递归算法与递归程序

合集下载

全国浙教版信息技术高中选修1新授课第五节递归算法实例及程序实现教学设计

全国浙教版信息技术高中选修1新授课第五节递归算法实例及程序实现教学设计
2.分步骤教学,循序渐进:将递归算法的教学分为理论讲解、实例分析和实践操作三个阶段。首先,讲解递归的基本概念和原理,让学生对递归有初步的认识;其次,通过分析具体实例,让学生理解递归算法的设计思路;最后,让学生动手实践,加深对递归算法的理解。
3.任务驱动法,培养自主学习能力:设计具有挑战性的递归任务,鼓励学生自主探究和解决问题。在任务完成过程中,引导学生发现问题、分析问题、解决问题,培养他们的自主学习能力。
a.递归算法在排序算法中的应用,如快速排序、归并排序等。
b.递归算法在图形绘制中的应用,如分形图形的绘制等。
c.递归算法在人工智能领域的应用,如深度学习中的递归神经网络等。
1.作业要求独立完成,不得抄袭他人成果,确保作业质量。
2.在编程过程中,注重代码规范,养成良好的编程习惯。
3.遇到问题时,要积极思考,可查阅资料、请教同学或老师,提高解决问题的能力。
c.结合迷宫问题,讨论递归算法的设计思路。
2.每个小组选代表进行分享,总结讨论成果。
3.老师针对学生的讨论进行点评,强调递归算法在实际应用中的注意事项。
(四)课堂练习
1.设计以下练习题目,让学生动手实践:
a.编写递归程序,计算阶乘。
b.编写递归程序,求解斐波那契数列。
c.分析并优化以下递归程序,提高程序性能。
4.掌握全国浙教版信息技术高中选修1新授课第五节递归算法相关知识点,形成系统的知识体系。
(二)过程与方法
1.通过实例分析,培养学生的问题发现和解决能力,提高学生的逻辑思维能力。
2.采用任务驱动法,引导学生自主探究递归算法的原理和实现方法,培养学生自主学习能力。
3.组织课堂讨论,让学生在交流与合作中碰撞思维火花,提高学生的沟通能力和团队协作能力。

