拉格朗日插值法1
拉格朗日插值法解题步骤
拉格朗日插值法解题步骤:
拉格朗日插值法是一种数学方法,用于通过已知的离散数据点来构造一个多项式,这个多项式可以用来估计或逼近其他未知的数据点。
以下是拉格朗日插值法的解题步骤:
1.确定已知数据点:首先,你需要有一组已知的数据点。
这些数据点是你用来进行插值的已知信息。
2.构造拉格朗日多项式:对于每一个数据点 (xi, yi),构造一个拉格朗日基函数。
3. 计算拉格朗日多项式的值:将每个已知数据点的横坐标xi 代入拉格朗日多项式L(x),得到对应的yi 值。
这样,你就可以得到一个新的数据点集,这些点的坐标是(xi, L(xi))。
4. 使用插值多项式进行预测:对于你想要预测的x 值,代入拉格朗日多项式L(x),即可得到对应的y 值。
这就是拉格朗日插值法的基本步骤。
需要注意的是,这种方法只适用于已知的数据点是离散的情况。
如果数据点是连续变化的,你可能需要使用其他方法,如样条插值等。
拉格朗日差值法
拉格朗日插值法就是构造一个多项式,使得恰好在每一个x处取到对应的y
首先,n+1个点(xi,yi)若xi不同,则可以确定唯一的最高幂次不超过n的多项式。
而如果题目直接或是间接给出了n+1个点,让我们求由这些点构成的多项式在某一个位置的取值,那么应用拉格朗日插值可以在O(n2 )的时间内解决这一问题
思路如下:
对于这个函数,要想在k=x[i]的时候取到y[i],并且y[i]仅在这一情况对答案有影响,就要构造出一项K[i]y[i],使得x仅在取到x[i]时K为1,其他情况K[i]为0。
于是,仿照中国剩余定理的思路,有了如下构造方式:
(1)首先,x≠x[i]时K[i]为0,就要让x取到除去x[i]外的任何值都为0,于是有了“累乘‘k-x[j]’”的思路;
(2)其次,如果简单地将y[i]与累乘‘k-x[j]’结合,则x=x[i]时
该项为“累乘x[i]-x[j]",所以需要在每一项下面加上"除以x[i]-x[j]”
(3)最后将每一项加和,得到上式
拓展:x取值连续时的做法
有时候,问题仅要求求解x连续的情况。
那么如果仅有一个k值需要代入f(k),就可以用下面的方法将复杂度变为
O(n)
对于分子,维护出k的前缀积和后缀积,即:
由于最终求得的值一定为正数,故需判断一下正负号。
如果N-i为奇数,则分母要取负数(因为fac(N-i)表示的是绝对值,N-i为偶数的时候恰好所有负号消掉了)。
常见的插值方法及其原理
常见的插值方法及其原理1. 拉格朗日插值法(Lagrange Interpolation)拉格朗日插值法是一种基于多项式的插值方法,通过n+1个已知点的函数值来构造一个n次多项式。
具体的计算公式如下:L(x) = Σ[yk * lk(x)], k=0 to n其中yk为已知点(xi, yi)的函数值,lk(x)为拉格朗日基函数,定义为:lk(x) = Π[(x - xj)/(xi - xj)], j=0 to n, j≠k拉格朗日插值法的原理是通过构造一个通过已知点的n次多项式,来代替未知函数的近似值。
利用拉格朗日基函数的性质,可以保证插值多项式通过已知点。
2. 牛顿插值法(Newton Interpolation)牛顿插值法是一种递推的插值方法,通过已知点的函数值和差商来逐步构造插值多项式。
差商的定义如下:f[x0]=y0f[x1]=(f[x1]-f[x0])/(x1-x0)f[x2]=(f[x2]-f[x1])/(x2-x1)...f[xn] = (f[xn] - f[xn-1]) / (xn - xn-1)利用差商的定义,可以得到牛顿插值多项式的表达式:N(x) = f[x0] + f[x0, x1](x-x0) + f[x0, x1, x2](x-x0)(x-x1) + ... + f[x0, x1, ..., xn](x-x0)(x-x1)...(x-xn)牛顿插值法的原理是通过递推计算差商来得到插值多项式。
通过使用差商来处理已知点的函数值差异,可以得到更高次的插值多项式。
3. 样条插值法(Spline Interpolation)样条插值法是一种基于分段低次插值函数的插值方法,常用的是三次样条插值。
样条插值法通过寻找一组分段函数,使得满足原函数的插值条件,并要求函数在每个插值点处的函数值、一阶导数和二阶导数连续。
这样可以保证插值函数在每个插值点处的平滑性。
三次样条插值法的原理是将整个插值区间划分为多个小区间,在每个小区间内使用三次多项式进行插值。
《拉格朗日插值法》课件
根据已知的插值点和插值函数的性质 ,确定多项式的阶数。
求解插值多项式的系数
求系数
通过已知的插值点和构造的插值多项式,求解出多项式的系数。
验证解的正确性
通过已知的插值点和求解出的系数,验证解的正确性。
04
拉格朗日插值法的应用实例
在数值分析中的应用
数值积分
拉格朗日插值法可用于数值积分,通过插值多项式对被积函数进行近似,进而求得积分的近似值。
全局插值能力较弱
拉格朗日插值法主要适用于局部插值,对于全局插值问题可能不太 适用。
06
拉格朗日插值法的改进与发
展
改进方法
提高精度
通过增加插值基函数的数量, 可以更精确地逼近函数,从而
提高插值的精度。
处理异常值
