九年级数学上册第三次月考试题

合集下载

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

湖北省武汉市黄陂区木兰乡朝阳中学2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(共30分)1.在美术字中,有些汉字或字母是中心对称图形.下面的汉字或字母不是中心对称图形的是()A.A B.B C.C D.D2.有两个事件,事件M:在汽步枪比赛中,某运动员打出10环;事件N:一个不透明的袋中装有除颜色外完全相同的6个小球(4个黑球,2个白球),从中随机摸出的3个球中有黑球.下列判断正确的是()A.M,N都是随机事件B.M,N都是必然事件C.M是随机事件,N是必然事件D.M是必然事件,N是随机事件3.下列方程中,有两个不相等的实数根的是()A.x2﹣2x+1=0B.x2﹣2x=0C.x2﹣2x+2=0D.x2+2=04.在平面直角坐标系中,将抛物线C向上平移2个单位长度,再向左平移2个单位长度后,得到抛物线y=2x2,则抛物线C的解析式为()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2+2D.y=2(x﹣2)2﹣25.如图,两个同心圆的半径分别为3,5,直线l与大⊙O交于点A,B,若AB=6,则直线l与小⊙O的位置关系是()A.相交B.相切C.相离D.无法确定6.从﹣1,﹣2,3三个数中随机取两个数求和作为a,则使抛物线y=ax2的开口向下的概率是()A.B.C.D.7.如图,P A,PB分别与⊙O相切于点A,B,,∠APB=60°,则的长为()A.B.C.D.8.已知二次函数y=x2+(m﹣1)x+m﹣2,当x>1时,y随x的增大而增大,则其图象与x 轴的交点坐标不可能是()A.B.(3,0)C.D.(﹣1,0)9.如图是某圆弧形桥洞,它的跨度AB=10,点C在圆弧上,CD⊥AB于点D,AD=6,,则该圆弧所在圆的半径为()A.B.6C.D.10.已知m,n是方程x2﹣x+1=0的两个根.记S1=,S2=,…,S t=(t为正整数).若S1+S2+…S t=t2﹣56,则t的值为()A.7B.8C.9D.10二、填空题(共18分)11.在平面直角坐标系中,若点A(a,﹣1)与点B(b,1)关于原点对称,则a+b的值为.12.一个不透明的袋子里装有红球和白球共m个,它们除颜色外完全相同,每次搅匀后从中随机摸出一个球并记下颜色,再放回袋中,不断重复,统计汇总数据如下表:摸球次数3006009001500摸到白球的频数123247365606摸到白球的频率0.4100.4120.4060.404已知袋子里白球有10个,根据表格信息,可估计m的值为.13.某商城今年9月份的营业额为440万元,11月份的营业额达到了633.6万元,则该商城9月份到11月份营业额的月平均增长率是(用百分数表示).14.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转得到△ADE(点D与点B对应),连接BD.当点E落在直线AB上时,线段BD的长为.15.若抛物线y=mx2﹣2mx+1(m<0)经过点P(﹣2,t),则关于x的不等式m(x﹣1)2﹣2m(x﹣1)+1﹣t<0的解集是.16.如图1,在Rt△ABC中,∠ACB=90°,BC=2AC,定长线段EF的端点E,F分别是边AC,BC上的动点,O是EF的中点,连接OB.设AE=x,CF2=y,y与x之间的函数关系的部分图象如图2所示(最高点为(b,4)),当x=a时,∠OBC最大,则a的值为.三、解答题(共72分)17.已知3,t是方程2x2+2mx﹣3m=0的两个实数根,求m及t的值.18.如图,将△ABC绕点A顺时旋转得到△ADE,点B的对应点D在BC上,且AD=CD.若∠E=26°,求∠CDE的度数.19.在一个不透明的纸盒里装有红、白、黄三种颜色的乒乓球4个(除颜色外完全相同),其中白球2个,红球、黄球各1个.(1)从纸盒中随机摸出一个球,事件“摸到白球”的概率是;(2)若摸到红球得1分,摸到白球得2分,摸到黄球得3分.甲同学随机从纸盒中一次摸出两个球,请用画树状图法或列表法求甲同学至少得4分的概率.20.如图,在矩形ABCD中,G为AD的中点,△GBC的外接圆⊙O交CD于点F.(1)求证:AD与⊙O相切;(2)若DF=1,CF=3,求BC的长.21.如图,在平面直角坐标系网格中,A(1,6),B(5,2),C(8,5),仅用无刻度的直尺按下列步骤完成画图,并回答下列问题:(1)直接写出:AC的长为,△ABC的形状是;(2)△ABC的角平分线AD;(3)过点D作DE⊥AC,垂足为则E;(4)将线段AD绕点P顺时针旋转90°得到线段CH(点A与点C对应),直接写出点P的坐标,并画出线段CH.22.某社区决定把一块长50m,宽30m的矩形空地建成健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为活动区,且广场四周的4个出口宽度相同,其宽度不小于12m,不大于24m.设绿化区较长边为xm,活动区的面积为ym2.(1)直接写出:①每一个出口的宽度为m,绿化区较短边长为m(用含x的式子表示);②y与x的函数关系式是,x的取值范围是;(2)当出口的宽为多少时,活动区所占面积最大?最大面积是多少?(3)预计活动区造价为50元/m2.若该社区用于建造活动区的经费不超过60000元,当x 为整数时,共有几种建造方案?23.问题背景:(1)如图1,D是等边△ABC外的一点,且∠BDC=60°,过点A作AE⊥BD于点E,作AF⊥CD于点F.求证:DA平分∠BDF;尝试应用:(2)如图2,在等腰直角△ABC中,∠ACB=90°,在其内部作∠ADB=∠ADC=135°,E是AB的中点,连接ED,设△ABD的面积为S.求证:S=AD•DE;拓展创新:(3)如图3,∠POQ=45°,点B,C分别在OP,OQ上,点A在∠POQ的内部,AE⊥OQ于点E.若△ABC是边长为a的等边三角形,AE=4,OE=3+7,则a的值为(直接写出结果).24.如图,抛物线y=﹣x2﹣(2t+1)x﹣t2﹣t+2与x轴交于A,B两点(点A在B的左侧),与y轴交于点C.(1)当时,直接写出:点B的坐标为,点C的坐标为;(2)在(1)的条件下,P是x轴下方抛物线上的一点,且∠PBA=2∠OCB,求点P到y轴的距离;(3)当﹣2<t<1时,若△ABC的外心在x轴上,求代数式的值.参考答案一、选择题(共30分)1.解:选项A不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项B、C、D能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:A.2.解:事件M:在汽步枪比赛中,某运动员打出10环,是随机事件,事件N:一个不透明的袋中装有除颜色外完全相同的6个小球(4个黑球,2个白球),从中随机摸出的3个球中有黑球,是必然事件.故选:C.3.解:A、∵Δ=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根,不合题意;B、∵Δ=22﹣4×1×0=4>0,∴方程有两个不相等的实数根,符合题意;C、∵Δ=(﹣2)2﹣4×1×2=﹣4<0,∴方程没有实数根,不合题意;D、∵Δ=02﹣4×1×2=﹣8<0,∴方程没有实数根,不合题意.故选:B.4.解:∵将抛物线C向上平移2个单位长度,再向左平移2个单位长度后,得到抛物线y =2x2,∴抛物线C的解析式为y=2(x﹣2)2﹣2,故选:D.5.解:如图,连接OA,过O作OC⊥AB于C,∵OA=5,AC=AB=3,∴OC==4,∵小⊙O的半径为3<4,∴直线l与小⊙O的位置关系是相离,6.解:画树状图如下:共有6种等可能的结果,其中使抛物线y=ax2的开口向下(a<0)的结果有2种,∴使抛物线y=ax2的开口向下的概率为=,故选:C.7.解:如图,连接OA,OP,OB,∵P A、PB分别与相切⊙O于点A、B,∴P A=PB,OA⊥AB,OB⊥PB,∵∠APB=60°,∴∠AOB=120°,∵P A=,∴∠APO=∠APB=×60°=30°,∴OA=AP•tan30°=×=1.故⊙O的半径长为为1,则的长==π.故选:B.8.解:二次函数y=x2+(m﹣1)x+m﹣2的对称轴为直线x=﹣,∴抛物线开口向上,∴当x>﹣时,y随x的增大而增大,又∵当x>1时,y随x的增大而增大,∴﹣≤1,解得m≥﹣1,令y=0,则x2+(m﹣1)x+m﹣2=0,解得x1=﹣1,x2=﹣m+2,∵m≥﹣1,∴x2=﹣m+2≤3,∵>3,故选:A.9.解:如图,取圆心O,连接OA,OB,OC,BC,AC,∵∠ADC=90°,AB=10,AD=6,CD=2,∴BD=10﹣6=4,∴tan∠CAD===,∴∠CAD=30°,∴∠BOC=2∠CAD=60°,∴△BOC为等边三角形,在Rt△BCD中,根据勾股定理得,CD2+BD2=BC2,即(2)2+42=BC2,解得BC=2,∴该圆弧所在圆的半径为2.10.解:∵m,n是方程x2﹣x+1=0的两个根,∴m+n=,mn=1,∴S1=====1,S2=====1,…,∴S t==1,∴S1+S2+…S t=t2﹣56,1+1+…+1=t2﹣56,t=t2﹣56,t2﹣t﹣56=0,(t﹣8)(t+7)=0,解得:t=8或t=﹣7(舍去).故选:B.二、填空题(共18分)11.解:∵点A(a,﹣1)与点B(b,1)关于原点对称,∴a=﹣b,∴a+b=0.故答案为:0.12.解:根据表格信息,摸到白球的频率将会接近0.4,故摸到白球的概率为0.4,所以可估计袋子中球的个数m=10÷0.4=25;故答案为:25.13.解:设该商城9月份到11月份营业额的月平均增长率是x,根据题意得:440(1+x)2=633.6,解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去),∴该商城9月份到11月份营业额的月平均增长率是20%.故答案为:20%.14.解:∵∠C=90°,AC=4,BC=3,∴AB===5,由旋转得∠AED=∠C=90°,DE=BC=3,AE=AC=4,如图1,点E在边AB上,则∠DEB=180°﹣∠=90°,∵BE=AB﹣AE=5﹣4=1,∴BD===;如图2,点E在边BA的延长线上,∵∠DEB=90°,BE=AB+AE=5+4=9,∴BD===3,综上所述,线段BD的长为或3,故答案为:或3.15.解:∵抛物线y=mx2﹣2mx+1(m<0)的对称轴为:x=1,∴y=m(x﹣1)2﹣2m(x﹣1)+1的对称轴为x=2,且过点(﹣1,t),∴y=m(x﹣1)2﹣2m(x﹣1)+1还过点(5,t),∵m<0,∴m(x﹣1)2﹣2m(x﹣1)+1﹣t<0的解集为:x<﹣1或x>5,故答案为:x<﹣1或x>5.16.解:∵CF≤EF,当点E与点C重合时等号成立,且EF为定长,∴CF的最大值即为EF的长,根据图象可知,CF2的最大值为4,即CF的最大值为2,∴EF=2,∵当x=1时,CF2=3,∠ACB=90°,∴CE==1,∴AC=AE+CE=1+1=2,∴BC=2AC=4,如图所示,连接OC,∵O是EF的中点,∠C=90°,∴OC=EF=1,∴点O是在半径为1的⊙C上,如图所示,∴当OB与⊙C相切时,∠OBC最大,此时OC⊥OB,过点O作OG⊥BC于点G,此时OB=,则sin∠OBC=,即,∴OG=,∵OG⊥BC,∴∠OGF=∠C=90°,∴OG∥AC,∴,即,∴CE=,∴AE=AC﹣CE=2﹣,即a=2﹣,故答案为:2﹣.三、解答题(共72分)17.解:∵3,t是方程2x2+2mx﹣3m=0的两个实数根,∴,∴m=﹣6,t=3.18.解:将△ABC绕点A顺时旋转得到△ADE,∴∠E=∠C,∠ADE=∠B,AD=AB,由AD=AB可得∠B=∠ADB,∴∠ADE=∠ADB,∵AD=CD,∴∠DAC=∠C,∵∠E=26°,∴∠ADB=∠DAC+∠C=52°,∴∠ADE=52°,∴∠CDE=180°﹣(∠ADE+∠ADB)=180°﹣(52°+52°)=76°.19.解:(1)球,事件“摸到白球”的概率是=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中甲同学至少得4分的结果有8种,∴甲同学至少得4分的概率为=.20.(1)证明:连接GO并延长交BC于E,∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,∵G为AD的中点,∴AG=DG,∴Rt△ABD≌Rt△DCG(HL),∴BG=CG,∴GE⊥BC,∵AD∥BC,∴OG⊥AD,∵OG是⊙O的半径,∴AD与⊙O相切;(2)解:连接GF,∵∠DFG+∠CFG=∠CFG+∠CBG=180°,∵∠DFG=∠CBG,∵BG=CG,∴∠GBC=∠GCB,∵AD∥BC,∴∠DGC=∠GCB,∴∠DGC=∠DFG,∵∠D=∠D,∴△GDF∽△CDG,∴=,∴=,∴DG=2(负值舍去),∴BC=AD=2DG=4.21.解:(1)∵AC=,AB=,BC=,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,故答案为:5,直角三角形;(2)如图,AD为所作;(3)如图,DE为所作;(4)如图,CH为所作.22.解:(1)①由题意得:出口的宽度为:(50﹣2x)m,绿化区较短边长为[30﹣(50﹣2x)]÷2=(x﹣10)m,故答案为:(50﹣2x),(x﹣10);②根据题意得,y=50×30﹣4x(x﹣10),即y与x的函数关系式及x的取值范围为:y=﹣4x2+40x+1500(13≤x≤19);故答案为:y=﹣4x2+40x+1500,13≤x≤19;(2)y=﹣4x2+40x+1500=﹣4(x﹣5)2+1600,∵﹣4<0,13≤x≤19,∴x=13时,y取最大值,最大值为﹣4×(13﹣5)2+1600=1344,∴50﹣2x=50﹣2×13=24,∴当出口的宽为24m时,活动区所占面积最大,最大面积是1344m2;(3)设费用为w元,由题意得,w=50(﹣4x2+40x+1500)=﹣200x2+2000x+75000,当w=60000时,﹣200x2+2000x+75000=60000,解得x=15或x=﹣5(舍去),由二次函数性质及13≤x≤19可得,x取15,16,17,18,19时,建造活动区的经费不超过60000元,∴一共有5种建造方案.23.(1)证明:如图1,AC与BD的交点记作点G,∴∠AGB=∠CGD,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,在△ABG中,∠ABG+∠AGB=180°﹣∠BAC=120°,∴∠ABG+∠CGD=120°,在△CDG中,∠BDC=60°,∴∠ACF+∠CGD=180°﹣∠CDG=120°,∴∠ABG=∠ACF,∵AE⊥BD,AF⊥CD,∴∠AEB=∠AFC=90°,∴△ABE≌△ACF(AAS),∴AE=AF,∵AE⊥BD,AF⊥CD,∴DA是∠BDF的平分线;(2)证明:如图2,过点E作ET⊥ED交BD于点T连接CE交BD于点K.∵点E是AB的中点,在等腰直角△ABC中,∠ACB=90°,∴AC=BC,∠ACB=90°,∴CE⊥AB,AE=EC=EB,∴∠BEC=90°,∴∠EBK+∠BKE=90°,∵∠CKD=∠BKE,∴∠EBK+∠CKD=90°,在△CDK中,∠CDK=360°﹣∠ADC﹣∠ADB=90°,∴∠DCE+∠CKD=90°,∴∠DCE=∠EBK,∵∠DET=∠CEB=90°,∴∠DEC=∠TEB,∴△CED≌△BET(ASA),∴ED=ET,∴∠EDT=∠ETD=45°,∵∠ADB=135°,∴∠BDE=360°﹣135°﹣90°﹣45°=90°,延长DE至H,使EH=ED,∴∠AEH=∠BED,∵AE=BE,∴△AEH≌△BED(SAS),∴S△AEH=S△BED,∴S=S△ABD=S△ADE+S△BDE=S△ADE+S△AEH=S△ADH=AD•DH=AD•2DE=AD•DE;(3)解:在CE的延长线上取一点H,连接AH,使∠AEH=60°,∵AE⊥OQ,∴∠AEC=∠AEH=90°,在Rt△AEH中,AE=4,∴EH=4,AH=8,设CE=x,则CH=CE+EH=x+4,在CO上取一点M使CM=AH=8,则OM=OE﹣CM﹣CE=3+7﹣8﹣x=3﹣1﹣x,在△ACH中,∠ACH+∠CAH=180°﹣∠AHC=120°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠BCM+∠ACH=120°,∴∠BCM=∠CAH,∴△BCM≌△CAH(SAS),∴BM=CH=x+4,∠BMC=∠CHA=60°,∴∠OMB=120°=∠AHN,在OE的延长线上取一点N,使EN=AE=4,∴HN=EN﹣EH=4﹣4=4(﹣1),∠N=45°=∠POQ,∴△BOM∽△ANH,∴,∴,∴x=2,在Rt△ACE中,CE=2,根据勾股定理a=AC==2,故答案为:2.24.解:(1)∵,∴y=﹣x2﹣2x+,当y=0时,﹣x2﹣2x+=0,解得x=或x=﹣,∴B(,0),令x=0,则y=,∴C(0,),故答案为:(,0),(0,);(2)作O点关于BC的对称点G,连接CG交x轴于点E,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+,设G(m,n),∴n=﹣m+,∵BO=BG,∴=,解得m=,∴G(,),设直线CG的解析式为y=k'x+b',∴,解得,∴y=﹣x+,∴E(,0),∴tan∠OCE=,∵∠COE=2∠OCB,∠PBA=2∠OCB,∴∠PBA=∠COE,过点P作PH⊥x轴交于点H,设P(x,﹣x2﹣2x+),∴=,解得x=(舍)或x=﹣,∴点P到y轴的距离为;(3)∵△ABC的外心在x轴上,∴∠ACB=90°,当y=0时,﹣x2﹣(2t+1)x﹣t2﹣t+2=0,解得x=﹣t﹣2或x=﹣t+1,∵﹣2<t<1,∴A(﹣t﹣2,0),B(﹣t+1,0),当x=0时,y=﹣t2﹣t+2,∴C(0,﹣t2﹣t+2),∴OC2=OA•OB,∴(﹣t2﹣t+2)2=(t+2)•(﹣t+1),∴t2+t﹣1=0,∴=﹣1.。

