密炼机转子密封系统

密炼机转子密封系统
密炼机转子密封系统

密炼机转子密封系统

现今,包含多种组分的混炼胶的生产主要是采用密炼机来进行的。混炼胶中包括有聚合物、微细易散布的粉状填料、炭黑、碳酸钙和少量的化学药品如硫化剂、促进剂或加工助剂以及液体成分如增塑油料。这些液体和细粉状的组分是通过密炼机的转子密封系统来控制以限制其进入外界环境中。

起初,人们将这些细微易散布的成份通过油膜粘附进行处理,称为粘结。由于密炼室内压力很高,这些糊状物会沿着转子的轴被慢慢挤出。为了限制这些糊状物的流出,在转子轴的两端均加了密封圈。

密封圈本身包括两层环,通常在滑动区具有较硬的表层。一个固定在转子轴上,相对的一个安装在机架上。各个转子密封系统本质上的区别在于所应用的表面压力不同,分为自动转子密封(SSA)、弹簧-加载转子密封(GA)以及水压转子密封(WYH)。

防尘设计

SSA密封的原理是基于对混炼室内的压力的利用。如果混炼室内压力升高,压力会传递到滑动的密封圈,从而密封圈的锁紧力会提高。为应用最小的表面压力,利用盘状弹簧组件来将内滑动环压到外固定环上。现今,新的密炼机都装备有GA和WYH转子密封系统。

在弹簧-加载转子密封(GA)系统中,密封圈位于混炼室外。此处,内环固定于机架,外旋转环装配于转子轴上。通过几个排布在旋转环周围的盘型弹簧组件施加表面压力,通过螺母对弹簧预加压力。润滑增塑剂注入密封圈的环形间隙,将一些细微易散布的胶料组分粘结起来。更深一层的润滑孔位于固定的滑动环内,用以润滑滑动的表面。

在水压转子密封(WYH)的情况下,密封位置更接近转子,位于混炼室的机架末端的内部。内旋转滑动环固定于转子轴上。而外固定环通过轭套与之压紧。接触压力是通过液压缸和盘型弹簧组件产生的,压力通过轭套传递到外滑动环的压力环上。润滑方式与GA转子密封系统类似。由于实际上密封系统的横断面方向会向混炼室位移,在转子和耐磨盘片之间的轴间隙里,细微的物料会在此发生粘结。

比较这两个系统(GA和WYH密封系统),显而易见密封位置是两者明显区别的因素。WYH 密封系统由于接近转子,仅有很小的死角可能积聚物料。另一方面,运动的有磨损作用的填料很容易直接进入滑动表面,从而对设备的磨损产生不利影响。GA密封系统具有相对较长的环形间隙,由于粉料在环形间隙里存留时间长,所以可以被油粘结得更好。因此,滑动表面可以更好地得到保护,密封加载的力可以最小化。然而,与此同时,部分物料在环形间隙内积聚的危险性增大,此处密封油尤显重要。

润滑系统

密封系统分为两个独立分开的部分。分别为滑动密封圈的润滑和物料粘结。滑动密封圈的润

滑作为常规的润滑系统,其功用包括:通过在液体里产生剪切来补偿表面的速度差别;带走摩擦产生的热量;物料黏结失败时起保护作用;冷却机件;带走从接触面磨损下来的微粒;允许外来微粒进入并将其带走,如混炼胶的各种成分以及腐蚀保护。

物料粘结部分的任务不能象滑动密封圈的润滑那样清楚地进行说明。其主要任务就象它的名称一样,是粘结细微散布的各种成分。采用很高粘度的操作油保证了粘结效果。在水压密封系统,这一功用非常重要。由于密封系统更接近混炼室,具有磨损作用的填料更易于直接进入滑动表面,同时,自由运动的填料更易于进入外界环境。此外,物料粘结部分可以冲洗机架末端和转子轴之间的间隙,因而不会有物料在此积聚或产生自硫。由于GA密封系统具有较长的环形间隙,这种清洗效果在此系统中变得非常重要。与此同时,操作油的加入降低了橡胶、转子轴和机架末端的之间的粘性,通过这种方式也降低了物料沿着转子轴向密封系统的传输。因此,加入粘结油料是非常必要的。

转子密封系统存在的问题

抛开滑动密封圈的磨损不讲,物料粘结和滑动密封圈润滑所需要的油也会导致一些实质性的问题。实现上述功用需要使用大量的油料,造成油料采购成本很高。而且,这些包含着混炼胶中的各种成分,如聚合物、填料等的油料,通过转子密封系统从混炼室中出来,也需要进行处理,这也相当昂贵。众所周知,所使用的油料有超过80%的部分流入混炼室,这部分油可能导致重大的质量问题。前已述及,如果物料粘结部分润滑油的量过少,部分混炼胶会积聚在环状间隙中开始自硫,可能会导致下一车料被污染。其次,滑动密封圈部分润滑油用量过少会导致密封圈迅速磨损。

更多的密封圈磨损的决定性参数还包括填料的品种及硬度、转子的几何形状、安装位置和表面压力的调整等。将磨损和冲洗处理作为表面压力的函数,可观察到两种对立的趋势。如果独立地考虑压力影响因素,可确定运用较低的接触压力以降低磨损率。反而言之,增大接触压力能够导致密封圈较快地磨损。

冲洗处理和磨损之间的交互作用也必须进行考虑。冲洗处理量的增加也会导致经过滑动区有磨损作用填料的数量增加。因此,困难在于针对合适的操作参数来确定密封系统的正确调整。

环形间隙过程原理分析

下面的研究考察了物料从混炼室传输到密封圈的影响,特别考察了粘结油料的影响。

混炼试验是在一台7升容量的切线型转子的试验室密炼机中进行的。为达到试验目的,两个密封位置的密封圈被拆除。天然胶((RSS 1,100phr)作为试验用原材料,分别在无润滑和在混炼室外部区域加入粘结油料(BP Enerpar 16)的情况下进行试验。