C语言常用算法程序汇总

C语言常用算法程序汇总

C语言常用算法程序汇总C语言是一门广泛应用于计算机编程的语言,具有较高的效率和灵活性。

在C语言中,常见的算法程序包括排序算法、查找算法、递归算法等等。

以下是一些常用的C语言算法程序的汇总:1.排序算法:-冒泡排序:通过多次迭代比较相邻元素并交换位置,将最大的元素逐渐移动到正确的位置。

-插入排序:将待排序的元素与已排序的部分依次比较并插入到正确的位置。

-选择排序:每次从待排序的元素中选择最小的元素并与已排序的部分交换位置。

-快速排序:通过选择一个基准元素,将数组划分为两个子数组进行递归排序。

2.查找算法:-顺序查找:逐个比较数组中的元素,直到找到目标元素或到数组末尾。

-二分查找:通过比较目标元素与数组中间元素的大小,逐步缩小范围,直到找到目标元素。

-哈希查找:通过散列函数将目标元素映射到哈希表的索引位置进行查找。

3.递归算法:-阶乘:通过递归调用自身计算一个正整数的阶乘。

-斐波那契数列:通过递归调用自身计算斐波那契数列的第n个数。

-二叉树遍历:通过递归调用自身遍历二叉树的各个节点。

4.图算法:- 最短路径算法:如Dijkstra算法和Floyd算法,用于计算图中两个节点之间的最短路径。

-拓扑排序:通过对有向无环图进行排序,使得所有的边从排在前面的节点指向排在后面的节点。

- 最小生成树:如Prim算法和Kruskal算法,用于找到图中连接所有节点的最小子树。

5.动态规划:-最长公共子序列:通过寻找两个字符串中的最长公共子序列,解决字符串匹配问题。

-背包问题:通过动态规划解决在给定容量下选取物品使得总价值最大的问题。

-最大子序列和:通过动态规划解决一个数组中选取连续子序列使得和最大的问题。

以上只是一些C语言中常用的算法程序的汇总,实际上,还有很多其他的算法,如逆波兰表达式、霍夫曼编码、最小割等等。

通过学习这些算法,可以更好地理解C语言的应用和开发。

MATLAB递归算法,附程序

MATLAB递归算法,附程序

递归树
递归树的结点有两个域,如下图:
T(size)指问题大小为size时,函数的复杂度。

nonrec.cost指问题大小为size时的非递归代价。

根结点的每个子结点都代表了这个问题分拆的一个子问题的复杂度。

就这样递归地分解问题。

一直到达叶子结点,也就是base-case.在前面的讨论中,我们没有涉及base-case,在使用递归树分析复杂度时,我们假设base-case的复杂度为1。

举一个例子就可以很明白的说明如何构造递归树。

Example1: 由递归方程T(n)=2T(n/2)+n构造递归树
首先,构造根接点
它的子结点是
……,以此类推。

所以,最后的递归树为:
递归树规则:
根结点的复杂度=所有非叶结点的非递归复杂度+叶子结点的复杂度。

所以,在上面的例子中,每层的非递归复杂度为n,而base-case出现在大约lgn 层(n/2^d =1;d = lgn)。

由于base-case的复杂度为1,所以T(n)≈nlgn,即递归树是分析和计算递归方程的一个重要工具。

它可以直观地表示出递归函数的复杂度,并使人易于理解。

常用特殊算法

常用特殊算法

6.2.1 递推算法的适用性
但并不是所有的递归算法都适合改写成递推算 法, 最起码的条件是求解过程允许从有明确结果的低 阶问题开始。阶乘问题就允许从 1!开始,推算到我 们希望的某一阶为止,因此,采用递推算法来求解阶 乘问题就比递归算法好得多。 但有很多递归算法的求 解起点是有限制的,不允许从低阶问题开始求解,也 就不能改写成递推算法。例如有名的“梵塔问题”就 是这样, 一阶梵塔的解法是明确的, 如果 N 阶梵塔的 解法已知,就可以推出 N+1 阶梵塔的解法,看起来 很适合采用递推算法, 但该问题就是不允许从一阶梵 塔开始,必须从 N 阶梵塔开始。 “梵塔问题”已经成 为递归算法的经典实例, 没有其它算法比用递归算法 更直观有效。
6.3.1 回溯算法的特点
回溯算法有以下基本特点: 问题的求解必须是由有限的若干部分组成的,例如一条从迷宫入口到迷宫出口的路 径是由若干(中间没有分支的) “路段”组成的;一种服装的裁剪下料方案是由各 个衣片的摆放位置组成的; 一种配方是由各种原料的取舍用量组成的; 一局棋局是 由开局、中盘、残局、结局各阶段的下法组成的。如果我们把问题解的所有可能的 组成部分称为“元素”的话,那么元素的范围必须是有限的,例如配方问题中原料 的种类和用量是有一定范围的。 一个问题如果有多个解的话, 各个解的区别在于它 们的组成元素的取舍不同。问题的一个解的部分元素构成“部分解” ,不同解之间 可以有相同的“部分解” ,例如配方 A 包含有 6 种原料,配方 B 包含有 7 种原料, 两种配方中有 4 种原料是相同的,它们都可以是符合要求的配方。 回溯算法求解问题的过程是由“部分解”向“完整解”推进的过程(开始时部分解 是空的,一个元素也没有) 。推进的方法是在“部分解”的基础上增加一个新元素, 如果新增加这个元素之后仍然满足问题的规定条件(约束条件) ,我们就得到一个 新的“部分解” ,然后再试着增加一个新的元素。如果新增加这个元素之后破坏了 问题的规定条件,我们就将这个新元素取出来, “回溯”到没有增加这个新元素时 的状态,另外选取别的元素再试。将这种试探一直进行下去,当“部分解”完全满 足问题的条件时,这时的“部分解”就称为“完整解” ,可以将其输出。当搜索完 全部可能组合之后仍然没有得到“完整解” ,就证明该问题无解。 在回溯算法进行的过程中,各步的处理方法都是相同的,符合递归算法的特点,因 此,回溯算法中一般都配合递归算法来进行。在递归的过程中,可供选择的元素范 围越来越小, 约束条件也越来越苛刻, 从而保证递归过程可以在有限的时间之内结 束。在递归过程中,问题的“部分解”是作为全局数据处理,而当前可供选择的元 素范围和当前约束条件的动态值是作为局部数据处理(需要用户堆栈保护) 。

矩阵的Crout递归分解算法及程序设计

矩阵的Crout递归分解算法及程序设计

收稿 日期 :05 1. 1 2 0 22 作者简介 : 智慧来 (9 1)男 , 18 , 焦作市 人 , 研究 生 , 主要从 事计算 智能 及其 在水 电站经 济运 行 中的应 用研 究 。E m i m i( Z i i i — a : l : h ua @ l t a hl
1 6,o 2 c m
维普资讯
第2 5卷第 3 期
Vo . No. 125. 3
西 华 大 学 学 报 ・ 自 然 科 学 版
J u a f h aUn v riy・Nau a ce c o r l u iest n o Xi t r l in e S
20 年 5 06 月
法 。在实现算法 的过程中 , 对数据进行 了巧妙 的处理 , 中间数据及最终计算结 果都具有分 数形式 , 使 不仅使得 结果 具有绝对 的精确 度 , 成功解决 了数据 的精 度问题 , 而且更 符合 人们 阅读 的 习惯 。经过 运行测 试 , 法设计 合理 , 算 程
序运行高效准确 。 关键词 : 阵 ; mu 分解 ; 法 ; 矩 C t 算 程序 中圈分类号 : P 1 . T 3 11 文献标识码 : A
L 其中 L是下三角矩阵 , R, R是对角元素为 1 的上 三角矩阵 ( 称为单 位上三角矩 阵)则称之 为 A 的 , C t mu 分解 [l 4。 根据定义获得的计算公式
订=盘l j ( =1 2 … , i , , ) ( -2 3 … , , , ) =口 礁一∑ *
2 C o t 解递 归算法 的推导 ru 分
设 A是 m 行 列 的矩阵, L是 m 行 P列矩阵, U是 P行 列矩阵, 可以进行 Co t r 分解 , u 则
A =L × ×

递归算法

递归算法

4563697
4564531 4565926
正中间 的元素
4566088
4572874
17
4120243
4276013
4328968 4397700
4462718
请问: 4565926是否在 此列表当中? 4565925?
4466240 4475579
4478964
4480332 4494763
4499043
相应的参数来完成,这就是函数或子程序,使用时只需对其名字进行
简单调用就能来完成特定功能。

例如我们把上面的讲故事的过程包装成一个函数,就会得到:
void Story() { puts("从前有座山,山里有座庙,庙里有个老和尚,老和尚在讲故 事,它讲的故事是:"); getchar();//按任意键听下一个故事的内容 Story(); //老和尚讲的故事,实际上就是上面那个故事 }
4563697
4564531 4565926
4566088
4572874
16
4120243
4276013
4328968 4397700
4462718
请问: 4565926是否在 此列表当中?
4466240 4475579
4478964
4480332 4494763
4499043
4508710 4549243

