨⎧-=+=vu y v u x uu cos e sin e ,两边同时对x 求导, 有⎪⎩⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=)2(.sin cos e 0)1(cos sin e 1x vv u v x u x u x v v u v x u x u u u ,(1)sin v ⨯-(2)cos v ⨯,有xux u v v v u∂∂+∂∂-=)cos (sin e sin , 得)cos (sin e 1sin v v vx u u -+=∂∂,再代入到(2)之中得)]cos (sin e 1[e cos v v u v x v uu -+-=∂∂. 方程组⎩⎨⎧-=+=v u y v u x u u cos e sin e ,两边同时对y 求导,有⎪⎪⎩⎪⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=.sin cos e 1cos sin e 0y vv u v y u y u y v v u v y u y u u u , 与前面解法类似,得)cos (sin e 1cos v v vy u u -+-=∂∂,)]cos (sin e 1[e in v v u v s y v u u -++=∂∂.习题9-6(A )1.求下列函数的极值:(1)222),(y x x y x f --=; (2)x y x y x y x f 936),(2233+++-=; (3))2(e ),(2y y x y x f x++=; (4)2/322)(1),(y x y x f +-=.解:(1)定义域为全平面,并且函数处处可微.由⎩⎨⎧=-==-=,,,,02)(022)(y y x f x y x f y x 得唯一驻点)01(,.2)01(0)01(02)01(-====<-==,、,、,yy xy xx f C f B f A ,042>=-B AC ,根据二元函数极值的充分条件,点)01(,是函数的极大值点,极大值为1)0,1(=f ,该函数无极小值.(2)定义域为全平面,并且函数处处可微.由⎪⎩⎪⎨⎧=+-==++=,,,,063)(09123)(22y y y x f x x y x f y x 即⎩⎨⎧=-=++,,0)2(0)3)(1(y y x x 得函数的所有驻点是)23()03()21()01(4321,、,、,、,----P P P P . 66)(0)(126)(+-====+==y y x f C y x f B x y x f A yy xy xx ,、,、,,对上述诸点列表判定:所以函数的极大值为4)2,3(=-f ,极小值为4)0,1(-=-f .(3)定义域为全平面,并且函数处处可微.由⎪⎩⎪⎨⎧=+==+++=,,,,0)22(e )(0)21(e )(2y y x f y y x y x f xyx x 得唯一驻点(01)-,.x yy x xy x xx y x f y y x f y y x y x f e 2)()22(e )()22(e )(2=+=+++=,、,、,, 01>=A 、0=B 、2=C ,022>=-B AC ,根据二元函数极值的充分条件,点)10(-,是函数的极小值点,极小值1)1,0(-=-f ,该函数无极大值.(4)定义域为全平面,函数处处可微.由⎪⎩⎪⎨⎧=+-==+-=,,,,03)(03)(2222y x y y x f y x x y x f y x 得唯一驻点)00(,.由于在)00(,点处函数的二阶偏导数不存在,不能用定理8.2判定,为此根据极值的定义,当022≠+y x (即非)00(,点)时)00(1)(1),(2/322,f y x y x f =<+-=,所以点)00(,是该函数的极大值点,极大值为1)0,0(=f ,该函数无极小值. 2.求函数 5020(0,0)z xy x y x y=++>> 的极值. 解: 由 22500200z y xx z x yy ∂⎧=-=⎪∂⎪⎨∂⎪=-=∂⎪⎩,解出 52.x y ⎧⎨=⎩=,222232310040, 1, z z z x y x x y y∂∂∂===∂∂∂∂ 在点(5,2)处,233100404130, 0552AC B A -=⋅-=>=>所以函数在(5,2)处由极小值 (5.2)30z=.3.求曲面 21 (0)z xy z -=>上到原点距离最近的点.解:设 222F,,,(1)x y z x y z z xy λλ+++--2()=,则 2202022010Fx y x F y x y F z z z z xy λλλ∂⎧=-=⎪∂⎪∂⎪=-=⎪∂⎨⎪∂=+=⎪∂⎪⎪--=⎩,解出 0011.x y z λ=⎧⎪=⎪⎨=⎪⎪=-⎩,,, 因为(0,0,1)是 2222d x y z =++在0z >时的唯一驻点,由题意可知在0z >的曲面上存在与原点距离最小的点,所以(0,0,1)即为所求的点. 4. 将正数12分成三个正数z y x ,,之和 使得z y x u 23=为最大. 解 令 )12(),,(23-+++=z y x z y x z y x F λ,则223323020012x y z F x y z F x yz F x y x y z λλλ'⎧=+=⎪'=+=⎪⎨'=+=⎪⎪++=⎩,,,,解得唯一驻点)2,4,6(, 故最大值为.691224623max =⋅⋅=u5. 用面积为12(m 2)铁板做一个长方体无盖水箱,问如何设计容积最大?解 设水箱的长、宽、高分别为z y x 、、,体积为V ,则目标函数为xyz V =(,0>x ,0>y 0>z ),附加条件是1222=++yz xz xy . 设)1222()(-+++=yz xz xy xyz z y x L λ,,(000>>>z y x ,,),由(2)0(2)02()02212x yz L yz y z L xz x z L xy x y xy xz yz λλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩,,,,得唯一可能极值点12===z y x 、, 根据实际意义,当长方体表面积一定是其体积有最大值,所以当长、宽都为2(m ),高为1(m )时无盖长方体水箱容积最大(此时体积为4(m 3)). 6.在斜边长为l 的直角三角形中,求周长最大的三角形及其周长.解:设两直角边长分别为y x 、,三角形周长为L ,则目标函数是l y x L ++=(00>>y x ,),附加条件为222l y x =+.设)()(222l y x l y x y x F -++++=λ,,由⎪⎩⎪⎨⎧=+=+==+=,,,222021021l y x y F x F y x λλ在00>>y x ,时得唯一可能极值点2l y x ==,由实际意义,斜边长为一定的直角三角形中,周长有最大值,所以当两直角边长都为2l (即等腰直角三角形)时,其周长最大,且最大周长为l )21(+.7.有一宽为24cm 的长方形铁板,把它折起来做成一断面为等腰梯形的水槽.问怎么折才能使断面的面积最大.解 设折起来的边长为xcm ,倾角为α(图8-17),那么梯形的下底长为242x -,上底长为2422cos x x α-+,高为sin x α,所以断面的面积为1[(2422cos )242]sin 2=-++-⋅A x x x x αα,即2224sin 2sin cos sin (012,0)2A x x x x πααααα=-+<<<≤.为求其最大值,我们先来解方程组222224sin 4sin 2sin cos 0,24cos 2cos +(sin cos )0.x A x x A x x x ααααααααα=-+=⎧⎨=--=⎩ 由于sin 0,0x α≠≠,将上述方程组两边约分,得122cos 0,24cos 2cos cos 20.=-+=⎧⎨=-+=⎩x A x x A x x ααααα 解这个方程组,得,8().3x cm πα==根据题意,断面面积的最大值一定存在,又由A 的定义,0,12;0.x α≠≠因此最大值点只可能在区域的内部或开边界2πα=上取到.但当2πα=时,2242A x x =-的最大值为72.因此,该函数的最大值只能在区域的内点处取得,而它只有一个稳定点,因此可以断定(8,)=483723A π>是其最大值.即将铁板折起8cm ,并使其与水平线成3π角时所得断面面积最大.24242x-ax a。

大学高数下册试题及答案第9章

大学高数下册试题及答案第9章

大学高数下册试题及答案第9章第九章曲线积分与曲面积分作业13对弧长的曲线积分1.计算,其中为直线及抛物线所围成的区域的整个边界.解:可以分解为及2.,其中为星形线在第一象限内的弧.解:为原式3.计算,其中折线ABC,这里A,B,C依次为点.解:4.,其中为螺线上相应于从变到的一段弧.解:为5.计算,其中L:.解:将L参数化,6.计算,其中L为圆周,直线及轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分从而作业14对坐标的曲线积分1.计算下列第二型曲线积分:(1),其中为按逆时针方向绕椭圆一周;解:为原式(2),其中是从点到点的一段直线;解:是原式(3),其中是圆柱螺线从到的一段弧;解:是原式(4)计算曲线积分,其中为由点A(-1,1)沿抛物线到点O(0,0),再沿某轴到点B(2,0)的弧段.解:由于积分曲线是分段表达的,需要分段积分;原式2.设力的大小等于作用点的横坐标的平方,而方向依轴的负方向,求质量为的质点沿抛物线从点移动到点时,力所作的功.解:3.把对坐标的曲线积分化成对弧长的曲线积分,其中为:(1)在平面内沿直线从点到点;(2)沿抛物线从点到点.解:(1)(2)作业15格林公式及其应用1.填空题(1)设是三顶点(0,0),(3,0),(3,2)的三角形正向边界,12.(2)设曲线是以为顶点的正方形边界,不能直接用格林公式的理由是_所围区域内部有不可道的点_.(3)相应于曲线积分的第一型的曲线积分是.其中为从点(1,1,1)到点(1,2,3)的直线段.2.计算,其中L是沿半圆周从点到点的弧.解:L加上构成区域边界的负向3.计算,其中为椭圆正向一周.解:原式4.计算曲线积分其中为连续函数,是沿圆周按逆时针方向由点到点的一段弧.解:令则,原式5.计算,其中为(1)圆周(按反时针方向);解:,而且原点不在该圆域内部,从而由格林公式,原式(2)闭曲线(按反时针方向).解:,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周(也按反时针方向),在圆环域上用格林公式得,原式6.证明下列曲线积分在平面内与路径无关,并计算积分值:(1);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式(2);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿直线积分也可,原式(3).解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式7.设在上具有连续导数,计算,其中L为从点到点的直线段.解:由于在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线积分即可,原式8.验证下列在整个平面内是某一函数的全微分,并求出它的一个原函数:(1);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则从而,(2);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则原式可取(3)解:可取折线作曲线积分9.设有一变力在坐标轴上的投影为,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:,质点在此场内任意曲线移动时,场力所作的功为由于在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16对面积的曲面积分1.计算下列对面积的曲面积分:(1),其中为锥面被柱面所截得的有限部分;解:为,原式(2),其中为球面.解:为两块,原式2.计算,是平面被圆柱面截出的有限部分.解:为两块,,原式(或由,而积分微元反号推出)3.求球面含在圆柱面内部的那部分面积.解:为两块,原式4.设圆锥面,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为,故重点坐标为5.求抛物面壳的质量,此壳的密度按规律而变更.解:作业17对坐标的曲面积分1.,其中是柱面被平面及所截得的在第一卦限内的部分前侧.解:原式=2.计算曲面积分,其中为旋转抛物面下侧介于平面及之间的部分.解:原式=3.计算其中是平面所围成的空间区域的整个边界曲面的外侧.解:分片积分。

高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第9章 khdaw

高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第9章 khdaw

1第9章(之6)(总第49次)教学内容:§9.4.3二阶线性常系数微分方程的解法(A )**1.求下列方程的通解(1);08=+′′y y 解:,,082=+λi 222,1±=λ。

x c x c y 22sin 22cos 21+=(2)'6"+y y 解:62+λλ所以通解为(1)'8''−y y 解:∵82−λ通解为:)1('=c y 得到:1c (2)'4"+y y 解:42+λλ通解为:。

)5sin 5cos (212x c x c e y x +=−代入初始条件有:,πππe c c e y =⇒=+=−221)0()2(,)5cos 55sin 5()5sin 5cos (22('212212x c x c e x c x c e y x x +−++−=−−π得:。

特解为:。

πe c −=1)5sin 5cos (2x x e y x+−=−π2(3);10)0(',6)0(,03'4"===++y y y y y 解:,,0342=++λλ0)3)(1(=++λλ所以通解为。

x x e c e c y 321−−+=代入初始条件有:,6)0(21=+=c c y ,1033)0('21321=−−=−−=−−c c e c e c y x x 特解为:。

x x e e y 3814−−−=**3.求解初值问题1)0(1d 20≥⎪⎩⎪⎨⎧==++′∫x y x y y y x 解:将原方程对求导得x ′′+′+=y y y 201()且有′=−=−y y ()()01201微分方程(1)的通解为:,y e C x C x =+−()12代入初始条件,得,1)0(,1)0(−=′=y y 1,021==C C 故所求问题的解为:。

x e y −=***4.设函数二阶连续可微,且满足方程,求函数。

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)

对弧长的曲线积分1、计算C,其中曲线C是y =02x a ≤≤的一段弧()0a >。

解:C 的参数方程为22cos 022cos sin x a y a θπθθθ⎧=≤≤⎨=⎩原式222202cos 4cos 4a a d a ππθθ===⎰⎰2、计算4433L x y ds ⎛⎫+ ⎪⎝⎭⎰,其中L 星形线33cos ,sin x a t y a t ==在第一象限的弧02t π⎛⎫≤≤ ⎪⎝⎭。

解:原式()47766244333200sin cos cos sin 3cos sin 36t ta t t a t tdt a a ππ⎡⎤-=+==⎢⎥⎣⎦⎰ 3、计算xyzds Γ⎰,其中Γ为折线ABC ,这里,,A B C 依次为点()()()0,0,0,1,2,3,1,4,3。

解:AB 段参数方程2013x t y t t z t=⎧⎪=≤≤⎨⎪=⎩,BC 段参数方程122013x y t t z =⎧⎪=+≤≤⎨⎪=⎩原式()11301212ABBCxyzds xyzds dt t dt =+=++⎰⎰⎰⎰11420012618t t ⎤⎡⎤=++=⎣⎦⎥⎦ 4、计算()22xy ds Γ+⎰,其中Γ为螺旋线cos ,sin ,x t t y t t z t ===上相应于t 从0到1的弧。

解:方法一 原式11t t ==⎰⎰)(()2111222000111222222t dt t t t dt ⎫'⎡=+=+-+⎣⎰⎰1002t =--⎰⎰原式(100111ln 42422t ⎡⎤=-=-+⎢⎥⎣⎦⎰122=- 方法二、原式11tt ==⎰⎰)001112222t dt ===⎰⎰⎰2101112u +-=⎰(1101111222u ⎡=+--⎢⎣⎰⎰(10011ln 122u ⎡⎤=-+⎢⎥⎣⎦⎰(011ln 222=-+⎰原式(1ln 224=- 方法三、原式11t t ==⎰⎰因为422234t t '==(22'==(()ln 1t '⎛⎫+=+=所以(11ln 42t t '⎫+=⎪⎭原式((11111ln ln 14222t ⎤==-++⎥⎦5、计算22Lx y ds +⎰,其中22:0L x y ax a +=>解:22cos x y ax r a θ+=⇒=,曲线L 的参数方程为2cos 22sin cos x a y a θππθθθ⎧=-≤≤⎨=⎩原式222202cos 2cos 2a ad a πππθθθ-===⎰⎰6、计算22x y Leds +⎰,其中L 为圆周222x y a +=,直线,0y x y ==在第一象限内所围成的扇形的边界。

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)、计算对弧长的曲线积分C,其中曲线C是y0某2a的一段弧a0某2aco2解:C的参数方程为y2acoin2原式202aco24a2cod4a244332、计算某yd,其中L星形线某aco3t,yain3t在第一象限的弧L0t272intcot解:原式2acotint3acotintdt3aa3060664443733、计算某yzd,其中为折线ABC,这里A,B,C依次为点0,0,0,1,2,3,1,4,3某t某1解:AB段参数方程y2t0t1,BC段参数方程y22t0t1 z3z3t原式AB某yzdBC某yzd3dt1212tdt1121412t6t18004、计算某2y2d,其中为螺旋线某tcot,ytint,zt上相应于t从0到1的弧。

解:方法一原式tt111112222tdtt2t2t2dt0202221t02111原式lnt4204220方法二、原式tt1112tdt22211u11201u1202211220原式方法三、原式lnu121202ln224tt34222因为tt422lnt11所以lntt421111lntln1ln原式422205、计算L,其中L:某2y2a某a02某aco2解:某ya某raco,曲线L的参数方程为yainco22原式22aco2a220cod2a26、计算L,其中L为圆周某2y2a2,直线y某,y0在第一象限内所围成的扇形的边界。

解:如右图,线段OA的参数方程为某t0t2yt某acot弧AB的参数方程为0t4yaint线段OB的参数方程为某t0tay0aat原式4eadtedt000a4etaet00ae1aaaaaee1ea24427、求曲线某at,ya2at,zt30t1的质量,其密度。