这组研究试验的目标是考察橡胶在密炼机没有密封时的重量差额。差额定义为初始橡胶重量mo与泄漏橡胶重量Mexit的比率。为达到这一目的,将泄漏的橡胶分别从每个位置收集起来。加粘结油料的情况下,将橡胶从泄漏的油料中分离收集起来。

所有的试验都是在加入聚合物后混炼15分钟。上顶拴压力选择为50N/cm2作为典型值。

转子的转速为30和50rpm,填充系数从50%到80%,或从40%到70%变化。排料后,用手感分别测试批料的温度。

每一橡胶差额曲线都显示出泄漏橡胶的重量持续增加。进行冲洗处理的可以分成两部分,起先,可以检测出处理量慢慢上升,当温度范围达到130℃左右时,每条曲线的橡胶差额以几乎同样的斜率上涨。转子速度上升为50rpm时,由于剪切速率上升,导致橡胶泄漏量加倍。这一情形,在混炼室低填充量时的橡胶泄漏同样会产生。导致这一结果的假定是物料传输是由Weibenberg效应造成的。在高填充系数时,这一效应叠加了混炼室内压升高的影响。考虑到实际混炼过程,结果是物料传输增加了对转子密封系统加载的压力。特别是天然橡胶-基于高温的配方。

基于Weibenberg效应,物料与侧壁滑动的趋势随着剪切力下降而上升。粘附性的下降导致剪切力的下降,因此会导致泄漏橡胶的重量下降。这种降低相当于阻止物料的泄漏,可以通过加入粘结油料来获得。

为比较非润滑和润滑的情形下天然橡胶重量差额程度,油的用量按两个水平变化。指定油的总量包括两个非密封的转子密封部分。通过润湿转子轴,橡胶的溢出能够被阻止相当一部分。在最高流速1016ml/h 的情形下,在所研究的填充系数范围内没有物料从混炼室中出来。降低流速至440ml/h 时,导致橡胶最大差额0.7%,橡胶溢出开始于填充系数超过65%时。随着温度的上升,橡胶对油的吸收能力上升。摩擦力再次超过粘附力。这样,加入粘结油料有了新的更深层次的意义。首先,细微的填料必须粘结起来,随着混炼温度和均匀程度的提高,沿着转子密封系统向外移动的物料可以通过降低混炼胶和转子轴间的粘性来减少。因此强烈推荐使用粘结油料。

工艺参数分析

与密封圈磨损和冲洗处理相关的参数是接触压力的调整应用。作为保证可靠密封功能的重要条件,要防止密封圈开启,这就意味着密封圈的表面压力必须超过转子密封系统前端产生的压力。

一方面,必须保证可靠的密封,另一方面,表面压力应当尽量减小以降低密封圈的磨损。为此,必须知道密封圈前端所产生的压力有多大。

为获得这些数据,在GA转子密封系统的固定环上装置了压力传感器,这一传感器可以提供混炼过程中混炼室中产生的压力的信息。

试验记录了EPDM配方在常规方式下混炼的工艺参数。首先,聚合物和炭黑一起加入密炼机,混炼45秒,此时,填充系数计算为47%,第一次功率峰值出现在上顶栓降下后。在低填充的混炼室中,没有或仅有轻微的压力生成可以被检出。第二次上顶栓升起后加入其它填料和操作油。填充系数现在为87%,随后上顶栓降下后造成压力突然升高,此处,在一个顺序周期中压力的最大值和最小值均可观察到。

对压力最大值和最小值详细地考察可以在第二次上顶拴降下时观察到。压力生成包括两部分,一部分起因于混炼室中压力的上升;另一部分起因于转子轴旋转时产生的位移。因此,

可以区分为轴向产生的压力及向上和径向产生的压力。

轴向产生的压力首先起因于上顶栓降下造成的压力上升。另外,由Weissenberg效应导致的物料沿转子轴移动提高了对密封系统加载的力。为了防止转子密封系统开启,表面压力必须超过轴向产生的压力。

免润滑转子密封系统

采用免润滑转子密封系统可以显著降低操作油的用量以及相应的油料处理量。免润滑转子密封系统这种方式提供了以上所讲的降低成本同时提高混炼胶质量的机会。此外,还有一个特别的优势是可以改装已经投入生产的密炼机。

这一系统的创造者Zaczek和Reardon建议采用热固性材料如固化的碳纤维增强聚酰亚胺,以及热塑性工程塑料如纤维增强聚酮醚(PEEK)。应用柔软的聚合物材料存在的问题是假设母体材料中埋入了能产生磨损的微粒,同样会导致坚硬的配合部件加速磨损。两种材料的磨损行为可以通过提高配合部件的硬度来改善。一个途径是通过纤维补强来增强聚合物,另一途径是应用特殊的耐磨表层来增强抵御硬的配合部件的磨损的能力。

应用上述原理,在一台GK 135 E 密炼机上进行了实际生产试验,对聚合物材料和钢圈的耐磨表层进行变化对比。使用条件为:GA转子密封系统;滑动环没有润滑;粘结能力保持率;所有种类的橡胶制品技术配方,从母炼胶到终炼胶(炭黑混炼胶)。

定期检查保证了对磨损行为的记录。为此,将旋转的聚合物环从密炼机上拆下,清洗干净后,确定其磨损值。

试验记录了不同材料组合在工作阶段的磨损进展情况。材料组合1(表层A/热塑性塑料1)展示出极好的磨损率。在密炼机运行了37个月后将密封圈从密炼机上拆下,从可能的最大磨损距离推断,它可以再继续运行10个月以上。关于材料组合2(表层B/热塑性塑料2)可以确定有相似的磨损行为。然而,这种密封圈必须运行16个月后就进行更换,因为耐磨性能太差,同时表层厚度太薄。目前所安装的组合3到5的持续试验尚未完成,因此现在还不能做出效果的判断。