(1)对原问题f(s)进行分析,假设出合理的“较小 问题” f(s')( 与数学归纳法中假设 n=k-1时等式 成立相似); (2)假设f(s')是可解的,在此基础上确定f(s)的解, 即给出 f(s) 与 f(s') 之间的关系 ( 与数学归纳法中 求证n=k时等式成立的过程相似); (3)确定一个特定情况(如f(1)或f(0))的解,由此 作为递归边界(与数学归纳法中求证n=1时等式 成立相似)。

算法设计与分析(霍红卫)-第2章-分治法

算法设计与分析(霍红卫)-第2章-分治法

第2章 分 治 法
我们可以很容易解决这个问题。利用这样一个事实:渐近 表示法只要求对n≥n0,T(n)≤cn lb n成立,其中n0是一个可以选择 的常数。由于对于n>3,递归方程并不直接依赖T(1),因此可设 n0=2,选择T(2)和T(3)作为归纳证明中的边界条件。由递归方程 可得T(2)=4和T(3)=5。此时只要选择c≥2,就会使得T(2)≤c·2·lb 2 和 T(3)≤c·3·lb 3 成 立 。 因 此 , 只 要 选 择 n0=2 和 c≥2 , 则 有 T(n)≤cn lb n成立。
3ic(n/4i)2=(3/16) icn2 i=0,1,…,log4n-1
深度为log4n的最后一层有3log4 n nlog4 3 个结点,每个结点的
开销为T(1),该层总开销为 nlog4 3T (1) ,即 Θ(nlog4 3)。
第2章 分 治 法
将所有层的开销相加得到整棵树的开销:
T (n) cn2
T(n)=2T(n/2)+n ≤2(c[n/2]lb[n/2])+n =cn lb n/2+n =cn lb n-cn lb 2+n =cn lb n-cn+n =cn lb n-(c-1)n
最后一步在c≥1时成立。≤cn lb n
第2章 分 治 法
下面证明猜测对于边界条件成立, 即证明对于选择的常 数c,T(n)≤cn lb n对于边界条件成立。 这个要求有时会产生 一些问题。 假设T(1)=1是递归方程的惟一边界条件,那么对 于n=1,T(1)≤c·1·lb 1=0与T(1)=1发生矛盾。因此,归纳法中 的归纳基础不成立。
3
cn2
3
2
cn2
3

程序设计中的递归算法分析

程序设计中的递归算法分析

晰 。 本 文 针 对 学生 在 学 习程序 设 计课 程 时 对递 归 算 法 难 以 理 解 及 掌握 等 情 况 , 阐述 了递 归算 法 的 本 质 及 解 决 问题 的 思路 。
【 关键 词 】 递 归 栈 算 法 :
O 引言 、
递归 算 法 设 计 . 常 有 以下 3个 步骤 : 通
递 归 部 分 } /
在 定 义 一个 过 程 或 函 数 时 出现 了调 用 本 过 程 或 者 函数 的成
分 .g 调 用 自己 本 身 , 称 之 为 直 接 递 归 , 过 程 函数 P调 用 过 口 这 若
} 下面 应 当 设 置边 界 条 件 , 则 程 序 就 将 无 限递 归下 去 。 以 否 可 函数 改 为 : fc ( t ) ati nN
应 的 程 序 显 得较 为 重 要 。 但是 . 递 归 方 式 所 描 述 的 算 法 , 用 在一 般 计 算 机 语 言 教材 中 占有 较 小 的篇 幅 . 生 不 容 易 理 解 . 不 明 学 弄 白递 归 函数 执行 的步 骤 及 过程 .尤 其 需 要 自 已编 写 程 序 时 更 觉
增 加 或 减 少 . 归 调 用 的 次数 必 须 是 有 限 的 . 须 有 递 归 结 束 的 的 圆 盘 , 号 为 12 … … n 1 n 现 在 要 把 A 上 的 B个 盘 移 到 递 必 编 、、 一 、。
归结为” 简单… 较 情形 的 计 算 . 得 到 计 算 结 果 为 止 。 对 于 问题 并 定 义 是 递 归 的 .数 据 结 构 是 递 归 的 .问 题 解 法 是 递 归 的 ,都 可
以 采 用递 归 方 法 来 处理
{ r unN fc e r at 一 l t 1

【分析】算法分析与设计作业参考答案

【分析】算法分析与设计作业参考答案

【关键字】分析《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。

2.程序:程序是算法用某种程序设计语言的具体实现。

2、简答题:1.算法需要满足哪些性质?简述之。

算法是若干指令的有穷序列,满足性质:1)输入:有零个或多个外部量作为算法的输入。

2)输出:算法产生至少一个量作为输出。

3)确定性:组成算法的每条指令清晰、无歧义。

4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。

2.简要分析分治法能解决的问题具有的特征。

分析分治法能解决的问题主要具有如下特征:1)该问题的规模缩小到一定的程度就可以容易地解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)利用该问题分解出的子问题的解可以合并为该问题的解;4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。

将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。

该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。

2)用递推来实现递归函数。

3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。

后两种方法在时空复杂度上均有较大改善,但其适用范围有限。

三、算法编写及算法应用分析题:1.冒泡排序算法的基本运算如下:for i ←1 to n-1 dofor j ←1 to n-i doif a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。

解答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n的关系。

1)设比较一次花时间1;2)内循环次数为:n-i次,(i=1,…n),花时间为:3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。