引入稳健性估计方法,对异常 值进行识别和处理,以提高插 值的稳定性。
优化算法
改进算法以提高计算效率,减 少计算量,使得插值过程更加 快速和高效。
图像处理
在图像处理中,可以使用拉格朗日插值法对图像进行放大、缩小或旋转等变换,保持图 像的清晰度和连贯性。
三维模型重建
在三维模型重建中,可以使用拉格朗日插值法对点云数据进行插值,得到连续光滑的三 维模型表面。
05
拉格朗日插值法的优缺点
优点
01
02
03
简单易行
拉格朗日插值法是一种直 观且易于理解的方法,不 需要复杂的数学工具即可 实现。
工程
用于解决各种实际问题,如机 械振动、流体动力学和电路分 析等。
物理学
用于模拟和预测各种物理现象 ,如力学、电磁学和量子力学 等。
02
拉格朗日插值法的基本概念
拉格朗日插值法的定义
拉格朗日(Lagrange)插值算法
拉格朗⽇(Lagrange)插值算法拉格朗⽇插值(Lagrange interpolation)是⼀种多项式插值⽅法,指插值条件中不出现被插函数导数值,过n+1个样点,满⾜如下图的插值条件的多项式。
也叫做拉格朗⽇公式。
这⾥以拉格朗⽇3次插值为例,利⽤C++进⾏实现:1//利⽤lagrange插值公式2 #include<iostream>3using namespace std;45double Lx(int i,double x,double* Arr)6 {7double fenzi=1,fenmu=1;8for (int k=0;k<4;k++)9 {10if (k==i)11continue;12 fenzi*=x-Arr[k];13 fenmu*=Arr[i]-Arr[k];14 }15return fenzi/fenmu;16 }1718int main()19 {20double xArr[4]={};21double yArr[4]={};22//输⼊4个节点坐标23 cout<<"请依次输⼊4个节点的坐标:"<<endl;24for (int i=0;i<4;i++)25 cin>>xArr[i]>>yArr[i];2627//输⼊要求解的节点的横坐标28 cout<<"请输⼊要求解的节点的横坐标:";29double x;30 cin>>x;31double y=0;32for (int i=0;i<4;i++)33 y+=Lx(i,x,xArr)*yArr[i];34 printf("x=%lf时,y=%lf\n",x,y);3536//分界,下⾯为已知y求x37 cout<<"请输⼊要求解的节点的纵坐标:";38 cin>>y;39 x=0;40for (int i=0;i<4;i++)41 x+=Lx(i,y,yArr)*xArr[i];42 printf("y=%lf时,x=%lf\n",y,x);4344 system("pause");45return0;46 }作者:耑新新,发布于转载请注明出处,欢迎邮件交流:zhuanxinxin@。
1 数值分析-拉格朗日插值
2
)
l4
(
x)
144
4
x(
x
6
)(
x
4
)(
x
3
)
于是
sin
12
L4
( 12
)
l0
(
12
)
0
l1
(
12
)
1 2
l2
(
12
)
2 2
l3
(
12
)
3 2
l4
( )
12
1
5 0 15 1 5 2 5 3 1 1 24 8 2 3 2 8 2 24
0.258587908
真值: sin 0.258819045 。
得 1a0 0a1 0an y0 a0 y0 0a0 1a1 0an y1 a1 y1 …… 0a0 0a1 1an yn an yn
Lagrange插值函数Ln(x)
因此所求
n
y (x) Ln (x) l j (x) y j j0
• 按照一个或一些选出的模型类型对数据进行拟合; • 从一些拟合模型中选取最合适的; • 根据收集的数据做出预测. 插值:要求经过所有已知的数据点 拟合:较好地反映数据的整体变化趋势
插值函数的基本概念
通过实验测量得到未知函数y f (x)的相关数据:
(xi , yi ) (i 0,1, 2,..., n) 它反映了y f (x)在这些离散点处的情况: yi f (xi )(i 0,1,..., n). 由于f (x)是未知的.因此就想寻找逼近函数
{p(x) / p(x) a0 a1x a2x2 an xn , ai R,i 1 n}
本定理说明: 一个空间可以有多种不同形式的表示方式.即:空间的基底不惟一。
插值法(拉格朗日插值)
=
x x1 y + x 0 x1 0
x x0 y x1 x 0 1
l ( x) y
i 0 i
1
i
l0(x)
l1(x)
线性插值
直线方程的两点式:
1 i
L 1( x )
x x1 x 0 x1
y0
x x0 x1 x 0
y1
L1(x) 0 l i ( x ) y i
p(x) f(x)
x0
x1
x2
x
x3
x4
§1.1Taylor插值
函数y = f(x)在点x0处展开有Taylor 多项式:
p n ( x ) f ( x 0 ) f ( x 0 )( x x 0 )
'
f ' ' ( x0 ) 2!