对免润滑转子密封系统的效果也从有关于减少油料处理的方面进行了分析。在6个月的时间里与常规润滑转子密封系统相比较,对比油料的处理量。用于免润滑转子密封系统的油料在4个星期的时间段被分别收集起来,然后,油料的量按1小时运行时间标准化,与常规润滑系统进行关联。结果证实平均可以减少油料的消耗达72%。不过,即使在免润滑转子密封系统,仍然必须保证物料的粘结保持力。

结论

通过使用免润滑密封系统,可以显著地降低操作油的用量。同时,与常规润滑系统相比,油料处理可以减少72%,结果是油料购买和处理的成本显著降低,而产品质量得以提高。试验的材料组合显示出极好的磨损行为,已经实现了至少37个月的服务寿命。

文章由橡胶工业网整理:https://www.360docs.net/doc/3718365030.html,/

密炼机转子密封系统的问题及原理解析

密炼机的密封系统是衡量一台密炼机性能好坏的一个重要指标。各个转子密封系统本质上的区别在于所应用的表面压力不同,分为自动转子密封(SSA)、弹簧-加载转子密封(GA)以及水压转子密封(WYH)。下面我们就来分析下转子密封系统存在的问题以及各转子密封的介绍。 转子密封系统存在的问题 抛开滑动密封圈的磨损不讲,物料粘结和滑动密封圈润滑所需要的油也会导致一些实质性的问题。实现上述功用需要使用大量的油料,造成油料采购成本很高。而且,这些包含着混炼胶中的各种成分,如聚合物、填料等的油料,通过转子密封系统从混炼室中出来,也需要进行处理,这也相当昂贵。众所周知,所使用的油料有超过80%的部分流入混炼室,这部分油可能导致重大的质量问题。前已述及,如果物料粘结部分润滑油的量过少,部分混炼胶会积聚在环状间隙中开始自硫,可能会导致下一车料被污染。其次,滑动密封圈部分润滑油用量过少会导致密封圈迅速磨损。 更多的密封圈磨损的决定性参数还包括填料的品种及硬度、转子的几何形状、安装位置和表面压力的调整等。将磨损和冲洗处理作为表面压力的函数,可观察到两种对立的趋势。如果独立地考虑压力影响因素,可确定运用较低的接触压力以降低磨损率。反而言之,增大接触压力能够导致密封圈较快地磨损。 冲洗处理和磨损之间的交互作用也必须进行考虑。冲洗处理量的增加也会导致经过滑动区有磨损作用填料的数量增加。因此,困难在于针对合适的操作参数来确定密封系统的正确调整。 环形间隙过程原理分析 下面的研究考察了物料从混炼室传输到密封圈的影响,特别考察了粘结油料的影响。 混炼试验是在一台7升容量的切线型转子的试验室密炼机中进行的。为达到试验目的,两个密封位置的密封圈被拆除。天然胶((RSS 1,100phr)作为试验用原材料,分别在无润滑和在混炼室外部区域加入粘结油料(BP Enerpar 16)的情况下进行试验。 这组研究试验的目标是考察橡胶在密炼机没有密封时的重量差额。差额定义为初始橡胶重量mo与泄漏橡胶重量Mexit的比率。为达到这一目的,将泄漏的橡胶分别从每个位置收集起来。加粘结油料的情况下,将橡胶从泄漏的油料中分离收集起来。 所有的试验都是在加入聚合物后混炼15分钟。上顶拴压力选择为50N/cm2作为典型值。转子的转速为30和50rpm,填充系数从50%到80%,或从40%到70%变化。排料后,用手感分别测试批料的温度。 每一橡胶差额曲线都显示出泄漏橡胶的重量持续增加。进行冲洗处理的可以分成两部分,起先,可以检测出处理量慢慢上升,当温度范围达到130℃左右时,每条曲线的橡胶差额以几乎同样的斜率上涨。转子速度上升为50rpm时,由于剪切速率上升,导致橡胶泄漏量加倍。这一情形,在混炼室低填充量时的橡胶泄漏同样会产生。导致这一结果的假定是物料传输是由Weibenberg效应造成的。在高填充系数时,这一效应叠加了混炼室内压升高的影响。考虑到实际混炼过程,结果是物料传输增加了对转子密封系统加载的压力。特别是天然橡胶-基于高温的配方。 基于Weibenberg效应,物料与侧壁滑动的趋势随着剪切力下降而上升。粘附性的下降导致剪切力的下降,因此会导致泄漏橡胶的重量下降。这种降低相当于阻止物料的泄漏,可以通过加入粘结油料来获得。