C语言与程序设计ppt-第12章递归

C语言与程序设计ppt-第12章递归

第12章 递 归
华中科技大学计算机学院 卢萍
华中科技大学计算机学院C语言课
2021/4/25
程组
1
本章讲授内容
递归(recursion)是一项非常重要的编 程技巧,可以使程序变得简洁和清晰,是 许多复杂算法的基础。本章介绍 递归、递归函数的概念; 递归的执行过程; 典型问题的递归函数设计; 分治法与快速排序; 回溯法; 递归在动态规划等算法中的应用。
12
【例12.3】 设计一个求解汉诺塔问题的算法。
这是一个典型的用递归方法求解的问题。要移动n个 盘子,可先考虑如何移动n 1个盘子。分解为以下3 个步骤:
(1)把A上的n-1个盘子借助C移到B。 (2)把A上剩下的盘子(即最大的那个)移到C。 (3)把B上的n-1个盘子借助A移到C。 其中,第(1)步和第(3)步又可用同样的3步继
2021/4/25
华中科技大学计算机学院C语言课程组
2
12.1 递归概述
递归是一种函数在其定义中直接或间接调用 自己的编程技巧。递归策略只需少量代码就 可描述出解题过程所需要的多次重复计算, 十分简单且易于理解。
递归调用:函数直接调用自己或通过另一函 数间接调用自己的函数调用方式
递归函数:在函数定义中含有递归调用的函 数
续分解,依次分解下去,盘子数目n每次减少1,直 至n为1结束。这显然是一个递归过程,递归结束条 件是n为1。
2021/4/25
华中科技大学计算机学院C语言课程组
13
函数move(n,a,b,c)
为了更清楚地描述算法,可以定义一个函数 move(n,a,b,c)。该函数的功能是:将n个盘 子从木桩a上借助木桩b移动到木桩c上。算法 的第(1)步和第(3)步的实现都是递归调 用,分别为move(n-1,a,c,b)和move(n1,b,a,c)。

递归与递归式

递归与递归式

3. 怎么克服递归的效率问题?—化递归为递推
递归:递归是一种从上至下的“分解求解“的过程,即不断 地把大问题分解为小问题,直到小问题规模足够小,然后 求解并进行递归返回和结果合并。——效率差!
递推:递推是一种从下往上的“合并求解“过程,即从解决 小问题出发,记录小问题的答案,并根据已有的小问题的 答案,把问题往大里扩展,“滚雪球”,直到达到大问题 的规模为止。并通常用迭代(循环)的方式实现,而不是 递归调用,一般认为效率上比递归好。
件,称为递归出口,否则会产生死循环而出错。
递归是一种强有力的设计方法 与数学模型一致 表述简单、清晰、代码量少 可读性强、容易证明正确性
递归的问题:执行时间长、运行效率低,特别是 占用空间多,容易造成系统栈的溢出。
主要原因:递归调用时有大量的现场保护与恢 复操作,在递归调用的过程当中系统为每一层的返 回点、局部量等开辟了栈来存储,递归层次数过多 容易造成栈溢出等。
初始条件:a1=1 用递归公式表示为:an+2=2an+1-an,
初始条件:a1=1,a2=2
这里,没有过于细致地区分递归式与递推式,我们视为 一致。
2. 递归式的求解
求解递归式就是化简递归式,以得到形式简单 的限界函数表示(即O、Ω、Θ的表示)。
三种常用方法: 代换法 递归树法 主方法
对表达式细节的简化
例如: 斐波纳契数列的递推公式为fn=fn-1+fn-2 等差数列递推公式:an=an-1+d 等比数列递推公式:bn=bn-1×q
2) 递归式 Recursion
递归公式:当递推式中只含数列中的项,而无常数项或其它 项时,就叫做递归公式。
所以,递归公式属于递推公式的一个特例。 例如,自然数列

递归算法

递归算法
if( knap( m-m[n],n-1 )) return true;
return knap(m,n-1); }
3.递归算法设计
递归算法
算法设计和分析
递归算法
Hanoi塔问题
汉诺塔(Tower of Hanoi)游戏据说来源于布拉玛神庙。游戏的 装置如图所示(图上以3个金片例),底座上有三根金的针,第 一根针上放着从大到小64个金片。游戏的目标是把所有金片从 第一根针移到第三根针上,第二根针作为中间过渡。每次只能
建立标号:分别在过程的第一条可执行语句处、每个递归调
用处建立标号,依次为:L0,L1,L2,……,做为入口地址和返 回地址
消去递归调用:局部变量、形参、返回地址入栈,形式参数赋 值,goto语句到L0
修改函数的返回部分:
• 用户栈为空,返回 • 返回值保存到全局变量中,同时将引用参数赋给栈顶的相应变量
{
CStack<int> stack;
int retvalue,retaddr;
int res ;
L0:
if( a < b )
{
res = GCD(b,a);
L1:
;
}
else if( b == 0 )
{
res = a;
}
else
{
res = GCD(b,a%b);
L2:
;
}
return res; }
}
修改标号L1处的递归调用
算法设计和分析
递归算法
else {
//res = GCD(b,a%b); //保护现场
stack.Push(a); stack.Push(b); stack.Push(res); stack.Push(2); //返回地址 stack.Push(b); stack.Push(a%b); //设置函数的调用参数 goto L0; L2: res = retvalue; //返回值放在全局变量里 }

c语言九连环 ← 递归程序算法描述

c语言九连环 ← 递归程序算法描述

c语言九连环← 递归程序算法描述一、概述九连环是一种经典的益智游戏,通过递归的方式可以有效地解决该问题。

本文档将详细描述如何使用C语言实现九连环的递归算法。

二、问题描述九连环是一个由9个环相连构成的环状结构,要求通过递归的方式求解九连环的解法。

每个环可以取下来再重新放上去,每次只能将相邻的两个环取下或放上,目标是找出一种方法将所有环都正确放置。

三、算法设计递归是一种解决问题的有效方法,可以解决九连环问题。

通过递归的方式,我们可以将九连环分解为两个部分:当前环和其它八个环。

当当前环放置好时,就可以将其取下来并处理其它八个环,这就是递归的基本思想。

具体的算法流程如下:1. 判断当前环是否能够放置到正确的位置上,如果不能则返回错误信息;2. 将当前环取下来,并递归处理其它八个环;3. 将当前环重新放置到正确的位置上;4. 返回当前环的状态信息。