黑龙江省哈尔滨市2022-2023学年九年级数学上册第三次月考测试题(附答案)

黑龙江省哈尔滨市2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.﹣2的相反数是()A.2B.﹣2C.D.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图的几何体其左视图是()A.B.C.D.5.如图,已知AB为⊙O的直径,点C在⊙O上,∠BOC=60°,则∠C的度数为()A.15°B.30°C.45°D.60°6.已知抛物线的解析式为,则该抛物线的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,2)7.用150张铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒,为使制成的盒身与盒底恰好配套,可设用x张铁皮制盒底,则可列方程为()A.2×15x=45(150﹣x)B.15x=2×45(150﹣x)C.2×15(150﹣x)=45x D.15(150﹣x)=2×45x8.方程的解为()A.x=3B.x=4C.x=5D.x=﹣59.已知反比例函数y=(k≠0)经过点(2,5)和点(1,a),则a的值为()A.2B.5C.10D.10.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.二、填空题(共30分)11.将59800000用科学记数法表示为.12.函数y=的自变量x的取值范围是.13.分解因式:x3﹣2x2y+xy2=.14.不等式组的解集是.15.计算:=.16.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.17.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,将△ABC绕点B顺时针旋转得到△A1BC1(点A的对应点是点A1,点C的对应点是点C1),A1落在边BC上,连接AC1,则AC1的长为.18.在△ABC中,AB=AC,∠B的角平分线与AC边所夹锐角为60°,则∠A的度数为.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,矩形ABCD中,E为BC边上一点,DE交AC于点F,若∠BAC=2∠DEC,CE =15,BE=9,则线段ED的长为.三、解答题(共60分)21.先化简,再求代数式的值,其中.22.如图,在小正方形的边长均为1的方格纸中,有线段AB,点A,B均在小正方形的顶点上.(1)在图中画出一个以线段AB为一边的等腰△ABC,且△ABC为钝角三角形;(2)在图中画一个△BCD,点D在小正方形的顶点上,tan∠CBD=,且△BCD的面积等于14;(3)连接AD,请直接写出AD的长.23.为了解学生线上学习的需求,某校随机对本校的部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果,绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对“在线阅读”最感兴趣的学生人数.24.已知,在平行四边形ABCD中,点E、F在分别边BC、AD上,且BE=DF,EH⊥CF 于点H,FG⊥AE于点G.(1)求证:GE=FH;(2)在不添加任何辅助线的情况下,请直接写出图中与∠AFG互余的所有角.25.某中学为了创建书香校园,去年购买了一批图书.其中故事书的单价比文学书的单价多4元,用1200元购买的故事书与用800元购买的文学书数量相等.(1)求去年购买的文学书和故事书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,故事书的单价与去年相同,这所中学今年计划再购买文学书和故事书共200本,且购买文学书和故事书的总费用不超过2120元,这所中学今年至少要购买多少本文学书?26.如图,AB为⊙O直径,弦CD交AB于点E,G为上一点,连接CG交AB于点F,交AD于点H,连接DG,且∠AFH﹣∠GDH=∠BAD.(1)如图1,求证:AB⊥CD;(2)如图2,若∠ADE=2∠ADG,求证:=;(3)如图3,在(2)的条件下,若AF=BF,AH=10,求⊙O的半径.27.如图1,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A、B两点(A左B右),与y轴交于点C,连接AC,tan∠CAO=2.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,射线BP交y轴正半轴于点N,设点P的横坐标为t,线段ON的长为d,求d与t的函数解析式;(3)在(2)的条件下,过点P作PF⊥x轴于点F,过点F作直线FD⊥BP于点D,过点A作AH⊥x轴交直线DF于点H,连接PH交x轴于点E,点G为线段AC上一点,连接PG、GE,PG交y轴于点K,点M为PG延长线上一点,连接MH,延长HM、EG 交于点R,若PF=AH,MR=MG,HR=,求K点的坐标.参考答案一、选择题(共30分)1.解:﹣2的相反数是:﹣(﹣2)=2,故选:A.2.解:A、原式=a5,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=a2+2ab+b2,故C不符合题意.D、原式=a2﹣b2,故D符合题意.故选:D.3.解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.4.解:从左面看,底层是两个小正方形,上层的左边是一个小正方形.故选:B.5.解:∠A=∠BOC=×60°=30°,∵OA=OC,∴∠C=∠A=30°.故选:B.6.解:由抛物线解析式可知,抛物线顶点坐标为(2,1),故选:A.7.解:设用x张铁皮制盒底,则把(150﹣x)张铁皮制盒身,根据题意得:2×15(150﹣x)=45x.故选:C.8.解:,方程两边都乘(3x﹣2)(x+1),得2(x+1)=3x﹣2,解得:x=4,检验:当x=4时,(3x﹣2)(x+1)≠0,所以x=4是原方程的解,即原方程的解是x=4,故选:B.9.解:∵反比例函数y=(k≠0)经过点(2,5)和点(1,a),∴k=2×5=a,解得:a=10.故选:C.10.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.二、填空题(共30分)11.解:59800000=5.98×107.故答案为:5.98×107.12.解:由题意可知:x+2≠0,解得:x≠﹣2;所以,函数y=的自变量x的取值范围是x≠﹣2.13.解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.14.解:解不等式≤1,得:x≥1,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥1.故答案为:x≥1.15.解:原式=2×﹣2=﹣2=﹣.故答案为:﹣16.解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.17.解:过C1作AB的垂线交AB延长线于C1,∵∠ABC=60°,AB=6,BC=10,∵BD=BC,由旋转性质得:BC=BC1,∴BD=5,AD=BD+AB=11,∴CD==5,∴AC1==14.故答案为:14.18.解:设∠B的角平分线交AC于点E,当∠BEC=60°时,如图1,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A),∴∠ABE=∠ABC=(180°﹣∠A),∵∠ABE+∠A=∠BEC,∴(180°﹣∠A)+∠A=60°,∴∠A=20°;当∠AEB=60°时,如图2,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A),∴∠ABE=∠ABC=(180°﹣∠A),∵∠ABE+∠A+∠BEC=180°,∴(180°﹣∠A)+∠A+60°=180°,∴∠A=100°,综上所述,∠A的度数为20°或100°.19.解:∵AD为BC边上的高,∴△ABD为Rt△ABD,在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1所示,当点D在BC上时,BC=BD+CD=6+1=7,如图2所示,当点D在BC的延长线上时,BC=BD﹣CD=6﹣1=5,故答案为:7或5.20.解:延长DC至G,DC=CG,连接EG,作DH⊥EG,如图,,设AB=a,则DC=CG=a,∵DC=CG,CE⊥DG,∴∠GEC=∠DEC,EG=ED,∴∠BAC=∠GED,∵S,EG=ED,∴,在Rt△ECD中,DE=,在Rt△ABC中,sin∠BAC=,在Rt△EDH中,sin∠GED=,∵∠BAC=∠GED,∴sin∠BAC=sin∠GED,∴,化简整理得:a4﹣800a2﹣90000=0,解得:a=10,在Rt△ECD中,DE==5,故答案为5.三、解答题(共60分)21.解:==﹣==﹣,当=2×﹣2×=﹣2时,原式=﹣=﹣.22.解:(1)如图,△ABC即为所求.(2)如图,△BCD即为所求.(3)AD==4.23.解:(1)18÷20%=90(人),90﹣24﹣18﹣12=36(人),答:调查的学生总人数是90人,补全条形统计图如图所示:(2)360°×=48°,答:扇形统计图中“在线讨论”对应的扇形圆心角的度数为48°;(3)2100×=560(人),答:该校2100名学生中对“在线阅读”最感兴趣的大约有560人.24.(1)证明:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD:DF=BC:BE,∴AF=CE,AF∥CE,∴四边形AECF是平行四边形∴AE∥CF,∴∠AEH+∠FHE=180°,∵EH⊥CF,FG⊥AE,∴∠FGE=∠FHE=∠GEG=90°,∴四边形EHFG为矩形,∴GE=FH;(2)∵GF⊥AE,∴∠GAF+∠AFG=90°,∵AD∥BC,AE∥FC,∴∠AEB=∠GAF,∠HCE=∠CFD=∠GAF,与∠AFG互余的角有:∠F AG、∠AEB、∠DFC、∠FCB.25.解:(1)设去年文学书单价为x元,则故事书单价为(x+4)元,根据题意得:,解得:x=8,经检验x=8是原方程的解,当x=8时x+4=12,答:去年文学书单价为8元,则故事书单价为12元.(2)设这所学校今年购买y本文学书,根据题意得.8×(1+25%)y+12(200﹣y)≤2120,y≥140,∴y最小值是140;答:这所中学今年至少要购买140本文学书.26.(1)证明:如图(1),连接AC、AG,∵∠AFH﹣∠GDH=∠BAD,即∠AFH=∠BAD+∠GDH,∴∠AFH+∠BAD=2∠BAD+∠GDH,∵∠AFH+∠F AH=∠HGD+∠GDH,∴∠HGD=2∠BAD,∵∠HGD=∠CAD,∴2∠BAD=∠CAD,∴∠CAB=∠DAB,∴,∴AB⊥CD.(2)证明:由(1)得:,∴,∴∠ADE=∠ACD,∵∠ADE=2∠ADG,∴∠ACD=2∠ADG,∵∠ADG=∠ACG,∠ACD=∠ACG+∠GCD,∴∠ACD=∠GCD,∴.(3)解:连接AC、BC、BG、BD、AG,作HN⊥AG于点N,∵,,∴∠GCD=∠GBD=∠ABG=∠ADG,∠CGB=∠CDB=∠BAD=∠BGD,∴∠ABD=∠ACD=∠ADC=∠AGC,∵∠FCB=∠GCD+∠BCD,∠F AG=∠BAD+∠DAG,∠AFG=∠CFB=∠ABG+∠CGB,∴∠FCB=∠F AG=∠AFG=∠CFB,∴BF=BC,AG=FG,∵AF=BF,设AF=4k,BF=6k,则:AB=10k,BC=BF=BD=6k,∴AD=,∴tan∠ABD=,∴,∵BD=6k,ED2+EB2=DB2,∴ED=EC=,EB=,∴EF=,∴tan∠FCE=,∴tan∠NAH=,tan∠NGH=,∵AH=1,解直角三角形ANH和直角三角形GNH,得,AN=4,HN=2,NG=,∴AG=AN+NG=,∵tan∠ABG=tan∠FCE=,∴BG=11,∴AB2=AG2+BG2=()2+(11)2=,∴AB=,∴⊙O的半径为.27.解:(1)在y=ax2﹣3ax﹣4a(a<0)中,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),∴OA=1,在直角△AOC中,tan∠CAO==2,∴OC=2,由已知a<0,∴C(0,2),代入y=ax2﹣3ax﹣4a得:﹣4a=2,∴a=﹣,∴抛物线的解析式为;(2)∵点P的横坐标为t,∴P纵坐标为﹣t2+t+2,设直线BP的解析式为y=mx+n,则,解得,∴直线BP的解析式为y=﹣x+2t+2,令x=0得y=2t+2,∴N(0,2t+2),∵线段ON的长为d,N在y轴正半轴,∴d=2t+2,(3)延长GE到G',使EG'=EG,连接HG',如图:设P(m,﹣m2+m+2),则F(m,0),∴PF=﹣m2+m+2,BF=4﹣m,AF=m+1,∵PF⊥x轴,FD⊥BP,AH⊥x轴,∴∠AFH=∠DFB=90°﹣∠PFD=∠FPB,∴tan∠AFH=tan∠FPB,∴=,∴=,∴AH=2,H(﹣1,﹣2),∴PF=AH=2,即y P=2,在中,令y=2得x=0(与C重合,舍去)或x=3,∴P(3,2),∵∠AEH=∠FEP,∠HAE=∠PFE=90°,AH=PF,∴△AEH≌△FEP(AAS),∴PE=HE,∵∠GEP=∠G'EH,GE=G'E,∴△GEP≌△G'EH(SAS),∴PG=G'H,∠G'=∠PGE,∵MR=MG,∴∠R=∠MGR,∴∠R=∠MGR=∠PGE=∠G',∴HR=G'H,∴PG=HR,∵HR=,∴PG=,由A(﹣1,0),C(0,2)可得直线AC解析式为y=2x+2,设G(n,2n+2),而P(3,2),∴(n﹣3)2+(2n+2﹣2)2=()2,解得n=﹣或n=(G在二象限,舍去),∴G(﹣,1),由P(3,2),G(﹣,1)得直线PG的解析式为,∵点K是直线PG和y轴的交点,当x=0时,y=,∴点K坐标为.。

