-2011-2线性代数试卷及答案教学提纲

合集下载

线性代数试题及详细答案

线性代数试题及详细答案

线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

线性代数试题及答案二

线性代数试题及答案二

线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则1B -= 。

4. 若A 为n m ⨯矩阵,则非齐次线性方程组AXb =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r =B.s r ≤C.r s ≤D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。

)(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B 三、计算题(本题总计60分。

11级线性代数试卷A答案

11级线性代数试卷A答案

中南大学考试试卷答案2011——2012学年第二学期(2012.4) 时间:100分钟《线性代数》 课程 32 学时 2 学分 考试形式:闭卷专业年级:2011级 总分:100分一、填空题(本题15分,每题3分)1、0;2、8132(练习册P99); 3、3-; 4、⎪⎪⎪⎪⎭⎫ ⎝⎛=--12333212312113311n n A ;5、12+⎪⎪⎭⎫⎝⎛λA (练习册P113)。

二、选择题(本题15分,每题3分)1、D ;2、B (练习册P106);3、C ;(教材P55)4、D ;5、A (练习册P120)。

三、(本题10分) (练习册P102)解:解: D n ====+++c c c c c c n 131121000120012201222=2n –1, 设D n 展开式中正、负项总数分别为x 1, x 2, 则x 1+x 2=n !,x 1–x 2=2n –1,于是正项总数为x 1=1221(!)n n -+。

四、(本题10分)(典型题解P121)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X X X X 。

五、(本题14分)解:将矩阵()4321,,,αααα化为最简形阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000011003101032001000011001030101121306014211035271,(1)()3,,,4321=ααααR ;(2)321,,ααα为所求的一个最大线性无关组,且32143132αααα++=。

六、(本题14分)解:()0311********--=-⎪⎪⎪⎭⎫ ⎝⎛----==λλλααA E A T,(1)A 的特征值为0,0,3;由0=AX 得对应0的特征向量为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101011l k ,l k ,为不全为零的任意常数,由0)3(=-X A E 得对应3的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111c ,c 为任意非零常数。

线性代数考试练习题带答案

线性代数考试练习题带答案

线性代数试题集与答案解析一、单项选择题(只有一个选项正确,共8道小题)1. 设向量组α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。

(A) α 1 −α 2 ,α 2 −α 3 ,α 3 −α 1(B) α 1 ,α 2 ,α 3 + α 1(C) α 1 ,α 2 ,2 α 1 −3 α 2(D) α 2 ,α 3 ,2 α 2 + α 3正确答案:B解答参考:A中的三个向量之和为零,显然A线性相关;B中的向量组与α1,α2,α3等价, 其秩为3,B向量组线性无关;C、D中第三个向量为前两个向量的线性组合,是线性相关向量组。

2.(A) 必有一列元素全为0;(B) 必有两列元素对应成比例;(C) 必有一列向量是其余列向量的线性组合;(D) 任一列向量是其余列向量的线性组合。

你选择的答案:未选择[错误]正确答案:C解答参考:3. 矩阵 ( 0 1 1 −1 2 ,0 1 −1 −1 0 ,0 1 3 −1 4 ,1 1 0 1 −1 ) 的秩为( )。

(A) 1(B) 2(C) 3(D) 4你选择的答案:未选择[错误]正确答案:C解答参考:4. 若矩阵 ( 1 a −1 2, 1 −1 a 2 ,1 0 −1 2 ) 的秩为2,则 a的值为。

(A) 0(B) 0或-1(C) -1(D) -1或1正确答案:B解答参考:5. 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3,则 f的矩阵为。