23解:m1aut2020a20a1u23aa388h3a1lnh823ln3a168、求半径为a,中心角为的均匀圆弧(线密度1)的质心。

华东理工大学高等数学(下册)第9章作业答案

华东理工大学高等数学(下册)第9章作业答案

第9章(之1) (总第44次)教学内容:§9.1微分方程基本概念*1. 微分方程7359)(2xy y y y =''''-''的阶数是() (A )3;(B )4;(C )6;(D )7. 答案(A )解微分方程的阶数是未知函数导数的最高阶的阶数.*2.下列函数中的C 、α、λ与k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是()(A )x C x C y 2sin )2912(2cos 3-+=;(B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=;(D ))2cos(α+=x C y . 答案(D )解二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ;(B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解;(C )中的函数从表面上看来也有两个任意常数C 与k ,但当令kC C =时,函数就变成了x C x C y 2sin 12cos 2++=,实质上只有一个任意常数;(D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解.*3.在曲线族 x x e c e c y -+=21中,求出与直线x y =相切于坐标原点的曲线.解根据题意条件可归结出条件1)0(,0)0(='=y y ,由x x e c e c y -+=21, x x e c e c y --='21,可得1,02121=-=+c c c c ,故21,2121-==c c ,这样就得到所求曲线为)(21x x e e y --=,即x y sinh =.*4.证明:函数y e x x =-2333212sin 是初值问题⎪⎪⎩⎪⎪⎨⎧===++==1d d ,00d d d d 0022x x x y y y x yx y 的解.证明'=-+--y e x e x x x3332321212sin cos ,''=----y e x e x x x3332321212sin cos ,代入方程得''+'+=y y y 0, 此外,,1)0(0)0(='=y y故y e x x=-2333212sin 是初始值问题的解.*5.验证y e e t Ce xt xx =+⎰20d (其中C 为任意常数)是方程'-=+y ye x x 2的通解.证明'=+⋅+⎰y e e t e e Ce x t x x x x 220d =++ye x x 2, 即2x x e y y +=-',说明函数确实给定方程的解.另一方面函数y e e t Ce xt x x=+⎰20d 含有一任意常数C ,所以它是方程的通解.**6.求以下列函数为通解的微分方程: (1)31+=Cx y ;解将等式31+=Cx y 改写为13+=Cx y ,再在其两边同时对x 求导,得C y y ='23,代入上式,即可得到所求之微分方程为1332-='y y xy .(2)xCx C y 21+=.解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二阶方程,在方程等式两边同时对x 求两次导数,得221x C C y -=',322x Cy =''. 从以上三个式子中消去任意常数1C 和2C ,即可得到所求之微分方程为02=-'+''y y x y x .**7.建立共焦抛物线族)(42C x C y +=(其中C 为任意常数)所满足的微分方程[这里的共焦抛物线族是以x 轴为对称轴,坐标原点为焦点的抛物线].解 在方程)(42C x C y +=两边对x 求导有C y y 42=',从这两式中消去常数所求方程为)2(y y x y y '+'=.**8.求微分方程,使它的积分曲线族中的每一条曲线)(x y y =上任一点处的法线都经过坐标原点.解 任取)(x y y =上的点 ),(y x ,曲线在该点处的切线斜率为 y '=dxdy.所以过点),(y x 的法线斜率为y '-1, 法线方程为y Y -=y '-1)(x X -, 因为法线过原点,所以=-y 0y '-1)0(x -从而可得所求微分方程为0='+y y x .第9章(之2)(总第45次)教学内容:§9.2 .1可分离变量的方程;§9.2 .2一阶线性方程**1.求下列微分方程的通解:(1)21)1(x y x y +-=';解: 分离变量21d 1d x x x y y +=-,两边积分⎰⎰+=-21d 1d x xx y y , 得C x y ln )1ln(21)1ln(2-+=--,即211x C y +-=.(2)222y x e yxy -='; 解:分离变量x xe y ye x y d d 222=,两边积分就得到了通解)d (21222x e xe e x x y ⎰-=c e xe xx +-=)21(2122.(3)042)12(=-+'+y y e y e x .解:12d 42d +-=-x x e y e y y ,C x e y ln 21)12ln(21)2ln(21++-=-,即 ()()e x C y -+=221.**2.试用两种不同的解法求微分方程xy y x y +--='1的通解.解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易.分离变量,)1)(1(y x y --=',x x y y d )1(1d -=-,并积分x x yyd )1(1d -=-⎰⎰ 得c x x y +-=--221)1ln(,所求通解为 xx ce y -+=2211.解法二 (线性方程的常数变易法)将原方程改写为x y x y -=-+'1)1(,这是一个一阶线性非齐次方程.对应的齐次方程为0)1(=-+'y x y ,其通解为○1x x e C y -=221.代入原非齐次方程得x e C x x -='-1221,解得○2C eC x x +=-221,○2代入○1即可得原方程的通解xx Ce y -+=2211.*3.求解下列初值问题:(1)21x yy -=',6)21(πe y -=.解: y '=21x y -,∴21d d x x y y -=(0≠y ),21d d x x y y-=⎰⎰,∴C x y +=arcsin ln , ∴x Ce y arcsin =,π6)21(e y -=,∴21arcsin6Ce e =-π,∴1-=C ,∴x e y arcsin -=.(2)22x e xy y -=+',1)0(=y ;解: 22x e xy y -=+', x x p 2)(=∴,2)(x e x q -=,=∴)(x y ⎰-xx ed 2⎥⎦⎤⎢⎣⎡+⎰⎰-C dxe e x x x d 222x e -=⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 2222x x Ce xe --+=, 1)0(=y ,101=⇒+=∴c c , 2)1(x e x y -+=∴.(3)x e x y y cos cot =+',1)2(=πy ;解: x e x y y cos cot =+', ∴x x P cot )(=,x e x Q cos )(=.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x C y x x x x x d e e e d cot cos d cot )d e e (e sin ln cos sin ln ⎰+=-x C x x x)d sin e (csc cos ⎰+=x x C x x x C x csc )e (cos -=,由1)2(=πy , 可确定 2=C ,所以x y x csc )e 2(cos -=.(4)0d )12(d 2=+-+x x xy y x ,01==x y .解: 方程变形为 2112x x y x y -=+',是一阶线性非齐次方程,其通解为⎥⎦⎤⎢⎣⎡⎰-+⎰=⎰-dx e x x c e y dx x dx x 222)11(⎥⎦⎤⎢⎣⎡-+=⎰dx x x x c x 222)11(1⎥⎦⎤⎢⎣⎡-+=x x c x 22211xx c 1212-+= 由 0)1(=y , 得 21=c , 所以特解为:xx y 121212-+=.**4.求微分方程 0d )ln (d ln =-+y y x x y y 的通解(提示将x 看作是y 的函数).解:将x 看作是y 的函数,原方程可化为y x y y dy dx 1ln 1=+,这是一阶线性方程,将其中y y Q y y y P 1)( ,ln 1)(==代入一阶线性方程求解公式,得通解1e 1)ln(ln )ln(ln ln 1ln 1⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+⎰=⎰⎰--dy e y c dy e y c ex y y dy y y dy yyy y c dy y y c y ln 21ln ln ln 1+=⎥⎦⎤⎢⎣⎡+=⎰.**5.求满足关系式)(d )(22x y x u u uy x +=⎰的可导函数)(x y .解:这是一个积分方程,在方程等式两边同对x 求导,可得微分方程xy x x yx()d d =+2,即d d yxxy x -=-2,分离变量得d d y y x x -=2,积分得y Ce x =+222, 在原方程两边以2=x 代入,可得初试条件22-==x y.据此可得14--=e C ,所以原方程的解为 24122+-=-x e y .**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为k ),求降落伞的下落速度与时间的函数关系.解:根据牛顿运动第二定理有kv mg tvm -=d d .这是一个可分离变量方程,分离变量并积分得--=+1k mg kv tmC ln(). 由初始条件0)0(=v ,得)ln(1mg k C -=,即得v mg k e k m t=-⎛⎝ ⎫⎭⎪-1.**7.求一曲线,已知曲线过点)1,0(,且其上任一点),(y x 的法线在x 轴上的截距为kx .解:曲线在点(,)x y 处的法线斜率为y '-1,所以法线方程为Y y y X x -=-'-1(). 只要令0=Y ,就可以得到法线在x 轴上的截距为y y x X '+=.据题意可得微分方程x yy kx +'=,即x k y y )1(-='.这是一个可分离变量方程,分离变量并积分得所求曲线C x k y =-+22)1(,由于曲线过点)1,0(,所以1=C ,所以所求曲线方程为y k x 2211+-=().***8.求与抛物线族2Cx y =(C 是常数)中任一抛物线都正交的曲线(族)的方程. 解:在给定曲线2cx y =上任意一点),(y x 处切线斜率为cx y k 20='=,从上面两式中消去c 得x y y k 20='=,这样就得到了给定曲线族所满足的微分方程xyy 2='.设所求曲线方程为 )(x y y =,在同一点),(y x 处切线斜率为y k '=,则根据正交要求有10-=k k ,这样就得到了所求曲线族应该满足的微分方程yxy 2-='.这是一个可分离变量方程,分离变量xdx ydy -=2,积分得所求曲线族c x y +-=2221,即椭圆族c x y =+2221.***9.作适当变换,求微分方程 1224+-='-x e y y 的通解.解 原方程可化为4122=++'y y e x y e ,在换元y e z =下方程可化为4122=++'x zz ,这是一个一阶线性方程,其通解为⎭⎬⎫⎩⎨⎧+=⎰+⎰+-⎰x e C ez x x x xd 412d 212d 2}44{1212x x C x +++=. ***10.作适当变换,求微分方程d d tan y x y x y y x =+⎛⎝ ⎫⎭⎪2122的通解. 解:令ux y =2,代入方程整理得 x xu u d tan d =,积分得Cx u =sin ,以 x y u 2= 代入上式,即得原方程的通解:Cx xy =2sin .第9章 (之3) (总第46次)教学内容:§9.2 .3齐次型方程;9.2.4伯努利方程.**1.求下列微分方程的通解:(1))ln ln 1(d d x y xyx y -+=; 解: )ln ln 1(d d x y x y x y -+=,∴dx dy =x y (1+xy ln ),这是一个一阶齐次型方程.令 xyu =,则 ux y =,即u x u y '+=',于是原方程可化为u u u x ln ='.这是一个可分离变量方程.分离变量x dx u u du =ln ,并积分⎰⎰=x dxu u du ln ,得c x u ln ln ln ln +=,即cx e u =. 以 xyu =代入,得所求的通解为cx xe y =.(2)()arctan xy y yxx '-=.解:方程可化为xy xyy arctan1+=',这是一个一阶齐次型方程.令 x y u =,则 ux y =,即u x u y '+=',于是原方程可化为ux u x arctan 1d d =,这是一个可分离变量方程.分离变量后积分得x u Ce u u 12+=arctan .以 xy u =代入上式得原方程的通解:x y Ce y xy x 22+=arctan. **2.求解下列初值问题:(1)0d )2(d 22=+-y y x x xy 满足初始条件 1)2(=y 的特解.解: 0d )2(d 22=+-y y x x xy ,dy dx =x y y x +2,令yxu =, 则u u dy du y u 12+=+,u u du 1+=y dy,∴⎰+uu du 1=⎰y dy ,c y u ln ln )1ln(212+=+∴,cy u =+∴12,即2221y c u =+,代回即得22y x +1=22y c ,1)2(=y , ∴52=c ,因此 22y x +=54y .(2)⎩⎨⎧==-++=.0,0d )(d )(0x y y y x x y x解:原方程可表为 11d d -+=-+=x y x y x y y x x y ,令 xy u =,u x u y '+=', 代入方程,有 11-+='+u uu x u ,即 121d d 2--+=u u u x u x , 分离变量 x x u u u u d 1d 2112=-+-,积分得 C x u u ln ln )21ln(212-=-+-⇒通解 C y xy x =-+222,令 0,0==y x ,得 0=C .所以初值问题的解为 0222=-+y xy x .***3.试证明:当1221b a b a ≠时,总能找到适当的常数h ,k ,使一阶微分方程)(222111cy b x a cy b x a f y ++++=' 在变换k y s -=,h x t -=之下,可化为一阶齐次型方程)(d d 2211sb t a s b t a f t s++=. 并求方程 0d )32(d )12(=++++y y x x y x 的解.证明:令⎩⎨⎧+=+++=++sb t ac y b x a sb t ac y b x a 22222111111221b a b a ≠ , ∴可解得:⎪⎪⎩⎪⎪⎨⎧---=---=1221122112212112b a b a c b c b x t b a b a c a c a y s 因此可取:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112212112ba b a c b c b h b a b a ca c a k解:0)32()12(=++++dy y x dx y x ,令⎩⎨⎧-=+=32x t y s ⎩⎨⎧==⇒xt ys d d d d[][]0)2(3)3(21)2(23=-++++-++∴ds s t dt s t ,()0)32(2=+++ds s t dt s t ,ts t sdt ds dtdst s t s 32210)32(21++-=⇒=+++⇒, 令dt du t u dt ds t s u +=⇒=, 23)1)(13(3221+++-=⇒++-=+∴u u u dt du t u u dt du t u ,⎰⎰-=⎥⎦⎤⎢⎣⎡+++∴-=+++⇒t dt du u u t dt du u u u )13(23)1(21,)1)(13()23(, c t u u ln ln )13)(1ln(21+-=++即,c tst s t ct u u =++⇒=⋅++∴)13)(1()13)(1(,c x xy x y c x y x y x 243)3631)(321()3(22=+++⇒=-++-++-∴.**4.求下列微分方程的通解(1)0ln 2=+-'x y y y x ;解: 0ln '2=+-x y y xy xxy x y y ln 1'12-=-∴--令x x t x dx dt y t ln 11=+⇒=-, ,ln )Q( ,1)(xx x x x P ==∴ln 1 d ln )(d 1d 1⎥⎦⎤⎢⎣⎡⋅+=⎥⎦⎤⎢⎣⎡⎰+⎰=∴⎰⎰-xdx x x C x x e x x C e x t x x x x 1ln C )ln (C 11-+=-+=---x x x x x x x x , 111ln --+-=Cx x y .(2)0d d )2(=+-y x x xy y .解: 0d d )2(=+-y x x xy y ,x y d d +y x 1=212y x,y y '-21+211y x =x 2,21y u =,x u d d +x 21x u 1=,∴x x P 21)(=,xx Q 1)(.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x e x C ex u x x x xd 1)(d 21d 2121-=x ⎥⎦⎤⎢⎣⎡+⎰x x x C d 121[]x C x +=-21, ∴[]x C xy +=-2121,∴xC x y +=.(3)'=-y y xy x 3222()解一:令u y =2,原方程化为:d d u x u x u x =⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-21,解此方程得u Ce u x =, 以u y =2代入上式,原方程通解为y Ce y x22=.解二:原方程写成d d x y y x y x -=-2232, 令x z -=1,则方程化为:322d d y z y y z =+, 则通解z eC y e y yy y y=+⎡⎣⎢⎢⎤⎦⎥⎥-⎰⎰⎰2322d d d ]ln 2[12y C y +=,故原方程通解:1122x y C y =+[ln ]. **5.求下列伯努力方程满足初始条件的特解:yxy y 2-=',1)0(=y .解:x y yy', xy y y 22'21-=-∴-=- ,令 x t dxdty t 42 2-=-⇒=, x x Q x P 4)( ,2)(-=-=∴, []12010211)0(1212 )]2[ d 4 d )4()(2022222222d 2d 2+=∴=⇒++⨯=∴=++=∴++=++=-=⎥⎦⎤⎢⎣⎡⎰-+⎰=∴----⎰⎰x y C Ce y Ce x y x Ce e xe C e x xe C e x e x C e x t xx x x x x x x x ,****6.作适当的变换求方程12222212+⋅'=++x y y x y e x sin sin 的通解.解:原方程化为:12222212+=++x yxx y e x d sin d sin ,令z y =sin 2,得 d d z x x x z e x x -+=++21122122,故 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=⎰⎰+-+⎰+x ex e C ez xx x x x x x d 1d 12212d 12222)1ln(2121222x x e Ce x x +++=++原方程的通解为sin ln()221212221y Ce e x x x x =+++++.***7.已知)(2d )(1)(2202x y x y y x +='+⎰ξξξ,求y x (). 解:两边关于x 求导得 212yy y '-=-,解得 y Ce x 21=+, 由yx ==00,求得C =-1,故原方程的解为:y e x 21=-.***8.曲线过点(,)11,其上任一点与原点的距离平方等于该点横坐标与该点的曲线的法线在x 轴上的截距乘积的两倍,求曲线方程.解:x y x x yy y 22211+=+'=(),(),212yy xy x '-=-令y z 2=,解得 z y x C x ==-2() 由y ()11=,得C =2, 曲线方程为:x y x 222+=.***9.根据托里斥利定律,液体从容器小孔中流出的速度为 gh A v 2α=,其中 g 为重力加速度,h 为液面与底部孔口之间的距离,A 为孔口面积,α为孔口收缩系数,实验确定其取值为 62.0=α.现有一直径为1m ,高为2m 的直立圆柱形容器,其中盛满的水从底部直径为1=d cm 的圆孔流出,要多长时间容器内的水才会完全流尽?解:设在时刻t 时, 容器中液面高度)(t h ,则经过t ∆后液面高度为)(t t h ∆+, 于是有t t gh A t t h t h r ∆=∆+-)(2))()((2απ,即 22)()(r ghA t t h t t h πα=∆-∆+-,令0→∆t , 得⎪⎩⎪⎨⎧==-200)0(2d d 2h ghr At h πα解得 200222+=t g r Ah πα, 代入0=h , 980=g , 50=r , 4π=A ,62.0=α, 得10304=t (秒).第9章 (之4)(总第47次)教学内容:§9.3可降阶的高阶微分方程**1.解下列问题:(1).微分方程'+''=''y y xy 满足条件'==y y (),()2121的解是 ( )(A )y x =-()12(B )y x =+-()122142(C )y x =-+121122()(D )y x =--()12542解:(C )(2).微分方程''-'=y yy 203满足条件'=-=y y (),()0101的解是 ( )(A )y x 3313=+(B )x y 331=- (C )y x 3313=-+(D )x y 331=-+ 解:(C )**2.求下列微分方程的通解. (1)0='+''y y x ;解: 0='+''y y x 是一不显含因变量y 的二阶方程,令 y p '=⇒y ''x p d d =∴0=+'p p x , ⇒p p d =x x d -,⇒⎰⎰-=x xp p d d ⇒1ln ln ln C x p +-=⇒x C p 1=, ∴=xy d d x C1,x x C y d d 1=,⎰⎰=x x C y d d 1,21ln C x C y +=. (2)()1212+''+'=x y xy ;解:''++'=+y x x y x 211122, '=++y x x C 1121(), y x C x C =+++121212ln()arctan .