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单项选择题(共18分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(2,﹣1)关于原点对称的点的坐标是()A.(2,1)B.(﹣2,1)C.(﹣1,2)D.(﹣2,﹣1)3.⊙O的半径为3,点P在⊙O外,点P到圆心的距离为d,则d需要满足的条件()A.d>3B.d=3C.0<d<3D.无法确定4.将一元二次方程x2+6x+3=0化为(x+h)2=k的形式,则k的值为()A.3B.6C.9D.125.关于二次函数y=﹣(x+1)2+3的图象,下列说法错误的是()A.开口向下B.对称轴为直线x=﹣1C.当x<﹣1时,y随x的增大而增大D.当x=﹣1时,函数有最小值,最小值为y=36.如图,AB为⊙O的直径,过圆上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=22.5°,⊙O的半径为2,则BD的长为()A.1B.2C.2﹣2D.3﹣2二、填空题(共18分)7.已知x=﹣1是方程x2﹣ax+1=0的一个根,则a的值为.8.一个不透明的盒子里,装有除颜色外无其他差别的白珠子2颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.2左右,则盒子中黑珠子可能有颗.9.一个圆锥的母线长为5,侧面展开图的面积是20π,则该圆锥的底面半径为.10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度至少为°.11.东汉时期的数学家赵爽在注解《周髀算经》时,给出的“赵爽弦图”是我国古代数学的瑰宝,如图1,四个直角三角形是全等的,且直角三角形的长直角边与短直角边之比为2:1,现连接四条线段得到图2的新的图案.若随机向该图形内掷一枚针,则针尖落在图2中阴影区域的概率为.12.如图,已知点A从原点O出发,以每秒2个单位长度的速度沿着x轴的正方向运动,经过t(t≥1.5)秒后,以O,A为顶点作菱形OABC,使点B,C都在第一象限内,且∠AOC=60°.若以点P(0,2)为圆心,PC为半径的圆恰好与菱形OABC某一条边所在的直线相切,则t的值为.三、解答题(共84分)13.(1)解方程:x2﹣4x+1=0.(2)如图,E是正方形ABCD的边DC上一点,把△ADE绕点A旋转一定角度后与△ABF重合.若四边形AECF的面积为16,求AD的长.14.如图,抛物线y=ax2+x+c与x轴交于点A(﹣1,0),且对称轴为直线x=1.求抛物线的解析式.15.已知AB是⊙O的直径,DE与⊙O相切于点D,且DE⊥BE,设BE交⊙O于点C,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,作∠ABC的平分线.(2)在图2中,找出BC边上的中点G.16.已知关于x的一元二次方程x2﹣(m+1)x+m=0.(1)求证:无论m为何值,方程总有实数根.(2)设方程的两根均为等腰△ABC的边长,且△ABC的周长为5,求m的值.17.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD.(1)若∠BAD=20°,求∠ACB的度数.(2)若BC平分∠ABD,AD=2,求AC的长.18.江西可谓物华天宝,山清水秀.寒假期间小尹打算去领略江西四大名山的风采,分别为A.明月山;B.武功山;C.庐山;D.三清山.由于时间原因,只能选择其中两个景点,于是小尹决定通过抽签的方式选择,将四张小纸条分别写上四个景点的名字,做出四个签(外表完全相同),然后从中随机抽出两张,每张签抽到的机会均等.(1)抽到“明月山”是事件,抽到“井冈山”是事件(填“不可能”或“必然”或“随机”).(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求“小尹抽到明月山和庐山”的概率.19.如图,△ABC的顶点坐标分别为A(﹣3,5),B(﹣4,2),C(2,3).(1)画出△ABC关于点O中心对称的△A1B1C1.(2)画出△ABC绕点C顺时针旋转90°后的△A2B2C,当点A旋转到A2时,求点A所经过的路径长.20.桑葚被称为“民间圣果”,其营养价值是苹果的5~6倍,是葡萄的4倍,具有降压降脂,健脾养胃等功效.今年某采摘园喜获丰收,经市场调研发现,当桑葚的售价为30元/千克时,每天可销售200千克,若单价每降价1元,销售量可增加50千克.已知该品种的桑葚成本价为15元/千克.(1)若该采摘园每天获利3500元,且尽量增加销售量,桑葚售价应降低多少元?(2)设桑葚售价降低a元,当a为何值时,该采摘园每天的利润最大.21.如图,以△ABC的边BC上一点O为圆心,OB为半径的圆,经过点A,且与边BC交于点E,D为⊙O上一点,连接AE,AD,其中∠CAE=∠ABC.(1)求证:AC是⊙O的切线.(2)若∠ADB=60°,⊙O的半径为3,求阴影部分的面积.(结果保留根号)22.函数图象在探究函数的性质时有非常重要的作用,某同学根据学习函数的经验,探究了函数y=x2﹣2|x|+1的图形和性质.(1)如表给出了部分x,y的取值:x…﹣3﹣2﹣10123…y…m10n014…则m=,n=.(2)在如图所示的平面直角坐标系中画出函数y=x2﹣2|x|+1的图象.(3)根据画出的函数图象,写出该函数的一条性质.(4)若点M(m,y1)在图象上,且y1≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,请直接写出k的取值范围.23.【操作发现】如图1,在等边△ABC中,点B,C在直线MN上,E为BC边上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,则线段CF与BE 的数量关系是,线段CF与直线MN所夹锐角的度数是.【类比探究】如图2,在等边△ABC中,点B,C在直线MN上,若E为BC延长线上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,上述两个结论还成立吗?请说明理由.【拓展应用】如图3,在正方形ABCD中,点B,C在直线MN上,E为直线MN上的任意一点,连接AE,并把线段AE绕点E顺时针旋转90°得到线段EF,连接CF.(1)试探究线段BE与CF的数量关系及线段CF与直线MN所夹锐角的度数,并说明理由.(2)若正方形的边长为2,连接DF,当DF=时,求线段BE的长.参考答案一、单项选择题(共18分)1.解:A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意;故选:A.2.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故选:B.3.解:∵点P在⊙O外,∴d>3.故选:A.4.解:方程x2+6x+3=0,移项得:x2+6x=﹣3,配方得:x2+6x+9=6,即(x+3)2=6,则k=6,故选:B.5.解:∵二次函数y=﹣(x+1)2+3,∴a=﹣1<0,函数的图象开口向下,故选项A正确,不符合题意;对称轴是直线x=﹣1,故选项B正确,不符合题意;当x<﹣1时,y随x的增大而增大,故选项C正确,不符合题意;当x=﹣1时,函数有最大值y=3,故选项D错误,符合题意;故选:D.6.解:连接OC,∵∠A=22.5°,∴∠COD=2∠A=45°,∵CD是⊙O的切线,∴∠OCD=90°,∴△OCD是等腰直角三角形,∵OC=2,∴OD=,∴BD=OD﹣OB=2﹣2,故选:C.二、填空题(共18分)7.解:由题意得:把x=﹣1代入方程x2﹣ax+1=0中,则(﹣1)2﹣a•(﹣1)+1=0,∴1+a+1=0,∴a=﹣2,故答案为:﹣2.8.解:设有黑色珠子n颗,由题意可得,,解得n=8.故估计盒子中黑珠子大约有8个.故答案为:8.9.解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=20π,∴R=4.故答案为:4.10.解:紫荆花图案可以被中心发出的射线分成5个全等的部分,则旋转的角度至少为360÷5=72度,故答案为:72.11.解:如图2,设直角三角形的长直角边与短直角边分别为2x和x,则AC=x,BD=x,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=5x2,△ADC面积=•x•x=x2,阴影部分的面积S=5x2﹣4×x2=3x2,∴针尖落在阴影区域的概率为=.故答案为:.12.解:∵已知A点从(0,0)点出发,以每秒2个单位长的速度沿着x轴的正方向运动,∴经过t秒后,∴OA=2t,∵四边形OABC是菱形,∴OC=2t,当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP,过P作PE⊥OC,∴OE=CE=OC,∴OE=t,∵∠AOC=60°,∴∠POC=30°,∵A(0,2),∴PE=,∴OE==6,∴t=6.故答案为:6.三、解答题(共84分)13.解:(1)∵x2﹣4x+1=0,∴(x﹣2)2=3,∴x﹣2=±,∴x1=+2,x2=﹣+2;(2)∵把△ADE绕点A旋转一定角度后与△ABF重合,∴△ADE≌△ABF,∴S△ADE=S△ABF,∴四边形AECF的面积等于正方形的面积,∴AD2=16,∴AD=4.14.解:由已知可得:,解得,∴抛物线解析式为y=﹣x2+x+.15.解:(1)如图1,BD为所作;(2)如图2,点G为所作.16.(1)证明:∵a=1,b=﹣(m+1),c=m,∴Δ=b2﹣4ac=[﹣(m+1)]2﹣4×1×m=m2+2m+1﹣4m=m2﹣2m+1=(m﹣1)2≥0,∴无论m为何值,方程总有实数根;(2)解:∵x2﹣(m+1)x+m=0,即(x﹣1)(x﹣m)=0,解得:x1=1,x2=m.当关于x的一元二次方程x2﹣(m+1)x+m=0有两个相等的实数根时,m=1,∴△ABC的三条边长分别为1,1,3,∵1+1=2<3,∴1,1,3不能组成三角形,∴m=1不符合题意,舍去;当关于x的一元二次方程x2﹣(m+1)x+m=0有两个不相等的实数根时,m==2,∴△ABC的三条边长分别为1,2,2,∵1+2=3>2,∴1,2,2能组成三角形.∴m的值为2.17.解:(1)∵AD是⊙O的直径,∴∠ABD=90°,∵∠BAD=20°,∴∠D=90°﹣20°=70°,∴∠ACB=∠D=70°;(2)连接OC,∵BC平分∠ABD,∴∠ABC=ABD=45°,∴∠AOC=2∠ABC=90°,∵AD=2,∴AO=1,∴AC=AO=.18.解:(1)抽到“明月山”是随机事件,抽到“井冈山”是不可能事件,故答案为:随机,不可能;(2)画树状图如下:这次抽签所有等可能的结果共有12种,其中“小尹抽到明月山和庐山”的结果有2种,即AC、CA,∴“小尹抽到明月山和庐山”的概率为=.19.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C即为所求,∵AC==,∴弧长AA2==.20.解:设桑葚售价应降低x元,则每天可售出(200+50x)千克,由题意得,(30﹣15﹣x)(200+50x)=3500,解得x1=1,x2=10,∵采摘园尽量增加销售量,∴x=10,答:桑葚售价应降低10元;(2)设采摘园每天的利润为w元,根据题意得:w=(30﹣15﹣a)(200+50a)=﹣50a2+550a+3000=﹣50(a﹣)2+4512,∵﹣50<0,∴当a=时,w有最大值,最大值为4512.5,答:当a=时,该采摘园每天的利润最大.21.(1)证明:如图,连接OA,∵BE是⊙O的直径,∴∠BAE=90°,∴∠OAB+∠OAE=90°,∵OA=OB,∴∠OBA=∠OAB,∵∠CAE=∠ABC,∴∠CAE=∠OAB,∴∠CAE+∠OAE=90°,∴OA⊥AC,∵OA是⊙O的半径,∴AC是⊙O的切线;(2)解:∵∠ADB=60°,∴∠AEB=∠ADB=60°,∵OA=OE,∴△OAE为等边三角形,∴∠AOC=60°,∴AC=OA=3,∴S阴影部分=S△OAC﹣S扇形AOE=×3×3﹣=﹣π.22.解:(1)将x=﹣3,x=0分别代入函数y=x2﹣2|x|+1,得m=9﹣6+1=4,n=1,故答案为:4,1;(2)画出函数图象如图:(3)该函数的一条性质:函数图象关于y轴对称;(4)由图象得,若点M(m,y1)在图象上,且y1≤1,则﹣1≤m≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,则m+k≤﹣3或m+k≥3,∴k≤﹣3﹣m或k≥3﹣m,∴k的取值范围为k≤﹣4或k≥4.23.解:【操作发现】如图1中,过点E作EK∥AC交AB于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEC=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠ECF=120°,∵BE=EK,∴CF=BE,∠FCN=60°,故答案为:CF=BE,60°;【类比探究】如图2中,结论成立.理由:过点E作EK∥AC交BA的延长线于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEN=∠AEF+∠FEN=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAB=∠FEN,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=60°,∵BE=EK,∴CF=BE;【拓展应用】(1)结论:CF=BE,线段CF与直线MN所夹锐角的度数为45°.理由:在BA上取一点K,使得BK=BE.∵四边形ABCD是正方形,∴∠ABC=90°,∵BK=BE,∴∠BKE=∠BEK=45°,∴∠AKE=135°,∵∠AEN=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=90°,∴∠EAB=∠FEN,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=135°,∴∠FCN=180°﹣135°=45°;(2)如图4﹣1中,过点D作DH⊥CF于点H.当点F在点H上方时,∵△DCH是等腰直角三角形,CD=2,∴CH=DH=,∵DF=,∴FH===2,∴CF=BE=3.如图4﹣2中,当点F在点H的下方时,同法可得FH=2,∴CF=BE=FH﹣CH=,综上所述,BE的长为或3.。