非对称转子-轴承- 基础系统的非线性振动

振动与冲击 第!"卷第#期$%&’()*%+,-.’)/-%()(012%34,567!"(57#!88 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #非对称转子9轴承9基础系统的非线性振动" 沈松:郑兆昌!应怀樵" (:7北京大学力学与工程科学系,北京:88;<:;!7清华大学工程力学系,北京:888;#; "7东方振动和噪声技术研究所,北京:888;=) 摘要对柔性轴两端支承在滑动轴承上的转子,考虑非对称圆盘的陀螺力矩和弹性基础的振动,使用圆短轴承的非稳态非线性油膜力模型,建立了:8自由度的转子9轴承9基础系统运动方程,并通过数值方法计算系统稳态响应,分析了系统的非线性振动形式以及弹性基础的振幅调制对转子振动的影响。 关键词:转子系统,非线性振动,分叉,基础 中图分类号:/2:""7",%"!!文献标识码:) 8引言 在工程旋转机械中,研究转子系统稳定性的一个重要方面就是由滑动轴承非线性油膜力的作用而产生的各种非线性振动,目前已有大量文献对此进行了多方面的研究,文[:]研究了柔性轴支承的对称转子非线性特性,文[!]使用了非稳态油膜模型描述滑动轴承的非线性油膜力,文["]研究了非稳态油膜力下柔性轴支承的非对称陀螺转子模型,文[#]则建立了包括基础的简化的"自由度转子系统。 虽然转子系统的非线性振动常常由于滑动轴承的油膜力引起,但近年来许多理论和试验表明[=],为更好地反映转子系统动力特性,应当考虑基础的影响。基础部分的振动将与转子9轴承部分的振动相互影响,根据文["]的结果,转子9轴承部分的振动除旋转频率成分外,当出现油膜涡动时还会有半频或大约半频的成分,该半频可能同基础的固有频率比较接近,因此转子9轴承9基础系统中除旋转频率和半频外,不仅可能出现一阶临界转速频率,还可能出现基础的固有频率,这两种由于共振出现的频率都会对系统的稳定性造成不良影响。 为此本文在柔性轴非对称转子系统的基础上,又考虑弹性基础在垂直方向上的振动对整个转子系统的作用,使用文[!]的非稳态油膜力模型,建立了:8个自由度的非对称转子9非稳态油膜轴承9基础系统运动方程,并通过(>?@ABC9!积分和(>?D5E9’AFGH I5E法相结合的数值方法,计算转子在不同转速参数的瞬态响应,反映了弹性基础的共振形式。 :转子9轴承9基础系统模型 通常建立的转子轴承系统,两端的轴承座是不运动的。现在假设轴承座是固定在一个大质量的刚体基础上,基础与地面为弹性连接,个有一定的位移和转动,形成一个转子9轴承9基础系统。由于工程实际中基础位移在水平方向远小于垂直方向,因此本文仅考虑基础垂直方向的振动。 图:表示的是转子9轴承9基础系统在%JK(垂直面)和%LK(水平面)平面上的投影,).为柔性轴, 图:转子9轴承9基础系统力学模型示意 圆盘位于轴的%点,由于%点不处于).的中点,而具有陀螺力矩作用。30为基础,轴与基础通过在)、.两点的滑动轴承油膜力相互作用,基础在垂直方向J 上考虑位移和转动,将其视作平面内的刚体运动,假设具有位移和转角,在水平方向L上的位移和转动一般较J方向小得多而忽略。这样的转子9轴承9基础系统就成为一个:8自由度系统。 "国家重点基础研究项目((57M:NN;8!8":O)和国家自然科学基金项目((57:NN

旋转机械转子轴承系统的稳定性

旋转机械转子轴承系统的稳定性 一、转子轴承系统的稳定性 转子轴承系统的稳定性是指转子在受到某种扰动后能否随时间的推移而恢复原来状态的能力,也就是说扰动响应能否随时间增加而消失。如果响应随时间增加而消失,则转子系统是稳定的,若响应随时间增加不消失,则转子系统就失稳了。 造成机组失稳的情况很多,如动压轴承失稳、密封失稳、动静摩擦失稳等,而失稳又具有突发性,往往带来严重危害。因此,设备故障诊断人员应对所诊断的机组的稳定性能做到心中有数,一旦发现失稳症兆,应及时采取措施防止其发展。 图1-9 衰减自由振动 比较典型的失稳是油膜涡动。在瓦隙较大的情况下,转子常会因不平衡等原因而偏离其转动中心,致使油膜合力与载荷不能平衡,引起油膜涡动。机组的稳定性在很大程度上决定于滑动轴承的刚度和阻尼。当具有正阻尼时系统具有抑制作用,涡动逐步减弱;反之当具有负阻尼时,系统本身具有激振作用,油膜涡动就会发展为油膜振荡;在系统具有的阻尼为零时,则处于稳定临界状态。 在工程实践中,常常采用对数衰减率来判断系统的稳定性。对数衰减值是转子做衰减自由振动时,相邻振幅之比的对数值,如图1-9所示: (1-19) 式中,; c为阻尼系数;m为系统质量;ωd为衰减自由振动的频率。 δ大的系统,对于激励的响应会较快地使之衰减,系统稳定,如δ<0,说明系统有负

阻尼,系统会自激。 二、多盘转子 图1-10 多盘转子常见振型 实际应用中,转子上可能装配有多个叶轮,这就与前面介绍的单盘转子有所不同,称为多盘转子。在此仅介绍多盘转子的振型问题。一个弹性体可以看成是由无数多个质点组成的,各质点之间采用弹性连接,只要满足连续性条件,各质点的微小位移都是可能的,因此一个弹性体有无限多个自由度,而每个质点都有可能产生共振形成共振峰。就转子而言,转子结构的每个共振峰均伴随着一个振动模态形式,称之为振型。当激振频率与模态之一吻合时,结构的振动形式会形成驻波。激振频率不同驻波形式也不同,如图1-10所示分别为一阶、二阶、三阶驻波,其中振值为零的部位称为节点。 了解振型对设备故障诊断具有实际意义: (1)由振型可见,即使所考虑的测点彼此相距很近,但各点之间所测得的实际振动可能有很大的差别; (2)轴承部位不一定就是振动最大的部位。 因此,在进行设备诊断时,首先应正确选择好测点,避免设置在节点上;其次,应考虑到在测点测得的振值不一定就是振动最强烈的数值,在其他部位可能会有更大的振值。 三、扭转振动 分析旋转机械振动故障时,一般都是指平行振动,即振动质量仅沿着直线方向往返运动,包括转轴轴线垂直方向的径向振动和沿轴线方向的轴向振动两种形式。除此之外,有时还会遇到绕着轴线进行的扭转振动。扭振的力学模型如图1-11所示。

