对数函数的单调性及其应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数的单调性及其性质
一、相关内容
1、当0 2、当a>1时,指数函数x a y log =在R 上单调递增。 二、基础练习 1、比较下列各组数值的大小 (1)3.37.1和1.28.0 (2)7.03.3和8.04.3 (3)25log ,27log ,23 98 (4)60.70.70.76log 6,, (5)3.0222,3.0log ,3.0===c b a (6)(61)0,2,log 221 ,log 0.523 (7)6.05,56.0,5log 6.0 (8)a=log 0.50.6,b=log 20.5,c=log 35 (9)0.52a =,πlog 3b =,2log 0.5c = 2、选择题 1) 若(0,1)x ∈,则下列结论正确的是( ) A .122lg x x x >> B .122lg x x x >> C .122lg x x x >> D .1 2lg 2x x x >> 2) 若b a ,是任意实数,且b a >,则( ) A 22b a > B 1 C ()0lg >-b a D b a ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛2121 3) 函数|log |)(2 1x x f =的单调递增区间是( ) A 、]21 ,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞ 4) 已知函数log (2)a y ax =-在区间[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .(2,)+∞