(3)()02='+''y y y ; 解:∵()02='+''y y y , 令 y p '=, 则 ypp y d d ='',代入方程有0d d 2=+⋅⋅p yp p y ,0)d d (=+⋅⇒p yp y p ,因为求通解,所以 p 满足0d d =+⋅p y py . 由 ⎰⎰-=⇒-=y yp p yy p p d d d d , y C p C y p 11ln ln ln '=⇒+-=⇒,⎰⎰'=⇒'=⇒'=⇒x C y y x C y y yC x y d d d d d d 111212C x C y+=⇒.∴ 通解:212C x C y +=.(4)()1222+''='y y yy解:令:'=''='y p y y pp (),,得()1222+⋅'=y p p p y ,即d d p p yy y =+212, 得 p C y =+121(), 所以d d yy C x 121+=,通解为:arctan y C x C =+12.第9章 (之5)(总第48次)教学内容:§9 .4 .1二阶线性方程和解的存在性;§9 .4 .2二阶线性方程解的结构**1.若21,y y 是方程)()()(x R y x Q y x P y =+'+''的两个解,试证12y y - 必是其对应齐次方程0)()(=+'+''y x Q y x P y 的解.证明:因为21,y y 是方程)()()(x R y x Q y x P y =+'+''的解.所以成立下式:)2()()()()1()()()(222111x R y x Q y x P y x R y x Q y x P y =+'+''=+'+''将(1)、(2)两式相减,得)3(0))(())(()(212121=-+'-'+''-''y y x Q y y x P y y(3式可写为0))(())(()(212121=-+'-+''-y y x Q y y x P y y ,所以21y y -是齐次方程0)()(=+'+''y x Q y x P y 的解.***2.已知23211,1,1x y x y y +=+==是方程22222x y x y x y =+'-''的三个特解,问能否求出该方程得通解?若能则求出通解来.解:按(1)证明可知 21312,x y y x y y =-=- 分别是其对应齐次方程0222=+'-''y x y x y 的解,并且线性无关,所以221x C x C + 为齐次方程的通解.所以原方程的通解可以表示为:1221++=x C x C y .*3.验证:22,t t ee -是微分方程''-'-=x tx t x 1402的两个线性无关特解,并求此方程的通解.证明:因为()()222241t t t et e te -'-"042142222222=-⨯-+=t t t t e t te te t e ,()()2222"41t t t et e te ----'-=-+-⨯--=--241240222222et e tte t e t t t t (),故22,t t e e -是方程的解,且≠=-2222t t t e e e 常数.于是22,t t e e -是方程线性无关的解(构成基本解组),故方程的通解为2221t t e C e C x -+=,其中21,C C 为任意常数.*4.已知函数 x y e y x ==21, 是方程 0)1(=-'+''-y y x y x 的两解,试求该方程满足初始条件 0)0(,1)0(='=y y 的特解.解:方程的通解为 x c e c y x 21+=,将初始条件代入,有:,,0)0('1)0(21211=+=+===c c c e c y c y x解得21,c c 为:1,121-==c c ,所以特解为:x e y x -=.**5.设x t 1()是非齐次线性方程''+'+=x t a t x t a t x t f t ()()()()()()()1211的解.x t 2()是方程''+'+=x t a t x t a t x t f t ()()()()()()()1222的解.试证明x x t x t =+12()()是方程''+'+=+x t a t x t a t x t f t f t ()()()()()()()()12123的解.解:因为)(2),(1t x t x 分别为方程(1)和方程(2)的解,所以)1()()()()()()(112111'≡+'+''t f t x t a t x t a t x''+'+≡'x t a t x t a t x t f t 2122222()()()()()()()()()12'+'得:()()())()()()()()()()()()(2121221121t f t f t xt x t at xt x t a t xt x +='++'++"+即 x x t x t =+12()() 是方程(3)的解.第9章 (之6)(总第49次)教学内容:§9 .4 .3二阶线性常系数方程的解法**1.解下列问题:(1)方程08=+''y y 的通解为=y _______________.解:x c x c y 22sin 22cos 21+=.(2)方程025'6"=++y y y 的通解为=y _______________. 解:)4sin 4cos (213x c x c e y x +=-.(3)方程0158=+'-''y y y 的通解为=y _______________. 解:x x C C y 5231e e +=.(4)方程031525=+'+''y y y 的通解为=y _______________. 解:)(21515C x C e y x +=-.(3)方程06=+'+''py y y 的通解为)2sin 2cos (e 21x C x C y kx +=,则=p ___,=k _____. 解:11,3-.**2.求解下列初值问题:(1)0)1(,)1(,01684='==+'-''y e y y y y ;解:∵0)4(16822=-=+-λλλ, ∴421=,λ,通解为:x e x c c y 421)(+=.将初始条件代入,有 4421)()1(e e c c y =+=,04)(4)(4)1('4424214242142=+=++=++=e e c e c c e c e x c c e c y x x得到:4521-==c c ,所以特解为:x e x y 4)45(-=.(2)3)2(,1)2(,0294='==+'+''ππy y y y y ;解:02942=++λλ, i i5221042116164±-=±-=-±-=λ, 通解为:)5sin 5cos (212x c x c e y x +=-.代入初始条件有: πππe c c e y =⇒=+=-221)0()2(,)5cos 55sin 5()5sin 5cos (2)2(212212x c x c e x c x c e y x x +-++-='--π,得:πe c -=1. 特解为:)5sin 5cos (2x x e y x +-=-π.(3)10)0(,6)0(,034='==+'+''y y y y y ;解:0342=++λλ, 0)3)(1(=++λλ, 所以通解为 x x e c e c y 321--+=.代入初始条件有:6)0(21=+=c c y ,1033)0('21321=--=--=--c c e c e c y x x ,特解为:x x e e y 3814---=.**3.求解初值问题'++==⎧⎨⎪⎩⎪≥⎰y y y x y x x 210100d ()解:将原方程对x 求导得 ''+'+=y y y 201()且有'=-=-y y ()()01201微分方程(1)的通解为: y e C x C x =+-()12,代入初始条件1)0(,1)0(-='=y y ,得1,021==C C ,故所求问题的解为:x e y -=.***4.设函数)(x ϕ二阶连续可微,且满足方程⎰-+=xu u u x x 0d )()(1)(ϕϕ,求函数ϕ()x .解:原方程关于x 求导得⎰⎰=-+='x x u u x x x x u u x 0d )()()(d )()(ϕϕϕϕϕ,0)0(='ϕ,再求导得:)()(x x ϕϕ='',且由原方程还有:1)0(=ϕ, 微分方程的通解为:x x e C e C x -+=21)(ϕ,代入条件0)0(,1)0(='=ϕϕ,得2121==C C ,故所求函数为:x e e x x x ch )(21)(=+=-ϕ.***5.长为100cm 的链条从桌面上由静止状态开始无摩擦地沿桌子边缘下滑.设运动开始时,链条已有20cm 垂于桌面下,试求链条全部从桌子边缘滑下需多少时间.解:设链条单位长度的质量为ρ,则链条的质量为ρ100.再设当时刻 t 时,链条的下端距桌面的距离为)(t x ,则根据牛顿第二定律有:gx dt x d ρρ=22100, 即 010022=-x g dt x d .又据题意知:20)0(=x , 0)0(='x ,所以 )(t x 满足下列初值问题:⎪⎩⎪⎨⎧='==-0)0(20)0(010022x x x g dt x d , 解得方程的通解为:tg tg ec e c x 102101-+=.又因为有初始条件: ()()⎩⎨⎧==⇒⎩⎨⎧==1010020021'c c x x所以 tg tg ee x 10101010-+=.又当链条全部从桌子边缘滑下时,100=x ,求解t ,得:tg tg ee 10101010100-+=,即: 510=t gch , 510arch gt =.***6.设弹簧的上端固定,下端挂一个质量为2千克的物体,使弹簧伸长2厘米达到平衡,现将物体稍下拉,然后放手使弹簧由静止开始运动,试求由此所产生的振动的周期. 解:取物体的平衡位置为坐标原点,x 轴竖直向下,设t 时刻物体m 位于x t ()处,由牛顿第二定律:22222d d ()xt g g x gx =-+=-, 其中g =980厘米/秒2其解为:x C g t C g t =+1222cos sin , 振动周期为T g ==≈222490028ππ..第9章 (之7)(总第50次)教学内容:§二阶线性常系数方程的解法; §高阶线性常系数微分方程 **1.微分方程x x y y sin =+''的一个特解应具有形式 ( )(A )()sin Ax B x +(B )x Ax B x x Cx D x ()sin ()cos +++ (C )x Ax B x x ()(cos sin )++ (D )x Ax B C x D x ()(sin cos )++ 解:(B )**2.设A B C D ,,,是待定常数,则微分方程''+=+y y x x cos 的一个特解应具有形式 ( )(A )Ax B C x ++cos(B )Ax B C x D x +++cos sin (C )Ax B x C x D x +++(cos sin ) (D )Ax B Cx x ++cos 答:(C )**3.求下列非齐次方程的一个解 (1)122+=-'-''x y y y ; 解:∵022=--λλ, ∴1,22,1-=λ, 0 不是特征根.设 01b x b y p+=, 代入原方程,得:1222011+=---x b x b b ,有:1,01-=b b ,特解为:x y -=.(2)x e y y y -=+'+''2. 解: ∵1- 是二重特征根,∴ 设 02b e x y x p-=, 0202b e x b xe y x x p---=',202022b e x b xe b e x b e y x x x x p----+--='',代入 x e y y y -=++'2'', 解得:210=b ,特解为:x e x y -=221.**4.求微分方程''-'+=y y y xe x 32满足条件y y ()()000='=的特解. 解:特征方程0232=+-r r 的根为2,121==r r ,相应齐次方程的通解为x x he C e C y 221+=,设特解为xp e B Ax x y )(+=,代入方程得: 1,21-=-=B A .故方程的通解为x xx e x x e C e C y ⎪⎪⎭⎫⎝⎛+-+=22221, 代入条件0)0()0(='=y y ,得1,121=-=C C ,因此所求特解为x xe x x e y ⎪⎪⎭⎫⎝⎛++-=1222.**5. 求下列非齐次方程的通解:)(2x f y y ='+''x x f e x f x x f x cos )()3,)()2,14)()12==+=;解:特征方程:022=+λλ, 特征根: 2,021-==λλ,所以方程0'2=+''y y 的通解为 x he c c y 221-+=.1)对于方程14'2+=+''x y y , 由于0是特征方程的单根,故设其特解为:x b x b y p )(10+=,代入方程有:14242100+=++x b x b b ,解得 21110-==b b ,所以特解为:x x y p 212-=. 所以方程的通解为:x x e c c y y y x p h 212221-++=+=-.2)对于方程x e y y 2'2=+''',由于2不是特征方程的根,故设其特解为:02b e y x p=,代入方程有:810=b , x p e y 281=,所以方程的通解为:x xphe ec c y y y 222181++=+=-.3)对于方程:x y y cos '2=+''',由于i ±不是特征方程的根,故设其特解为:x b x b y psin cos 1+=,代入方程有:x b x b y pcos sin '1+-=,x b x b y psin cos "1--=,x x b x b x b x b cos cos sin 2sin cos 11=+---,得:525120=-=b b , x x y p sin 52cos 51+-=, 所以方程的通解为:x x ec c y y y xphsin 52cos 51221+-+=+=-.**6.求微分方程''-'+=y y y e x x 6925sin 的通解. 解:特征方程r r 2690-+=的根为r123,=,相应齐次方程的通解为x he x C C y 321)(+=设特解为y e A x B x px =+(cos sin ),代入方程得:A B ==43,故方程的通解为y C C x e e x x x x =+++()(cos sin )12343***7.已知曲线y y x x =≥()()0过原点,位于x 轴上方,且曲线上任一点),(0y x M =处切线斜率数值上等于此曲线与x 轴,直线x x =0所围成的面积与该点横坐标的和,求此曲线方程.解:由已知y ()00=,且'=+'=⎰y y x x y xd ,()000,将此方程关于x 求导得 ''=+y y 1其通解为:y C e C e x x =+--121,代入初始条件y y (),()0000='=,得 C C 1212==,故所求曲线方程为:y e e x x x =+-=--1211()ch .***8.设一物体质量为m ,以初速v 0从一斜面滑下,若斜面与水平面成θ角,斜面摩擦系数为μμθ(tan )0<<,试求物体滑下的距离与时间的关系.解:设t 时刻物体滑过的距离为S ,由牛顿第二定律m S t mg mg d d sin cos 22=-θμθ 且S S v (),()0000='=方程的通解为S gt C t C =-++12212(sin cos )θμθ代入初始条件得C v C 120==,,故物体滑下的距离与时间的关系为S gt v t =-+1220(sin cos )θμθ***9.设弹簧的上端固定,下端挂一质量为m 的物体,开始时用手托住重物,使弹簧既不伸长也不缩短,然后突然放手使物体开始运动,弹簧的弹性系数为k ,求物体的运动规律.解:取物体未发生运动时的位置为坐标原点,x 轴垂直向下,设t 时刻物体位于x t ()处,由牛顿第二定律: m xt kx mg d d 22+=, 且0)0(0)0(='=x x ,. 方程的通解为:x C k m t C k m t m kg =++12cos sin , 代入初始条件得C mkg C 120=-=,,故物体的运动规律为x mg k k m t =-⎛⎝ ⎫⎭⎪1cos.***10. 求下列方程的通解:(1)02)4(=''+'''-y y y ;解:02234=+-λλλ, 0)12(22=+-λλλ, 0)1(22=-λλ,所以通解为 x e x c c x c c y )(4321+++=.(2)0365)4(=-''+y y y .解:036524=-+λλ, 0)9)(2)(2(2=++-λλλ,所以通解为 x c x c e c e c y x x 3sin 3cos 432221+++=-.****11* 试证明,当以 x t ln =为新的自变量时,变系数线性方程(其中a,b,c 为常数,这是欧拉方程))('"2x f cy bxy y ax =++可化为常系数线性方程)()(22t e f cy dt dy a b dt y d a =+-+并求下列方程通解:(1)022=-''y y x ; (2)x x y y x y x ln 22=+'-''. 证明:令 x t ln =,t e x =,dtdyx dx dt dt dy dx dy 1==, ⎪⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛+-=dt dy dt y d x dt dy dx d x dt dy x dx y d 222222111, 将y y ''',代入方程有:()()t e f cy dt dy a b dt y d a cy dt dy b dt dy dt y d a cy y bx y ax =+-+=++⎪⎪⎭⎫ ⎝⎛-=+'+''22222,得证.(1)令 x t ln =, t e x =,原方程化为:0222=--y dtdy dt y d . 其通解为t t e c e c y -+=221.将x 代入,得:xcx c y 221+=.(2) 令 x t ln =, t e x =,原方程化为:t te y dt dydt y d =+-2222,上述方程的相应其次方程的通解为:()t c t c e y t hsin cos 21+=.令上述方程一个特解为:()1b t b e y t p+=,代入方程得:0,11==b b , 即:t e y t p=.原方程得通解为:()t t c t c e y t ++=sin cos 21,即:()()[]x x c x c x y ln ln sin ln cos 21++=.***12.一质量为m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为k >0),浮力为常数B ,求潜水艇下降深度x 与时间t 之间的函数关系. 解: ma B F F =--阻重, a 为加速度,ma B kv mg =--, v 为下降速度,因为 22,dt x d dt dv a dt dx v ===, 所以 22dt xd m B dt dx k mg =--,即 m B g dtdx m k dt x d -=+22 ,其特征方程为: 02=+λλmk , 解得特征根为 m k-==21,0λλ.所以对应的齐次方程的通解为:21c ec x t mkh+=-.由于0是特征方程的单根,故设其特解为:t b x 01=,代入方程有:m B g b m k -=0, 得 kBmg b -=0.所以微分方程的通解为:t kB mg c ec x t mk-++=-21, 因为初始位置为0,初始速度为0,所以有初始条件 ()()00,00'==x x ,代入微分方程有: ⎪⎩⎪⎨⎧=-+-=++000121k Bmg c m k c c 求得:222221,k gm Bm c k Bm g m c -=-=, 所以x 与t 的关系可表示为: t k B mg e k g m Bm x tm k -+⎪⎪⎭⎫ ⎝⎛--=-122.***13.证明:若有方程'=-f x f x ()()1,则必有''+=f x f x ()()0,并求解此方程. 证明:由于'=-f x f x ()()1,两边关于x 求导得''=-'-=---=-f x f x f x f x ()()[()]()111故得''+=f x f x ()()0(1)解方程(1)得通解为f x C x C x ()cos sin =+12(2)'=-+f x C x C x ()sin cos 12(3)'='=f f f f ()(),()()0110,将此代入(2),(3)得C C CC C C 1221211111cos sin sin cos +=-+=⎧⎨⎩ 解得:C C 21111=+sin cos 所以原方程的解为:f x C x x ()cos sin cos sin =++⎛⎝ ⎫⎭⎪1111.第9章 (之8)(总第51次)教学内容:§9.6 微分方程应用举例 (机动)第9章 (之9)(总第52次)教学内容:§9.7 差分方程 1. 已知t te y 3=是二阶差分方程t t t e ayy=+-+11的一个特解,求a .解: )31(3e ea -=.2. 求下列差分方程的一般解: (1) 0721=+-t tyy ;解:t t C y )27(-=(2) 431-=--t tyy ;解:23+=t tC y(3) 051021=-++t y ytt ;解:)61(125)5(-+-=t C y tt (4) t tt y y2124=-+;解:144-+=t t tt C y(5) t tt t y y21⋅=-+.解:t tt C y 2)2(-+=3. 写出下列差分方程的一个特解形式: (1) t y ytt sin 1=-+;解:t B t B Y tcos sin 21+=(2) t y ytt πcos 31-=++.解:)sin cos (21t B t B t Y tππ+=4. 设ty 为第t 期国民收入,tC 为第t 期消费,I 为每期投资(I 为常数).已知ty ,tC ,I之间有关系I C y tt+=,βα+=-1t tyC ,其中10<<α,0>β,试求ty ,tC .解:ty 满足:βα+=--I yy t t1,解得 αβα-++=1I C y t t , 从而 =-=I y C t t ααβα-++1I C t .5. 已知差分方程tt tcy yby a =++1)(,其中a ,b ,c 为正的常数.设初始条件0)0(0>=y y ,证明:(1) 对任意 ,2,1=t ,有0>ty ;(2) 在变换tt yu 1=之下,原差分方程可化为有关t u 的线性差分方程,写出该线性差分方程并求其一般解; (3) 求方程tt ty yy =++1)21(的满足初始条件20=y 的解.解:(1)归纳法证明.(2)令 tt y u 1=,即tt u y 1=,111++=t t uy ,则原方程化为线性差分方程b au cutt =-+1,其一般解为 a c ≠时, ac bc a C u t t -+=)( ; a c =时, b C u t +=.(3)令 tt yu 1=,原方程化为 21=-+t t u u ,一般解为 2+=C u t ,所以原方程的一般解为 tt u y 1=21+=C ,代入 20=y ,得 23-=C ,所以 特解为 2=ty .。