密炼机转子密封系统

密炼机转子密封系统 现今,包含多种组分的混炼胶的生产主要是采用密炼机来进行的。混炼胶中包括有聚合物、微细易散布的粉状填料、炭黑、碳酸钙和少量的化学药品如硫化剂、促进剂或加工助剂以及液体成分如增塑油料。这些液体和细粉状的组分是通过密炼机的转子密封系统来控制以限制其进入外界环境中。 起初,人们将这些细微易散布的成份通过油膜粘附进行处理,称为粘结。由于密炼室内压力很高,这些糊状物会沿着转子的轴被慢慢挤出。为了限制这些糊状物的流出,在转子轴的两端均加了密封圈。 密封圈本身包括两层环,通常在滑动区具有较硬的表层。一个固定在转子轴上,相对的一个安装在机架上。各个转子密封系统本质上的区别在于所应用的表面压力不同,分为自动转子密封(SSA)、弹簧-加载转子密封(GA)以及水压转子密封(WYH)。 防尘设计 SSA密封的原理是基于对混炼室内的压力的利用。如果混炼室内压力升高,压力会传递到滑动的密封圈,从而密封圈的锁紧力会提高。为应用最小的表面压力,利用盘状弹簧组件来将内滑动环压到外固定环上。现今,新的密炼机都装备有GA和WYH转子密封系统。 在弹簧-加载转子密封(GA)系统中,密封圈位于混炼室外。此处,内环固定于机架,外旋转环装配于转子轴上。通过几个排布在旋转环周围的盘型弹簧组件施加表面压力,通过螺母对弹簧预加压力。润滑增塑剂注入密封圈的环形间隙,将一些细微易散布的胶料组分粘结起来。更深一层的润滑孔位于固定的滑动环内,用以润滑滑动的表面。 在水压转子密封(WYH)的情况下,密封位置更接近转子,位于混炼室的机架末端的内部。内旋转滑动环固定于转子轴上。而外固定环通过轭套与之压紧。接触压力是通过液压缸和盘型弹簧组件产生的,压力通过轭套传递到外滑动环的压力环上。润滑方式与GA转子密封系统类似。由于实际上密封系统的横断面方向会向混炼室位移,在转子和耐磨盘片之间的轴间隙里,细微的物料会在此发生粘结。 比较这两个系统(GA和WYH密封系统),显而易见密封位置是两者明显区别的因素。WYH 密封系统由于接近转子,仅有很小的死角可能积聚物料。另一方面,运动的有磨损作用的填料很容易直接进入滑动表面,从而对设备的磨损产生不利影响。GA密封系统具有相对较长的环形间隙,由于粉料在环形间隙里存留时间长,所以可以被油粘结得更好。因此,滑动表面可以更好地得到保护,密封加载的力可以最小化。然而,与此同时,部分物料在环形间隙内积聚的危险性增大,此处密封油尤显重要。 润滑系统 密封系统分为两个独立分开的部分。分别为滑动密封圈的润滑和物料粘结。滑动密封圈的润

回转式三分仓空气预热器密封系统安装调整技术

龙源期刊网 https://www.360docs.net/doc/3718365030.html, 回转式三分仓空气预热器密封系统安装调整技术 作者:李美玲蔡清华 来源:《城市建设理论研究》2012年第32期 摘要:优良的安装方案是安装工程缩短工期和确保安装质量的前提条件,可以从前期准备、设备特点、安装流程、附属工种的配合、人力资源等方面进行优化。希望通过文章中的分析,和所有的安装工作者共勉。 关键词:工艺原理;质量控制 中图分类号:O213.1 文献标识码:A 文章编号: 1前言 空气预热器是利用锅炉尾部的烟气热量加热空气的设备。回转式三分仓空气预热器具有结构紧凑、占地面积小,简化锅炉尾部受热面布置等特点,因此被广泛应用于大容量锅炉。由于回转式空气预热器是一种转动机构,在空预器的的转动部分和固定部分之间总是存在一定的间隙。同时流经预热器的空气(正压)与烟气(负压)之间有压差,空气就会通过这些间隙漏到烟气流中,造成较大的漏风,漏风严重时会影响锅炉的出力。 三分仓回转式空气预热器内部一次风压比二次风和烟气侧的风压均高很多,加上转子与外壳之间存在间隙,因此不可避免地存在一次风向二次风侧和烟气侧的直接泄漏以及二次风向烟气侧的漏风。密封漏风是空气预热器漏风的主要部分,其中,径向漏风约占总漏风量的60%~70%。密封系统是根据空气预热器转子受热变形面设计的,能控制并减少漏风从而减少能量的损失,它包括径向密封、轴向密封、旁路密封及中心筒密封。在施工时如果密封装置间隙过小,则机械在热态情况下容易发生卡涩现象,造成驱动电机过流、密封件摩擦损坏等故障发生;如间隙过大,则漏风量大,导致整体热效率降低。在施工中通过合理地控制径向密封、轴向密封、旁路密封的间隙来达到降低预热器的漏风率,同时还可以利用扇形板的调节来控制间隙,进一步减小预热器的漏风率。 2.工艺原理 对轴向密封、旁路密封以及冷端径向密封均采用在冷态下预留合适的间隙,使转子在热态变形后获得合理的密封间隙。对于热端径向密封,则通过的自动控制系统的控制,使得密封间隙始终维持在合适的范围内。