( x x0 )
2
...
f
(n)
( x0 )
n!
( x x0 )
n
可见:
Pn(k)(x0)= f (k)(x0) k=0,1,…,n
因此, Pn(x)在点x0邻近会很好的逼近f(x).
Taylor展开方法就是一种插值方法.
泰勒插值要求提供 f(x) 在点x0处的各阶导数,这仅 仅适用于 f(x) 相当简单的情况.
§1.2 Lagrange插值 • 设函数y = f(x)在区间[a,b]上有定义,且给
l (x)
l (x)
抛物插值
L 2( x ) ( x x 1 )( x x 2 ) ( x 0 x 1 )( x 0 x 2 ) y0 ( x x 0 )( x x 2 ) ( x 1 x 0 )( x 1 x 2 ) y1 ( x x 0 )( x x 1 ) ( x 2 x 0 )( x 2 x 1 ) y2
实验一 拉格朗日插值法
实验目的: 1. 熟悉拉格朗日插值方法的程序设计; 2. 学会拉格朗日插值方法求函数值的近似值, 以解决其它科学实验的计算问题。 实验内容: 已知函数值表
xi f (xi )
-0.6 1.6
-0.2 2.4
0.2 1.2
0.4 3.2
试分别建立二次插值多项式和三次插值多项式,计算 f (0) 的近似值。 实验要求:屏幕显示 f (0) 的近似值。
三次差值试验结果:
— 4 —
=
k 1 k
结 束
— 2 —
实 验 报 告 (一)
辽宁科技大学 研究生 学院(系) 课名:数值分析 班级:研 12 姓名: 张贺 题目:拉格朗日插值 学号:12208190**** 专业: 矿业工程 任课教师:熊 焱 2012 年 09 月 20 日
实验程序:
— 3 —
实验结果: 二次差值试验
— 1 —
附件:拉格朗日插值算法框图
开 始
输 入 ( x i , y i ) , ( i= 0 ,1 , … , n )
0 x j
t t
j 0 , , k 1, k 1, , n
y t yk y
k n?
输 出 y
拉格朗日插值法
拉格朗日( Lagrange )插值可对插值函数选择多种不一样的函数种类,因为代数多项式拥有简单和一些优秀的特征,比如,多项式是无量圆滑的,简单计算它的导数和积分,故常采纳代数多项式作为插值函数。
线性插值问题给定两个插值点此中,如何做经过这两点的一次插值函数过两点作一条直线,这条直线就是经过这两点的一次多项式插值函数,简称线性插值。
如下图。
图线性插值函数在初等数学中,可用两点式、点斜式或截距式结构经过两点的一条直线。
下边先用待定系数法结构插值直线。
设直线方程为,将分别代入直线方程得:当时,因,所以方程组有解,并且解是独一的。
这也表示,平面上解的存在性和唯一性,但要解一个方程组才能获得插值函数的系数,因工作量较大和不便向高阶推行,故这类结构方法往常不宜采纳。
当时,若用两点式表示这条直线,则有:()这类形式称为拉格朗日插值多项式。
,,称为插值基函数,计算,的值,易见()在拉格朗日插值多项式中可将看做两条直线,的叠加,并可看到两个插值点的作用和地位都是同等的。
拉格朗日插值多项式型式免去认识方程组的计算,易于向高次插值多项式型式推行。
线性插值偏差定理记为以为插值点的插值函数,。
这里,设一阶连续可导,在上存在,则对随意给定的,起码存在一点,使()证明令,因是的根,所以可设对任何一个固定的点,引进协助函数:则由定义可得别在和和,即。
,这样起码有上应用洛尔定理,可知和,对3个零点,不失一般性,假设在每个区间起码存在一个零点,不如记为在上应用洛尔定理,获得,分在上起码有一个零点,。
此刻对求二次导数,此中的线性函数),故有代入,得所以即二次插值问题给定三个插值点,, 此中互不相等,如何结构函数的二次的(抛物线)插值多项式平面上的三个点能确立一条次曲线,如下图。
图三个插值点的二次插值仿制线性插值的拉格朗日插值,即用插值基函数的方法结构插值多项式。
设每个基函数是一个二次函数,对来说,要求是它的零点,所以可设同理,也相对应的形式,得将代入,得同理将代入获得和的值,以及和的表达式。
多项式入门——拉格朗日插值
多项式⼊门——拉格朗⽇插值多项式⼊门——拉格朗⽇插值插值⽤来求解这样⼀类问题:给定 \(n\) 点 \((x_i,y_i)\) 求过这些点的多项式。
1 简介设 \(f(x)\) 为这个多项式,我们有:\[f(x)\equiv f(a)\bmod (x-a)\tag{1} \]这是因为:\[f(x)-f(a)=(a_0-a_0)+a_1(x-a)+a_2(x^2-a^2)+... \]⽽后者显然有⼀个根为 \(a\) ,所以 \((1)\) 式得证。
通过把这 \(n\) 个点代⼊我们可以得到:\[\begin{cases} f(x)\equiv y_1\bmod x-x_1\\ ...\\ f(x)\equiv y_n\bmod x-x_n \end{cases} \]显然模数互质,所以我们考虑⽤中国剩余定理来解决这个事情。