高数下第九章的答案

高数下第九章的答案
解:直线 的方向向量 ;设过点 到直线 的垂足为 ;则有
,即 ;又 在直线 上,
联立方程 解得
从而点 到直线 的距离为 .
9.5空间曲面
P.31.习题9.5
1.指出下列方程在平面解析几何和在空间解析几何中分别表示什么图形.
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
解:(1) 在平面解析几何中表示平行于y轴的直线,在x轴上的截距为2; 在空间解析几何中表示平行于yoz面的平面,在x轴上的截距为2;
.
(3)已知非零向量a、b、c且满足 ,证明 .
(4)设向量 ,证明三向量a、b、c共面.
证明:(1)
(2)
相加得 .
(3)已知 ,右乘b得 ,即 ;同理 ;
所以 .
(4)因为 ;
所以设向量 ,证明三向量a、b、c共面.
南阳理工学院高等数学(下)课后答案选解
第九章向量代数与空间解析几何
9.1向量及其坐标表示
P.9习题9.1
2.已知一边长为a的正方体,现取正方体下底面的中心为原点,正方体的顶点在x轴、y轴上,求此正方体各顶点的坐标.
解:下底面的四个顶点分别是:
对应的上底面的四个顶点分别是:
3.求出点 到原点、各坐标轴及坐标面的距离.
;所求直线为 .
(5)过点 且与直线 垂直相交的直线方程为
;则 ;联立
解得
所以,过点 且与直线 垂直相交的直线方程为
.
2.用点向式方程及参数方程表示直线
解:设直线的方向向量为 ;在直线
上任取一点 ,则 解得
所以,点向式方程为 ;参数方程为
3.求直线 与平面 之间的夹角.
解:因为

高等数学(下)答案(9)

高等数学(下)答案(9)

第九章 重积分§ 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D⎰⎰+=22 其中D 为:422≤+y x( dxdy y x I D⎰⎰+=22=πππ3162.4..312.4.=-) 2、设D 为圆域,0,222>≤+a a y x 若积分dxdy y x a D⎰⎰--222=12π,求a 的值。

解:dxdy y x a D⎰⎰--222=3.34.21a π 81=a3、设D 由圆,2)1()2(22围成=-+-y x 求⎰⎰Ddxdy 3解:由于D 的面积为π2, 故⎰⎰Ddxdy 3=π64、设D :}10,53|),{(≤≤≤≤y x y x ,⎰⎰⎰⎰+=+=DDdxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的立体的体积,可用二重积分表示为⎰⎰≤+=1:222)]([y x D dxdy xy f V6、根据二重积分的性质估计下列积分的值⎰⎰Dydxdy x 22sin sin ππ≤≤≤≤y x D 0,0:(≤0⎰⎰Dydxdy x 22sin sin 2π≤) 7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ⎰⎰→Da dxdy y x f a ),(1lim20π解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim820f f dxdy y x f a a D a ==→→⎰⎰ηξπ§ 2 二重积分的计算法1、设⎰⎰+=Ddxdy y xI 1,其中D 是由抛物线12+=x y 与直线y=2x ,x=0所围成的区域,则I=( )A : 212ln 3ln 87+-- B : 212ln 3ln 89-+C : 212ln 3ln 89-- D : 412ln 3ln 89--2、设D 是由不等式1≤+y x 所确定的有界区域,则二重积分⎰⎰+Ddxdy y x )(为( )A :0B : 31C :32D : 13、设D 是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分 ⎰⎰Dxy dxdy ye 为( )A :e e e 212124--B :21242121e e e e -+-C :e e 21214+ D :2421e e -4、 设f(x,y)是连续函数,则二次积分dy y x f dx x x ⎰⎰++-2111),(为( )A dx y x f dy dx y x f dy y y ⎰⎰⎰⎰----+112111102),(),( B dx y x f dy y ⎰⎰--1110),(C dx y x f dy dx y x f dy y y ⎰⎰⎰⎰-----+112111102),(),( D dx y x f dy y ⎰⎰---11202),(5、设有界闭域D 1、D 2关于oy 轴对称,f 是域D=D 1+D 2上的连续函数,则二重积分⎰⎰Ddxdy y x f )(2为( )A ⎰⎰1),(22D dxdy y x f B ⎰⎰22),(4D dxdy y x fC ⎰⎰1),(42D dxdy y x f D⎰⎰22),(21D dxdy y x f 6、设D 1是由ox 轴、oy 轴及直线x+y=1所围成的有界闭域,f 是域D:|x|+|y|≤1上的连续函数,则二重积分⎰⎰Ddxdy y x f )(22为( )A ⎰⎰1),(222D dxdy y x f B ⎰⎰1),(422D dxdy y x fC ⎰⎰1),(822D dxdy y x f D⎰⎰1),(2122D dxdy y x f7、.设f(x,y)为连续函数,则⎰⎰a xdy y x f dx 0),(为( )A ⎰⎰a a ydx y x f dy 0),( B ⎰⎰a yadx y x f dy 0),(C ⎰⎰a y dx y x f dy 0),( D ⎰⎰a xdx y x f dy 0),(8、求 ⎰⎰=Ddxdy yx I 22 ,其中 :D 由x=2,y=x,xy=1所围成. (49)9、设I=⎰⎰31ln 0),(xdy y x f dx ,交换积分次序后I 为:I=⎰⎰31ln 0),(xdy y x f dx =⎰⎰3ln 03),(y edx y x f dy10、改变二次积分的次序: ⎰⎰⎰⎰-+4240200),(),(xxdy y x f dx dy y x f dx = ⎰⎰201221xxdx y dx x11、设 D={(x,y)|0≤x ≤1,0≤y ≤1} ,求⎰⎰+Dy x dxdy e 的值解:⎰⎰+Dyx dxdy e=⎰⎰⎰⎰-==+121101)1())((e dy e dx e dy edx y xl yx12设 I=⎰⎰--Ddxdy y x R 222,其中D 是由x 2+y 2=Rx 所围城的区域,求I (331R π)13、计算二重积分⎰⎰-+Ddxdy y x |4|22,其中D 是圆域922≤+y x解:⎰⎰-+Ddxdy y x |4|22==-+-⎰⎰⎰⎰rdr r d rdr r d ππθθ2032220202)4()4(241π 14、计算二重积分⎰⎰Dy x dxdy e},max{22,其中D={(x,y)| 0≤x ≤1,0≤y ≤1}解: ⎰⎰Dy xdxdy e }22,max{=1101022-=+⎰⎰⎰⎰e dx e d dy e dx yy xx y15、计算二重积分⎰⎰++Ddxdy yx yx 22,D :.1,122≥+≤+y x y x 解:⎰⎰++D dxdy yx y x 22=24)sin (cos 201sin cos 12πθθθπθθ-=+⎰⎰+rdr r r d§ 3 三重积分1、设Ω是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则⎰⎰⎰Ωxdxdydz 为( )A ⎰⎰⎰--12101y x y xdz d dx B ⎰⎰⎰---2102101y yx xdy dz dxC ⎰⎰⎰---2102101x yx xdz dy dx D ⎰⎰⎰10110xdz dy dx2、设Ω是由曲面x 2+y 2=2z,及z=2所围成的空间有界域,在柱面坐标系下将三重积分⎰⎰⎰Ωdxdydz z y x f ),,(表示为累次积分,I=( )A ⎰⎰⎰120202ρπθρθρρθz)dz ,sin ,cos f(d d B ⎰⎰⎰220202ρπρθρθρρθdz z),sin ,cos f(d dC ⎰⎰⎰2022202ρπρθρθρρθdz z),sin ,cos f(d d D ⎰⎰⎰20220dz z),sin ,cos f(d d ρθρθρρθπ3、设Ω是由1222≤++z y x 所确定的有界闭域,求三重积分⎰⎰⎰Ωdv e z ||解:⎰⎰⎰Ωdv e z ||=⎰⎰⎰--≤+111||222)(z y x z dz dxdy e =2⎰=-122)1(ππdz z e z 4、设Ω是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求⎰⎰⎰Ωdxdydz z xy 32(1/364)5、设Ω是球域:1222≤++z y x ,求⎰⎰⎰Ω++++++dxdydz z y x z y x z 1)1ln(222222 (0) 6、计算⎰⎰⎰+Qdxdydz y x )(22 其中Ω为:平面z=2与曲面2222z y x =+所围成的区域 (π564) 7、计算⎰⎰⎰Qzdxdydz x 2其中Ω是由平面z=0,z=y,y=1以及y=x 2所围成的闭区域(2/27))8、设函数f(u)有连续导数,且f(0)=0,求dxdydz z y x f t tz y x t )(1lim 222222240⎰⎰⎰≤++→++π解:dxdydz z y x f tt z y x t ⎰⎰⎰≤++→++222222240(1lim π=)0(')(4limsin )(1lim 42022040f t drr f r dr r r f d d ttt tt ==⎰⎰⎰⎰→→ϕϕθπππ§4 重积分的应用1、(1)、由面积22y x +=2x, 22y x +=4x,y=x,y=0所围成的图形面积为( )A )2(41+πB )2(21+πC )2(43+π D 2+π(2) 、位于两圆θρsin 2=与θρsin 4=之间,质量分布均匀的薄板重心坐标是( )A (0,35)B (0,36)C (0,37) D (0,38)(3)、由抛物面x y z 422=+和平面x=2所围成的质量分布均匀的物体的重心坐标是 ( )A (0,0,34)B (0,0,35) C (0,0,45) D (0,0,47)(4)、 质量分布均匀(密度为μ)的立方体所占有空间区域:}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,该立方体到oz 轴的转动惯量I Z =( )A 31μB 32μC μD 34μ2、求均匀上半球体(半径为R)的质心解:显然质心在z 轴上,故x=y=0,z=⎰⎰⎰Ω=831Rzdv V 故质心为(0,0,R 38)4、 曲面2213y x z --=将球面25222=++z y x 分割成三部分,由上至下依次记 这三部分曲面的面积为 s 1, s 2, s 3, 求s 1:s 2:s 3解:π102559222=--=⎰⎰≤+dxdy y x y x 1S π2025516222=--=⎰⎰≤+dxdy y x y x 3Sπ70=2S5、求曲面xy Rz =包含在圆柱222R y x =+内部的那部分面积 解:3)122(2222222R dxdy R y x R R y x π-=++=⎰⎰≤+S6、求圆柱体Rx y x 222≤+包含在抛物面Rz y x 222=+和xoy 平面之间那部分立体的体积解:43)(2132222R dxdy y x R Rx y x π=+=⎰⎰≤+V 第九章 自测题一、选择题: (40分) 1、⎰⎰-x dy y x f dx 1010),(=( )A ⎰⎰-1010),(dx y x f dy x B ⎰⎰-xdx y x f dy 1010),( C ⎰⎰11),(dx y x f dy D ⎰⎰-ydx y x f dy 101),(.2、设D 为222a y x ≤+,当=a ( )时,π=--⎰⎰Ddxdy y x a 222. A 1 B 323 C 343 D 321 3、设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ).A 4220a rdr a d a πθπ=⎰⎰ B 422021a rdr r d aπθπ=⋅⎰⎰; C 3022032a dr r d a πθπ=⎰⎰ D 402202a adr a d a πθπ=⋅⎰⎰.4、设Ω是由三个坐标面与平面z y x -+2=1所围成的空间区域,则⎰⎰⎰Ωxdxdydz =( ).A481 B 481- C 241 D 241- .5 、设Ω是锥面,0(222222>+=a by a x c z )0,0>>c b 与平面c z y x ===,0,0所围成的空间区域在第一卦限的部分,则⎰⎰⎰Ωdxdydz z xy=( ).A c b a 22361B b b a 22361C a c b 22361D ab c 361.6、计算⎰⎰⎰Ω=zdv I ,1,222=+=Ωz y x z 为围成的立体,则正确的为( )和()A ⎰⎰⎰=101020zdz rdr d I πθB ⎰⎰⎰=11020rzdz rdr d I πθ C ⎰⎰⎰=11020rrdr dz d I πθ D ⎰⎰⎰=zzrdr d dz I 0201πθ.7、曲面22y x z +=包含在圆柱x y x 222=+内部的那部分面积=s ( )A π3B π2C π5D π22.8、由直线2,2,2===+y x y x 所围成的质量分布均匀(设面密度为μ)的平面薄板,关于x 轴的转动惯量x I =( ).A μ3B μ5C μ4D μ6二、计算下列二重积分:(20分)1、⎰⎰-Dd y x σ)(22,其中D 是闭区域:.0,sin 0π≤≤≤≤x x y (9402-π) 2、⎰⎰Dd xy σarctan ,其中D 是由直线0=y 及圆周1,42222=+=+y x y x ,x y =所围成的在第一象 限内的闭区域 . (2643π) 3、⎰⎰+-+Dd y x y σ)963(2,其中D 是闭区 域:222R y x ≤+ (2494R R ππ+)4、⎰⎰-+Dd y x σ222,其中D :322≤+y x . (.25π) 三、作出积分区域图形并交换下列二次积分的次序: (15分)1、⎰⎰⎰⎰-+yydx y x f dy dx y x f dy 30312010),(),( (⎰⎰-xxdy y x f dx 3220),()2、⎰⎰-+2111),(x xdy y x f dx (⎰⎰⎰⎰-+22202110),(),(y y y dx y x f dy dx y x f dy )3、⎰⎰θθθθ0)sin ,cos (rdr r r f d a (⎰⎰θθθθ0)sin ,cos (rdr r r f d a )四、计算下列三重积分:(15分)1、Ω+⎰⎰⎰Ω,)cos(dxdydz z x y :抛物柱面x y =2,,π=+==z x o z o y 及平面所围成的区域 (21162-π) 2、,)(22⎰⎰⎰Ω+dv z y 其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围 (π3250) 五、(5分)求平面1=++czb y a x 被三坐标面所割出的有限部分的面积 .(22222221a c c b b a ++) 六、(5分)设)(x f 在]1,0[上连续,试证:310101])([61)()()(⎰⎰⎰⎰=dx x f dxdydz z f y f x f x y x 0)0(,)()()()(,)()(1==='=⎰⎰F dx x f t F x f x F dt t f x F x且则=⎰⎰⎰101)()()(x yx dxdydz z f y f x f =-⎰⎰dy x F y F y f dx x f x11)]()()[()(dx x F F x F x F F x f )}()1()()]()1((21){[(2122⎰+--=)1(21)1(61)1(21333F F F -+=)1(613F。