转子轴承系统动力学分析系统的设计与实现

转子轴承系统动力学分析系统的设计与实现 朱爱斌1,张锁怀2,丘大谋1,谢友柏1 (1.西安交通大学 润滑理论及轴承研究所,陕西西安 710049; 2. 上海应用技术学院,上海 200235) 摘 要: 分析了如何基于Matlab和VB开发齿轮啮合的转子轴承系统动力学分析系统的问题,介绍了系统的总体设计和具体实现途径,提出将Matlab和VB的三种集成方法混合应用,并通过实例说明系统的使用方法和计算分析内容。该系统能够有效缩短齿轮啮合的转子轴承系统的设计开发周期,优化系统的性能。关键词:转子轴承;齿轮;动力学分析;Matlab 中图分类号: TH12;TP312 文献标识码:A Design and Realization of Rotor-Bearing System's Dynamic Characteristics Analyzing System ZHU aibin1 ZHANG suohuai2 QIU damou1 XIE youbai1 (Theory of Lubrication and Bearing Institute, Xi'an Jiaotong University, Xi’an 710049, China) Abstract : Issue of how to develop dynamic characteristics analyzing system of geared rotor-bearing system with Matlab and Visual Basic was analyzed, framework design and realized approach was introduced, and method of mixed application of three integration ways between Maltab and VB was proposed. A case was given to show the computing and analyzing process. The analyzing system can efficiently short the design and development time of geared rotor-bearing system, and optimize the performance of geared rotor-bearing system. Key words : rotor bearing; gear; dynamic characteristics analyzing; matlab 齿轮耦合的转子轴承系统即多个转子-轴承 系统通过齿轮耦合联系在一起[1][2]。这种系统既保留了单个转子-轴承系统的某些动力学特性,又具有齿轮传动所引起的一些新特性。某一转子-轴承系统的动力学性能的改变,通过齿轮的耦合作用,必将影响另一转子-轴承系统的动力学性能;横向振动通过齿轮传递后,将引起转子产生扭转振动,也就是说,弯曲振动和扭转振动将同时发生,即发生弯扭耦合振动[3];齿轮参数的改变,必将导致整个系统的动力学性能发生变化,这是该系统所独有的特性。 具有齿轮啮合的转子轴承系统在风机、压缩机、增速器等机器中广泛存在,由于齿轮的啮合作用,使原本相互独立的多个转子轴承系统联接在一起,从而使各转子轴承系统的动力特性相互影响,整个系统的动力特性与单个子系统的动力特性大不一样[4]。在齿轮耦合的转子轴承系统的研究基础上,基于Matlab和VB开发了齿轮啮合的转子轴承系统动力学分析系统,可以用于压缩机、风机等流体机械及增速器、减速器等具有齿轮传动的平行轴系的转子系统动力学分析。分析内容包括稳定性、临界转速、强迫振动响应、系统特征值及振型的计算和分析。同时本系统也能够完成转子轴承系统中任意单根转子的动力学分析。1 总体框架设计 1.1 系统设计原则 系统是面向具有转子轴承系统动力学一般知识的企业或者科研院所用户而开发的,基本的设计原则包括: (1) 建立考虑齿轮啮合因素的平行轴系的转子轴承系统的数学模型,使其计算结果能够与实际情况的误差较小; (2) 提供简单、合理和方便的使用界面,适应不同使用水平的用户; (3) 提供包括数据,图形,XML文档等多种形式的丰富的参数表示形式,给用户直观,丰富的信息; (4) 结合Matlab的数据处理,矩阵计算和图形1显示的强大功能和VB在图形用户界面开发方面的优势; 1.2 系统总体框架 收稿日期:2004 - 09 - 14 基金项目:博士学科点专项科研基金(20030698005,20050698016) https://www.360docs.net/doc/3718365030.html,

回转式空气预热器密封选型

回转式空气预热器密封选型 摘要:本文分析回转式空预器的漏风原因及对机组经济性的影响,介绍空预器 的密封措施,提出密封方式的推荐性意见。 关键词:回转式空气预热器;漏风;密封 1.回转式空气预热器结构 回转式空气预热器是一种以逆流方式运行的再生式热交换器。加工成特殊波纹的金属蓄 热元件被紧密地放置在转子扇形仓格内,转子以约1转/分钟的转速旋转,其左右两侧分别为烟气和空气通道;空气侧又分为一次风通道及二次风通道。当烟气流经转子时,烟气将热量 释放给蓄热元件,烟气温度降低;当蓄热元件旋转到空气侧时,又将热量释放给空气,空气 温度升高。如此周而复始地循环,实现烟气与空气的热交换。 2.回转式空预器漏风的原因及对经济性的影响 2.1回转式空预器漏风的原因 回转式空预器产生漏风的主要原因是由于转子热态的“蘑菇型”变形造成的转子表面和扇 形板表面的泄漏面积加大引起漏风量增加,另外由于转子长期运行产生径向椭圆变形造成轴 向漏风增加。 由于转子的不断转动,转子上表面持续受到热风侧的高温烟气的加热,温度较高;而转 子的下表面也连续受到冷风侧一、二次冷风的冷却,温度较低。使得转子的上部热膨胀大于 下部;由于转子下端受到推力轴承、中心驱动装置、支撑横梁的支撑作用,使转子在受热后 的热态变形为向下部膨胀。这种膨胀结果使得转子中心的上表面较冷态时升高,并且由于转 子上部的径向膨胀大于下部,使得转子的上部受到的热膨胀径向力矩大于转子下部。致使转 子以下部为原点发生向下、向外的翻转变形。加之转子的自重力矩,更加速了转子的这种行 似“蘑菇型”的热态变形。“蘑菇型”的热态变形中,空预器转子的外周发生向下的沉降现象, 而转子中心发生隆起。故热态时转子下部的三角形漏风间隙和转子圆周的轴向漏风间隙变得 比冷态时小,而转子上部的漏风间隙变得比冷态时大;而且随着锅炉负荷的升高,空预器转 子换热量的增加,上述“蘑菇状”变形就越明显。 2.2漏风量计算及对机组运行经济性的影响 影响漏风的主要因素是漏风系数、间隙面积、空气侧与烟气侧之间的压力差。 空预器漏风率直接影响锅炉机组运行经济性。根据计算,对于电站锅炉,一般炉膛漏风 系数每增加0.1~0.2,排烟温度将上升3~8℃,锅炉效率降低0.2~0.5%;而锅炉效率提高1%,300MW燃煤机组直接供电煤耗降低1.5~2.0g/kWh。以锅炉排烟氧量由7.0%降为 6.0% 为例,炉膛漏风系数降低0.1,锅炉效率提高以0.25%计算,则300MW 燃煤机组供电煤耗可 降低0.375g/kWh。因此,降低回转式空预器漏风率的重要性不言而喻。 3.降低空气预热器漏风率措施 按照回转式空预器的结构特点,控制空预器漏风的方法主要有:多重密封、焊接静密封、柔性密封、新型间隙跟踪装置(LCS)、四分仓设计、设置增压密封系统、配置抽吸漏风系统。 3.1多重密封技术 采用多重密封减小漏风的形式原理在于降低直接漏风压差,双道密封即为这种方式。双 道密封设计的转子密封板,覆盖了两个完整的转子格仓,密封区始终存在两道密封,因此漏 风压差只有传统设计单道密封的一半。在此基础上又发展出了三道密封技术,即进一步缩小 转子格仓大小,如转子采用48个甚至更多仓格,使得密封板可以覆盖3个转子仓格,保证 密封区始终有三道密封,进一步降低漏风压力差为烟空气压差的1/3。 3.1.1双道密封技术 双道径向密封和轴向密封技术与传统的单道密封方案相比,双道密封可使直接泄漏降低30%。 双道密封通过密封板覆盖两个转子仓格来实现,保证在任何时候,都有两道密封在起作用。转子使用36仓方案,惰性区略大于48仓设计,利于漏风稳定;低阻力元件保证流通阻 力很小。同时制造、安装方便,没有过多的因篮子仓格数过多引起的转子截面利用率差,局 部烟气走廊多(篮子筐角部)的缺点。通过使用新传热元件波形,达到降低阻力的目的。