令 \(M=\prod_{i=1}^n(x-x_i)\) ,\(m_i=\frac{M}{x-x_i}=\prod_{i\not= j}(x-x_j)\) 。
并且在模 \(x-x_i\) 的意义下,我们有:\[m_i^{-1}=\frac{1}{\prod\limits_{i\not=j}(x_i-x_j)} \]这是因为我们有:\[\prod_{i\not =j}(x-x_j)\equiv \prod_{i\not =j}(x-x_j-x+x_i)=\prod_{i\not =j}(x_i-x_j) \]所以上述结论成⽴。
所以我们有:\[f(x)\equiv \sum\limits_{i=1}^ny_im_im_i^{-1}\equiv \sum\limits_{i=1}^ny_i\prod\limits_{j\not=i}\frac{x-x_j}{x_i-x_j} \]这个东西可以在 \(n^2\) 的时间内求出。
2 例题直接模拟上⾯的过程即可。
#include<bits/stdc++.h>#define dd double#define ld long double#define ll long long#define uint unsigned int#define ull unsigned long long#define N 2010#define M numberusing namespace std;const int INF=0x3f3f3f3f;const ll mod=998244353;template<typename T> inline void read(T &x) {x=0; int f=1;char c=getchar();for(;!isdigit(c);c=getchar()) if(c == '-') f=-f;for(;isdigit(c);c=getchar()) x=x*10+c-'0';x*=f;}inline ll ksm(ll a,ll b,ll mod){ll res=1;while(b){if(b&1) (res*=a)%=mod;a=a*a%mod;b>>=1;}return res;}inline ll inv(ll a){return ksm(a,mod-2,mod);}ll n,k,x[N],y[N],ans;int main(){read(n);read(k);for(int i=1;i<=n;i++){read(x[i]);read(y[i]);}for(int i=1;i<=n;i++){ll fenzi=1,fenmu=1;for(int j=1;j<=n;j++){if(j==i) continue;fenmu*=(x[i]-x[j]);fenmu%=mod;fenzi*=(k-x[j]);fenzi%=mod;}ans+=y[i]*fenzi%mod*inv(fenmu)%mod;ans%=mod;}printf("%lld\n",(ans%mod+mod)%mod);return 0;}注意:需要把分母乘出来再求逆元,这样复杂度的瓶颈就不会是求逆元。
拉格朗日插值法
01
收敛性分析是研究拉格朗日插值法的一个重要方面,它涉及到该方法在何种条 件下能够准确地逼近未知函数。
02
在理论上,如果已知数据点足够多且分布均匀,那么拉格朗日插值多项式就能 够很好地逼近未知函数。
03
然而,在实际应用中,由于计算复杂度和数据可获取性的限制,我们通常只能 使用有限数量的数据点进行插值。因此,收敛性分析对于确定拉格朗日插值法 的精度和适用范围具有重要意义。
拉格朗日插值法的几何意义
从几何意义上讲,拉格朗日插值 法是通过在已知数据点上放置一 个多项式曲线,使得该曲线尽可
能接近原始数据点。
这意味着,拉格朗日插值多项式 在每个已知数据点上取值为零, 而在其他点上取值与原函数相近。
这种几何意义有助于我们更好地 理解拉格朗日插值法的原理和应
用。
拉格朗日插值法的收敛性分析
在实际应用方面,可以考虑如何 优化拉格朗日插值法的计算效率 和存储需求,以适应大规模数据 处理的需要。此外,可以探索拉 格朗日插值法在其他领域的应用, 例如金融、生物信息学和环境科 学等。
另外,随着人工智能和机器学习 技术的不断发展,可以考虑如何 利用这些技术来改进拉格朗日插 值法,例如通过神经网络或其他 机器学习方法来自动选择合适的 插值模型和参数。这将有助于提 高插值精度和泛化能力,并减少 人工干预和主观判断的误差。
03
拉格朗日插值法还有一些局限性,例如对于非线性数据的 插值效果较差,且容易受到数据异常值的影响。为了解决 这些问题,研究者们提出了许多改进的方法,如样条插值 、克里格插值和局部加权散点平滑插值等。
对未来研究的建议和展望