九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)本试题分选择题和非选择题两部分。

本试题共6页,满分为150分,考试时间为120分钟。

注意事项:第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-x=0的根是()A.x1=0,x2=1B.x1=0,x2=-1C.x=-1D.x=02.下列几何体的左视图为()A. B. C. D.3.已知反比例函数y=﹣2x,下列各点中,在此函数图象上的点的是()A.(一1,1)B.(2,-1)C.(1,2)D.(2,2)4.在一个不透明的盒子中装有n个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n的值大约为()A.16B.18C.20D.245.若两个相似三角形的对应中线比是1:3,则它们的周长比是()A.1:2B.1:3C.1:6D.1:96.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相平分C.邻边相等D.对角线互相垂直7.如图,在Rt△ABC中,AC=4,BC=3,∠C=90°,则cosA的值为( )A.34B.54C.35D.45(第7题图)(第8题图)8.如图,在平面直角坐标系中,一块污渍遮挡了横轴的位置,只有部分纵轴和部分矩形网格,已知每个小正方形的边长都是1个单位长度,反比例函数y=k x (k ≠0,x >0)的图象恰好经过2个格点A 、B ,则k 的值是( )A.3B.4C.6D.89.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC=2,则sinB 的值是( )A.23B.32C.34D.43(第9题图) (第10题图)10.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c<0;②abc>0:③a -b+c>1:④4a -2b+c<0.正确结论的个数是( )A.1B.2C.3D.4第II 卷(非选择题 共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.若a b =53,则aa -b = .12.若反比例函数y=m -1x 的图象在一、三象限,则m 的取值范围为 .13.将抛物线y=x 2+3x -2向右平移3个单位后,再向上平移4个单位,得到新的抛物线 的解析式为 .14.如图,△ABC 与△A'B'C'是位似图形,则△ABC 与△A'B'C'的位似比为 .(第14题图) (第15题图) (第16题图)15.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.16.如图,已知正方形ABCD的边长为12,BE=EC,将正方形CD边沿DE折叠到DF,延长EF 交AB于G,连接DG、BF,现有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =725,在以上结论中,正确的是.(填写序号)三.解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:√3tan60°-2cos30°+4sin30°.18.(本小题满分6分)解方程:x2-5x+6=0.19.(本小题满分6分)如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.(本小题满分8分)一个不透明的口袋中有3个质地和大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球。

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(共40分)1.下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是()A.B.C.D.2.点P(2,﹣5)关于原点的对称点的坐标是()A.(﹣2,﹣5)B.(2,5)C.(﹣2,5)D.(﹣5,2)3.已知⊙O的半径为3,点M在⊙O上,则OM的长可能是()A.2B.3C.4D.54.如图所示,在⊙O中=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°5.平面上一点P与⊙O的点的距离的最小值是2,最大值是8,则⊙O的直径是()A.6或10B.3或5C.6D.56.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.90°B.60°C.45°D.30°7.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB 上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°8.下列说法:①弧长相等的弧是等弧;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的外心到三角形三个顶点的距离相等.其中不正确的有()个.A.1B.2C.3D.49.某数学兴趣小组研究二次函数y=x2+bx+c的图象时,得出如下四个结论:甲:图象与x轴的一个交点为(1,0);乙:图象与x轴的一个交点为(3,0);丙:图象与x轴的交点在原点两侧;丁:图象的对称轴为过点(1,0),且平行于y轴的直线;若这四个结论中只有一个是不正确的,则该结论是()A.甲B.乙C.丙D.丁10.如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.二、填空题(共24分)11.已知关于x的方程x2﹣3x﹣m=0的一个根是1,则m=.12.如图,若∠BOD=140°,则∠BCD=.13.在半径为10cm的⊙O中,圆心O到弦AB的距离为6cm,则弦AB的长是cm.14.如图,⊙O上三点A,B,C,半径OC=1,∠ABC=30°,⊙O的切线P A交OC延长线于点P,则PC的长为.15.在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.16.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P,若AB=6,BC=3,则下列结论:①F是CD的中点:②⊙O的半径是2;③AE=CE,其中正确的是.(写序号)三、解答题(共86分)17.解方程:x2﹣2x﹣5=0.18.小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是;(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.19.已知关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,且n+2m=4,求n 的取值范围.20.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得点O在边AB 上,且⊙O经过B、D两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)21.如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数;22.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?23.如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠CAB,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形;(2)判断直线DE与⊙O的位置关系并证明;(3)若AB=10,BC=8,求CE的长.24.如图,△ABC内接于⊙O,弦BD⊥AC,垂足为E,点D、点F关于AC对称,连结AF 并延长交⊙O于点G.(1)连结OB,求证:∠ABD=∠OBC;(2)求证:点F、点G关于BC对称.25.已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)若点P的横坐标为1,点B的坐标为(3,6).①求抛物线的解析式;②若当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,求m的取值范围;(2)若点P在第一象限,且P A=PO,过点P作PD⊥x轴于D,将抛物线y=x2+bx+c 平移,平移后的抛物线经过点A、D,与x轴的另一个交点为C,试探究四边形OABC的形状,并说明理由.参考答案一、选择题(共40分)1.解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C.2.解:因为点P(2,﹣5)关于原点的对称点的坐标特点:横纵坐标互为相反数,所以对称点的坐标是(﹣2,5),故选:C.3.解:∵点M在⊙O上,⊙O的半径为3,∴OM=3,故选:B.4.解:∵=,∴AB=AC,∴∠B=∠C,∵∠A=30°,∴∠B=∠C=×(180°﹣30°)=75°.故选:B.5.解:当点P在圆内时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为10,当点P在圆外时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为6.故选:A.6.解:当AP与⊙O相切时,∠OAP有最大值,连接OP,如图,则OP⊥AP,∵OB=AB,∴OA=2OP,∴∠P AO=30°.故选:D.7.解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.8.解:①弧长相等的弧是等弧,故该说法不正确;②不在同一直线的三点可以确定一个圆,故该说法不正确;③在同圆和等圆中,相等的圆心角所对的弧相等,故该说法不正确;④经过半径外端且垂直于这条半径的直线是圆的切线,故该说法不正确;⑤三角形的外心是三角形三边垂直平分线的交点,到三角形三个顶点的距离相等,故该说法正确.故选:D.9.解:若甲、乙成立,(1+3)÷2=1,∴图象的对称轴为过点(1,0),且平行于y轴的直线,图象与x轴的交点在原点右侧,故丁结论正确;图象与x轴的交点在原点右侧,故丙结论不正确,符合题意.故选:C.10.解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.二、填空题(共24分)11.解:把x=1代入方程可得:1﹣3﹣m=0,解得m=﹣2.故答案为:﹣2.12.解:由圆周角定理得,∠A=∠BOD=70°,∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=110°,故答案为:110°.13.解:连接OB.在Rt△ODB中,OD=6cm,OB=10cm.由勾股定理得BD===8.∴AB=2BD=2×8=16cm.14.解:连接OA,∵AP是⊙O的切线,∴OA⊥AP,∵∠ABC=30°,∴∠AOP=2∠ABC=60°,∴∠APO=30°,∵OA=OC=1,∴OP=2OA=2,∴PC=OP﹣OC=1.故答案为:1.15.解:如图,连接PP',过点D作DE⊥BC,∵DP绕点D逆时针旋转60°,∴DP=DP',∠PDP'=60°,∴△DP'P是等边三角形,∴DP=PP',∠DPP'=60°,∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵∠BPP'=∠C+∠PP'C=∠BPD+∠DPP',∴∠PP'C=∠BPD,且DP=PP',∠B=∠C,∴△BDP≌△CPP'(AAS)∴BD=CP=2,∴BP=3,∵∠B=60°,BD=2,DE⊥BC,∴BE=1,DE=BE=,∴PE=2,∴DP===,故答案为.16.解:①∵AF是AB翻折而来,∴AF=AB=6,∵矩形ABCD,则,∴,∴DF=CF,∴F是CD中点;故①正确;②如图,连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴△APO∽△ADF,∴,设OP=OF=x,则,解得:x=2,故②正确;③∵Rt△ADF中,AF=6,DF=3,∴,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=∠B=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,故③错误;故答案为:①②.三、解答题(共86分)17.解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.18.解:(1)∵小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,∴小晗任意按下一个开关,正好楼梯灯亮的概率是:;(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:=.19.解:根据题意得Δ=(﹣2)2﹣4×(﹣m)>0,解得m>﹣1.∵n+2m=4,∴m=>﹣1,解得n<6,即n的取值范围为n<6.20.解:如图,⊙O为所作.证明:连接OD,如图,∵BD平分∠ABC,∴∠CBD=∠ABD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∴∠ODA=∠ACB,又∠ACB=90°,∴∠ODA=90°,即OD⊥AC,∵点D是半径OD的外端点,∴AC与⊙O相切.21.解:(1)旋转后的三角形ACP'如图所示:(2)由旋转可得,∠P AP'=∠BAC=50°,AP=AP',△ABP≌△ACP',∴∠APP'=∠AP'P=65°,∠AP'C=∠APB,∵∠BAC=50°,AB=AC,∴∠B=65°,又∵∠BAP=20°,∴∠APB=95°=∠AP'C,∴∠PP'C=∠AP'C﹣∠AP'P=95°﹣65°=30°.22.解:(1)设y与x之间的函数关系式为:y=kx+b,将点(1,110)、(3,130)代入一次函数关系式得:,解得:,故函数的关系式为:y=10x+100(0<x<20);(2)由题意得:(10x+100)×(55﹣x﹣35)=1760,整理,得x2﹣10x﹣24=0.解得x1=12,x2=﹣2(舍去).所以55﹣x=43.答:这种消毒液每桶实际售价43元.23.解:(1)如图1即为补全的图形.(2)直线DE是⊙O的切线.理由如下:证明:如图2,连接OD,交BC于F.∵AD平分∠BAC,∴∠BAD=∠CAD.∴.∴OD⊥BC于F.∵DE∥BC,∴OD⊥DE于D.∴直线DE是⊙O的切线.(3)∵AB是⊙O的直径,∴∠ACB=90°.∵AB=10,BC=8,∴AC=6.∵∠BFO=∠ACB=90°,∴OD∥AC.∵O是AB中点,∴OF==3.∵OD==5,∴DF=2.∵DE∥BC,OD∥AC,∴四边形CFDE是平行四边形.∵∠ODE=90°,∴平行四边形CFDE是矩形.∴CE=DF=2.答:CE的长为2.24.证明:(1)连接OC,∵BD⊥AC,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵,∴∠BOC=2∠BAC,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2∠BAC=180°,∴∠OBC+∠BAC=90°,∴∠OBC=∠ABE,即∠OBC=∠ABD,(2)连接BG,AD,GC,AG交BC于点H,∵点D,F关于AC对称,∴EF=ED,∵BD⊥AC,∴∠AEF=∠AED=90°,又∵AE=AE,∴△AEF≌△AED(SAS),∴∠EAF=∠EAD,∠AFE=∠ADE,即∠GAC=∠DAC,∵,∴∠DAC=∠DBC,∵,∴∠GAC=∠GBC,∴∠DBC=∠GBC,∵∴∠ADB=∠BGA,∵∠AFD=∠BFG,∴∠BFG=∠AGB,∴△BHF≌△BHG(AAS),∴FH=GH,∠BHF=∠BHG=90°,∴点F,点G关于BC对称.25.解:(1)①∵抛物线y=x2+bx+c的顶点P的横坐标为1,∴﹣=1,解得:b=﹣2.∴y=x2﹣2x+c,∵抛物线y=x2﹣2x+c经过点B(3,6),∴6=32﹣2×3+c,解得:c=3.∴抛物线的解析式为y=x2﹣2x+3;②由y=x2﹣2x+3=(x﹣1)2+2知,P(1,2).∴点(3,6)关于对称轴x=1的对称点B′的坐标为(﹣1,6),如图1,∵当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,∴﹣1≤m≤1;(2)如图2,由P A=PO,OA=c,可得PD=.∵抛物线y=x2+bx+c的顶点坐标为P(﹣,),∴=.∴b2=2c.∴抛物线y=x2+bx+b2,A(0,b2),P(﹣b,b2),D(﹣b,0).可得直线OP的解析式为y=﹣bx.∵点B是抛物线y=x2+bx+b2与直线y=﹣bx的图象的交点,令﹣bx=x2+bx+b2.解得x1=﹣b,x2=﹣.可得点B的坐标为(﹣b,b2).由平移后的抛物线经过点A,可设平移后的抛物线解析式为y=x2+mx+b2.将点D(﹣b,0)的坐标代入y=x2+mx+b2,得m=b.则平移后的抛物线解析式为y=x2+bx+b2.令y=0,即x2+bx+b2=0.解得x1=﹣b,x2=﹣b.依题意,点C的坐标为(﹣b,0).则BC=b2.则BC=OA.又∵BC∥OA,∴四边形OABC是平行四边形.∵∠AOC=90°,∴四边形OABC是矩形.。

浙教版2022-2023学年九年级数学上册第三次月考测试题(附答案)

浙教版2022-2023学年九年级数学上册第三次月考测试题(附答案)