高数第九章解答_khdaw

高数第九章解答_khdaw
孑毖 ?、 阜
9,t9’ o厶
Ⅱ 【秃
留 饪 ∵私19`铞
g℃ 1亠 -孓 c关

q亻△ˇ留'仉 ~幻 f丬 丿o吖'饫 ′+留 吖 ′-q'皈 -叨 绽 ′
`=留
〃-留 〃 =ˉ Tru丿 9?g△ 十
,恭 喉厶拶 句″ `V午 钉 ,,勹 切
`J扌 颐
`为 Gqt以 9干 C,刁巳f∝ 丿
宀 耐 饪 J、'廷
亻⑷ 辶泓 以吧
以十6)s以 》 伽 大 十 2扬呒 从 $丿 +CI△ 丈 干 r,s义
△ G宀 大 fC,⒐

#孛

ˉ ct铴 众 十 r冫
歹、 X)矽 ″-4爿
9'洋
^一
6u。

天·et
/ 贾
sF乡亻
G9f=r匕 匕~匕/)去
)舞 砝 %Ξ {∶I讠{l丨
E-彳 一 繁
课后答案网 幻r~吆 .′ -4勹 /十 ‘ °f‘ 0o
冫l
◇σ 干 ε,乙 圹叶C、 ⒐跷十兽
1细 (‰ 9· 9十 O。 str‰
f
'冫 巩轻 甲tJ
www.khd课后a答w案.网com
U孔 , , r。 f丿
亻 ′-⒊ V′ 十 冫
(3,灼 孓‘叼'彳 ?V=o
占 沟 △亻子刀 Ⅱ
入△ ;入 f亠 =。 .^=(、 λ ⒓ . C‘ g丬 千 C亠 e2x
递乙甲‘2 课后答案网
C /Ⅱ f∫
°/U二 万 锈 丐 .告 监亻l+圹 卜 rl劳 一席轩 ,。f丬 =荔 ″卜 些厶Cl+犭 勹十
`斋 y~lr.疒 丿-荔 犭L茂 ‘rf9·丿千C讠

高等数学第九章练习题答案

高等数学第九章练习题答案

第九章 练习题一、填空 第一节1、 22222)1ln(),(y x y x y x f --+-+=的定义域是2122≤+<y x .2、 2222911),(y x y x y x f --+-+=的定义域是9122≤+<y x .3、 2222001sin)(lim yx y x y x ++→→= 0 . 4、=+-→→xyxy y x 93lim0 16- .5、、函数y x z -=的定义域是 (){}y x y x y x ≥≥≥2,0,0/,6、函数()12ln 2+-=x y z 的定义域是 0122>+-x y7、()()=+-→11lim0,0,xy xy y x 2-. 19. ()()=-+→xyxy y x 24lim0,0,41. 8、求极限()()()yxy y x tan lim0,2,→= 29、 2210ln()lim y x y x e x y →→++= ln 2 . 第二节1、设z =zx ∂∂2、设z arctan(xy )=,则zx∂=∂ ,z y ∂=∂ .22,1()1()y x xy xy ++ 3、 设223z x xy y =++,则(1,2)zx ∂∂= 8 ,(1,2)z y ∂∂= 7 .4、设y x e z 2-=,而t x sin =,3t y =,则=dtdz()22sin 6cos 3t t e t t -- 5、设y x z =,而te x =,12-=t e y ,则=dt dz ()2231-+-t t t e e e6、 设(1)y z xy =+,则zx∂∂= 21(1)y y xy -+ 7、设(1)xy z x =+,则zy∂∂=(1)ln(1)xy x x x ++ 8、设y x z y3⋅=,求=∂∂∂y x z 2 ⎪⎪⎭⎫ ⎝⎛-y y y 13ln 3 。

9、函数222234x y z x ++=,则z x ∂=∂ 23z x x z∂-=∂,z y ∂=∂ 。

高数下第九章例题及答案

高数下第九章例题及答案

复习三 重积分1.了解二重的几何意义, 会交换二次积分的次序.例1.设D 为闭圆域x 2+y 2≤R 2, 则Dσ⎰⎰= .解: 此积分表示以半径为R 的半球体的体积, 即33142233R R ππ⋅=.例2.改变二次积分⎰⎰210),(x dy y x f dx 的积分次序得( ).(A )⎰⎰100),(2dx y x f dy x ; (B )⎰⎰110),(y dx y x f dy ;(C )⎰⎰ydx y x f dy 010),(; (D )⎰⎰112),(x dx y x f dy .解: 积分区域为D ={(x , y )|0≤x ≤1, 0≤y ≤x 2}, 积分区域又可表示为 }1 ,10|) ,{(≤≤≤≤=x y y y x D , 所以⎰⎰⎰⎰=1101),(),(2yx dxy x f dy dy y x f dx .2.会利用直角坐标和极坐标计算二重积分, 会利用直角坐标、柱面坐标和球面坐标计算三重积分.例1.计算σd e x Dy ⎰⎰-22, 其中D 由x =0, y =1, y =x 围成.解: 因为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰--=1102222xy Dy dye dx x d e x σ, 计算无法进行.因为D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 所以⎰⎰⎰⎰⎰⎰----===1022103021222226131dy e y dy e y dx x dy ed exy y yy Dy σ)21(61|616161|6161101021021022222ee e dy e e y de y y y y y -=--=+-=-=----⎰⎰. 例2.计算⎰⎰=Ddxdy yyI sin , 其中D 由曲线x y =、直线y =x 围成.解: 积分区域可表示为D ={(x , y )|0≤y ≤1, y 2≤x ≤y }, 于是 ⎰⎰⎰⎰⎰-===1010sin )1(sin sin 2ydyy dx y y dy dxdy y yI y y D=1-sin1.例3.将⎰⎰-12),(x x dyy x f dx 化成极坐标形式的二次积分 .解: 积分区域为}0 ,10|) ,{(2x x y x y x D -≤≤≤≤=, 在极坐标下}cos 0 ,20|),{(θπθθ≤≤≤≤=r r D , 所以⎰⎰⎰⎰=-θπθθθc o s20100)s i n ,c o s (),(2r d r r r f d dy y x f dx x x .例4.计算二重积分⎰⎰--Dy xdxdye 22,其中D 为x 2+y 2=1所围成的闭区域.解:⎰⎰⎰⎰⎰⎰-----===1210120222222dr e rdr erdr ed dxdy er r r Dy x ππθπee r πππ-=-=-10|2. 例5.计算三重积分⎰⎰⎰Ω+++3)1(z y x dxdydz , 其中Ω为平面x =0, y =0, z =0,x +y +z =1所围成的四面体. 解: 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1}, 于是⎰⎰⎰Ω+++3)1(z y x d x d y d z⎰⎰⎰---+++=yx xdz z y x dy dx 103101)1(1⎰⎰--++=xdy y x dx 10210]81)1(21[dx x x ⎰+-+=1]8183)1(21[)852(l n 21-=.例6.计算三重积分dv y x ⎰⎰⎰Ω+)(22其中Ω为x 2+y 2=2z 及z =2所围成的闭区域.解: 在柱面坐标下积分区域可表示为 Ω: 0≤θ≤2π, 0≤r ≤2, 2212≤≤z r ,于是316)212(2)(22322122020222ππθπ=-=⋅=+⎰⎰⎰⎰⎰⎰⎰Ωdr r r rdz r dr d dv y x r.例7.计算三重积分dv z y x )(222++⎰⎰⎰Ω, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解: 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1,于是 dv z y x )(222++⎰⎰⎰Ωθϕϕd d r dr s i n 4⋅=⎰⎰⎰Ω⎰⎰⎰=1420s i n dr r d d ππϕϕθπ54=.3.会计算立体的体积, 会计算曲面的面积, 会计算质心或形心.例1.求由抛物柱面z =2-x 2及椭圆抛物面z =x 2+2y 2所围成的立体的体积. 解: ππθπ=-=-=+--=⎰⎰⎰⎰104210220222]21[2)22()]2()2[(r r rdr r d dxdy y x x V D. 例2.求锥面22y x z +=被柱面z 2=2x 所割下的部分的曲面面积. 解: 曲面22y x z +=与z 2=2x 的交线在xOy 面上的投影为⎩⎨⎧==+0222z xy x .所求曲面在xOy 在上的投影区域为D ={(x , y )|x 2+y 2≤2x }. π22122=='+'+=⎰⎰⎰⎰DDy x dxdy dxdy z z A .例3.求由曲线ay =x 2, x +y =2a (a >0)所围成闭区域的形心. 解: 闭区域可表示为}21 ,2|),{(2x a y x aa x a y x D -≤≤≤≤-=.因为 3222121227)12(2a dx x a x a x dy xdxxdxdy aaxa xa aa D-=--==⎰⎰⎰⎰⎰---,324222212536)144(212a dx x a x ax a ydy dx ydxdy a a xa x a aa D =-+-==⎰⎰⎰⎰⎰---,22221229)12(2a dx x a x a dy dx dxdy aax a x aaaD=--==⎰⎰⎰⎰⎰---.所以a a a d x d yx d x d y x DD2129122723-=-==⎰⎰⎰⎰, aa adxdy ydxdyy DD282953623===⎰⎰⎰⎰.练习三1. 设区域D 为x 2+y 2≤a 2, 且π=--⎰⎰dxdy y x a D222, a =________.2. 设D 由y 2=x 及y =x -2所围成, 则⎰⎰=Dxyd I σ=( ).(A)⎰⎰+=422y y xydy dx I ; (B)⎰⎰-+=2122y y xydx dy I ;(C)⎰⎰⎰⎰--+=4121x x xxxydydx xydy dx I ; (D)⎰⎰-+=2122y y xydy dx I .3. 交换下列二次积分的顺序, 并画出积分区域草图. (1)⎰⎰--22),(0x a xa adyy x f dx ; (2)⎰⎰xe dy y xf dx ln 01),(; (3)⎰⎰---x x dy y x f dx 214262),(.4. 设D : |x |≤1, 0≤y ≤1, 则⎰⎰+Dyd y x σ)(3=________.5. 曲面x 2+y 2+z 2=R 2(z >0)和2R z =所围成的立体的体积可表为二重积分________.6. 计算二次积分⎰⎰+=131021x dy yxy dx I .7. 利用极坐标计算积分⎰⎰⎰⎰-+++=10212022222x x dy y x dx dy y x dx I .8. 计算二重积分⎰⎰+Ddxdy y x )(, 其中D : x 2+y 2≤2x .9. 计算二重积分⎰⎰+Dd y x σ)cos(, D 是以点(0, 0),(0, π), (π, π) 为顶点的三角形区域.10. 计算二重积分dxdy xy D⎰⎰2, 其中D 为直线y =x 和抛物线y =x 2所围成的平面区域.11. 计算二重积分σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )|a 2≤x 2+y 2≤b 2}.12. 计算二重积分⎰⎰+'Ddxdy y x f )(22, 其中D 为圆域: x 2+y 2≤R 2 .13. 求⎰⎰⎰Ω++=dv z y x I )(22,其中Ω是由曲线⎩⎨⎧==022x zy 绕z 轴旋转一周的曲面与平面z =4所围立体.14.计算⎰⎰⎰Ω+dVzx)(,其中Ω是由曲面22yxz+=与221yxz--=围成.15.求旋转椭球面2221449x y z++=所围成的旋转体的体积.16.求半圆域x2+y2≤a2,x≥0的形心.17.求圆锥面2z=+x2+y2=2x内部的曲面面积.。

高等数学课后习题答案第九章1

高等数学课后习题答案第九章1

第九章习题解答(2) 习题9.31、 求上半球面222y x a z含在柱面ax y x 22内部的曲面面积解:被积函数为222y x a z 22222)(y x a x z x 22222)(yx a y z y --= 所以 dxdy yx a a dS 222--=积分区域为::D ax y x =+22,化成极坐标:设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 0,22a r ≤≤≤≤-⎰⎰-=-θππθcos 02222a ra ardr d S cos 0222222)(2a r a r a d d a ⎰---=22cos 022ππθθd r a a a)2(222)sin (222220-=⋅+-=--=⎰ππθθπa a a d a a a2、 求圆锥面22y x z +=被柱面x z 22=所截下的曲面面积解:被积函数为22y x z += 2222)(y x x z x += , 2222)(yx y z y += 所以 dxdy dS 2=积分区域为::D x y x 222=+,设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 20,22≤≤≤≤-r⎰⎰-=θππθcos 20222rdr d S ππθθππ222124cos 22222=⋅⋅==⎰-d3、 求抛物柱面221x z =含在由平面x y y x ===,0,1所围的柱体内的面积 解:被积函数为221x z = 22)(x z x = , 0)(2=y z所以 dxdy x dS 21+=积分区域为::D x y y x ===,0,1,0=z 围成的闭区域=+=⎰⎰x xdy x dx S 021⎰+xdx x x 0213122)1(3121)1(1211232022-=+⋅=++=⎰x x d x x 。