未来研究可以进一步探讨拉格朗 日插值法的理论性质,例如其收 敛性和稳定性等。此外,可以研 究如何将拉格朗日插值法与其他 数学方法或机器学习方法相结合, 以提高其预测精度和泛化能力。
拉格朗日插值法 实验
实验九 Lagrange 插值法求近似函数实验一、实验内容:设2.12)(2+-=x x x f ,数据点取值如下表分别构造)(),(),(432x L x L x L 来近似)(x f .二、算法原理:插值法是函数逼近的一种重要方法,解决对于只提供离散数据点 ))(,(i i i y x f x =, i=0,1,...,n,而希望在函数空间{}n s p a n ϕϕϕ,...,,2=Φ中选择,)(1i ni i c x S ϕ∑==来近似于真实函数)(x f 的问题,其中i c 是可选择参数,可通过要求曲线)(x S 经过数据点,即满足插值条件n i x f x S i i ,...,1,0),()(==来确定.所谓的代数插值指以代数多项式)(x P n 作为插值函数,即函数空间取为 {}n x x s p a n ,...,,1=Φ,代数插值多项式)(x P n 的表达式,在理论上可通过求解参数i c 满足的1+n 个方程⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n n n n n n n n n n y x c x c x c c y x c x c x c c y x c x c x c c ...... (22101121211000202010)唯一确定,但实际上不可取。
Lagrange 插值法巧妙利用了基函数法,直接构造出该插值多项式 ),()(x P x L n n =它适用于非等距节点.其基本思想是通过满足在节点i x 处值取1,其余处取0的插值基函数),(x l i 将)(x L n 表达为一个线性结合,)()(1i ni i n y x l x L ∑==其中 n i x x x x x l n i j j j i j i ≤≤--=∏≠=0,)(0 具体算法如下Step1输入数据点总数1+n (即输入n 值),节点i x ,相应的函数值i y ,i =0,1,…,n,令;0)(=x L nStep2 for 0=i to n{计算∏≠=--=n i j j j i j i x x x x x l 0)(s=1,for 0=j to n {如果i j =,s s =, 否则, j i j x x x x s s --=})(x l s i →)())()((x L y x l x L n i i n →+ }Step3输出插值多项式)(x L n .三、实验要求:(1)编制Lagrange 插值法程序,得出实验结果,并进行比较;(2)观察高次代数插值的Runge 现象:1901年,德国数学家runge 考察函数22511)(x x f += 在[]1,1- 上n 等分做等距节点插值时,观察到插值节点∞→n ,插值多项式)(x P n 仅在726.0≤x 内收敛于)(x f ,而此区间以外都发散. 请用10=n ,计算Lagrange 插值多项式10P ,通过图示(在一个坐标上画出10P 和)(x f 的对比图) ,观察这一现象, 并写出你所得到的启示.四、源代码:#include<stdio.h>#include<math.h>void main(){int i,j,n=4;float y=0.7,Ln=0;float s;float x[5]={-1,-0.5,0,0.5,1},f[5]={4.2,2.45,1.2,0.45,0.2},l[5];for(i=0;i<=n;i++){s=1;for(j=0;j<=n;j++){if(j==i)s=s;elses*=(y-x[j])/(x[i]-x[j]);}l[i]=s;Ln+=l[i]*f[i];}printf("%f",Ln);}五、实验结果截图:六、上机体会:。
计算方法-第2章-1、插值法(拉格朗日插值)
2019/1/15
26
证明:假设在区间[a,b]上f(x)的插值多项式为 Ln ( x) 令
Rn ( x) f ( x) Ln ( x)
显然在插值节点为 xi (i 0,1,, n)上 Rn ( xi ) f ( xi ) Ln ( xi ) 0 , i 0,1,, n 因此Rn ( x)在[a, b]上至少有n 1个零点
(k 0,1,2,, n)
且
n1 ( x) Ln ( x) yk ' ( x x ) k 0 k n 1 ( xk )
n
2019/1/15
18
总 结
于是, y f ( x)在节点xi (i 0 ,1, , n)上, 以l j ( x) (i 0 ,1, , n) 为插值基函数的插值多 项式(记为Ln ( x))为
本章只讨论多项式插值与分段插值
2019/1/15 7