正压式制粉系统的密封风系统

京能集团运行人员培训教程BEIH Plant Course 正压式制粉系统的密封风系统 SEAL FAN HHW TD NO.100.2

目录 1、密封风的作用 (3) 2、系统构成及流程 (4) 3、密封风系统的运行 (5) 4、常见的密封风压的调整方案 (9) 5、密封风系统常见故障 (10) 6、延伸阅读 (11) 7、标准试题库 (17)

1、密封风的作用 密封风系统的任务,是给正压运行的制粉设备的相关部件提供高于制粉系统运行压力的密封空气: 1.1中速磨密封风分三路,磨煤机下部密封风是为了防止煤粉传动盘处漏出,上部是为了防止煤粉进入磨辊轴密封处,中间为防止拉杆漏粉,给煤机密封风则是防止磨内热空气窜入给煤机内损坏给煤机皮带。 1.2磨煤机在运行时,磨内与外部存在压力差,为防止煤粉外漏和污染磨辊内部油腔,磨煤机设有密封风系统,主要的密封点有磨辊、拉杆、机座密封等部位。各个密封点的要求如下: 1.2.1磨辊密封:除保证磨煤机运行时磨辊密封所需的正常风量外,当停磨以后应保持一定时间密封风,以防止停磨后飞扬的煤粉对磨辊油封产生不良影响。密封风保持时间见停磨煤机程序要求。密封风量约占总风量的50%。 1.2.2拉杆密封:拉杆密封主要是防止密封环之间积粉,密封风量约占总风量的5%。 1.2.3机座密封:为防止一次风从转动的传动盘处泄漏,密封风室的密封风压必须大于一次风室内的一次风压力,密封风量约占总风量的45%。 1.2.4磨一次风入口检修隔绝门密封:检修隔绝门是磨煤机停运时用于隔绝一次风,其作用有二个,其一是保证磨煤机定期维护、检修及事故停磨后的检修。其二是防止漏风污染磨辊油封和漏风量大使磨内温度升高产生不利影响。 1.3给煤机密封 在正压运行系统中,给煤机本身密封可靠,可以认为无泄漏。给煤机需要通过密封空气来防止磨煤机热风通过排料口回入给煤机。密封空气压力为磨煤机进口压力加上60~ 245Pa,所需密封空气量则为通过进料落煤管由煤斗部分的空气泄漏量,加上给煤机与磨煤机进口间的压力差所需的空气量。 密封空气的进口位于给煤机机体进口处的下方,法兰式接口供用户接入密封空气用。 密封空气压力过低会导致热风从磨煤机回入给煤机内,这样,煤灰将容易积滞在门框或其它凸出部分,从而引起自燃。密封空气压力过高和风量过大,又会将煤粒从胶带上吹落,从而使称量精度下降,并增加清理刮板的负荷,密封空气量过大也容易使观察孔内产生尘雾的不利于观察,因此应当适当调整密封空气的压力。