4、 求下列图形的形心 (1)、:D 1,0,2===x y x y ,围成的闭区域解:将密度看成1;⎰⎰⎰⎰=xDdy dx dxdy 201032221==⎰dx x 522210232010===⎰⎰⎰⎰⎰dx x dy xdx xdxdy xD2112010===⎰⎰⎰⎰⎰dx x ydy dx ydxdy xD于是得形心坐标为:53322522~==x 82332221~==y 形心为)82353( (2)、:D θρco s 1+=,围成的闭区域 解:将密度看成1;πθ23=⎰⎰Ddr rd (前面求出的结果) dr r d rdrd r xdxdy D D⎰⎰⎰⎰⎰⎰+'==θπθθθθcos 10220cos cos⎰+=πθθθ203)cos 1(cos 31d +⎰πθθ20cos 31d +⎰πθθ202cos d +⎰πθθ203cos d ⎰πθθ204cos 31d +=0++⎰πθθ20)2cos 1(21d +0⎰++πθθθ20242cos 2cos 2131d=π1215242122πππ=++65231215~==ππx 由图形关于x 轴的对称性得0~=y 形心为)065((3)、:D 0,12222≥=+x by a x ,围成的闭区域解:面积ab 2π=⎰⎰⎰⎰---=2222110a xb a x b a Dxdy dx xdxdy ⎰-=adx ax x b 0221232)1(32)2(22123222ba a x ab =--= ππ34232~2a ab ba x == 由图形关于x 轴的对称性得0~=y 形心为)034(πa5、 圆盘)0(222>≤+a ax y x 内各点处的密度=),(y x μ22y x +,求此圆盘的质心解:=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x 22⎰⎰-θππθcos 20222a dr r d3203332316cos 316a d a ⋅==⎰πθθ3932a ==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x 22⎰⎰-θππθθcos 20322cos a dr r d15641588cos 1641442254a a d a =⋅==⎰-ππθθ 56~a M M x y ==,由对称性得0~=y 所求质心为)056(a6、 设有一个等腰直角三角形薄片,各点处的密度等于该点到直角顶点距离的平方,求此圆薄片质心 解:设等腰直角三角形的顶点为),0(),0,(),0,0(a a 则22),(y x y x +=μ=M =⎰⎰D dxdy y x ),(μ=+⎰⎰Ddxdy y x )(22⎰⎰-+xa a dy y x dx 0220)( ⎰-+-=a dx x a x a x 032])(31)([⎰-+-=a dx x a x a ax 03322]31312[ 62132444a a a =-= =y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy xy x)(23⎰⎰-+xa a dy xy x dx 0230)(⎰-+-=adx x a x x a x 033])(31)([⎰-+-=a dx x x a x a ax 043223]34312[ 5555515115463121a a a a a =-+-= 由对称性得=x M =⎰⎰Ddxdy y x y ),(μ=+⎰⎰Ddxdy y y x)(32⎰⎰-+ya a dx y y x dy 032)(155a = 52~a M M x y ==,52~a M M x x == 所求质心为)5252(aa 7、 设有顶角为α2,半径为R 的扇形薄片,各点处的密度等于该点到扇形顶点距离的平方,求此薄片质心 解:设扇形顶点为)0,0(关于x 轴对称 则22),(y x y x +=μ=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x)(22⎰⎰-Rdr r d 03ααθ24R α==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x )(22⎰⎰-Rdr r d 04cos θθαα5sin 2αR =5sin 4~αR M M x y == 由对称性得0~=y ,所求质心为)05sin 4(αR8、 设均匀薄片(面密度为常数)ρ,战局的区域如下,求指定的转动惯量(1)、⎭⎬⎫⎩⎨⎧≤+=1),(2222b y a x y x D 求y I ,l I ,其中是过原点切倾斜角为α的直线解:ab M ρπ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰123203cos dr r d b a θθπ ===⎰4cos 43202ba d abρθθρπ42Ma由题设可知薄片上任意点到直线l 的距离为αα2tan 1tan +-=y x dl I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰++Ddxdy xy y x )tan 2tan (tan12222αααρ⎰⎰+=Ddxdyx 222tan 1tan ααρ⎰⎰++Ddxdy y 22tan 1αρ⎰⎰+-Dxydxdy ααρ2tan 1tan 24tan 1tan 222Ma ⋅+=ααρdr r d ab ⎰⎰++1322023sin tan 1ϑθαρπdr r d b a θθθαρπ⎰⎰+-1320222sin cos tan 14tan 1tan 222Ma ⋅+=αα2tan 123παρ⋅++ab 4tan 1tan 222Ma ⋅+=αα4tan 1122Mb ⋅++ααα2222tan 1tan 4++⋅=a b M (2)、{}b y a x y x D ≤≤≤≤=0,0),(求y I ,l I ,其中是过原点与点),(b a 的对角线ab M ρ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰bady dx x 023323Ma ba ==ρx I ρμ==⎰⎰Ddxdy y x y ),(2ρ=⎰⎰Ddxdy y2⎰⎰bady y dx 0232Mb =由题设可知薄片上任意点到直线l 的距离为22ba ay bx d +-=l I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰-++Ddxdy abxy y a x b b a )2(222222ρ=⎰⎰+Ddxdy x ba b 2222ρ⎰⎰++Ddxdy y ba a 2222ρ⎰⎰+-Dxydxdy ba ab222ρ22223b a b Ma +=22223b a a Mb ++22222b a b a M +-)(62222b a b Ma += 习题9.41、 化三重积分⎰⎰⎰Ωdv z y x F ),,(为三次积分(只须先,z 次对,y 后对x 一种次序)(1)、由三个坐标面与平面06236=-++z y x 围成解:23230yx z --≤≤,,220x y -≤≤10≤≤x ⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰---=yx x dz z y x f dy dx 32302201),,((2)、由旋转抛物面22y x z +=与平面1=z 围成解:122≤≤+z y x ,,1122x y x -≤≤--11≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰+-+---=111112222),,(y x x x dz z y x f dy dx(3)、由圆锥面22y x z +=与上半球面222y x z --=围成解:22222y x z y x --≤≤+,,2222x y x -≤≤--22≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰--+-+---=22222222222),,(y x y x x x dz z y x f dy dx(4)、由双曲抛物面xy z =与平面0,1==+z y x 围成 解:xy z ≤≤0,,10x y -≤≤10≤≤x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰-=xyxdz z y x f dy dx 01010),,(2、 设有一物体,点据空间闭区域{}10,10,10),,(≤≤≤≤≤≤=Ωz y x z y x 密度函数为z y x z y x ++=),,(μ,求该物体的质量解:=++=⎰⎰⎰Ωdv z y x M )(=⎰⎰⎰Ωxdv ++⎰⎰⎰Ωydv =⎰⎰⎰Ωzdv =⎰⎰⎰Ωzdv 32331011==⎰⎰⎰zdz dy dx 3、 计算三重积分 (1)、⎰Ωx y d v⎭⎬⎫⎩⎨⎧=++====Ω132,0,0,0),,(z y x z y x z y x ⎰⎰⎰Ωxydv ⎰⎰⎰---=)21(30)1(2010yx x xydz dy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx⎰-----=103222])22(21)22(33)22(23[dx x x x x x x ⎰-----=103222])22(21)22(33)22(23[dx x x x x x x 101512215105]12303010[10432=-+-=-+-=⎰dx x x x x (2)、⎰⎰⎰Ωzdv y x 22 {}x z z x y x y x z y x ==-====Ω.0,,,1),,( ⎰⎰⎰Ωxyzdv ⎰⎰⎰-=xxx zdz y x dy dx 02210⎰⎰-=x x dy y x dx 24102124131107==⎰dx x (3)、⎰Ωx y z d v{}0,1,,),,(=====Ωz x x y xy z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰=xyxxyzdz dy dx 01264181107==⎰dx x (4)、⎰Ωdv z 2 {}0,1),,(22=--==Ωz y x z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰------=22221021111y x x x dz z dy dx ⎰⎰--=x dy y x dx 0232210)1(311525132)1(311023220ππθπ=⋅=-=⎰⎰rdr r d (5)、⎰Ωdv z 2 {}z x y z z y x 2),,(222≤++=Ω解;积分区域是1)1(222=-++z y x ,22221111y x z y x --+≤≤---2211x y x -≤≤--111≤≤-x这样计算很繁琐,改为下面的方法(是很高的技巧) 任意取一点,z 则截口面积为)2(2z z dxdy -=π⎰⎰⎰⎰⎰⎰=ΩDdxdy dz z dv z2022dz z z )2(243⎰-=π58)542(2054ππ=-=z z4、 利用柱坐标计算 (1)⎰⎰⎰Ωzdv 其中Ω是由上半球面222y x z --=与旋转抛物面22y x z +=围成的闭区域解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,222r z r -≤≤ 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰-=222120r rzdz rdr d πθ⎰⎰--=104220]2[21dr r r r d πθ 127)61411(]2[21105320ππθπ=--=--=⎰⎰dr r r r d (2)⎰⎰⎰Ω+dv y x z22 其中Ω是由旋转抛物面22y x z +=与平面1=z 围成的闭区域解:先确定该区域在xoy 面的投影区域⎩⎨⎧+==221yx z z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,12≤≤z r 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰=112202rzdz dr r d πθ⎰⎰-=104220]1[21dr r r d πθ 214)7131(][21106220ππθπ=-=-=⎰⎰dr r r d5、设密度为常量μ的均匀物体占据由223y x z --=与0,1,1=±=±=z y x 围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域 就是{}11,11),(≤≤-≤≤-=y x y x D (1)、=M ⎰Ωdv μ ⎰⎰⎰----=22301111y x dz dy dx μ⎰⎰--=-12211)3(2dy y x dx μμμμ328)3138(4)38(4102=-=-=⎰dx x(2)、由对称性得0~,0~==y x=z M =⎰⎰⎰Ωzdv μ⎰⎰⎰----22301111y x zdz dy dx μ⎰⎰--=-122211)3(dy y x dx μμμ45506)316536(2142=+-=⎰dx x x ==MM z z ~210253,所以物体的重心是)210253,0,0( (3)=z I ⎰⎰⎰Ω+dv y x )(22μ⎰⎰⎰----+=2230112211)(y x dz dy y x dx μ⎰⎰--+=122221)3)((4dy y x y x dx μ⎰⎰---+=14422221)233(4dy y x y x y x dx μM dx x x 1056245248)519754(4)3754(41042==-+=-+=⎰μμμ6、设密度为常量1的均匀物体占据由上半球面222y x z --=与圆锥面22y x z +=围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22r z r -≤≤ 10,20≤≤≤≤r πθ,于是(1)、=M ⎰⎰⎰Ωdv ⎰⎰⎰-=22120r rdz rdr d πθ⎰⎰--=1220]2[dr r r r d πθ=--=⎰⎰102220]2[dr r r r d πθ)12(34)12(3220-=-=⎰πθπd (2)、由对称性得0~,0~==y x =z M ⎰⎰⎰Ωzdv ⎰⎰⎰-=22120r rzdz rdr d πθ⎰⎰--=102220]2[21dr r r r d πθ=-=⎰⎰10320][dr r r d πθ24120πθπ==⎰d==MM z z ~)12(83+,所以物体的重心是))12(83,0,0(+(3)、=z I ⎰⎰⎰Ω+dv y x )(22 ⎰⎰⎰-=221320r rdz dr r d πθ⎰⎰--=12320]2[dr r r r d πθ=--=⎰⎰1042320]2[dr r r r d πθ)51(2-A π =A dt t t dr r r)(cos sin 242223123⎰⎰=-πdt t t )sin (sin 245203-=⎰π1528)15832(24=-= 所以=z I )328(152)511528(2-=-=ππ (B )的习题 1、⎰⎰⎰Ω+dv z x y )cos( ⎭⎬⎫⎩⎨⎧==+====Ω0.2,,0,2),,(z z x x y y x z y x ππ ⎰⎰⎰Ωxyzdv ⎰⎰⎰-+=xxdz z x y dy dx 202)cos(ππ=⎰⎰-xdy x y dx 020)sin 1(π⎰-=20)sin 1(21πdx x x 202]cos [sin 2116ππx x x --=21162-=π2、⎰⎰⎰Ωzdv {}z z y x z y xz y x 2,1),,(222222=++=++=Ω皆7:先确定该区域在xoy 面的投影区域⎩⎨⎧=++=++z z y x z y x 21222222为⎪⎩⎪⎨⎧==+04322z y x 就是⎭⎬⎫⎩⎨⎧≤+=43),(22y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22111r z r -≤≤-- 230,20≤≤≤≤r πθ,于是 ⎰⎰⎰Ωzdv ⎰⎰⎰---=221112320r r zdz rdr d πθ=⎰⎰--230220)112(21dr r r d πθ245]21)1(32[2302232ππ=---=r r习题9.51、 计算下列对弧长曲线积分(1)、ds y x nl⎰+)(22,其中l 为圆周222a y x =+解:设t a y t a x sin ,cos ==,adt ds =ds y xn l⎰+)(22⎰++==ππ2012122n n a dt a(2)、⎰l yds x sin 其中l 是连接点)0,0(,),3(ππ的直线段解:l 的方程为x y 31=π30≤≤x dx dx ds 310911=+=⎰lyds x sin dx xx ⎰=π303sin 310dt t t ⎰=π0sin 103π103= (3)、⎰l y ds 其中l 是连接点x y 42=上点)0,0(,)2,1(的一段弧解:l 的方程为x y 42= 10≤≤x dx xds 11+= ⎰lyds )122(34)1(34121231-=+=+=⎰x dx x (4)、⎰+l ds y x )( 其中l 是连接点)0,1(,)1,0(的直线段解:l 的方程为x y -=1 , 10≤≤x , dx ds 2=⎰+lds y x )(dx ⎰=122=(5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (6)、ds y l⎰,其中l 为圆周122=+y x解:设t y t x sin ,cos ==,dtds =ds y l⎰⎰=πsin tdt ⎰-ππ2sin tdt πππ20cos cos x x +-=422=+= (7)、ds el y x ⎰+22,其中l 为圆周0,,422===+y x y y x 在第一象限的区域的边界解:在直线0=y 上 20≤≤x dx ds =ds ely x ⎰+122122-==⎰e dx e x在弧422=+y x 上设t y t x sin 2,cos 2==,dt ds 2=40π≤≤tds el y x ⎰+222222402ππ⋅==⎰e dt e在直线x y =上 20≤≤x dx ds 2=ds el y x ⎰+32212220222-===⎰e edx exxds ely x ⎰+22+-=)1(2e +⋅22πe )1(2-e )22(2+=πe 2-(8)、⎰l x y ds 其中l 是2,4,0,0====y x y x 围成的矩形的边界解:4321l l l l l +++=1l 的方程为0=y =⎰1l x y d s 001=⎰dx l ,4l 的方程为0=x=⎰4l xyds 004=⎰dy l2l 的方程为4=x=⎰2l x y d s 842==⎰y d y, 3l 的方程为2=y=⎰3l x y d s1624=⎰xdx24=⎰lxyds(9)、⎰l ds y 2其中l 是摆线)cos 1(),sin (t a y t t a x -=-=的一拱解:dt t a t a ds 2222sin )cos 1(+-=dt ta 2sin 22= ⎰l ds y 232022282sin 2)cos 1(a dt t a t a =-=⎰π=⎰π2052sin dt t ⎰π053sin 16udu a1525615832sin 32332053aa udu a =⋅==⎰π(10)、⎰+lds y x 22 其中l 是上半圆周x y x 222=+与x 轴围域的边界解:21l l l +=,1l :x y x 222=+化为1)1(22=+-y x 设t y t x sin ,cos 1==-,dt ds =⎰+122l ds y x =++=⎰π22sin )cos 1(dt t t =⎰π2cos dt t4cos 420=⎰πudu2l :0=y ,dx ds =⎰+222l ds y x 22==⎰xdx62422=+=+⎰lds y x2、 求半径为,R 中心角为α2的扇形圆弧的质心(密度均匀)1=μ解:选择与书上168页图9-34一样的坐标系,于是根据对x 轴的对称性得0~=y 设1=μ,t R y t R x sin ,.cos ==Rdt ds =R M α2=⎰=lyds M x 1~==⎰-ααtdt R M cos 12==⎰α2cos 2tdt R Mαααsin sin 22R M R ==所求质心为)0sin (ααR3、 计算下列关于坐标的曲线积分 (1)、⎰+ldx y x )(22,L 是抛物线2x y =上)0,0(O 到)4,2(A 一段弧解:⎰+l dx y x )(221556]53[)(20532042-=+=+=⎰x x dx x x(2)、⎰l y dx ,L 是 2,4,0,0====y x y x 矩形的边界按照逆时针方向 解:A O :0=y ,4:=x B A0=dx ,2:=y C A ,0:=x O C0=dx ,⎰lydx ⎰⎰⋅+=ABOAy dx 00⎰⎰⋅++COBCy dx 028204-==⎰dx(3)、⎰+l x d y y dx ,L 是 20,sin ,cos π≤≤==t t R y t R x 一段针方向的弧解:⎰+l xdy ydx dt x x dt t tR R t R t R )(]cos cos )sin (sin [242⎰++-=π02sin 22cos 202202===⎰ππtR dt t R(4)、⎰+-++lyx dyx y dx y x 22)()(,L 是圆周 222a y x =+沿逆时针方向解:t a y t a x sin ,cos ==,⎰+-++l y x dy x y dx y x 22)()(⎰-+-+=π2022]cos )sin (cos )sin )(sin [(cos a dt t t t t t t a ππ2120-=-=⎰dt(5)、⎰++l x dy dx y x )(,L 是折线 x y --=11从)0,0(到)0,2(一段解:⎩⎨⎧>-≤=121x x x xy ,弧dx dy x y A O ==,: ,dx dy x y B A -=-=,2:⎰++lxydy dx y x )(⎰⎰+=OAAB383732311)22()2(212102=+-++=+-++=⎰⎰dx x x dx x x (6)、⎰---l dy y a dx y a )()2(,L 是 )cos 1(),sin (t a y t t a x -=-=摆线的一拱,从)0,0(到)0,2(a π解:⎰---ldy y a dx y a )()2(dt t a t a a ⎰---=π20)cos 1()]cos 1(2[dt t a t a a ⎰---π20sin )]cos 1([dt t t t a ⎰+=π2022)cos sin (sin220222sin 2cos 1(a dt tt a ππ=+-=⎰4、计算⎰-++l dy x y dx y x )()(,其中L 分别是(1)、x y =2上点)1,1(到)2,4( (2)、点)1,1(到)2,4(的直线段解:(1)、在x y =2上点)1,1(到)2,4(,dx xdy 21=⎰-++ldy x y dx y x )()(dx x x xx x )](21[41-++=⎰3342153723)2121(41=++=++=⎰dx x x (2)、点)1,1(到)2,4(的直线段,3231+=x y ,dx dy 31=⎰-++ldy x y dx y x )()(dx x x x x )]3231(313231[41-++++=⎰ 11398215910)98910(41=⋅+⋅=+=⎰dx x 5、计算⎰+++l dy y x dx y x )2()2(,其中L 分别是(1)、2x y =上点)0,0(到)1,1(的一段弧 (2)、3x y =点)0,0(到)1,1(的一段弧 (3)、点)0,0(到点)0,1(再到点)1,1(的折线 解:(1)、2x y =上点)0,0(到)1,1(,xdx dy 2=⎰+++ldy y x dx y x )2()2(dx x x x xx ])2(22[122⎰+++=3111)432(132=++=++=⎰dx x x x(2)、3x y =点)0,0(到)1,1(的一段弧,dx x dy 23=⎰+++ldy y x dx y x )2()2(dx x xx ])642[153⎰++=3111=++=(3)、点)0,0(到点)0,1(再到点)1,1(的折线⎰+++ldy y x dx y x )2()2(+=⎰dx x 102⎰+1)21(dy y 3=6、一力场由沿x 轴正向的常力→F 构成,求将一个质量为m 的质点沿222R y x =+按逆时针方向移动过第一象限那段弧所做的功 解:→F →=i F dx F W l⎰=F R tdt R F -=-=⎰2sin π节9.6习题处理1、计算下列关于坐标的曲线积分,并验证格林公式的正确性(1)dy y x dx y x l )()(22--+⎰,L 是椭圆12222=+by a x 沿逆时针方向解:设t b dy t b y t a dx t a x cos ,sin ,sin ,cos ==-==dy y x dx y xl)()(22--+⎰⎰⎰⎰-+-=πππ2023202320sin cos cos sin tdt t atdt t bdt abab π2-=用格林公式y x y x P +=2),( 2),(y x y x Q +-=1),(-=y x Q x 1),(=y x P ydy y x dx y x l)()(22--+⎰ab dxdy Dπ22-=-=⎰⎰ (2)、dy y x dx y x l )()(222+-+⎰)0,0()1,0()0,1()0,0(:→→→L 直线段围成的闭路解:0),0,1()0,0(:1=→y L ; x y L -=→1),1,0()0,1:2;0),0,0()1,0(:3=→x Ldy y x dx y x l)()(222+-+⎰1])1([012012210-=--+-=⎰⎰⎰dy y dx x x xdx 用格林公式2)(),(y x y x P += 22),(y x y x Q --=x y x Q x 2),(-= )(2),(y x y x P y +=dy y x dx y x l)()(222+-+⎰=+-=⎰⎰Ddxdy y x )2(2⎰⎰-+-xdy y x dx 1010)2(21)2321(210-=-+-=⎰dx x x2、求星形线t a y t a x 33sin ,cos ==所围的面积解:dt t t a ydx xdy A l ⎰⎰=-=π20222sin cos 232183)4cos 1(1632202a dt t t a ππ=-=⎰3、用格林公式计算(1)、dy y x dx y x l)653()42(-+++-⎰)0,0()2,3()0,3()0,0(:→→→L 直线段围成的三角形边界解:653),(-+=y x y x Q 42),(+-=y x y x P3),(=y x Q x y y x P y -=),(dy y x dx y x l)653()42(-+++-⎰12212344=⨯⨯⨯==⎰⎰Ddxdy ⎰⎰-+-x dy y x dx 1010)2(2(2)、dy y y x dx xe xy l x)cos ()32(2-++⎰1:2222=+by a x L 逆时针方向解:x xe xy y x P 32),(+= y y x y x Q c o s ),(2-=x y x Q x 2),(= x y x P y 2),(=dy y x dx y x l)653()42(-+++-⎰00==⎰⎰Ddxdy(3)、⎰+++l y ydy e x dx xey )1()(22224:x x y l -=由)0,4()0,0(→的弧解:先补足成闭路1-+=l OA Ly xe y y x P 2),(+= 1),(22+=y e x y x Qy x xe y x Q 22),(= y y xe y x P 221),(+=⎰+++L y y dy e x dx xe y )1()(222ππ2)2(212-=-=-=⎰⎰Ddxdy 于是⎰+++ly ydy e x dx xey )1()(222-+++=⎰dy e x dx xe y y OA y )1()(22(2⎰+++Ly ydy e x dx xey )1()(222ππ2824+=+=⎰xdx(4)、⎰---l dy y y x dx y )sin ()cos 1(x y l s i n:=上由)0,()0,0(π→的弧解:先补足成闭路1-+=l OA Ly y x P cos 1),(-= )s i n (),(y y x y x Q --=y y y x Q x sin ),(+-= y y x P y s i n ),(=⎰-+---1)sin ()cos 1(l OA dy y y x dx y ⎰⎰⎰⎰-=-=xDydy dxydxdy sin 0π4)12((cos 41sin 21002πππ-=-=-=⎰⎰x xdx于是⎰---ldy y y x dx y )sin ()cos 1(----=⎰dy y y x dx y OA )sin ()cos 1((⎰-+---1)sin ()cos 1(l OA dy y y x dx y4400πππ=+=⎰dx(5)、⎰+--l dy y x dx y x )sin ()(2222:x x y l -=上由)1,1()0,0(→的弧解:先补足成闭路1-++=l AB OA Ly x y x P -=2),( )s i n ),(2y x y x Q --=-=),(y x Q x 1),(-=y x P y⎰-+++--1)sin ()(22lAB OA dy y x x dx y x 0=于是⎰+--l dy y x dx y x )sin ()(22+--=⎰dy y x dx y x OA)sin ()(22dy y x dx y x AB)sin ()(22--=⎰+=⎰102dx x ⎰--12)sin 1(dy y⎰---=10)2cos 1(21131dy y 672sin 41-= (6)、⎰+++l xxdy e x dx ye )()1( 1:2222=+by a x L 上由)0,()0,(a a →-的上半椭圆解:先补足成闭路1),(-++-=l a a Lx ye y x P +=1),( x e x y x Q +=),(x x e y x Q +=1),( x y e y x P =),(ab dxdy dy e x dx ye Dl a a x x π21)()1(1),(==+++⎰⎰⎰-++- 于是⎰+++lxx dy e x dx ye )()1(ab dy e x dx ye a a x x π21)()1(),(-+++=⎰+- ab dx a a π21-=⎰-ab a π212-= 4、 证明下列曲线积分在xoy 面内与路径无关,并计算积分值 (1)、⎰-++)3,2()1,1()()(dy y x dx y xy x y x P +=),( y x y x Q -=),( 都是初等函数,因此在xoy 面内有连续的偏导数1),(=y x Q x 1),(=y x P y 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++)3,2()1,1()()(dy y x dx y x ⎰+=21)1(dx x ⎰-+31)2(dy y=--+-+=)19(214)14(21125 (2)、⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy32),(4+-=y xy y x P 324),(xy x y x Q -= 都是初等函数,因此在xoy 面内有连续的偏导数342),(y x y x Q x -= 342),(y x y x P y -= 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy ⎰+=21)22(dx x ⎰-+13)164(dy y544)14(2=-+-+=25(3)、⎰-++),()0,0()c o s ()s i n (ππdy y xe dx x e y yx e y x P y sin ),(+= y xe y x Q y cos ),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( yy e y x P =),( 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++),()0,0()cos ()sin (ππdy y xe dx x e yy⎰+=π0)sin 1(dx x ⎰-+ππ0)cos (dy y e y=--++=0)1(2πππe 252+=ππe 5、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某一个函数),(y x u 的全微分,并且求这样的函数),(y x u(1)、dy y x dx y x )2()2(+++解答:y x y x P 2),(+= y x y x Q +=2),( 都是初等函数,因此在xoy 面内有连续的偏导数2),(=y x Q x 2),(=y x P y 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使dy y x dx y x y x du )2()2(),(+++=⎰+++=),()0,0()2()2(),(y x dy y x dx y x y x u ⎰=x xdx 0⎰++ydy y x 0)2(2221221y xy x ++=(2)、dy y xe dx e x y y )2()2(-++解答:y e x y x P +=2),( y xe y x Q y 2),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( y y e y x P =),( 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y xe dx e x y y )2()2(-++⎰-++=),()0,0()2()2(),(y x yydy y xe dx e x y x u ⎰+=x dx x 0)12(⎰-+yy dy y xe 0)2(=-+-+=x xe y x x y 22y xe y x +-22(3)、y d y x y d x x 3c o s 2c o s 33s i n 2s i n2-解答:y x y x P 3sin 2sin 2),(= y x y x Q 3c o s 2c o s 3),(-= 都是初等函数,因此在xoy面内有连续的偏导数y x y x Q x 3c o s 2s i n 6),(= y x y x P y 3c o s 2s i n 6),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰-=),()0,0(3cos 2cos 33sin 2sin 2),(y x ydy x ydx x y x uy x ydy x y 3sin 2cos 3cos 2cos 30-=-=⎰(4)、dy ye y x y x dx xy y x y)122()3(223322++++解答:32283),(xy y x y x P += yye y x y x y x Q ++=223122),( 都是初等函数,因此在xoy 面内有连续的偏导数22246),(xy y x y x Q x += =),(y x P y 22246xy y x + 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰++++=),()0,0(223322)122()83(),(y x y dy ye y x y x dx xy y x y x u31 ⎰++=yy dy ye y x y x y x u 0223)122(),(y y e ye y x y x -++=322346、设→→→-++=j xy i y x F )12()(2试证:在在xoy 面内,→F 作的功与路径无关 证明:⎰-++=l dy xy dx y x W )12()(22),(y x y x P += 12),(-=xy y x Q 都是初等函数,因此在xoy 面内有连续的偏导数 y y x Q x 2),(= y y x P y 2),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内积分与路径无关,所以在在xoy 面内, →F 作的功与路径无关。