(A) ( 2 4 0 0 5 −8 0 0 5 )(B) ( 2 4 0 0 5 −4 0 −4 5 )(C) ( 2 2 0 2 5 −4 0 −4 5 )(D) ( 2 4 0 4 5 −4 0 −4 5 )正确答案:C解答参考:6. 设 A、 B为 n阶方阵,且 A与 B等价, | A |=0 ,则 r(B)(A) 小于n(B) 等于n(C) 小于等于n(D) 大于等于n正确答案:A解答参考:7. 若矩阵 [ 1 2 2 −3 ,1 −1 λ−3 ,1 0 2 −3 ] 的秩为2,则λ的取值为(A) 0(B) -1(C) 2(D) -3正确答案:C8. 设α 1 , α 2 , α 3 是齐次方程组 Ax=0 的基础解系,则下列向量组中也可作为 A x=0 的基础解系的是(A) 2(B) -2(C) 1(D) -1正确答案:B解答参考:二、判断题(判断正误,共6道小题)9.设A ,B 是同阶方阵,则AB=BA 。

线性代数试题和答案(精选版)

线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解D.2η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值C.Aの2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1C.A-1=A TD.Aの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题4分,共20分)1. 设A为3阶方阵,且|A|=2,则|-2A|=()A. -4B. -8C. 4D. 82. 设向量α=(1,2,3),β=(4,5,6),则向量α与β的点积为()A. 32B. 14C. 22D. 43. 设矩阵A=\[\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{bmatrix}\],则矩阵A的秩为()A. 1B. 2C. 3D. 04. 设A为3阶方阵,且A的行列式为0,则A()A. 可逆B. 不可逆C. 有逆矩阵D. 没有逆矩阵5. 设矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],B=\[\begin{bmatrix}2 & 0\\1 & 2\end{bmatrix}\],则AB-BA=()A. \[\begin{bmatrix}0 & 0\\0 & 0\end{bmatrix}\]B. \[\begin{bmatrix}-2 & 0\\-2 & 0\end{bmatrix}\]C. \[\begin{bmatrix}2 & 0\\2 & 0\end{bmatrix}\]D. \[\begin{bmatrix}0 & 2\\2 & 0\end{bmatrix}\]二、填空题(每题5分,共20分)6. 设矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],B=\[\begin{bmatrix}5 & 6\\7 & 8\end{bmatrix}\],则AB=()。

7. 设向量α=(1,2,3),β=(2,3,4),则向量α与β的叉积为()。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。

答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。

答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。

答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。

2010-2011-2线性代数试卷及答案

2010-2011-2线性代数试卷及答案

试卷(A卷)(共2页)┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(15分)设三阶矩阵,,.解因为=,所以,分)设向量组,,线性相关,向量.解由于所以,分)证明所有二阶实对称矩阵组成的集合V是R2⨯2的子空间,试在,使V成为欧几里得空间,并给出V的一组正交基.V对线性运算封闭,所以V是R2⨯2的子空间。

[A,B]=,]=[B,A],[kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0..四分)已知三阶矩阵的伴随矩阵,求齐次线性方程组的通解。

解R(A)=2,所以,的解空间是1维的。

又由于,所以,的列向量是的解.,3)T是的基础解系,所以,通解为:15分)设三阶实对称矩阵满足,且向量是齐次方程的一个基础解系,解由的基础解系含一个解知A的秩为2.由知A的特征值只能为2或0,所以,A的三个特征值为:2,2,0。

由知是属于特征值0的特征向量.所以,A的属于特征值2的特征向量必与正交,所以,特征值2的特征向量可取为:和,于是,可构造正交矩阵:满足:所以,分) 某仓库有A,B,C三种物品若干件,现按下述方案进行采购:购进原B物品件数30%和原C物品件数50%的A物品;购进原A物品件数30%的B物品;购进原B物品件数60%的C物品。

试建立采购前后仓库A,B,C三种物品件数间的关系式。

若采购后仓库A,B,C三种物品件数分别为290,330,380,求采购前仓库A,B,C三种物品的件数。

解记采购前仓库A,B,C三种物品件数分别为:,采购后仓库A,B,C三种物品件数分别为:,则由已知有:即:所以,若时,有即采购前仓库A,B,C三种物品的件数分别为100,300, 200。