发电机氢气密封系统漏氢排查分析及处理

发电机氢气密封系统漏氢排查分析及处理 发表时间:2017-10-19T15:20:08.927Z 来源:《电力设备》2017年第15期作者:曹雪伟[导读] 摘要:氢冷发电机氢气密封系统密闭保障直接影响人员、设备安全和经济运行。 (大唐保定热电厂河北保定 071000)摘要:氢冷发电机氢气密封系统密闭保障直接影响人员、设备安全和经济运行。对氢气密封系统漏氢的原因进行了分析,并就漏氢后的处理过程进行了详细的阐述,根据处理过程对今后的发电机检修提出了相应的预防措施。 关键词:发电机;漏氢;排查分析;处理引言 新技能背景下,已并网发电的200MW以上汽轮发电机组大部分能达到额定出力并持续运行,各项技术参数和性能也基本上能满足各种正常或非正常运行方式的要求。尽管如此,由于设计及工艺原因,特别是制造工艺和质量检验等存在问题较多,导致发电机各类事故频繁,延续时间长,性质严重,损失巨大;其次,电机的安装、检修质量及运行维护水平也存在诸多问题,常常成为事故发生的诱因。 发电机漏氢作为氢冷发电机运行中发生频率较高,且危害性很大的事件,日补氢量超标,严重影响着机组的安全运行。以下就某火力发电厂一起水氢氢汽轮发电机漏氢事件,分析探讨大型氢冷发电机运行中遇到漏氢故障后的原因分析方法和检查处理手段。 1大型氢冷发电机运行中遇到漏氢故障后的原因分析和处理手段 1.1故障情况 2号发电机为日立原装进口的200MW水氢氢冷汽轮发电机,已安全运行十余年。自2011年底开始,运行人员发现其存在日漏氢量偏大的问题,但一直未超过12m3/d的设计值。 2号发电机定子水箱漏氢检测氢气含量偏高,手持测量值为(34-46)LEL,对应氢气含量为(1.36-1.84)%,在线监测装置显示氢气含量为(1.3-1.9)%之间波动。同期投产的国产化机型6#发电机同期定子水箱漏氢手持测量值为(17-21)LEL,在线监测装置显示氢气含量为0。机组运行期间加大对2号发电机漏氢情况检测,无明显发展变化趋势。虽然此发电机的各项指标均为超标,但未保险起见,准备利用机组小修机会对发电机定子水箱氢气含量偏大的缺陷做全面检查处理。 1.2漏氢原因分析 水氢氢冷发电机漏氢原因:(1)密封瓦油路堵塞,(如油滤网堵,平衡阀、差压阀卡涩)等使密封油压降低。(2)密封瓦与轴之间及密封瓦与瓦座之间的间隙大。(3)各法兰及发电机本体的各接合面包括大端盖、人孔门等的密封橡胶或密封垫不良,各螺丝未拧紧。(4)引出线套管、检温元件、引线端子板等密封不好。(5)氢气冷却器密封垫各螺丝未拧紧。及氢气冷却器铜管是否破裂。(6)所有要关闭的阀门未关严。(7)转子中心孔导电螺钉处漏氢。(8)发电机本体和各管道的焊缝焊接不好。(9)密封瓦与大端盖结合面(立面)不严密。大端盖结合面光洁度不够或螺丝未拧紧。 1.3漏氢位置确定 2号发电机定子线棒也是进行的气压试验。试验初始气压0.3Mpa,24小时后气压降至0.36MPa。在排除发电机外部无渗漏点后。采取氦质谱仪检漏,在励侧3点、5点钟位置发现氦气浓度较其他部位高出10倍以上,但无法确认漏点位置。重新进行定子线棒水压试验(0.5MPa 8小时),对励侧3点、5点钟位置进行重点持续观察,最终于发电机励侧5点钟位置引水管手包绝缘处发现渗水缺陷。 1.4处理过程 (1)渗漏点确认后,为最小程度的影响工期,首先尝试在不抽发电机转子的情况下是否可进行渗漏点的补焊处理。 (2)施加了0.5MPa的水压后,此线棒北数一二排间开始有水渗出。厂家人员就此判断泄漏点仍在线棒内部靠近定子膛方向,根据其意见,制定了抽转子继续处理的初步方案。 (3)发电机转子抽出后,吊开励侧下端盖、内端盖,拆除励侧撑环绑线和撑环。 (4)继续吊出汽侧内端盖,拆除汽侧撑环和线棒绑带,破开汽侧31#线棒手包绝缘。焊开故障线棒两端水电接头处,敲掉汽励两侧故障线棒固定垫块后将故障线棒撬开抬出。用铜堵头焊死下层线棒水管,打剩余线棒气压,0.5MPa,8小时无泄漏。定子绕组吹水后,对剩余线棒进行33kV交流耐压试验,1分钟通过,再次确认其余线棒无问题。 (5)对新线棒进行54kV交流耐压试验,1分钟通过;进行0.6MPa的气压试验,12h经公式换算合格。 (6)先后恢复励侧汽侧手包绝缘,垫块,绑绳,撑环,T型螺栓和绑带。加定子膛堵板、风道堵板。用厂家专用烘焙机开始第一次烘焙,升温至定子端部温度90℃时,记录起始保温时间,恒温时间2小时。继续升温至定子端部温度到110℃时,记录起始保温时间,恒温时间48小时。 (7)结束第一次烘焙后两侧刷环氧树脂浸渍胶。二次烘焙升温至定子端部温度到100℃时,记录起始保温时间,恒温时间12小时。检查手包绝缘处固化良好后,喷红瓷漆。 (8)对31#槽打槽楔后,进行发电机铁损试验、表面电位试验、定子绕组交流耐压试验、定子端部模态试验分别合格。定子线圈0.5MPa气压试验合格。顺利完成了#31上层定子线棒更换工作。 (9)对拆下的旧线棒接水盒焊缝进行着色探伤,焊缝外表面未发现异常,将线棒空心导线与实心导线散开,并将28根空心导线单独焊死后进行水压试验,发现渗漏点在第二层与第三层之间的焊缝,空心导线无渗漏点。渗漏原因分析为多层空心导线与实心导线连接处焊接质量存在瑕疵,在电腐蚀及端部振动的作用下导致渗漏情况的发生。 经过以上更换线棒的处理,2号发电机日漏氢量下降为6.92立方米/天,效果十分明显。 2一般情况中漏氢的综合处理方法 2.1在备件上严把质量关 一般情况下,漏氢究其根本原因都出在备件质量上,一使线棒水电连接管质量存在压接问题,二是密封瓦座密封条过早老化失去弹性所致,所造成的损失是非常严重的。所以治理漏氢首先要从备件的质量上入手,多调研国内其它电厂所用备件和密封件的情况,将好的品牌备件的厂家记下来,根据自己所用备件的型号和运行工况告诉他们,使之所供备件真正做到品质优良适合本厂发电机所需的工况备件,在备件上作到“该换必换、换必换好。

相关文档
最新文档