高等数学下册复旦大学出版社第九章答案(黄立宏著)

高等数学下册复旦大学出版社第九章答案(黄立宏著)
2
故切线方程为
x
π 1 y 1 z 2 2 2 . 1 1 2
法平面方程为
x

π 1 y 1 2( z 2 2) 0 2
π x y 2z 4 0. 2
3. 证明:螺旋线 x = acost, y = asint, z = bt 的切线与 z 轴形成定角。 证明: x a sin t , y a cos t , z b. 螺旋线的切向量为
(2) z = e2x(x+y 2+2y); (4) z = (x2+y 2) e
( x2 y 2 )
;
得驻点为(0,0) ,(0,2),(2,0),(2,2). zxx=6x-6, zxy=0, zyy=6y- 6 2 在点(0,0)处,A=- 6,B=0,C=-6,B -AC=-36<0,且 A<0,所以函数有极大值 z(0,0)=0. 在点(0, 2)处,A =-6,B =0, C=6,B 2-AC=36>0,所以(0,2)点不是极值点. 在点(2, 0)处,A =6,B =0, C=- 6,B 2-AC=36>0,所以(2,0)点不是极值点. 在点(2, 2)处,A =6,B =0, C=6,B2-AC=-36<0,且 A >0,所以函数有极小值 z(2,2)=-8.
习题九
1. 求下曲线在给定点的切线和法平面方程: (1)x=asin2t,y =bsint cost,z=c cos2t,点 t (2)x2+y 2+z2=6,x+y+z=0,点 M0(1,-2,1); (3)y2=2mx,z2=m-x,点 M0(x0,y0,z0). 解: x 2a sin t cos t , y b cos 2t , z 2c cos t sin t 曲线在点 t