浙教版2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题:共30分。

1.已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=2.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球3.已知点P到圆心O的距离为4,若点P在圆内,则⊙O的半径可能为()A.2B.3C.4D.54.已知扇形的半径为6cm,圆心角为120°,则扇形的面积为()A.4πcm2B.6πcm2C.12πcm2D.36πcm25.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下面结论正确的是()A.a<0,b<0,b2﹣4ac<0B.a<0,b>0,b2﹣4ac>0C.a>0,b>0,b2﹣4ac<0D.a<0,b<0,b2﹣4ac>06.圆内接正六边形的边长为2,则该圆内接正三角形的边长为()A.4B.C.D.7.如图,已知在△ABC中,点F是三角形的重心,过点F作DE∥BC,交AB于点D,交AC于点E,若DE=7,则BC的值为()A.9B.10.5C.12D.148.在平面直角坐标系中,二次函数y=(x+1)(x﹣3)的图象向右平移2个单位后的函数为()A.y=(x﹣1)(x﹣5)B.y=(x+2)(x﹣2)C.y=(x+3)(x﹣1)D.y=(x+1)(x+5)9.如图,有一块三角形余料ABC,它的面积为36 cm2,边BC=12cm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,则加工成的正方形零件的边长为()cm.A.6B.5C.4D.310.设函数y=x2﹣2kx+k﹣1(k为常数),下列说法正确的是()A.对任意实数k,函数与x轴都没有交点B.存在实数n,满足当x≥n时,函数y的值都随x的增大而减小C.k取不同的值时,二次函数y的顶点始终在同一条直线上D.对任意实数k,抛物线y=x2﹣2kx+k﹣1都必定经过唯一定点二、填空题:共24分11.已知线段a=2,b=18,则a,b的比例中项为.12.如图,AB是半圆O的直径,C,D为圆上的两点,∠BAC=40°,则∠D=度.13.已知线段AB=4,P是线段AB的黄金分割点,AP>BP,则AP=.14.如图,已知抛物线y1=ax2+bx+c(a≠0)与直线y2=mx+n(m≠0)交于点A,B,点A,B的横坐标分别是﹣2,,则不等式ax2+bx+c<mx+n的解为.15.若实数a,b满足a+b2=3,则a2+8b2的最小值为.16.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,且CD=2,AC=6,则AB=.三、解答题,共66分.17.一个不透明的袋子中装有2个红球和1个白球(只有颜色不同),从中随机摸出1个球后放回搅匀,再次随机摸出一个球,请用列表或画树状图的方法求先后摸出的两球颜色不同的概率.18.如图所示,△ABC的各顶点都在8×8网格的格点上,每个小正方形的边长都为1,△ABC绕点A顺时针旋转90°后得到△AB1C1.(1)在图1中画出△AB1C1;(2)在图2中画一个格点△DEF,使△DEF∽△ABC,且相似比为:1.19.如图,在Rt△ABC中,∠C=90°,点D是AB上一点,DE∥BC,BE⊥AB.(1)求证:△DEB∽△BAC;(2)若BE=2,AC=3,△BDE的面积为1,求△ABC的面积.20.二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的自变量x与函数值y的部分对应值如表:x…﹣1034…y…04m0…(1)直接写出m的值,并求该二次函数的解析式;(2)当1<x<5时,求函数值y的取值范围.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD与BC,OC分别交于E,F.(1)求证:;(2)连结AC,若CE=1,EB=3,求AC的长.22.已知二次函数y=﹣x2+bx+c的图象经过点A(x1,y1),B(x2,y2),且当x1=﹣2,x2=6时,y1=y2.(1)求b的值;(2)若P(m+3,n1),Q(m,n2)也是该二次函数图象上的两个点,且n1<n2,求实数m的取值范围;(3)若点T(t,2t)不在该二次函数的图象上,求c的取值范围.23.已知AC,BD为⊙O的直径,连结AB,BC,点F是OC上一点,且CF=2OF.(1)如图1,若BC=6,∠BAC=30°,求OF的长;(2)若AB=BC,点E是AB上一点,连结EF,交OB于点P;①如图2,当点E为AB中点时,求的值;②连结DF,当EF⊥DF时,=;=.(利用备用图探索)参考答案一、选择题:共30分。

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。

北师大版2022-2023学年九年级数学上册第三次月考测试题(附答案)

北师大版2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共36分)1.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别交于点A,B,C和点D,E,F.若,DE=4,则DF的长是()A.B.C.6D.102.已知点A(0,3),B(﹣4,8),以原点O为位似中心,把线段AB缩短为原来的,点D与点B对应.则点D的坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣1,2)或(1,﹣2)D.(2,﹣1)或(﹣2,1)3.若反比例函数的图象经过点,且m≠0,则下列说法不正确的是()A.图象位于第一、三象限B.图象经过点P(2,3)C.y随x的增大而减小D.图象关于原点对称4.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.5.如图,一次函数y=ax+b与反比例函数y=(k>0)的图象交于点A(1,2),B(m,﹣1).则关于x的不等式ax+b>的解集是()A.x<﹣2或0<x<1B.x<﹣1或0<x<2C.﹣2<x<0或x>1D.﹣1<x<0或x>26.如图,AB∥EF∥CD,FG∥BH,下列结论一定正确的是()A.B.C.D.7.下列命题中,正确的是()A.两个相似三角形的面积之比等于它们周长之比B.两边成比例且一角相等的两个三角形相似C.反比例函数y=(k>0)中,y随x的增大而减小D.位似图形的位似中心不一定是唯一的8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.9.广场上有旗杆如图1所示,某学校兴趣小组测量了该旗杆的高度,如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°,1米的标杆EF竖立在斜坡上的影长FG为2米,则旗杆的高度为()A.18B.20C.22D.2410.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线(x>0)上,则图中S△OBP=()A.B.C.D.411.如图,△ABC中,∠B=90°,点E在AC上,EF⊥AB于点F,EG⊥BC,已知△AFE 的面积为a,△EGC的面积为b,则矩形BFEG的面积为()A.a+b B.ab C.D.12.如图,在平面直角坐标系中,平行四边形ABCD的边AB交x轴于点E,反比例函数的图象经过CD上的两点D,F,若DF=2CF,EO:OC=1:3,平行四边形ABCD的面积为7,则k的值为()A.B.C.2D.二、填空题(共16分)13.如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为.14.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=2,AC=4,则BD =.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=3,AD=6,点A的坐标为(3,8).将矩形向下平移a,若矩形的两个顶点恰好同时落在反比例函数的图象上,则矩形的平移距离a的值为.16.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内并排放入(不重叠)边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放个小正方形纸片.三、解答题(共68分)17.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.(3)求出△A2B2C2的面积.18.已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC延长线相交于点E.(1)求证:△ABM∽△MCD;(2)若AM=2,AB=5,求⊙O半径.19.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.20.某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图象的一部分,设公司销售这种电子产品的年利润为w(万元).(1)请求出y(万件)与x(元/件)之间的函数关系式;①求出当4≤x≤8时的函数关系式;②求出当8<x≤28时的函数关系式.(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;21.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在上,求的值;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<180°),如图2,求:的值;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<180°),当C,G,E三点共线时,请直接写出DG的长度.22.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON 交于A,B两点,如果∠APB绕点P旋转时始终满足OA⋅OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图1,已知∠MON=α,若∠APB是∠MON的智慧角,写出∠APB的度数(用含α的式子表示);(2)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB叫做∠MON的智慧角;(3)如图3,C是函数y=图象上的一个动点,过点C的直线CD分别交x 轴和y轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.参考答案一、选择题(共36分)1.解:∵l1∥l2∥l3,∴==,又DE=4,∴EF=6,∴DF=DE+EF=10,故选:D.2.解:∵以原点O为位似中心,把线段AB缩短为原来的,点B的坐标为(﹣4,8),∴点D的坐标为(﹣4×,8×)或,即(﹣1,2)或(1,﹣2).故选:C.3.解:把代入得,k=6,∴,当x=2,y=3,∴经过P(2,3),当k=6>0,反比例函数图像位于一、三象限;在每一项内y随x的增大而减小;图像关于原点对称.故选:C.4.解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB∥DG,∴△ABE∽△CGE,∴===,故选:C.5.解:∵A(1,2)在反比例函数图象上,∴k=1×2=2,∴反比例函数解析式为,∵B(m,﹣1)在反比例函数图象上,∴,∴B(﹣2,﹣1),由题意得关于x的不等式的解集即为一次函数图象在反比例函数图象上方时自变量的取值范围,∴关于x的不等式的解集为﹣2<x<0或x>1,故选:C.6.解:∵AB∥EF∥CD,∴,故A不符合题意;∵FG∥BH,∴△DFG∽△DBH,∴,∴故C符合题意,D不符合题意;根据现有条件无法证明,故B不符合题意;故选:C.7.解:A、两个相似三角形的面积之比等于它们周长之比的平方,说法错误,不符合题意;B、两边成比例且这两边的夹角相等的两个三角形相似,说法错误,不符合题意;C、反比例函数中,在每个象限内y随x的增大而减小,说法错误,不符合题意;D、位似图形的位似中心不一定是唯一的,说法正确,符合题意;故选:D.8.解:因为二次函数y=ax2+bx+c的图象开口向上,得出a>0,与y轴交点在y轴的负半轴,得出c<0,利用对称轴x=﹣<0,得出b>0,所以一次函数y=ax+b经过一、二、三象限,反比例函数y=经过二、四象限,故选:A.9.解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意得△MCD∽△EFG,∴,即,∴CM=4米,又∵∥BC,AB∥CM,AB⊥BC,∴四边形MNBC是矩形,∴MN=BC=16米,BN=CM=4米.在直角△AMN中,∠AMN=45°,∴AN=MN=16米,∴AB=AN+BN=20米.故选:B.10.解:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△OBP=S△AOB,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB,∵点B在反比例函数y=的图象上,∴S△OBE=×4=2,∴S△OBP=S△AOB=2S△OBE=4.故选:D.11.解:∵∠B=90°,EF⊥AB,EG⊥BC,∴四边形BFEG是矩形,∴EF∥CG,BF∥EG,∴∠A=∠CEG,∠AEF=∠C,∴△AEF∽△ECG,∴,∴EF⋅EG=AF⋅CG,∵△AFE的面积为a,△EGC的面积为b,∴,∴,∴,∴(EF⋅EG)2=4ab,∴,故选:D.12.解:如图,分别过点D,点F作x轴的垂线,垂足分别为G,H,连接DE,∴DG∥FH,∴FH:DG=CF:CD=CH:CG,∵DF=2CF,∴CF:CD=1:3,设点F的横坐标为m,则F(m,),∴FH=,∴DG=3FH=,∴D(m,),∴OG=m,OH=m,∴GH=m,CH=m,∴OC=m,∵EO:OC=1:3,∴OE=m,∴CE=m.∵平行四边形ABCD的面积为7,∴△CDE的面积为,∴•m•=,整理得k=.故选:A.二、填空题(共16分)13.解:依据比例系数k的几何意义可得,△P AO面积等于|k|,即|k|=1,k=±2,由于函数图象位于第一、三象限,则k=2,∴反比例函数的解析式为y=;故答案为:y=.14.解:∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴,即,∴BD=6,故答案为:6.15.解:∵四边形ABCD是矩形,AD平行于x轴,且AB=3,AD=6,点A的坐标为(3,8),∴AB=CD=3,AD=BC=6,∴B(3,5),C(9,5),∴矩形平移后A的坐标是(3,8﹣a),C的坐标是(9,5﹣a),∵A、C落在反比例函数的图象上,∴k=3(8﹣a)=9(5﹣a),解得a=3.5,故答案为:3.5.16.解:如解图,过点C作CF⊥AB于点F.在Rt△ABC中,∠C=90°,AC=6,BC=8,则由勾股定理,得;∴,∴.∴小正方形最多可以排4排.设最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E.∵DE∥AB,∴△CED∽△CAB,∴,∴,∴最下边一排是7个正方形.设第二排正方形的上边的边所在的直线与△ABC的边交于点G、H,同理可得,∴,∴第二排是5个正方形;同理,第三排是3个;第四排是1个,∴正方形的个数是7+5+3+1=16,故答案为:16.三、解答题(共68分)17.解:(1)如图所示,△A1B1C1为所作;(2)如图所示,△A2B2C2为所作,点B2的坐标为(﹣4,﹣6);(3)△A2B2C2面积=6×4﹣×4×4﹣﹣=8.18.(1)证明:∵AD为⊙O的直径,∴∠AMD=90°,∴∠AMB+∠DMC=90°,∵AB⊥BC,CD⊥BC,∴∠ABM=∠MCD=90°,∴∠BMA+∠BAM=90°,∴∠BAM=∠CMD,∴△ABM∽△MCD;(2)解:如图所示,连接OM,∵BC为⊙O的切线,切点为M,∴OM⊥BC,又∵AB⊥BC,∴AB∥OM,∴∠BAM=∠AMO,∵OA=OM,∴∠OAM=∠OMA,∴∠OAM=∠BAM,又∵∠ABM=∠AMD=90°,∴△ABM∽△AMD,∴=,即=,∴AD=8,∴⊙O半径为4.19.解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B (6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线AB的解析式为y=﹣x+4(2)如图,当P A⊥OD时,∵P A∥OC,∴△ADP∽△CDO,此时P(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴D(8,0),C(0,4),∴CD==4,AD=2,∵DP′:CD=AD:OD,∴DP′:4=3:8,∴DP′=,∴OP′=,∴P′(3,0),∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′(,0),综上所述,满足条件的点P坐标为(2,0)或(,0).20.(1)解:①4≤x≤8时,设,将点A(4,40)的坐标代入,得k=4×40=160,②8<x≤28时,设y=k'x+b(k'≠0),分别将点B(8,20),C(28,0)的坐标代入y=k'x+b,得,解得,∴y=﹣x+28;(2)解:当4≤x≤8时,;y=﹣x+28时,20≤y≤24;综上可知,w(万元)与x(元/件)之间的函数关系式为w=.21.解:(1)∵四边形ABCD是正方形,四边形AFEG是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴=,GE∥CD,∴==;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=,=cos45°=,∴=,∴△ADG∽△ACE,∴==,(3)①如图:由(2)知△ADG∽△ACE,∴==,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴==,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC=16,∵AG=AD∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.22.(1)解:∵∠APB是∠MON的智慧角,∴OA•OB=OP2,∴=,∵P为∠MON的平分线上一点,∴∠AOP=∠BOP=∠MON=α,∴△AOP∽△POB,∴∠OAP=∠OPB,∴∠APB=∠OPB+∠OP A=∠OAP+∠OP A=180°﹣∠AOP=180°﹣α;(2)证明:∵∠MON=90°,P为∠MON的平分线上一点,∴∠AOP=∠BOP=∠MON=45°,∵∠AOP+∠OAP+∠APO=180°,∴∠OAP+∠APO=135°,∵∠APB=135°,∴∠APO+∠OPB=135°,∴∠OAP=∠OPB,∴△AOP∽△POB,∴,∴OP2=OA•OB,∴∠APB是∠MON的智慧角;(3)解:设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,如图2:BC=2CA不可能;当点A在x轴的正半轴上时,如图3:∵BC=2CA,∴,∵CH∥OB,∴△ACH∽△ABO,∴,∴OB=3b,OA=a,∴OA•OB=a•3b==,∵∠APB是∠AOB的智慧角,∴OP==,∵∠AOB=90°,OP平分∠AOB,∴点P到x,y轴的距离相等为∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图4,∵BC=2CA,∴AB=CA,在△ACH和△ABO中,,∴△ACH≌△ABO(AAS),∴OB=CH=b,OA=AH=a,∴OA•OB=a•b=,∵∠APB是∠AOB的智慧角,∴OP==,∵∠AOB=90°,OP平分∠AOB,∴点P到x,y轴的距离相等为,∴点P的坐标为:(,﹣);综上所述:点P的坐标为:(,)或(,﹣).。