四、代码实现以下是一个使用C语言实现九连环递归算法的示例代码:```c#include <stdio.h>#include <stdlib.h>#define MAX_NUMBER 9 // 九连环的最大环数#define MAX_SIZE 100 // 存储状态的数组大小// 存储状态的数组int state[MAX_NUMBER][MAX_SIZE];// 递归函数,求解九连环的解法int solve(int num, int pos, int size) {// 边界条件:当只有一个环时,已经成功放置了if (num == 1) {return 1;}// 当前环无法放置到正确位置上,返回错误信息if (state[num-1][pos] == -1) {return -1;}// 将当前环取下来,并处理其它八个环int ret = solve(num-1, pos+1, size); // pos+1表示下一个位置可以放置当前环if (ret == -1) { // 如果无法放置其它八个环,则返回错误信息return -1;} else { // 否则将当前环重新放置到正确位置上,并返回当前环的状态信息state[num-1][pos] = ret; // 将当前环的状态标记为已放置return ret+1; // 返回当前环的状态信息(已放置)}}int main() {// 初始化状态数组,表示每个位置上是否有环以及是否成功放置了for (int i = 0; i < MAX_NUMBER; i++) {for (int j = 0; j < MAX_SIZE; j++) {state[i][j] = -1; // 初始状态为未放置状态(-1)或错误状态(-2)}}// 设置第一个环成功放置的状态为已放置状态(0)和下一个位置可以放置下一个环的状态为已放置状态(1)state[0][0] = 0; // 第一个环成功放置状态为已放置状态(0)state[0][9] = 1; // 下一个位置可以放置下一个环的状态为已放置状态(1)// 通过递归求解九连环的解法,并输出结果信息(已放置的环数)int count = solve(MAX_NUMBER, 0, MAX_SIZE); // 从第一个位置开始求解九连环的解法,输出已放置的环数即可得到最终结果信息(即成功的解法) printf("成功解法:%d\n", count); // 将已放置的环数输出即可得到最终结果信息(即成功的解法)return 0;}```五、总结本文档详细描述了如何使用C语言实现九连环的递归算法,通过递归的方式将九连环分解为两个部分:当前环和其它八个环,并实现了相应的代码实现。

C语言中的递归程序可以用非递归算法实现吗

C语言中的递归程序可以用非递归算法实现吗

C语言中的递归程序可以用非递归算法实现吗C语言中的递归程序可以用非递归算法来实现。

递归是一种使用函数自身调用的编程技巧,通过将一个问题拆分成更小的子问题来解决。

然而,递归在处理大规模问题或者嵌套过深的情况下会导致栈溢出,并且递归调用的开销较大。

因此,一些复杂的递归程序可以通过非递归算法来重新实现,以降低开销和避免栈溢出。

一种常见的非递归替代方法是使用循环结构和栈数据结构来模拟递归函数的行为。

栈的数据结构可以保存每次递归调用过程中的参数和局部变量,从而避免函数调用的开销。

下面以经典的阶乘函数为例,展示如何将递归程序转化为非递归算法。

递归版阶乘函数:```cint factorial(int n)if (n == 0)return 1;} elsereturn n * factorial(n-1);}```非递归版阶乘函数:```cint factorial(int n)int result = 1;while (n > 0)result *= n;n--;}return result;```这个非递归版本的阶乘函数使用了一个循环来迭代计算乘法,并使用一个变量 `result`来保存当前的结果。

每次迭代,`n` 减1,并将当前结果乘以 `n`,直到 `n` 为0。

类似的,其他的递归函数也可以通过类似的方式来转化为非递归版本。

需要注意的是,非递归版本通常需要额外的变量来保存中间结果,并使用循环结构来模拟函数的递归调用过程。

通过将递归程序转化为非递归算法,可以避免栈溢出和函数调用开销,从而提高程序的效率和性能。

但是非递归算法通常会增加代码的复杂度和可读性,因此开发者在选择使用递归还是非递归算法时应该权衡这些因素。

总而言之,C语言中的递归程序可以通过非递归算法来实现。

通过使用循环结构和栈数据结构,可以模拟递归函数的行为,并避免由于递归调用导致的栈溢出和函数调用开销。

但是需要注意的是,非递归算法可能会增加代码的复杂度和可读性,开发者需要在性能和代码清晰度之间进行权衡。

第4章 递归算法(C++版)

第4章  递归算法(C++版)

【例3】Hanoi汉诺塔问题
有N个圆盘,依半径大小(半径都不同),自下而上套在A柱上,每次只允 许移动最上面一个盘子到另外的柱子上去(除A柱外,还有B柱和C柱,开始时这 两个柱子上无盘子),但绝不允许发生柱子上出现大盘子在上,小盘子在下的情 况,现要求设计将A柱子上N个盘子搬移到C柱去的方法。 【算法分析】 本题是典型的递归程序设计题。 (1)当N=1 时,只有一个盘子,只需要移动一次:A—>C; (2)当N=2时,则需要移动三次: A------ 1 ------> B, A ------ 2 ------> C, B ------ 1------> C. (3)如果N=3,则具体移动步骤为:
【参考程序】 #include<iostream> #include<cstdlib> using namespace std; int a[11]; void search(int,int,int); int main() //主程序 { int k,x,L=1,R=10; cout<<"输入10个从大到小顺序的数:"<<endl; for (k=1;k<=10;k++) cin>>a[k]; cin>>x; search(x,L,R); system("pause"); } void search(int x,int top,int bot) //二分查找递归过程 { int mid; if (top<=bot) { mid=(top+bot)/2; //求中间数的位置
假设把第3步,第4步,第7步抽出来就相当于N=2的情况(把上面2片 捆在一起,视为一片):