§ 2.2
拉格朗日插值
• 此插值问题可表述为如下: • 问题 求作次数 n 多项式 Ln ( x) ,使满足条件
Ln x yi , (i 0,1,, n)
• 这就是所谓的拉格朗日(Lagrange)插值。
2019/1/15
8
§ 2.2.1
线性插值的局限性
2019/1/15
12
三、抛物插值
问题 求作二次式 L2 ( x) ,使满足条件
L2 ( x j ) y j
( j k 1, k , k 1)
二次插值的几何解释是用通过三个点
的抛物线来近似考察曲线,故称为拋物插值。类似于线性 插值,构造基函数,要求满足下式:
L2(x) yk 1lk 1 ( x) yklk ( x) yk 1lk 1 ( x)
拉格朗日插值法
Lagrange polynomial 维基百科,自由的百科全书
定义
对某个多项式函数,已知有给定的 个取值点:
其中 对应着自变量的位置,而 对应着函数在这个位置(每一个y值都不等于0)的取 值。 假设任意两个不同的 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗 日插值多项式为:
其中每个
几何性质
拉格朗日插值法中用到的拉格朗日基本多项式 (由某一组 确定)可以看做是由次数不超过 n 的多项式所组成的线性空 间: 的一组基底。首先,如果存在一组系数: 使得, , 那么,一方面多项式P是满足 的拉格 朗日插值多项式,另一方面P是零多项式,所以取值永远是0。所以 。 这证明了 是线性无关的。同时它一共包含 个多项式,恰好等于 的维数。所以 构成了 的一组基底。 拉格朗日基本多项式作为基底的好处是所有的多项式都是齐次的(都是 n 次多项 式)。
重心拉格朗日插值法
重心拉格朗日插值法是拉格朗日插值法的一种改进。在拉格朗日插值法中,运用 多项式 可以将拉格朗日基本多项式重新写为:
定义重心权
上面的表达式可以简化为:
于是拉格朗日插值多项式变为:
即所谓的重心拉格朗日插值公式(第一型)或改进拉格朗日插值公式。它的优点 是当插值点的个数增加一个时,将每个 都除以 ,就可以得到新的重 心权 ,计算复杂度为 ,比重新计算每个基本多项式所需要的复杂度 降了一个量级。 将以上的拉格朗日插值多项式用来对函数 插值,可以得到:
优点与缺点
拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中, 当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整 个公式都会变化,非常繁琐。这时可以用重心拉格朗日插值法或牛顿插值法来代 替。此外,当插值点比较多的时候,拉格朗日插值多项式的次数可能会很高,因 此具有数值不稳定的特点,也就是说尽管在已知的几个点取到给定的数值,但在 附近却会和“实际上”的值之间有很大的偏差(如右下图)。这类现象也被称为龙 格现象,解决的办法是分段用较低次数的插值多项式。
拉格朗日插值法(图文详解)
拉格朗⽇插值法(图⽂详解)拉格朗⽇插值⼊门由⼩学知识可知,n个点(x_i,y_i)可以唯⼀地确定⼀个多项式现在,给定n个点,请你确定这个多项式,并将k代⼊求值求出的值对998244353取模Input第⼀⾏两个正整数n,k,含义如题接下来n⾏,每⾏两个正整数x_i,y_i含义如题。
n≤2000,xi,yi,k≤998244353Output⼀个整数表⽰答案Sample Input3 1001 42 93 16Sample Output10201//样例⼀中的三个点确定的多项式是f(x)=x^2+2x+1,将100代⼊求值得到10201int re=1;while(y){if(y&1) re=(x*re)%mod;x=(x*x)%mod;y>>=1;}return re;}int read(){int x=0,f=1;char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}return x*f;}signed main(){n=read(),k=read();for(int i=1;i<=n;i++)a[i]=read(),b[i]=read();for(int i=1;i<=n;i++){int tmp=1;for(int j=1;j<=n;j++)if(i!=j)tmp=tmp*(a[i]+mod-a[j])%mod; //分母tmp=quickpow(tmp,mod-2);for(int j=1;j<=n;j++)if(i!