人教版九年级上册数学第三次月考试题带答案

人教版九年级上册数学第三次月考试题带答案

人教版九年级上册数学第三次月考试卷一、单选题1.下列4个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.如图,⊙O的半径是5,弦AB=6,OE⊥AB于E,则OE的长是()A.2B.3C.4D.53.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣34.若⊙O的半径为8cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定5.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A.2B.3C.4D.56.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25πB.65πC.90πD.130π7.如图,已知C、D在以AB为直径的⊙O上,若∠CAB=30°,则∠D的度数是()A.30°B.70°C.75°D.60°8.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC =5,则△ABC的周长为()A.16B.14C.12D.109.如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4B.214C.5D.25410.如图,点C在以AB为半径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关AC对称,DF⊥DE于点D,并交EC的延长线与点F.下列结论:①CE=CF;②线段EF的最小值为3③当AD=2时,EF与半圆相切;④当点D从点A运动到点B时,线段EF扫过的面积是3.其中正确的结论()A.1个B.2个C.3个D.4个二、填空题11.若点P(a,﹣2)、Q(3,b)关于原点对称,则a﹣b=_____.12,则它的周长是______.13.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为________.14.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为______.15.如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB =4,则CN=_____.三、解答题16.如图,⊙O的弦AB与半径OC相交于点P,BC∥OA,∠C=50°,那么∠APC的度数为.17.解方程(1)x2﹣4x=0(2)2x2+3=7x18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).19.如图,AB是⊙O的一条弦,且AB=C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.求OA的长.20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求 BC的长.21.如图,AB为⊙O的直径,直线l经过⊙O上一点C,过点A作AD⊥l于点D,交⊙O 于点E,AC平分∠DAB.(1)求证:直线l是⊙O的切线;(2)若DC=4,DE=2,求线段AB的长.22.如图,以等边三角形ABC一边AB为直径的⊙O与边AC,BC分别交于点D,E,过点D作D F⊥BC,垂足为点F.(1)求证:D F为⊙O的切线;(2)若等边三角形ABC的边长为4,求D F的长;(3)求图中阴影部分的面积.23.如图直角坐标系中,已知A(-8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.24.已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A,B两点(点A在点B左侧),与y轴交于点C、设直线CM与x轴交于点D.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.(3)设直线y=kx+2与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.参考答案1.A2.C3.A4.A5.B6.B7.D8.B9.D10.C 11.-5 12.12 13.240°14.315.6-16.75°.17.(1)x1=0,x2=4;(2)x1=12,x2=318.(1)画图见解析;(2)点B所经过的路径长为5π2.19.4.20.(1)证明过程见解析;(2)π21.(1)详见解析;(2)AB=10.22.(1)证明见解析;(2(3)332 23π-.23.(1)直线OB与⊙M相切.;(2)M的坐标为(-247,247).24.(1)y=﹣x2+2x+3;(2)满足题意的点P存在,其坐标为(1,﹣);(3)213 3 -<k<213 3.。

2023-2024学年四川省资阳市安岳县九年级上册数学第三次月考模拟试题(含答案)

2023-2024学年四川省资阳市安岳县九年级上册数学第三次月考模拟试题(含答案)

2023-2024学年四川省资阳市安岳县九年级上学期数学第三次月考模拟试题一、单选题(共40分)1.下列等式成立的是()A .164=±B .382-=C .1aa a-=-D .648-=-2.代数式122x x x -+-++的最小值是()A .0B .3C .3D .不存在3.关于x 的一元二次方程2110kx k x +++=有两个不相等的实数根,则k 的取值范围是()A .13k <B .113k -<<C .0k ≠D .113k -≤<且0k ≠4.我省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,今年第一季度的总营业额是3640万元.若设月平均增长率是x ,那么可列出的方程是()A .21000(1)3640x +=B .1000(12)=3640x +C .210001000(1)1000(1)3640x x ++++=D .10001000(1)1000(12)3640x x ++++=5.若a≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为()A .14B .1C ..4D .36.在Rt ABC 中,90C ∠=︒,53BC =,10AB =,则A ∠为()A .30︒B .45︒C .60︒D .75︒7.如图1,在△ABC 中,∠ACB =90°,∠CAB=30°,△ABD 是等边三角形.如图2,将四边形ACBD 折叠,使D 与C 重合,EF 为折痕,则∠ACE 的正弦值为()A .317-B .12C .437D .17第9题8.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 为DC 的中点,若OE =2,则菱形的周长为()A .10B .12C .16D .209.如图所示,热气球的探测器显示,从热气球A处看一栋楼顶部B 处的仰角为30︒,看这栋楼底部C 处的俯角为60︒,热气球A 处与楼的水平距离为150m ,则这栋楼的高度为()A .B .C .D .300m10.如图1,菱形纸片ABCD 的边长为2,∠ABC =60°,如图2,翻折∠ABC ,∠ADC ,使两个角的顶点重合于对角线BD 上一点P ,EF ,GH 分别是折痕.设BE =x (0<x <2),给出下列判断:①当x =1时,DP EF +GH 的值随x 的变化而变化;③六边形AEFCHG 面积的最大值是AEFCHG 周长的值不变.其中正确的是()A .①②B .①④C .②③④D .①③④二、填空题(共24分)11.若关于x 的方程(m +2)x |m |+2x -3=0是一元二次方程,则m =.12.已知方程组249x ⎧=⎪⎨-=⎪⎩,那么13.已知x 2+y 2+2x-6y+10=0,则x y +=.14.如图,在▱ABCD 中,BD 为对角线,E 、F 分别是AD 、BD 的中点,连接EF .若EF=3,则CD 的长为.15.如图,在矩形ABCD 中,4AB =,对角线AC 、BD 相交于点O ,60AOB ∠=︒.点E 是AO 的中点,若点F 是对角线BD 上一点,则EF 的最小值是.16.如图,在Rt ABC △中,90ABC ∠=︒,30A ∠=︒,3AB =,BC =,点D 是边AC 上一动点.连接BD ,将ABD △沿BD 折叠,得到EBD △,其中点A 落在E 处,BE 交AC 于点F ,当EDF 为直角三角形时,EF 长度是.第8题三、解答题(共86分)17.(本题10分)(1)计算:21312(20132014)2π-⎛⎫+---+ ⎪⎝⎭;(2)解方程:(21)(2)36x x x +-=-.18.(本题9分)先化简,再求值:23131121x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭,其中3x =.19.(本题10分)如图,在四边形ABCD 中,DC ∥AB ,E 是DC 延长线上的点,连接AE ,交BC 于点F .(1)求证:△ABF ∽△ECF ;(2)若AB =8,25CF CB =,求CE 的长.20.(本题10分)我市茶叶专卖店销售某品牌茶叶,其进价为每千克240元,按每千克400元出售,平均每周可售出200千克,后来经过市场调查发现,单价每降低10元,则平均每周的销售量可增加40千克.(1)若该专卖店销售这种品牌茶叶要想平均每周获利41600元,请回答:①每千克茶叶应降价多少元?②在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?(2)在降价情况下,该专卖店销售这种品牌茶叶平均每周获利能达到50000元吗?请说明理由.第14题第15题第16题21.(本题12分)如图,在四边形ABCD 中,909064ABC ADC AB CD BC ∠=︒∠=︒==,,,,的延长线与AD 的延长线交于点E .(1)若60A ∠=︒,求BC 的长;(2)若3sin 5E =,求AD 的长.(注意:本题中的计算过程和结果均保留根号)22.(本题11分)已知关于x 的方程x 2+2x +k ﹣4=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+6k ﹣4的值.23.(本题10分)甲、乙两建筑物相距10米,小明在乙建筑物A 处看到甲建筑物楼顶B 点的俯角为45︒,看到楼底C 点的俯角为60︒,求甲建筑物BC 的高.(精确到0.1米,3 1.732≈,2 1.414≈)24.(本题14分)如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E 从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.(1)证明△AMF是等腰三角形;(2)当EG过点D时(如图(3)),求x的值;(3)将y表示成x的函数,并求y的最大值.答案:1.D2.B3.D4.C5.B6.C7.D8.C 9.C10.D11.212.613.214.6.15..33217.(1)原式431π=+--π=-(2)(21)(2)3(2)0x x x +---=(2)(213)0x x -+-=2(2)(1)0x x --=∴1221x x ==,18.解:原式231131121x x x x x x ---⎛⎫=-÷⎪+++⎝⎭231(1)(1)(1)[]113x x x x x x x -+-+=-⋅++-22311(1)13x x x x x --++=⋅+-223(1)13x x x x x -++=⋅+-2(3)(1)13x x x x x -+=-⋅+-(1)x x =-+,当x =1)3==-19.(1)∵DC AB ∥,∴∠E =∠FAB ,∠ECF =∠FBA ,∴△ABF ∽△ECF ,结论得证;(2)∵25CF CB =,CF +FB =CB ,∴23CF FB =,∵在(1)中已得△ABF ∽△ECF ,∴23CE CF AB FB ==,即23CE AB =,∵AB =8,∴22168333CE AB ==⨯=,即CE 长度为163.20.(1)解:①设每千克茶叶应降价x 元.根据题意,得:()400240(200x --+10x40)41600⨯=.解得:123080x x ==,.答:每千克茶叶应降价30元或80元.②由①可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:40080320-=元,320108400⨯=.答:该店应按原售价的八折出售.(2)解:该专卖店销售这种品牌茶叶平均每周获利不能达到50000元,理由如下:设每千克茶叶应降价y 元.根据题意,得:()400240(200x --+10x40)5000⨯=0,整理得:211045000y y -+=,∵()2Δ11041450059000=--⨯⨯=-<,∴原方程没有实数根,即该专卖店销售这种品牌茶叶平均每周获利不能达到50000元.21.(1)60,90,6,tan BEA ABE AB A AB∠=︒∠=︒==,30,6tan 60E BE ∴∠=︒=︒=又90,4,sin ,30CDCDE CD E E CE∠===∠=︒︒ 4812CE ∴==,8BC BE CE ∴=-=.(2)390,6,sin ,10,85ABE AB E AE BE ∠=︒==∴=∴= •,64tan 8AB CD E BE DE DE ∴====,解得163DE =,16141033AD AE DE ∴=-=-=22.解:(1)∵关于x 的方程x 2+2x +k -4=0有实数根.∴Δ=22-4(k -4)>0,解得:k <5;(2)把x =k 代入方程得k 2+2k +k -4=0,即k 2+3k =4,所以2k 2+6k -4=2(k 2+3k )-4=2×4-4=4.23.解:如图构建直角三角形,由题意可知:10OA =m ,45BAO ∠=︒,60CAO ∠=︒,OC OA ⊥∵在Rt △AOB 中,45BAO ∠=︒,10OA =m ∴OB=OA=10m又∵在Rt △AOC 中,60CAO ∠=︒,10OA =m∴OC OA ==∴10BC OC OB =-=≈10×1.732-10≈7.3m 答:甲建筑物BC 的高约为7.3m24.解:(1)证明:如图(1),∵EF ∥AD ,∴∠A=∠EFB ,∠GFE=∠AMF .∵△GFE 与△BFE 关于EF 对称,∴△GFE ≌△BFE .∴∠GFE=∠BFE .∴∠A=∠AMF .∴△AMF 是等腰三角形.(2)如图,作DQ ⊥AB 于点Q ,∴∠AQD=∠DQB=90°.∴AB ∥DC .∴∠CDQ=90°.又∵∠B=90°,∴四边形CDQB 是矩形.∴CD=QB=2,QD=CB=6,∴AQ=10﹣2=8.Q在Rt △ADQ 中,由勾股定理得AD=10.∴tan ∠A=34.∴EB 3tan EFB FB 4∠==.如图3,∵EB=x ,∴FB=43x ,CE=6﹣x .∴AF=MF=10﹣43x .∴GM=8x 103-.∴GD=152x 2-.∴DE=15x 2-.在Rt △CED 中,由勾股定理得()2215x 6x 42⎛⎫---= ⎪⎝⎭,解得:65x 12=.∴当EG 过点D 时65x 12=.(3)当点G 在梯形ABCD 内部或边AD 上时,2142y x x x 233=⋅=.当点G 在边AD 上时,易求得x=154,∴当0<x 154≤时,22y x 3=.∴当x=154时,y 最大值为758.当点G 在梯形ABCD 外时,∵△GMN ∽△GFE ,∴2GMN GFES GM S GF ∆∆⎛⎫= ⎪⎝⎭,即22228x y x 103324x x 33⎛⎫-- ⎪= ⎪⎝⎭.整理,得275y 2x 20x 2=-+-.由(2)知,65x 12≤,∴当1565<x 412≤时,275y 2x 20x 2=-+-.∵()227525y 2x 20x 2x 222=-+-=--+,当x=5时,y 最大值为252.∵252>758,∴当x=5时,y 最大值为252.综上所述,y 关于x 的函数为22215y x 0<x 34y {1421565x x x 233412⎛⎫=≤ ⎪⎝⎭=⎛⎫⋅=≤ ⎝⎭,y 最大值为252.。

浙江省衢州2022-2023学年九年级数学上册第三次月考测试题(附答案)