数据结构 第5章_递归

数据结构 第5章_递归

2 m=Fibona(2)+Fibona(1); 1 return(m);
(13)
1
(15)
S3
(8) 2
m=Fibona(2)+Fibona(1);
(9)
(10)
1
(14)
return(1)
return(m);
return(1)
return(1)
(4)
return(1)
(5) 1
(6)
(7) 1 Fibona(5)的执行过程
退出
5.3 递归程序到非递归程序的转换
采用递归方式实现问题的算法程序具有结构清 晰、可读性好、易于理解等优点,但递归程序较之 非递归程序无论是空间需求还是时间需求都更高, 因此在希望节省存储空间和追求执行效率的情况下, 人们更希望使用非递归方式实现问题的算法程序; 另外,有些高级程序设计语言没有提供递归的 机制和手段,对于某些具有递归性质的问题(简称 递归问题)无法使用递归方式加以解决,必须使用 非递归方式实现。因此,本小节主要研究递归程序 到非递归程序的转换方法。
退出
例5 采用非递归方式实现求正整数n的阶乘值。 仍使用Fact(n)表示n的阶乘值。要求解Fact(n) 的值,可以考虑i从0开始,依次取1,2,……,一直到n, 分别求Fact(i)的值,且保证求解Fact(i)时总是以前 面已有的求解结果为基础;当i=n 时,Fact(i)的值即 为所求的Fact(n)的值。
退出
排列问题
设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列。
设R={r1,r2,…,rn}是要进行排列的n个元素,Ri=R-{ri}。 集合X中元素的全排列记为perm(X)。 (ri)perm(X)表示在全排列perm(X)的每一个排列前加 上前缀得到的排列。R的全排列可归纳定义如下:

递归程序设计

递归程序设计
对于第一种计算规则,F(1,2)的计算过程终止,且F(1,2)=0; 但对第二种计算规则, F(1,2)的计算过程却永不终止,因而F(1,2)无定义。
5 - 20
上述讨论表明: (1) 递归程序可以采用不同的计算规则来进行计算; (2) 采用不同的计算规则来计算递归程序时,对相同的变元,计算过程 可能终止,也可能不终止; (3) 如果对于不同的计算规则,相应的递归程序(对相同的自变元)的 计算过程都终止,则它们所得的结果一定相同; (4) 在(3)的情况下,因为计算过程不同,所以虽然得到的结果相同,但 其效率(计算时间和存储量)却可能差别大。 总之,在递归程序的执行过程中,计算规则的选取是很重要的。本章及 后面的章节中,将统一规定: 采用”最左,最内”的计算规则,即在计算过程中,总是先计算最 内层的F中最左的一个。 例如,在例6中,计算A(1,2)的第一种计算顺序就是按”最左,最 内”的计算规则进行的。但在例7中,按”最左,最内”的计算规则 去计算F(1,2)却是不终止的,故不能认为F(1,2)=0. 虽然”最左,最内”的规则未必是最佳的,但现今具有处理递归调用 功能 的程序设计语言大都采用这种计算规则。
5-7
递推与递归
递归是设计和描述算法的一种有力的工具,它在复 杂算法的描述中经常被采用。能采用递归描述的算 法通常有这样特征,为求解规模为N的问题,设法 将它分解成一些规模较小的问题,然后从这些小问 题的解方便地构造出大问题的解,并且这些规模较 小的问题也能采用同样的分解和综合方法,分解成 规模更小的问题,并从这些更小问题的解构造出规 模稍大问题的解。特别的,当规模N=1时,能直接 得到解。
5 - 15
…递归程序的例子…
例3 Fibonacci函数 φ(x)if x=0 then 0 else if x=1 then 1 elseφ(x-1)+ φ(x-2) 其中,x为非负整数 我们有φ(0)=0 φ(1)=1 φ(2)= φ(1)+ φ(0)=0+1=1 φ(3)= φ(2)+ φ(1)=1+1=2 φ(4)= φ(3)+ φ(2)=2+1=3 φ(5)= φ(4)+ φ(3)=3+2=5 … 例4 计算xy 利用下述公式不难编出相应的递 归程序 F(x,y)= xy: 1 y=0 F(x,y)=1 2 y为偶数 F(x,y)=(x*x)y/2 3 y为奇数 F(x,y)=xy-1*x F(x,y)if y=0 then 1 Else if even(y) then F(x*x,y/2) Else F(x,y-1)*x 其中,x 为正实数;y为非负整数 例如:F(4,3)=F(4,2)*4=F(16,1)*4 =F(16,0)*64=64