=j) tmp=tmp*(k+mod-a[j])%mod; //分⼦tmp=tmp*b[i]%mod;ans=(ans+tmp)%mod;}printf("%lld\n",ans);return 0;}#include<bits/stdc++.h>using namespace std;const int mod=998244353;int x[2010],y[2010],a=1,b=0;int powmod(int a,int b){int ans=1;while(b){if(b&1)ans=1ll*ans*a%mod;a=1ll*a*a%mod;b>>=1;}return ans;}int main(){int n,k;scanf("%d%d",&n,&k);for(int i=1;i<=n;i++)scanf("%d%d",x+i,y+i);for(int i=1;i<=n;i++){int a1=1,b1=1;//a1代表分母,b1代表分⼦b1=1ll*b1*y[i]%mod;for(int j=1;j<=n;j++)if(j!=i){b1=1ll*b1*(k-x[j])%mod;a1=1ll*a1*(x[i]-x[j])%mod;}b=(1ll*a1*b+1ll*a*b1)%mod;a=1ll*a*a1%mod;//b/a+b1/a1=(b*a1+a*b1)/(a*a1)}a=(a+mod)%mod,b=(b+mod)%mod;printf("%lld\n",1ll*b*powmod(a,mod-2)%mod);//因为带了除法,所以分母会⽐较⼤,于是在前⾯边乘边取模,最后取逆元return 0;}参考资料。
一阶拉格朗日插值算法
一阶拉格朗日插值算法是一种数学方法,用于通过已知的离散数据点来构造一个插值多项式。
这种方法在数值分析、计算几何和工程等领域有广泛应用。
假设我们有一组有序的已知数据点(x0, y0), (x1, y1), ..., (xn, yn),我们想要找到一个多项式P(x),使得P(xi) = yi,对于i = 0, 1, ..., n。
一阶拉格朗日插值算法的步骤如下:
1. 初始化:令多项式P(x) = 0。
2. 对于i = 0, 1, ..., n,执行以下步骤:
a. 计算拉格朗日基函数Li(x) = (x - xi) / (x - xi)。
注意,当x = xi 时,Li(x) 是未定义的,因此在实际应用中需要处理这种情况。
b. 将Li(x) 乘到P(x) 上,即P(x) = P(x) + y*Li(x)。
3. 返回P(x) 作为插值多项式。
下面是一个使用Python 实现的一阶拉格朗日插值算法的示例代码:
例如,假设我们有三个已知数据点(1, 2), (2, 3), (3, 4),我们可以调用`lagrange_interpolation([1, 2, 3], [2, 3, 4])` 来得到插值多项式函
数。
然后,我们可以使用这个函数来计算任意x 值对应的插值y 值,例如`lagrange_interpolation([1, 2, 3])(2.5)` 将返回约2.75。
计算方法拉格朗日插值
第二章 插值法知识点:拉格朗日插值法,牛顿插值法,误差,龙格现象,分段插值。
1.背景实践活动中,表现事务变化的信息往往只是一些离散点值,例如 每个6小时记录一次温度,以此反映一天的气温变化状况,如下表图能从已知这些离散点值信息知道10时的气温是多少吗?如果能通过这些离散点值找到气温变化的规律,也就是说能找到一个反映气温变化规律的“原”函数,就可以知道10时的气温是多少。
但我们能采集到的信息只有这些离散点值,时常给不出反映气温变化规律“原”函数的解析表达式,怎么办?通常可以用近似的办法解决这个问题,办法是构造一个通过所有离散点值的“近似”函数,用这个“近似”函数逼近“原”函数。
如图构造这个“近似”函数的方法称为插值方法。
34 32 30 28 26 24 22 20时间(时)温度(。
C )34 32 30 28 26 24 22 20温度(。
C )2.概念实际问题中,能采集到的信息只是一些离散点值{x i,f(x i)}(i=0,1,2,…n),时常给不出一个函数f(x)的解析表达式,因之,转而考虑选择一个简单的函数ϕ(x)近似替代(原来)f(x)。
定义:设f(x)为定义在区间[a,b]上的函数,x0,x1,…,x n为[a,b]上的互异点,y i=f(x i)。
若存在一个简单函数ϕ(x),满足(插值条件)ϕ(x i)=f(x i),i=0,1,…,n。
则称 ϕ(x)为f(x)插值函数,f(x)为被插函数,点x0,x1,…,x n为插值节点,点{x i,f(x i)},i=0,1,2,…n为插值点。
若用ϕ(x)≈f(x),则计算f(x)就转换为计算 ϕ(x)。
插值需要解决:插值函数是否存在唯一;插值函数如何构造;插值函数与被插函数的误差估计和收敛性。
对插值函数的类型有多种不同的选择,代数多项式p n(x)常被选作插值函数 ϕ(x)。
P23(2.18)和(2.19)指出,存在唯一的满足插值条件的n次插值多项式p n(x)。
拉格朗日插值法原理
拉格朗日插值法原理:
拉格朗日插值法是一种多项式插值方法。
拉格朗日插值法是离散数学中进行曲线拟合的基本方法(即在工程实际中,我们所得到的结果往往是离散的点,而若想把这些离散的结果作为先验条件得到其他点就需要进行多项式拟合)。
其主要思想如下:
能找到一条曲线记为f,使其能穿过其中一个离散点(f(xa)=ya)并在其他离散点上的值为0(f(xb)=0),则我们如果能找到每一点对应的曲线f,将其相加就可以得到一个能经过所有离散点的曲线F,我们认为F则为这些离散点的拟合多项式。
运用拉格朗日插值法需要注意:
1.拉格朗日插值法其找到的曲线是经过所有离散点的,因此对于偏离值无法进行剔除,很容易出现过拟合的现象,因此在实际工程应用中需要剔除偏移量。
2.拉格朗日插值法拟合n阶多项式至少需要n+1个点(公式推一下就可以知道,这里不在详述)
3.随阶数的增大拉普拉斯拟合法的时间复杂度成指数递增,我们不是数学家,不需要对原理进行优化,我的建议是试试异构(GPU+CPU混合编程会简单很多)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y2=lagrage(x,y,2PI/9) ;
输出y2=0.6380
均差与牛顿插值多项式
1、1)定义称 为函数 关于 的一阶均差, 称为 的二阶均差。一般的,称 为 的k阶均差(均差也称为差商)。
2)牛顿插值公式推导
根据均差定义,把x看成[a,b]上一点,则有
把后一式带入前一式可得
最后一项中,均差部分含有x,为余项部分,记为
2、例题
设数据 由表给出,表中第4行为 ,可以看出数学模型为 ,用最小二乘法确定a和b。
i
0
1
2
3
4
1.00
5.10
1.629
1.25
5.79
1.756
1.50
6.53
1.876
1.75
7.45
2.008
2.00
8.46
2.135
解:根据给定数据 描图可确定拟合曲线方程为 ,它不是线性形式。两边取对数得 ,若令 ,则得 。为确定A,b,先将 转化为 ,数据见上表。
Function yi=lagrage(x,y,xi)
n=length(x);
S=0;
For k=1:n
t=1;
for(j=1:n)
if j~=k
t=t*(xi-yi)/x(k)-x(j);
end
end
S=t*y(k)+s;
end;
yi=s;
3、例题
1)计算
x
100
121
144
y
10
11
12
解:
L2(x)= +
end
end
for i=1:n;z=1
for k=1:i-1;
z=z*( );
end
end
3、例题
x
1
-1
2
y
0
-3
4
求二次插值
解: x y 一次差商 二次差商
-1 -3
1 0
2 4 4
N(x)=-3+3/2(x+1)+1/6(x+1)(x-1)
在Matlab窗口输入
>>x=[-1,1,2];
Y=[-3 0 4];
拉格朗日抛物线插值法
1、定义若多项式lj(j=0,1,2...n)在n+1个节点x0<x1<...<xn上满足条件
就称这n+1个n次多项式l0(x),l1(x),....ln(x)为节点x0,x1,....xn上的n次插值基函数
称之为拉格rage.m
+
= +
+
L2(115)= +
+
≈10.7228
在Matlab窗口输入
>>x=[100 121 144] ;
y=[10 11 12] ;
y2=lagrage(x,y,115) ;
输出y2=10.7228
2)计算
解:
x
y
0.5
0.707
0.866
在Matlab窗口输入
>>x=[ ] ;
y=[0.5 0.707 0.866] ;
而前面n+1项中,均差部分都不含有x,因而前面n+1项是关于x的n次多项式
这就是牛顿插值公式。于是上式记 。
2、Matlab文件Newtonint.m
function
n=length(x)
D=Zeros(n.n);D(:,1)=
for k=1:n-1;
for i=1:n-k
D(i+k,k+1)=(D(i+k,k)-D(i+k+1,k))/(x(i+k)-x(i));
曲线拟合的最小二乘法
1、Matlab文件 polyfit.m
function p=polyfit(x,y,n)
A=Zeros(n+1,n+1)
for t=0:n
for j=0:n A(i+1,j+1)=sum(x.^(i+j))
end
b(i+1)=sum( ^I,*y)
end
a=A\b’;p=fliplr(a’)
根据最小二乘法,取 ,得
故有法方程
5A+7.50b=9.404
7.50A+11.875b=14.422
解得A=1.122,b=0.505,a=
于是得最小二乘拟合曲线为
在Matlab文件输入
>>x=1:0.25:2
y=[1.629 1.756 1.876 2.008 2.135]
polyfit(x,y,1)