浙江省衢州2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.下列成语所描述的事件为必然事件的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长2.若,则等于()A.B.C.D.3.如图,在矩形ABCD中,AB=6,AD=8,若以点D为圆心,8为半径作⊙D,则下列各点在⊙D外的是()A.点A B.点B C.点C D.点D4.两个相似三角形的面积之比为1:4,较小的三角形的周长为4,则另一个三角形的周长为()A.16B.8C.2D.15.如图,在小正方形组成的网格中,△ABC的顶点都是格点(网格线的交点),则tan∠ABC 等于()A.B.C.D.6.如图,点A,B,C,D在⊙O上,AC是⊙O的直径,若∠CAD=25°,则∠ABD的度数为()A.25°B.50°C.65°D.75°7.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°8.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是()A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒9.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径10.如图,在直角梯形ABCD中,∠ABC=90°,AB=8,AD=3,BC=4,点P为边AB 上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A.1B.2C.3D.4二、填空题(共24分)11.计算:sin45°=.12.已知P是线段AB的黄金分割点,P A>PB,AB=2cm,则P A=.13.已知扇形的圆心角为120°,面积为12π,则扇形的半径是.14.如图,点A(2,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.15.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,则此Rt△ABC的重心P与外心Q之间的距离为.16.如图,AC平分∠BAD,∠BAD=∠BCD.(1)∠DBC=.(2)若AD=6,AB=8,那么AC的长是.三、解答题(共66分)17.计算:sin30°•tan45°+sin260°﹣2cos60°.18.(1)解一元一次不等式组;(2)解方程:.19.如图,已知D,E分别是△ABC的边AC,AB上的点,∠AED=∠C,AE=5,AC=9,DE=6.(1)求证:△ABC∽△ADE.(2)求BC的长.20.面对新冠疫情,衢州教育人同心战“疫”因有不少师生居家健康监测,无法到校工作、学习,各校师生通过“云端”相连,停课不停教,停课不停学.某校在疫情期间的教学方式主要包括直播授课、录播投课、自主学习、在线答疑四种形式.为了了解学生的需求,该校随机对部分学生进行了“你对哪种教学方式最感兴趣”的调查(每人只选其中的一种),并根据调查结果绘制成如图所示的统计图.(1)本次调查的人数是人;(2)请补全条形统计图;(3)明明和强强参加了此次调查,均选择了其中一种教学方式,求明明和强强选择同一种教学方式的概率.21.一个长方体木箱沿斜面下滑,当木箱滑至如图所示位置时,AB=2m.已知木箱高度BE =1m,斜面坡角∠BAC为30°,求木箱端点E距地面AC的高度.22.利用网格图,仅用无刻度的直尺来完成几何作图.(注:以下点A、B、M、N均在格点上.)(1)如图1、2是由边长为1的小正方形构成的网格图.①在图1中,AM∥BN,连结MN交AB于点P,此时BP=2AP,请说明理由.②在图2中的线段AB上,求作一点P,使得BP=2AP.(不写作法,保留作图痕迹)(2)如图3、4是由边长为1的小正六边形构成的网格图.请在线段AB上求作点P.①在图3中,过格点M作线段MN与AB交于点P,使得AP=BP.(作出图形)②在图4中,求作点P,使得AP=BP(要求:方法与①有别,不写作法,但保留作图痕迹)23.根据以下素材,探索完成任务.如何确定隧道的限高?素材1从小清家到附近山区的一条双行线公路上有一个隧道,在隧道口有一个限高标志(如图1),表示禁止装载高度(车顶最高处到地面)超过3.5m的车辆通行.那么这个限高3.5m是如何确定的呢?素材2小清通过实地调查和查阅相关资料,获得以下信息:①隧道的横截面成轴对称,由一个矩形和一个弓形构成.②隧道内的总宽度为8m,双行车道宽度为6m,隧道圆拱内壁最高处距路面5m,矩形的高为2m,车道两侧的人行道宽1m.③为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.问题解决任务1计算半径求图1中弓形所在圆的半径.任务2确定限高如图2,在安全的条件下,3.5m的限高是如何确定的?请通过计算说明理由.(参考数据:≈17.35,结果保留一位小数)任务3尝试设计如果要使高度不超过3.3m,宽为2.5m的货车能顺利通过这个隧道,且不改变隧道内的总宽度(8m)和矩形的高(2m),如何设计隧道的弓形部分(求弓形所在圆的半径至少为多少米?)(参考数据:≈9.44,结果保留一位小数)24.如图1,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AC=,AB=,AE=,AD=1,将△DAE绕点A在平面内顺时针旋转α(0°≤α≤360°),连接CE,BD.(1)求证:△ADB∽△AEC;(2)请判断线段CE和BD的位置关系,并说明理由;(3)当点B、D、E在同一条直线上时,求线段CE的长;(4)如图2,在Rt△ABC中,∠ACB=90°,AB=6,过A点作AP∥BC,在射线AP 上取一点D,连接CD,使得tan∠ACD=,请直接写出线段BD的最值.参考答案一、选择题(共30分)1.解:A、水中捞月是不可能事件,故本选项错误;B、翁中捉鳖是必然事件,故本选项正确;C、守株待兔是随机事件,故本选项错误;D、拔苗助长是不可能事件,故本选项错误.故选:B.2.解:∵,∴=,故选:D.3.解:连接BD,在矩形ABCD中,AB=6,AD=8,∴CD=AB=6,∠A=90°,∴BD==10,∵CD=6<8,BD=10>8,AD=8,∴点A在⊙D上,点B在⊙D外,点C在⊙D内.故选:B.4.解:设另一个三角形的周长为x,则4:x=,解得:x=8.故另一个三角形的周长为8,故选:B.5.解:如图:在Rt△ABD中,AD=2,BD=4,∴tan∠ABC===,故选:D.6.解:∵AC是⊙O的直径,∴∠ADC=90°,∴∠ACD=90°﹣∠CAD=90°﹣25°=65°,∴∠ABD=∠ACD=65°.故选:C.7.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.8.解:由题意可知:h(2)=h(6),即4a+2b=36a+6b,解得b=﹣8a,函数h=at2+bt的对称轴t=﹣=4,故在t=4s时,小球的高度最高,题中给的四个数据只有C第4.2秒最接近4秒,故在第4.2秒时小球最高故选:C.9.解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.10.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.∴满足条件的点P的个数是3个,故选:C.二、填空题(共24分)11.解:根据特殊角的三角函数值得:sin45°=.12.解:∵P是线段AB的黄金分割点,P A>PB,∴P A=AB=×2=(﹣1)cm,故答案为:(﹣1)cm.13.解:根据扇形的面积公式,得R===6,故答案为6.14.解:过点A作AB⊥x轴于B,∵点A(2,t)在第一象限,∴AB=t,OB=2,又∵tanα===,∴t=3.故答案为:3.15.解:根据题意可知,C、P、Q三点共线.在Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB===13,∵Rt△ABC的外心为Q,∴Q为斜边AB的中点,∴CQ=AB=,∵Rt△ABC的重心为P,∴PQ=CQ=.故答案为:.16.解:(1)∵∠BAD=∠BCD,∠BAD+∠BCD=180°,∴∠BAD=∠BCD=90°,∵AC平分∠BAD,∴∠BAC=∠DAC=45°,∴∠DBC=∠BAC=45°,故答案为:45°;(2)在Rt△ABD中,BD===10,∵∠BCD=90°,∠DBC=45°,∴△BCD为等腰直角三角形,∴CD=BD=×10=5,过D点作DH⊥AC于H点,如图,∵∠DAH=45°,∴△ADH为等腰直角三角形,∴AH=DH=AD=3,在Rt△CDH中,CH===4,∴AC=AH+CH=3+4=7.故答案为:7.三、解答题(共66分)17.解:原式=×1+()2﹣2×=+﹣1=.18.解:(1),解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为:x<1;(2),x﹣3=2x﹣1,解得:x=﹣2,检验:当x=﹣2时,2x﹣1≠0,∴x=﹣2是原方程的根.19.(1)证明:∵∠AED=∠C,∠A=∠A,∴△ABC∽△ADE;(2)解:由(1)得:△ABC∽△ADE,∴=,∵AE=5,AC=9,DE=6,∴=,∴BC=.20.解:(1)本次调查的人数有20÷25%=80(人),故答案为:80;(2)自主学习的人数有:80﹣35﹣20﹣15=10(人),补全条形统计图如下:(3)把直播授课、录播授课、自主学习、在线答疑四种形式分别记为A、B、C、D,画树状图如下:共有16种等可能情况,其中明明和强强选择同一种教学方式的结果有4种,∴明明和强强选择同一种教学方式的概率为=.21.解:如图,过点E作ED⊥AC于点D,交AB于点F,根据题意可知:EB⊥AB,∴∠EBF=90°,∴∠ADF=∠EBF=90°,∵∠AFD=∠EFB,∴∠F AD=∠BEF=30°,在Rt△EFB中,BF=BE•tan30°=1×tan30°=,EF=,在Rt△ADF中,AF=AB﹣BF=2﹣,∴DF=AF•sin30°=1﹣,∴ED=EF+FD=+1﹣=(+1)(m).答:木箱端点E距地面AC的高度约为()m.22.解:(1)①∵AM∥BN,∴△AMP∽△BNP,∴==,∴BP=2AP;②如图:点P即为所求;(2)①如图:点P即为所求;②如图:点P即为所求.23.解:(1)如图所示:点O为弓形所在圆的圆心,OA、OC为半径,BC是弓形高,且BC=5﹣2=3(m)∴OC⊥AB,∴OA2=AB2+OB2,即OA2=42+(OA﹣3)2,解得OA=(m)(2)根据车行道的宽度和弓形半径规定的,理由如下,如图所示:半径OE、OB为m(由①知),EF=3mEF⊥OB,BF=OB﹣OF,∴OF2=OE2﹣EF2=﹣32=,∴OF=≈2.89(m),BF=﹣2.89≈1.3(m),AF=5﹣1.3=3.7m,为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.故限高为:3.5m.(3)如图所示:为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.要使高度不超过3.3m,宽为2.5m的货车能顺利通过这个隧道,故CD=3.5m,设弓形的半径为R,OB=x,CE=2.5m,AB=4m,BE=3.5﹣2=1.5(m),OE=x+1.5,∵OE2+CE2=OC2,OB2+AB2=OA2,OA=OC,∴(x+1.5)2+(2.5)2=x2+42,x=2.5(m),∴OA2=(2.5)2+42=,OA=4.7m24.(1)证明:设直线AB交CE于点M,直线CE交BD于点N,∵,=,∴,∵∠CAB=∠EAD=90°,∴∠CAE=∠DAB,∴△ADB∽△AEC;(2)解:CE⊥BD,理由:∵△ADB∽△AEC,∴∠ECA=∠ABD,∵∠BME=∠CMA,∴∠BNM=∠BAC=90°,∴CE⊥BD;(3)解:在Rt△ADE中,AD=1,AE=,则DE=2,∠EDA=60°,由(1)知,△ADB∽△AEC,∴=,则CE=BD;①当B、E、D三点共线时,如图1,过点A作AH⊥BD于点H,在Rt△ADH中,AD=1,∠D=60°,则DH=,AH=,在Rt△AHB中,HB===,则BD=BH+DH==3,则EC=,BD=3;②当B、D、E共线时,如图2,过点A作AH⊥BD交于点H,在Rt△AHE中,AE=,∠E=30°,则AH=AE=,EH=,在Rt△ADE中,AD=1,∠E=30°,则ED=2,在Rt△ABH中,BH===,则BE=BH+EH==4,则BD=BE﹣DE=4﹣2=2,∵CE=BD,即CE=2;综上,CE=3或2;(4)解:过点A作AE⊥AB,使AE=AB=6,取AB的中点R,连接CR、CE、BE、ER,则CR=AR=AB=3,∵∠DAC=∠BAE=90°,∴∠CAE=∠DAB,∵tan∠ACD====,∴△ADB∽△ACE,∴,∴BD=CE,∴RE﹣CR≤CE≤RE+CR,在Rt△AER中,ER===9,则6≤CE≤12,∴3≤BD≤6,即BD的最小值和最大值分别为:3和6.。

人教版2022-2023学年九年级数学上册第三次月考测试题(附答案)