递归及递归算法图解

递归及递归算法图解

递归问题的提出
第一步:将问题简化。 – 假设A杆上只有2个圆盘,即汉诺塔有2层,n=2。
A
B
C
递归问题的提出
A
B
C
对于一个有 n(n>1)个圆盘的汉诺塔,将n个圆盘分 为两部分:上面的 n-1 个圆盘和最下面的n号圆盘。将 “上面的n-1个圆盘”看成一个整体。
– 将 n-1个盘子从一根木桩移到另一根木桩上
1
当n 1时
n ! n (n 1)! 当n 1时
long int Fact(int n)
{ long int x;
if (n > 1)
{ x = Fact(n-1);
/*递归调用*/
return n*x; }
else return 1;
/*递归基础*/
}
Fact(n) 开始 传进的参数n N n>1
两种不同的递归函数--递归与迭代
21
(2)递归和迭代有什么差别?
递归和迭代(递推)
迭代(递推):可以自递归基础开始,由前向后依次计算或直
接计算;
递归:可以自递归基础开始,由前向后依次计算或直接计算;
但有些,只能由后向前代入,直到递归基础,寻找一条路径, 然后再由前向后计算。
递归包含了递推(迭代),但递推(迭代)不能覆盖递归。
递归的概念 (5)小结
战德臣 教授
组合 抽象
构造 递归
用递归 定义
用递归 构造
递归计 算/执行
递归 基础
递归 步骤
两种不同的递归函数
递归
迭代
两种不同的递归函数--递归与迭代
20
(1)两种不同的递归函数?
递归和递推:比较下面两个示例

递归算法

递归算法




问题分析:我们根据给出的样例可知:每次输出的 结果都是由前一次的结果变化而来的,也就是问题 每推进一步其结果仍维持与原问题的关系,可见采 用递归算法比较合适。其算法的大致过程如下: 1、利用循环语句实现对前一次的输出结果从后向 前找一个a[i],使得a[i]到a[w]的字符都在s、t规定的 字母范围内,以确定本次的输出结果。 2、当输出结果达到5个,结束递归;如果没那么多 Jam数字,当第一次被入栈的循环结束时,递归结 束。

上楼梯问题
递归关系: f(1)=1; f(2)=2; f(n)=f(n-1)+f(n-2); (n≥3)

已知:ack(m,n)函数的计算公式如下:
请计算ack(m,n)的值。(m,n<=5)
用递归算法求解两个整数的最大公约数

分析:辗转相除法 。即:两个整数相除,看 其余数是否为0。若余数为0,则除数即为所 求最大公约数;若余数不为0,就将除数作为 被除数,余数作为除数,继续相除,循环往 复,直到余数为0。
数的计算








问题描述 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行 处理: 1. 不作任何处理; 2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半; 3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止. 样例: 输入: 6 满足条件的数为 6 (此部分不必输出) 16 26 126 36 136 输出: 6



问题分析:对于这个问题,首先,我们得具备对一 颗二叉树能熟练并且正确写出它的前序、中序、后 序序列的能力,才能编写程序解决问题。 我们根据题中给出的中序及后序序列,可以找出该 树根结点及左右子树。同样对于左右子树,再根据 它们各自的中序及后序序列,又能找出它们的根结 点及它们的左右子树。由此可见,该问题能够被递 归描述。当最后的序列为空时,递归无法再进行下 去,就是递归结束的边界条件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、教学目标1、知识与技能(1).认识递归现象。

(2).使用递归算法解决问题往往能使算法的描述乘法而易于表达(3).理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。

(4).认识递归算法往往不是高效的算法。

(5).了解递归现象的规律。

(6).能够设计递归程序解决适用于递归解决的问题。

(7).能够根据算法写出递归程序。

(8).了解生活中的递归现象,领悟递归现象的既有重复,又有变化的特点,并且从中学习解决问题的一种方法。

2、方法与过程本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。

然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。

最后用子过程解决汉诺塔的经典问题。

3、情感态度和价值观结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。

二、重点难点1、教学重点(1)了解递归现象和递归算法的特点。

(2)能够根据问题设计出恰当的递归程序。

2、教学难点(1)递归过程思路的建立。

(2)判断问题是否适于递归解法。

(3)正确写出递归程序。

三、教学环境1、教材处理教材选自《广东省普通高中信息技术选修一:算法与程序设计》第四章第五节,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自定义了一个以递归方式解决的函数过程。

然后利用子过程解决汉诺塔的经典问题。

教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。

然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却都是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。

最后用子过程解决汉诺塔的经典问题。

教学方法采用讲解、探究、任务驱动和学生自主学习相结合2、预备知识学生已掌握了用计算机解决问题的过程,掌握了程序设计基础,掌握了解析法、穷举法、查找法、排序法设计程序的技巧。

3、硬件要求建议本节课在多媒体电脑教室中完成,最好有广播教学系统或投影仪,为拓展学习,学生机应允许上互联网。

4、所需软件学生机要安装VB6.0或以上版本。

5、所需课时2课时(90分钟)四、教学过程导入:大家玩汉诺塔游戏:图4-5(1)汉诺塔游戏的部分界面这个游戏盘子在A、B、C三根柱子上不停运动,有没有规律,和你在照过镜子时遇到的情况相同吗?当你往镜子前面一站,镜子里面就有一个你的像。

但你试过两面镜子一起照吗?如果甲、乙两面镜子相互面对面放着,你往中间一站,嘿,两面镜子里都有你的千百个“化身”!为什么会有这么奇妙的现象呢?原来,甲镜子里有乙镜子的像,乙镜子里也有甲镜子的像,而且这样反反复复,就会产生一连串的“像中像”。

这是一种递归现象。

由同学们总结出递归算法的概念递归算法:是一种直接或者间接地调用自身的算法。

在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。

4-16:著名的意大利数学家斐波那契(Fibonacci)在他的著作《算盘书》中提出了一个“兔子问题”:假定小兔子一个月就可以长成大兔子,而大兔子每个月都会生出一对小兔子。