上海财经大学《高等数学》第九章习题及解答

上海财经大学《高等数学》第九章习题及解答

第九章习题解答1.设xoy 平面上的一块平面薄片D ,薄片上分布有密度为),(y x u 的电荷,且),(y x u 在D 上连续,请给出薄片上电荷Q 的二重积分表达式.[解] 板上的全部电荷应等于电荷的面密度(,)u x y 在该板所占闭区域D 上的二重积分, 即=(,)DQ u x y d σ⎰⎰.2.由平面1342=++z y x ,0=x , 0=y ,0=z 围成的四面体的体积为V ,试用二重积分表示V . [解] 4(1)23Dx yV dxdy =--⎰⎰. 3.比较大小 (1) σ⎰⎰+D d y x 2)( 与σ⎰⎰+Dd y x 3)(,其中D 是x 轴、y 轴与直线1=+y x 所围成.(2)σ⎰⎰+Dd y x 2)(与σ⎰⎰+Dd y x 3)(,其中D 是由圆2)1()2(22=-+-y x 所围成. [解] (1) 由0x 1y ≤+≤,得32()x y ≤+(x+y), 由二重积分的性质可得23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 由积分区域D 位于+1x y ≥的半平面内,所以D 内有23()()x y x y +≤+, 由二重积分的性质可得23()()DDx y d x y d σσ+≤+⎰⎰⎰⎰. 4.估计: (1) I=σ⎰⎰+Dd y x xy )(,其中D 是矩形区域:0≤x ≤1,0≤y ≤1;(2) I=σ⎰⎰++Dd y x )1(,其中D 是矩形区域:0≤x ≤1,0≤y ≤2;(3) I=σ⎰⎰++Dd y x )9(22,其中D 是圆形区域:422≤+y x . [解] (1) 因为在区域D 上有01,0y 1x ≤≤≤≤,所以01,02,xy x y ≤≤≤+≤故0()2xy x y ≤+≤,所以0()22,DDDd xy x y d d D σσσ≤+≤=⎰⎰⎰⎰⎰⎰上海财经大学《高等数学》第九章习题及解答即()2Dxy x y d σ≤+≤⎰⎰0.(2)因为在区域D 上01,02x y ≤≤≤≤,所以114x y ≤++≤,故()=x 14=4DDDD d y d d D σσσ≤++≤⎰⎰⎰⎰⎰⎰,即()218Dx y d σ≤++≤⎰⎰.(3) 因为2222x 494()925,y x y ≤++≤++≤9,所以25D I D ≤≤9,即36100I ππ≤≤.5.由二重积分的几何意义计算⎰⎰--Dd y x R σ222,222:R y x D ≤+.[解] 令2222z x y z R =++=,所以z Dd σ⎰⎰为上半球体的体积, 于是有314=23DR σπ⋅⎰⎰.6.求下列二重积分 1)σ⎰⎰+D d y x)(22,其中D 是矩形区域:|x|≤1, |y|≤1;2)σ⎰⎰+Dd y x )23(,其中D 是x 轴、y 轴与直线2=+y x 所围成闭区域;3)σ⎰⎰++Dd y y x x )3(322,其中D 是矩形闭区域:0≤x ≤1,0≤y ≤1; 4)σ⎰⎰+Dd y x x )cos(, 其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域; 5)σ⎰⎰Dy x d e),max{22,其中D 是矩形闭区域:0≤x ≤1,0≤y ≤1.[解] (1) 1112222211128233Dx y d x y dxdy x dx σ---+=+=+=⎰⎰⎰⎰⎰()()(). (2)22-003232xDx y d dx x y dy σ+=+⎰⎰⎰⎰()()22224)xx dx =++⎰(-3220220(4)33x x x =-++=.(3) 11323323033Dx x y y d dy xx y y dx σ++=++⎰⎰⎰⎰()()42131001()()14424y y y y y dy =++=++=⎰.(4)coscos()xDx x y d xdx x y dy πσ+=+⎰⎰⎰⎰()001(sin 2sin )(cos 2cos )2x x x dx xd x x ππ=-=--⎰⎰00113(cos 2-cos )cos 2-cos 222x x x x x dx πππ=-+=-⎰(). (5) 因{}222222111max ,100001111(1)2222x x y x x x xD e d dx e dy e xdx e dx e e σ=====-⎰⎰⎰⎰⎰⎰, 所以 {}22max ,(1)x y Ded e σ=-⎰⎰.7. 画出积分区域,计算积分: 1) σ⎰⎰Dd y x ,其中D 是由两条抛物线2x y =, x y =所围成闭区域, 2) σ⎰⎰Dd xy2,其中D 是由圆周422=+y x 及y 轴所围成右半闭区域,3) σ⎰⎰+D yx d e, 其中D 是由1≤+y x 所确定的闭区域,4)σ⎰⎰-+Dd x y x )(22, 其中D 是由直线x y y ==,2 及x y 2=所围成的闭区域. [解] (1)图略.27114400226()3355xDdx x x dx σ==-=⎰⎰⎰⎰(2)图略.222352222164();31015Dxy d dy dx y y σ--==-=⎰⎰⎰ (3)图略.1111101x x x y x y x y x x De d e dx e dy e dx e dy σ+-++----=+⎰⎰⎰⎰⎰⎰1211211()()x x ee dx e e dx +---=-+-⎰⎰21021111111()()22x x e x ex e e e e +---=-+-=-.(4) 图略.2222202()()yy Dxy x dy x y x dx +-=+-⎰⎰⎰⎰2330193()248y y dy =-⎰ 4321911()2448y y =⋅- 136=. 8. 交换下列的积分顺序 1) ⎰⎰--22221),(x x xdy y x f dx ,2) ⎰⎰--aax a dy y x f dx 220),(3)⎰⎰-xx dy y x f dx sin 2sin 0),(π;4)⎰⎰--2ln 1),(2y e dx y x f dy ⎰⎰-++2)1(2112),(y dx y x f dy ;5)⎰⎰⎰⎰-+31301020),(),(yy dx y x f dy dx y x f dy ;6)⎰⎰--2ln 1),(2ye dx y xf dy ⎰⎰-++2)1(2112),(y dx y x f dy .[解] (1) 图略.2111202(,)(,)xydx f x y dy dy f x y dx--=⎰⎰⎰(2) 图略.(,)(,)aaadx f x y dy dy f x y dx-=⎰⎰(3) 图略.sin 01arcsin 0sin12arcsin 0arcsin 2(,)(,)(,)xyx yydx f x y dy dy f x y dx dy f x y dxπππ----=+⎰⎰⎰⎰⎰⎰(4) 图略. 因{}{}22ln =1,2(,)111)2D y e y x x y y y x -≤≤-≤≤⋃≤≤-≤≤(x,y ),因此积分区域还可以表示为212,02,1x D x y x e y x -⎧⎫⎪⎪=≤≤≤≤+⎨⎬⎪⎪⎩⎭(),所以 1222212221(101)1 (,)(,)(,)x x eIn y yedy f x y dx f x y dx dx f x y dy --+--+=⎰⎰⎰⎰⎰⎰.(5) 图略. 由3x y =-和=2=1x y ,,得123323012(,)(,)=(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+⎰⎰⎰⎰⎰⎰.9.计算下列二重积分: ⑴⎰⎰+Dy x d e σ23.2||,2||:≤≤y x D ⑵⎰⎰+Dd y xσ)(22.1||||:≤+y x D .⑶⎰⎰+Ddxdy y x 221.10,10:≤≤≤≤y x D . ⑷⎰⎰--Ddxdy y x )2(21.2,:x y x y D ==. [解] 223232322266442222111(1)()()326x y x y x y De d e dx e dy e e e e e e σ+------==+=--⎰⎰⎰⎰. (2)3111222100()()3xxy dx x y dy dx x y --+=+⎰⎰⎰3120(1)(1)3x x x dx ⎡⎤-=-+⎢⎥⎣⎦⎰ 12463=⨯=. (3) 23112110220011arctan 1133412Dx x dxdy x dx dy yy y ππ===⋅=++⎰⎰⎰⎰. (4)21011(2)(2)22x x Dx y dxdy dx x y --=--⎰⎰⎰⎰ 22101(2)22xx y dx y xy =--⎰2412230122222x x x x x x dx ⎡⎤⎛⎫⎛⎫=-----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎰1711(1)26410=-++ 11120=.10.利用极坐标求下列积分 1)⎰⎰+Dd y x σ)(22其中D 是由直线x y =, )0(3,,>==+=a a y a y a x y 所围成的区域. 2)⎰⎰+Ddxdy y x 22.1:22≤+y x D .3)⎰⎰--D d y x R σ222,其中D 是由圆周Rx y x =+22所围成的区域.4) ⎰⎰+Ddxdy y x)(22.y y x D 6:22≤+.5)⎰⎰-+Dd y x σ222,其中D :322≤+y x . 6)σ⎰⎰++Dd y x )1ln(22,其中D 是由圆周122=+y x 及坐标轴所围成的第一象限内 的闭区域; 7)计算dxdy y x D)(22⎰⎰+,其 D 为由圆 y y x 222=+,y y x 422=+及直线y x 3-0=, 03=-x y 所围成的平面闭区域8) 计算二重积分⎰⎰++Ddxdyyx y x 2222)sin(π,其中积分区域为22{(,)|14}D x y x y =≤+≤;9)σ⎰⎰++--Dd yx y x 222211,其中D 是由圆周122=+y x 及坐标轴所围成的第一象限内的闭区域. 10)⎰⎰++Dd y xσ)1ln(22.4:22≤+y x D ,0≥x ,0≥y .[解] (1) 32222414ayay a Dx y d dy x y dx a σ-+=+=⎰⎰⎰⎰()().(2)2120012233Dd r dr πθππ==⋅=⎰⎰.(3)cos 202R Dd rdr πθπθ-=⎰⎰cos 202R d rdr πθθ=⎰⎰33320112(sin )33R R d πθθ=-⎰34()33R π=-. (4)设cos ,sin x r y r θθ==, 则006sin r θπθ≤≤≤≤,.22=Dx y dxdy +⎰⎰原式()6sin 3444000136sin 6432d r dr d πθπθθθπ==⨯=⎰⎰⎰.2222222000442230(5)22)2)55((24442D x y d d rdr d r rdr r rdr r r d r r πππσθθθππ⎡⎤+-=-=-+-⎢⎥⎣⎦⎡=--=⋅=⎢⎣⎰⎰⎰⎰⎰(6)积分区域D 的极坐标表达式0,012r πθ≤≤≤≤,则12222+x (1)(221)4DInd In r rdr In ππσ=+=-⎰⎰⎰⎰(1+y ).(7)内边界22sin 2sin r r r θθ=⇒=, 外边界24sin 4sin r r r θθ=⇒=,则,2sin 4sin 63r ππθθθ≤≤≤≤,所以原式=4sin 2224332sin 6660sin 15(48Ddxdy d r rdr d ππθππθπθθθ=⋅==-⎰⎰⎰⎰⎰(x +y )(8)cos ,sin x r y r θθ==,则02,12r θπ≤≤≤≤,原式221=sin 4Dd rdr πθπ==-⎰⎰.(9)采用极坐标计算200(2)8Dd ππθπ==-⎰⎰. (10) 积分区域D 的极坐标表达式为022r πθ≤≤≤≤0,,则22222+(1)(554)4DInd d In r rdr In ππσθ=+=-⎰⎰⎰⎰(1x +y ).11. 将三次积分⎰⎰⎰yxxdz z y x f dy dx ),,(110改换积分次序为z y x →→.[解] 110(,,)(,,)xy yy x xxD I dx dy f x y z dz d f x y z dz σ==⎰⎰⎰⎰⎰⎰,现改为先y 后x 的顺序:11(,,)(,,)yyxDxzI dy dx f x y z dz dy f x y z d σ==⎰⎰⎰⎰⎰⎰现改为先x 后z 的顺序:10(,,)(,,)yzy z zD I dy dz f x y z dx d f x y z dx σ==⎰⎰⎰⎰⎰⎰现改为先y 后z 的顺序:110(,,)zzI dz dy f x y z dx =⎰⎰⎰.12.将三次积分⎰⎰⎰+10122),,(y x dz z y x f dy dx 改变成按x z y ,,的次序积分.[解] 1()(,,)(,,)D x I f x y z dV dx f x y z Ω==⎰⎰⎰⎰⎰⎰,其中22.Dy ≤≤≤≤+(x ):0y 1,0z x 现改为先y 后z 的顺序,将D (x )分成两部分: 2,01;y ≤≤≤≤0z x2211x z x y ≤≤+≤≤,所以:222111110=x x xI dx dz dy dx dz ++⎰⎰⎰⎰⎰.13..求下列给定区域的体积 1)求由曲面222y xz +=及2226y x z --=,所围成的立体的体积;2)求由下列曲面所围成的立体体积,y x z+=,xy z =,1=+y x ,0=x ,0=y .[解] 1) 222226(2)z x y x y =+=-+, {22(,)|2},D x y x y =+≤ 于是2222(62)(2)DV z y x y dxdy =---+⎰⎰2263()D xy dxdy =-+⎰⎰2203)6r rdrd πθπ=-=⎰. 2) []111107()24xx y xx y z x xyV d d d d x y xydy -+-==+-=⎰⎰⎰⎰⎰. 14.作适当的变换,计算下列二重积分:1)⎰⎰Ddxdy y x22,其中D 是由两条双曲线1=xy 和2=xy ,直线x y =和xy 4=所围成的在第Ⅰ象限的闭区域. 2)⎰⎰+Ddxdy y x )(22,其中D 是椭圆区域:1422≤+y x . [解] 1) (,)(,)1,2,(,)(,)22u xyu v x y v yx y u v v v =⎧∂∂⎪==⎨∂∂=⎪⎩, {}'(,)|12,14D u v u v =≤≤≤≤, 于是,2422221117ln 2223x y u v u v D D u x y d d u d d d d v v =⋅==⎰⎰⎰⎰⎰⎰. 2) cos 1sin 2x r y r θθ=⎧⎪⎨=⎪⎩, {}'(,)|01,02D r r θθπ=≤≤≤≤, 于是 ,,222221()(cos sin )42D Dr x y dxdy r drd θθθ+=+⎰⎰⎰⎰ 123001535(cos 2)28832r drd πθθπ=+=⎰⎰.15. 计算dxdydz z xy V42⎰⎰⎰.31,20,10:≤≤≤≤≤≤z y x V .[解]1232424213230010111196823515Vxy z dxdydz xdx y dy z dz x y z ==⋅⋅=⎰⎰⎰⎰⎰⎰. 16.计算dxdydz z y x V⎰⎰⎰++)sin(.V 由平面0=x ,0=y ,0=z ,2π=++z y x 围成.[解]222sin()sin()x yx y z dxdydz dx dy x y z dz πππ--Ω++=++⎰⎰⎰⎰⎰⎰22200cos()|x ydx x y z dy πππ--=-++⎰⎰22sin()|xx y dx ππ-=+⎰12π=-.17.在柱面坐标系下计算三重积分dxdydz y xV⎰⎰⎰+)(22,其中V 由旋转抛物面)(2122y x z +=及平面2=z 所围成的立体. [解] 令cos sin x r y r θθ=⎧⎨=⎩, {}'02,02V r z θπ=≤≤≤≤≤≤, 于是,222223016()3x y z r z r z VVx y d d d r rd d d d d d πθθπ+=⋅==⎰⎰⎰⎰⎰⎰⎰⎰. 18.设有物体占有空间V: 0≤x ≤1, 0≤y ≤1,0≤z ≤1,在点()z y x ,,的密度是()z y x z y x ++=,,ρ,求该物质量.[解] (,,)()M x y z dxdydz x y z dxdydz ρΩΩ==++⎰⎰⎰⎰⎰⎰1113()2dx dy x y z dz =++=⎰⎰⎰. 19.计算⎰⎰⎰Vdxdydz z xy32,其中V 是曲面xy z =与平面1,==x x y 和0=z 所围成的闭区域.[解] Ω在xOy 面上的投影区域Dxy 由,1,0y x x y ===所围成,则11232312001128364xxyxyz dxdydz xdx y dy z dz x dx Ω===⎰⎰⎰⎰⎰⎰⎰. 20.计算⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是平面1,0,0,0=++===z y x z y x 所围成的四面体.[解] 令1x y z ++=中的0z =,得1x y +=,Ω在xOy 面上的投影区域Dxy 由0,0,1x y x y ==+=所围成, 所以111330001(1)(1)x x y dxdydz dx dy dz x y z x y z ---Ω=++++++⎰⎰⎰⎰⎰⎰ 1120011115()(ln 2)24(1)28x x y d d x y -=--=--++⎰⎰. 21. 计算⎰⎰⎰Vxyzdxdydz ,其中V 是球面1222=++z y x 及坐标面所围成的第一卦限内的闭区域.[解] 令2221x y z ++=中z=0得221y +=x ,故Ω在xOy 面上的投影区域Dxy 由221,0,0x y x y +===所围成,故1xyzdxdydz dx xyzdz Ω=⎰⎰⎰⎰1122220001111(1)(1)22448xdx y x y dy x x dx ⎡⎤=--=-=⎢⎥⎣⎦⎰⎰. 22. 计算⎰⎰⎰Vxyzdxdydz ,其中V 是平面1,,0===y y z z 以及抛物柱面2x y =所围成的闭区域.[解] (1)故Ω在xOy 面上的投影区域Dxy 由1y =,2y x =所围成, 所以2111yxxzdxdydz dx dy xzdz -Ω=⎰⎰⎰⎰⎰⎰21121102x xdx y dy -==⎰⎰. (2)Ω在z 轴上的投影区域为[]0,h ,过[]0h ,内的任一点做垂直于z 轴的平面截Ω得截面为一圆域Dz ,其半径为R z h,所以Dz 为:22222R x y z h +=,面积为222R z h π, 所以222224hhDzR R h zdxdydz zdz dxdy zz dz h ππΩ===⎰⎰⎰⎰⎰⎰⎰.23. 计算⎰⎰⎰Vzdxdydz , 其中V 是曲面222y x z --=及22y x z +=所围成的闭区域. [解]联立z =及22z x y =+,22=1x y +,故Ω在xOy 面上的投影区域为221x y +≤ ,用柱坐标得2242121027()2212rr r zdv d rdr d r dr ππθπθΩ-==-=⎰⎰⎰⎰⎰⎰⎰.24. 计算⎰⎰⎰+Vdv y x )(22,其中V 是z y x 222=+及平面2=z 所围成的闭区域. [解] 联立222x y z +=及2z =得224x y +=,故Ω在xOy 面上的投影区域为224x y +≤,所以2222223216()3r x y dv d r dr dz ππθΩ+==⎰⎰⎰⎰⎰⎰. 25. 计算⎰⎰⎰++Vdv z y x )(222,其中V 是球面1222=++z y x 所围成的闭区域. [解]2122240004()sin 5x y z dv d d r dr ππϕπθϕΩ++==⎰⎰⎰⎰⎰⎰. 26. 计算⎰⎰⎰Vzdv ,其中V 是由不等式()2222a a z y x ≤-++, 222z y x ≤+所围成的闭区域.[解] 在球面坐标系中,2222()y z a a ++-≤x ,即为2222cos ,r a x y z ϕ≤+≤,即4πϕ≤,所以22cos 2344440sin cos 2sin 2cos a zdv d d r dr ad d πππϕπϕϕϕϕϕθϕθΩ==⎰⎰⎰⎰⎰⎰⎰⎰245440074cos (cos )6ad d a ππθϕϕπ=-=⎰⎰.27. 用三重积分计算下面所围体的体积:(1) 226y x z --=及22y x z +=(2) az z y x 2222=++及222z y x =+(含z 轴部分).[解] (1) 226z x y =--可变为26z r =-, z =变为z r =, 则22262230322(6)3r rV dv rdrd dz d rdr dz r r r dr r πθθπ-ΩΩ====--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰. (2) 222x y z +=的球面坐标方程为=4πϕ, 2222x y z az ++=的球面坐标方程为2cos r a ϕ=, 则22cos 22340sin sin a V dv r drd d d d r dr a ππϕϕϕϕθπθϕΩΩ====⎰⎰⎰⎰⎰⎰⎰⎰⎰.28. 求球面2222a z y x=++,含在圆柱体ax y x =+22内部的那部分面积.[解]上半球面方程为1D 为曲面在第一象限的投影:22,0x y ax y +≤≥,14D A =14D =cos 204a d πθθ=⎰⎰204(sin )a a a d πθθ=-⎰22(2)a π=-.29. 求锥面22y x z +=被柱面x z 22=所截得部分的曲面面积.[解] 由2222,2z x y z x =+=得222x y x +=,故所求曲面在xOy 的投影区域D 为222y x +≤x ,于是DA =D=⎰⎰Ddxdy ==.30. 求圆柱面222x y R +=将球面22224x y z R ++=截下部分的面积.[解] 由对称性,只考虑z =D :222x y R +≤, 于是x z =,y z =,==.因此,2S σ=⎰⎰4R d σ=⎰⎰4R θ=⎰⎰204R Rd πθ=⎰⎰0142(2RR π=⋅⋅-⋅28(2R π=.31. 求圆柱面222x y R +=,222x z R +=所围成的立体的表面积.[解] 由对称性,只考虑z =,D :222x y R +≤. 于是,==, 因此所求的表面积为16S σ=⎰⎰16σ=⎰⎰16R Rdx =⎰201616RR dx R ==⎰.32. 已知A 球的半径为R , B 球的半径为h 且球心在A 球的表面上, 求夹在A 球内部的B球的部分面积(02h R ≤≤).[解] 建立坐标系可设球A :2222x y z R ++=,球B :2222()x y z R h ++-=,则两球面的交线在xOy 面的投影区域为D :222222(4)4h x y R h R+=-,在A 球内部的B球面为:z R =A 球内部的B 球的表面积()S h σ=⎰⎰σ=⎰⎰θ=⎰⎰20hd πθ=⎰322h h Rππ=-.33. 求均匀半球体0,2222≥≤++z r z y x 的质心.[解]),0,0(r34. 求下列均匀的平面薄板重心:(1) 半椭圆;0,12222≥≤+y by a x (2) 高为h ,底分别为a 和b 的等腰梯形.[解] (1)设重心位置在),(y x ,由对称性0=x ,现求y .⎰⎰⎰⎰⎰⎰==DDDydxdy ab dxdyydxdyy πμμ2dr r ab d ab θθππsin 22120⎰⎰=π34b =. (2)设等腰梯形在直角坐标系中位置如图,其重心位置为),(y x , 对称性可得0=x ,并且有⎰⎰⎰⎰⎰⎰+==D DD ydxdy h b a dxdy ydxdyy )(2μμ⎰⎰--+=h y L y L dx ydy h b a 0)()(1211)(2 =⎰+--+h ydy a h y h b a h b a 0])([)(2=h b a ab )(32++, 其中,12():()2h a L x y x h b a =++-, 22():()2h aL x y x h a b =-+-. 35. 由直线2,2,2===+y x y x 所围成的质量分布均匀 (设面密度为μ)的平面薄板,关于x 轴的转动惯量xI .[解] 2222024x y x yDI y d y d d σμμμ-===⎰⎰⎰⎰.36. 求边长为密度均匀的立方体关于其任一棱边的转动惯量.[解] 设方体的密度为ρ, 则22()z VI x y dxdydz ρ=+⎰⎰⎰2250002()3aaadx dy x y dz a ρρ=+=⎰⎰⎰.37. 求半径为a ,高为h 的圆柱体对于过其中心并且平行于母线的轴的转动惯量(假设密度1ρ=).[解] 建立坐标系,过中心且平行于母线的轴即为z 轴, 于是 22()(,,)z I x y x y z dv ρΩ=+⎰⎰⎰22()x y dv Ω=+⎰⎰⎰3r drd dz θΩ=⎰⎰⎰23ahd r dr dz πθ=⎰⎰⎰424a h π=⋅⋅412a h π=.38. 求抛物线2y x =,直线1y =所围成的均匀薄片对于直线1y =-的转动惯量.[解] 21(1)y DI y d ρσ=-=+⎰⎰21121(1)xdx y dy ρ-=+⎰⎰1231{8(1)}3x dx ρ-=-+⎰12302{8(1)}3x dx ρ=-+⎰164202{733}3x x x dx ρ=---⎰ 213368{71}375105ρρ=---=. 39. 求密度为ρ的均匀半球体对于在其中心的一单位质量的质点的引力.[解] 设球半径为R ,建立坐标系如图,由对称性,0x y F F ==;02222dv mdMdF kk r x y zρ==++, cos z dF dF γ={,,}n x y z =,02211,,}||n n x y z n x y ==+,故cos γ=;cos z dF dF γ=320222()zk dv x y z ρ=++,从而32222()z zdvF k x y z ρΩ=++⎰⎰⎰203cos sin r k r drd d rϕρϕθϕΩ=⎰⎰⎰0cos sin k drd d ρϕϕθϕΩ=⎰⎰⎰220000cos sin Rk d d dr ππρθϕϕϕ=⎰⎰⎰001{2}2k R k R ρπρπ=⋅⋅=.40. 求均匀薄片R y x ≤+22,0=z 对于轴上一点),0,0(c )0(>c 处的单位质量的引力;[解] 由对称性,引力方向必在z 轴方向上,因此0=x F ,0=y F ,且dxdy z y x ck F R y x x ⎰⎰≤+++=22223222)(μdr c r r d c k R⎰⎰+=0232220)(πθμ]1[222cR c k +-=πμ.故},0,0{Z F F =.41.求均匀柱体222a y x ≤+,h z ≤≤0对于点),0,0(c P )(h c >处的单位质量的引力.[解] 设物体密度为μ,由对称性0=x F ,0=y F . 进一步32222[()]z Vz cF k dxdydz x y z c μ-=++-⎰⎰⎰dz c z r c z dr r d k ha ⎰⎰⎰-+-=032220]])([[πθμ2]h k πμ=,故{0,0,2]}F h k πμ=, 其中k 为引力系数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档