人教版2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共16分)1.在下列四个图案中,是中心对称图形的是()A.B.C.D.2.若方程x2+kx﹣6=0的一个根是﹣3,则k的值是()A.﹣1B.1C.2D.﹣23.抛物线y=(x+3)2﹣1的顶点坐标是()A.(3,﹣1)B.(3,1)C.(﹣3,1)D.(﹣3,﹣1)4.如图,将含有30°角的三角尺ABC(∠BAC=30°),以点A为中心,顺时针方向旋转,使得点C,A,B′在同一直线上,则旋转角的大小是()A.30°B.60°C.120°D.150°5.如图,在一块长30m,宽20m的矩形苗圃基地上修建两横一纵三条等宽的道路,剩余空地种植花苗,设道路的宽为xm,若种植花苗的面积为522m2,依题意列方程()A.20x+30×2x=600﹣522B.20x+30×2x﹣x2=600﹣522C.(20﹣2x)(30﹣x)=522D.(20﹣x)(30﹣2x)=5226.如图,已知AB是⊙O的直径,CD是弦,若∠BCD=24°,则∠ABD=()A.54°B.56°C.64°D.66°7.投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是()A.的值一定是B.的值一定不是C.m越大,的值越接近D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性8.已知二次函数y=ax2+bx+c中y与x的部分对应值如表:x…﹣2﹣1012…y…﹣1232﹣1…关于此函数的图象和性质有如下判断:①抛物线开口向下.②当x>0时,函数图象从左到右上升.③方程ax2+bx+c=0的一个根在﹣2与﹣1之间.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(共16分)9.一元二次方程x2﹣9=0的根为.10.点A(﹣5,3)关于原点的对称点A'的坐标为.11.把抛物线y=先向右平移6个单位长度,再向上平移3个单位长度,所得抛物线的函数表达式为.12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为直线x=1,则当y<0时,x的取值范围是.13.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为.14.如图,P A、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则P A=cm.15.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则∠CAD的度数是,弦AC,AD和围成的图形(图中阴影部分)的面积S是.16.新年联欢,某公司为员工准备了A、B两种礼物,A礼物单价a元、重m千克,B礼物单价(a+1)元,重(m﹣1)千克,为了增加趣味性,公司把礼物随机组合装在盲盒里,每个盲盒里均放两样,随机发放,小林的盲盒比小李的盲盒重1千克,则两个盲盒的总价钱相差元,通过称重其他盲盒,大家发现:称重情况重量大于小林的盲盒的与小林的盲盒一样重重量介于小林和小李之间的与小李的盲盒一样重重量小于小李的盲盒的盲盒个数05094若这些礼物共花费2018元,则a=元.三、解答题(满分68分)17.解方程.(1)x2﹣8x﹣2=0;(2)2x2﹣x﹣3=0.18.2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是事件(填“随机”、“不可能”或“必然”);(2)用画树状图或列表的方法求出A,B两名志愿者同时被选中的概率.19.下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接等腰直角三角形ABC.作法:如图,①作直径AB;②分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于M点;③作直线MO交⊙O于点C,D;④连接AC,BC.所以△ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规、补全图形:(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.∴AC=∵AB是直径,∴∠ACB=()(填写推理依据).∴△ABC是等腰直角三角形.20.已知关于x的方程x2﹣2x+2k﹣1=0有两个实数根.(1)求k的取值范围;(2)若k为正整数,求此时方程的解.21.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请在图中作出△ABC绕点A逆时针方向旋转90°后得到的图形△A1B1C1:(2)求点C运动到点C1所经过的路径的长(结果保留π).22.如图,已知抛物线y=x2+bx+c经过A(﹣1,0),B(2,0)两点.(1)求该抛物线的解析式和顶点坐标.(2)直接写出当0<x<2时,求y的取值范围.23.如图,一条公路的转弯处是一段圆弧,点O是的圆心,E为上一点,OE⊥CD,垂足为F.已知CD=300m,EF=50m,求这段弯路的半径.24.如图在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,点O在AB上,以点O为圆心,OB长为半径的圆经过点D,交BC于点E,交AB于点F.(1)求证:AC是⊙O的切线;(2)若CE=2,CD=4,求半径的长.25.某公园在垂直于湖面的立柱上安装了一个多孔喷头,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉.安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d米的地点,水柱距离湖面的高度为h米.d(米)0 1.0 3.0 5.07.0h(米) 3.2 4.2 5.0 4.2 1.8请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这个喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请通过计算说明公园至少需要准备多少米的护栏(不考虑接头等其他因素)26.已知抛物线y=ax2+2ax+3a2﹣4(a≠0).(1)该抛物线的对称轴为;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,y1),N(2,y2)在该抛物线上,若y1>y2,求m的取值范围.27.如图,在等边△ABC中点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.28.如图,在平面直角坐标系xOy中,C(0,2),⊙C的半径为1.如果将线段AB绕原点O逆时针旋转α(0°<α<180°)后的对应线段A'B'所在的直线与⊙C相切,且切点在线段A′B′上,那么线段AB就是⊙C的“关联线段”,其中满足题意的最小α就是线段AB与⊙C的“关联角”.(1)如图1,如果A(2,0),线段OA是⊙C的“关联线段”,那么它的“关联角”为°.(2)如图2,如果A1(﹣3,3)、B1(﹣2,3),A2(1,1)、B2(3,2),A3(3,0)、B3(3,﹣2).那么⊙C的“关联线段”有(填序号,可多选).①线段A1B1②线段A2B2③线段A3B3(3)如图3,如果B(1,0)、D(t,0),线段BD是⊙C的“关联线段”,那么t的取值范围是.(4)如图4,如果点M的横坐标为m,且存在以M为端点,长度为的线段是⊙C的“关联线段”,那么m的取值范围是.参考答案一、选择题(共16分)1.解:A、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不合题意;B、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不符合题意;C、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不合题意;D、绕圆心旋转180°,能与自身重合,是中心对称图形,符合题意.故选:D.2.解:把x=﹣3代入方程x2+kx﹣6=0得:9﹣3k﹣6=0,解得:k=1,故选:B.3.解:∵抛物线y=(x+3)2﹣1,∴该抛物线的顶点坐标为(﹣3,﹣1),故选:D.4.解:旋转角是∠BAB′,∠BAB′=180°﹣30°=150°.故选:D.5.解:设道路的宽为xm,则种植花苗的部分可合成长(30﹣x)m,宽(20﹣2x)m的矩形,依题意得:(30﹣x)(20﹣2x)=522,故选:C.6.解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠A=∠BCD=24°,∴∠ABD=90°﹣∠A=90°﹣24°=66°.故选:D.7.解:投掷一枚质地均匀的硬币m次,正面向上n次,随着m的增加,的值会在附近摆动,呈现出一定的稳定性,故选:D.8.解:∵x=﹣1和x=1时的函数值相同,都是2,∴抛物线的对称轴为直线x==0,∴抛物线的顶点为(0,3),∴y=3是函数的最大值,∴抛物线的开口向下,当x<0时,y随x的增大而增大,即当x<0时,函数图象从左到右上升,所以①正确,②错误;∵x=﹣2时,y=﹣1;x=﹣1时,y=2,∴方程ax2+bx+c=0的一个根在﹣2与﹣1之间,所以③正确.综上所述:其中正确的结论有①③.故选:B.二、填空题(共16分)9.解:x2﹣9=0,x2=9,∴x1=3,x2=﹣3,故答案为:x1=3,x2=﹣3.10.解:点A(﹣5,3)关于原点对称的点的坐标是A'(5,﹣3),故答案为:(5,﹣3).11.解:将抛物线先向右平移6个单位长度,得:;再向上平移3个单位长度,得:.故答案为:.12.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(3,0),对称轴为直线x =1,∴抛物线与x轴的另一个交点为(﹣1,0),由图象可知,当y<0时,x的取值范围是﹣1<x<3.故答案为:﹣1<x<3.13.解:第一次打开锁的概率为.14.解:如图,设DC与⊙O的切点为E;∵P A、PB分别是⊙O的切线,且切点为A、B;∴P A=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=P A+PB=10(cm);∴P A=PB=5cm,故答案为:5.15.解:连接CO、OD,CD,∵C、D是这个半圆的三等分点,∴CD∥AB,∠COD=60°,∴∠CAD的度数为:30°,∵OC=OD,∴△OCD是等边三角形,CD=OC=AB=6cm,∴△OCD与△CDA是等底等高的三角形,∴S阴影=S扇形OCD=π×62=6πcm2.故答案为:30°,6πcm2.16.解:∵A礼物重m千克,B礼物重(m﹣1)千克,∴A礼物比B礼物重1千克,∵每个盲盒里均放两样,小林的盲盒比小李的盲盒重1千克,∴小李的盲盒中为1件A礼物和1件B礼物,小林的盲盒中为2件A礼物;或小李的盲盒中为2件B礼物,小林的盲盒中为1件A礼物和1件B礼物;∴不管以上哪种情况,两个盲盒的礼物总价格都相差a+1﹣a=1(元),由表格中数据可知,重量小于小李的盲盒的有4盒可知小李的盲盒中为1件A礼物和1件B礼物,不可能为2件B礼物,∴小李的盲盒中为1件A礼物和1件B礼物,小林的盲盒中为2件A礼物,∴重量小于小李的盲盒为2件B礼物,∵与小林的盲盒一样重盲盒有5盒,与小李的盲盒一样重的盲盒有9盒,重量小于小李的盲盒有4盒,∴2件B礼物的有4盒,1件A礼物和1件B礼物有10盒,2件A礼物有6盒,∴2×4(a+1)+10×a+10(a+1)+2×6a=2018,解得a=50,故答案为:1,50.三、解答题(满分68分)17.解:(1)x2﹣8x﹣2=0,x2﹣8x=2,x2﹣8x+16=2+16,即(x﹣4)2=18,∴x﹣4=,∴x1=4+3,x2=4﹣3;(2)2x2﹣x﹣3=0,(2x﹣3)(x+1)=0,∴2x﹣3=0或x+1=0,∴x1=,x2=﹣1.18.解:(1)“A志愿者被选中”是随机事件,故答案为:随机;(2)画树状图如下:共有12种等可能的结果,其中A,B两名志愿者同时被选中的结果有2种,∴A,B两名志愿者同时被选中的概率为=.19.解:(1)如图所示:(2)证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.又∵直线MO交⊙O于点C,∴AC=BC.∵AB是直径,∴∠ACB=90°(直径所对的圆周角是直角),∴△ABC是等腰直角三角形.故答案为:BC、90°,直径所对的圆周角是直角.20.解:(1)∵x2﹣2x+2k﹣1=0有两个实数根,∴Δ≥0,∴(﹣2)2﹣4×1•(2k﹣1)≥0,解得k≤1;(2)由(1)知k≤1,∵k为正整数,∴k=1,∴原方程为:x2﹣2x+1=0,∴(x﹣1)2=0,∴x1=x2=1.21.解:(1)△A1B1C1如图所示;(2)∵,∴点C运动到点C1所经过的路径的长为:.22.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(2,0)两点,∴,解得:,∴抛物线的解析式为y=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的顶点坐标为(,﹣).(2)∵抛物线的顶点坐标为(,﹣).∴函数有最小值y=﹣,∵x=2时,y=0,∴当0<x<2时,y的取值范围﹣≤y<0.23.解:连接OC.设这段弯路的半径为Rm,则OF=OE﹣EF=(R﹣50)m,∵OE⊥CD,∴CF=CD=×300=150(m).根据勾股定理,得OC2=CF2+OF2,即R2=1502+(R﹣50)2,解得R=250,所以这段弯路的半径为250m.24.(1)证明:如图,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD是△ABC的角平分线,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∴∠ODA=∠C=90°,∵AC经过⊙为的半径OD的端点D,且AC⊥OD,∴AC是⊙O的切线.(2)如图,设⊙O的半径为r,则OB=OD=r,作OG⊥BE于点G,则BG=EG,∠OGB=90°,∵∠ODC=∠C=∠OGC=90°,∴四边形ODCG是矩形,∵CE=2,CD=4,∴OG=CD=4,CG=OD=r,∴BG=EG=r﹣2,∵OB2=OG2+BG2,∴r2=42+(r﹣2)2,解得r=5,∴⊙O的半径长为5.25.解:(1)如图,(2)由(1,4.2)和(5,4.2)可知,抛物线的对称轴为d=3,当d=3时,h=5,∴水柱最高点距离湖面的高度是5米;(3)由图象可得,顶点(3,5),设二次函数的关系式为h=a(d﹣3)2+5,把(0,3.2)代入可得a=﹣0.2,∴h=﹣0.2(d﹣3)2+5;(4)当h=0时,即﹣0.2(d﹣3)2+5=0,解得d=﹣2(舍去)或d=8,∴正方形的边长为2×(8+1)=18(米),∴至少需要准备栏杆4×18=72(米),∴公园至少需要准备72米的护栏.26.解:(1)∵抛物线y=ax2+2ax+3a2﹣4.∴对称轴为直线x==﹣1,故答案为:直线x=﹣1;(2)y=ax2+2ax+3a2﹣4=a(x+1)2+3a2﹣a﹣4,∵抛物线顶点在x轴上,即当x=﹣1时,y=0,∴3a2﹣a﹣4=0,解得.∴抛物线解析式为y=﹣x2﹣2x﹣1或.(3)∵抛物线的对称轴为直线x=﹣1,∴N(2,y2)关于直线x=﹣1的对称点为N’(﹣4,y2).(ⅰ)当a>0时,若y1>y2,则m<﹣4或m>2;(ⅱ)当a<0时,若y1>y2,则﹣4<m<2.27.解:(1)如图所示:(2)∠BDE=∠BPE,理由如下:∵将线段PD绕点P逆时针旋转60°得到线段PE,∴PD=PE,∠DPE=60°,∴△PDE是等边三角形,∴∠DPE=∠PDE=60°,∴∠BPE+∠DPC=120°,∴∠BPE=120°﹣∠DPC,∵∠BDP=∠DPC﹣60°,∴∠BDE=60°﹣∠BDP=60°﹣(∠DPC﹣60°)=120°﹣∠DPC,∴∠BDE=∠BPE;(3)BD=BE+BP,理由如下:如图,在BD上截取DF=BP,连接EF,由(2)可知:∠BDE=∠BPE,在△DEF和△PEB中,,∴△DEF≌△PEB(SAS),∴EF=BF,∠EBP=∠EFD,∴∠EBF=∠EFB,∵∠EFB+∠EFD=2∠EBF+∠DBC=180°,∴∠EBF=60°,∴△BEF是等边三角形,∴BE=BF,∵BD=BF+DF,∴BD=BE+BP.28.解:(1)如图1,作OD与⊙C相切于点D,∴CD⊥OD,∵sin∠COD==,∴∠COD=30°,∴∠AOD=60°,OD=<2,∴OA的“关联角”为60°,故答案为:60;(2)如图2,连接OB1,OA2,OB2,OB3,∵OB1=3>3,∴A1B1绕O旋转无法与⊙C相切,故A1B1不是⊙C的“关联线段”,∵OA2=,OB2=,<3<,∴A2B2是⊙C的“关联线段”,∵OA3=3,∴A3B3是⊙C的“关联线段”,故答案为:②③;(3)如图3,∴B点旋转路线在半径为1的⊙O上,当OD与⊙C相切时,由(1)知,OD=,∴当t≥时,线段BD是⊙C的“关联线段”,故答案为:t≥;(4)如图4,当m取最大值时,M点运动最小半径是O到过(m,0)的直线l的距离是m,∵CD=1,M'D=,∴M'C=2,∴OM'=4,∴m的最大值为4,如图5,当m取最小值时,开始时存在ME与⊙C相切,∵CE=1,ME=,∴MC=2,∵0°<α<180°,∴m>﹣2,综上,m的取值为﹣2<m≤4,故答案为:﹣2<m≤4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册第三次月考试题以下是为您推荐的九年级数学上册第三次月考试题,希望本篇文章对您学习有所帮助。

九年级数学上册第三次月考试题
一、选择题(本大题共8个小题,每小题4分,满分32分)
1.下列计算正确的是( )
A. B. C. D.
2. 的算术平方根的倒数是()
A. B. C. D.
3.如果分式的值为零,那么等于( )
A. B. C. D.
4.把代数式分解因式,结果正确的是( )
A. B. C. D.
5.在△ 中,,,则 ()
A. B. C. D.
6.如图,已知分别是△ 的边上的点,∥ ,且 ,那么,等于()
A. B. C. D.
7.抛物线的顶点坐标是( )
A. B. C. D.
8.一个等腰三角形的一条边长为5,另一条边长为10,则此等腰三角形的周长为( )
A. B. C. D.以上的答案都不对
二、填空题(本大题共7个小题,每小题4分,满分28分)
9.温家宝总理强调十二五期间,新建保障性住房套。

用科学计数法表示为 ;
10.如图,在中,,
分别是的角平分线,
且∥ ,∥ ,则的周长为 ;
11.数据5,7,6,4,8的方差是 ;
12.在正方形网格中,如图放置,则的值为 ;
13. 一元二次方程的解是:, ;
14.若正比例函数和反比例函数的图像都经过点则, ;
15.一个袋中有8个黑球和若干个白球,为估计袋中白球的数目,小明做了200次实验,其中50次摸到黑球,则袋中有个白球。

三、计算题(本大题共12小题,满分90分)
16.(本题6分)计算:
17.(本题6分)解不等式组:并把解集表示在数轴上
18.(本题6分)先化简再求值:
19.(本题8分)解分式方程:
20. (本题8分)如图,在测量塔高AB时,选择与塔底在同一水平面,同一直线上的C ,D两点,用测倾仪测得塔顶点A的仰角分别是和,已知测倾仪高CE=1.5m,CD=30m,
求塔高AB.(结果保留根号)
21.(本题8分)某超市欲购进一种今年新上市的产品,购进价为20元∕件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量与每件的销售价 (元∕件)之间有如下关系:。

(1)写出该超市销售这种产品每天的销售利润 (元)与之间的函数关系式。

(2)确定该函数的开口方向、对称轴及顶点坐标。

22. (本题6分)某校为丰富学生自由活动的内容,随机选取本校100名学生进行调查,调查内容是你最喜欢的自由活动是什么?整理收集到的数据,绘制成图。

(图中从左往右依次为:躲避球、跳绳、踢毽子、其他)
(1)学校采用的调查方式是 ;
(2)求喜欢踢毽子的学生人数,并将图形补充完整;
(3)该校共有1000名学生,估计喜欢跳绳的学生人数。

23.(本题10分)小雨和小红两位同学在学习概率时,做投骰子( 质地均匀的正方体)实验,他们共做了60次实验,结果如下:
朝上的点数 1 2 3 4 5 6
出现的次数 7 9 6 8 20 10
(1)计算3点朝上的频率和5点朝上的频率;
(2)小雨说:根据实验,一次实验出现 5点朝上的概率最大
小红说:如果投掷600次,那么出现6点朝上的次数正好为100次。

小雨和小红的说法对吗?为什么?
(3)小雨和小红各投掷一次骰子,用列表法或树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率。

24.(本题6分)已知:如图,D是的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC,求证:CD=AN
25.(本题 10分)下面是某同学对多项式进行因式分解的过程:
设:
回答下列问题:该同学(2)-(3) 运用了 (A、提公因式,B、平方差公式,C、完全平方公式,D、完全平方差公式)
该同学分解因式是否彻底? ;若不彻底,请直接写出结果:请模仿以上方法分解:
26.( 本题6分)如图(1),小明站在残墙前,小亮在残墙后活动,又不被小明发现。

请在(1)的俯视图(2)中划出小亮的活动区域。

27.(本题10分)如图,已知、是一次函数的图像和反比例函数的图像的交点,根据题意:
(1)求反比例函数和一次函数的解析式;
(2)求的面积.。

相关文档
最新文档