如果年初养了一对小兔子,问到年底时将有多少对兔子? (当然得假设兔子没有死亡而且严格按照上述规律长大与繁殖)我们不难用以前学过的知识设计出如下算法:①输入计算兔子的月份数:n②If n < 3 Then c = 1 Else a = 1: b = 1③i = 3④ c = a + b:a = b:b = c⑤i=i+1,如果i≤n则返回④⑥结束参考程序如下:Private Sub Command1_Click()n = Val(Text1.Text)If n < 3 Then c = 1 Else a = 1: b = 1For i = 3 To nc = a + ba = bb = cNext iText2.Text = "第" & n & "月的兔子数目是:" & cEnd Sub图4-5(2)斐波那契兔子程序运行结果图开动脑筋:我们有没有更简单的方法解决该问题呢?4.5.1 从斐波那契的兔子问题看递归算法1.斐波那契的兔子问题子(1)分析问题。

我们可以根据题意列出表4-3来解决这个问题:表4—3兔子问题分析表这个表格虽然解决了斐波那契的兔子问题(年底时兔子的总数是144只),但仔细观察一下这个表格,你会发现兔子的数目增长得越来越快,如果时间再长,只用列表的方法就会有困难。

(例如,你愿意用列表的方法求出5年后兔子的数目吗?)我们需要研究表中的规律,找出一般的方法,去解决这个问题。

交流仔细研究表4-8,你有些什么发现?每一个月份的大兔数、小兔数与上一个月的数字有什么联系,能肯定这个规律吗?恭喜你,你快成功了?(2)设计算法。

“兔子问题”很容易列出一条递推式而得到解决。

假设第N个月的兔子数目是F(N),我们有:这是因为每月的大兔子数目一定等于上月的兔子总数,而每个月的小兔子数目一定等于上月的大兔子数目(即前一个月的兔子的数目)。

由上述的递推式我们可以设计出递归程序。

递归程序的特点是独立写出一个函数(或子过程),而这个函数只对极简单的几种情况直接给出解答,而在其余情况下通过反复的调用自身而把问题归结到最简单的情况而得到解答。

空中加油站:自定义函数的定义格式:Function procedurename(arguments) [As type]StatementsEnd Function其中的procedurename是函数名,arguments是函数中的参数表,type是函数返回值的数据类型,[]表示可有可无的部分,statements是过程中的代码调用函数的格式:procedurename(arguments)(3)编写程序。

窗体中开设一个文本框Textl用于填人月数N,设置命令框Commandl,点击它即执行程序求出第N月的兔子数。

然后用文本框Text2输出答案。

根据递推式可以写出递归程序如下:Function Fib(ByVal N As Integer) As Long文本框2 If N < 3 Then Fib = 1 Else Fib = Fib(N - 1) + Fib(N - 2)End FunctionPrivate Sub Command1_Click()N = Val(Text1.Text)Text2.Text = "第" & N & "月的兔子数目是:" & Fib(N)End Sub(4)调试程序因为这个算法的效率不高,建议在调试程序时月份数不要大于40。

图4-5(4)斐波那契兔子程序运行结果图(5)检测结果挑战自我:(以下部分由学生自己完成)(1)利用递归方法编写一求N的阶乘。

分析:根据N!=N*(N-1)*(N-2)*(N-3)*……*3*2*1可以推出下列式子:这是一个典型的递归算法,参考程序如下:Function F(ByVal n As Integer) As LongIf n = 1 Then F = 1 Else F = n * F(n - 1)End FunctionPrivate Sub Form_Click()Dim n As Integern = Val(InputBox("请输入正整数N:", "求N的阶乘")) Print "输入的正整数是"; n;Print ",阶乘是"; F(n)End Sub图4-5(5)求阶乘程序的运行结果图(2)对一正整数N,用数字l和2组成一条加法算式,使其和为N,共可以列出多少条不同的式子?(“l+2”和“2+1”看作是不同的式子)。

算法设计:假设和为N时可列式子的方法数是F(N),那么第一个加数可选择1或2。

当第一个加数为1时剩下加数的和为N一1,故方法数为F(N一1);当第一个加数为2时,剩下加数的和为N-2,故方法数为F(N-2)。

于是可以得到如下式子:这是一个典型的递归算法,参考程序如下:参考程序如下:Function F(ByVal n As Integer) As LongIf n <= 2 Then F = n Else F = F(n - 1) + F(n - 2)End FunctionPrivate Sub Form_Click()Dim n As Integern = Val(InputBox("请输入正整数N:", "输入式子的总和"))Print "当总和是"; n; "时"Print "可以列出不同的由1和2组成的加法式子"; F(n); "条"End Sub图4-5(6)书上P137练习2程序运行结果图(3)罗光明在上楼梯时,有时一步一级楼梯,有时一步两级。

如果楼梯有N级,他上完这N级楼梯有多少种不同的方法?设计算法假设楼梯级数为N时的方法数是F(N),那么第一步可选择1或2级楼梯。

当第一步为1级时剩下楼梯的级数为N-1,故方法数为F(N-1);当第一步为2级时,剩下楼梯的级数为N-2,故方法数为F(N-2)。

于是可以得到如下式子:这是一个典型的递归算法,参考程序如下:程序如下:Function F(ByVal n As Integer)As LongIf n<=2 Then F=n Else F=F(n-1)+F(n-2)End Functi 0nPrivate Sub Form_Click()Dim n As Integern=Val(InputBox("请输入楼梯级数N:","输人楼梯级数"))Print "当楼梯级数";n;"时,"Print "可以有";F(n);"种不同的上楼梯方法。

"End Sub同学们比较一下你们所做的练习(2)和(3)的程序代码,不知同学们有没有发现一个有趣的现象?为什么会这样?本节小结:递归算法的特点递归过程一般通过函数或子过程来实现。

相关文档
最新文档