2-2。

武汉科技大学2010-2011-2线性代数A卷试题及答案

武汉科技大学2010-2011-2线性代数A卷试题及答案
10.设 为 阶方阵, ,且 ,则 的一个特征值

三、计算题(每小题10分,共50分)
得分
11.设 ,求 。
得分
12.设三阶方阵 , 满足方程 ,试求矩阵 以及行列式 ,其中 。
得分
13.已知 ,且满足 ,其中 为单位矩阵,求矩阵 。
得分
14. 取何值时,线性方程组 无解,有唯一解或有无穷多解?当有无穷多解时,求通解。
,........................4分
所以 有非零解。.................................................5分
18.已知向量组(I) 的秩为3,向量组(II) 的秩为3,向量组(III) 的秩为4,证明向量组 的秩为4。
证明:向量组 的秩为3,向量组 的秩为3,所以 为向量组 的一个极大无关组,因此 可唯一的由 线性表示;....2分
2.下列不是向量组 线性无关的必要条件的是(B)。
A. 都不是零向量;
B. 中至少有一个向量可由其余向量线性表示;
C. 中任意两个向量都不成比例;
D. 中任一部分组线性无关;
3.设 为 矩阵,齐次线性方程组 仅有零解的充分必要条件是 的(A)。
A.列向量组线性无关;B.列向量组线性相关;
C.行向量组线性无关;D.行向量组线性相关;
3.当 时,方程组有唯一解。....................................10分
15.设 ,求该向量组的秩和一个极大无关组。
解:
.6分
所以向量组的秩为2,.................................................8分
因为任意两个向量均不成比例,

(完整版)全国自考历年线性代数试题及答案

(完整版)全国自考历年线性代数试题及答案

(完整版)全国⾃考历年线性代数试题及答案浙02198# 线性代数试卷第1页(共54页)全国2010年1⽉⾼等教育⾃学考试《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表⽰矩阵A 的转置,αT 表⽰向量α的转置,E 表⽰单位矩阵,|A |表⽰⽅阵A 的⾏列式,A -1表⽰⽅阵A 的逆矩阵,r (A )表⽰矩阵A 的秩.⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共30分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将代码填写在题后的括号内。

错选、多选或未选均⽆分。

1.设⾏列式==1111034222,1111304z y x zy x则⾏列式()A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆⽅阵,则(ABC )-1=() A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=() A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则() A. α1,α2,α3,α4⼀定线性⽆关 B. α1⼀定可由α2,α3,α4线性表出 C.α1,α2,α3,α4⼀定线性相关D. α1,α2,α3⼀定线性⽆关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为() A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性⽅程组Ax =0的基础解系中所含向量的个数是()A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是() A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯⼀解浙02198# 线性代数试卷第2页(共54页)C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =??---496375254,则以下向量中是A 的特征向量的是() A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元⼆次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为()A.??963642321 B.??963640341 C.??960642621 D.??9123042321⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分)请在每⼩题的空格中填上正确答案。

线性代数2试卷及答案

线性代数2试卷及答案

线性代数(经管类)试题(出卷人:黄继忠)试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式。

一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 是3阶方阵,且|A |=-21,则|A -1|=( ) A .-2 B .-21 C .21 D .2 2. 设A 为n 阶方阵,令方阵B =A +A T ,则必有( ) A .B T =B B .B =2A C .B T =-B D .B =03. 设A 为四阶矩阵,且,2=A 则=*A ( ) A.2 B.4 C.8 D.124. 下列矩阵中,是初等矩阵的为( ) A .⎪⎪⎭⎫ ⎝⎛0001B .⎪⎪⎪⎭⎫⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000105. 设A 是m ×n 矩阵,B 是m ×n 矩阵,则下列结果中是n 阶方阵的是(m ≠n )( )A .AB T B .A T BC .B A TD .A B 6. 已知向量组A :4321,,,αααα中432,,ααα线性相关,那么( ) A. 4321,,,αααα线性无关 B. 4321,,,αααα线性相关 C. 1α可由432,,ααα线性表示D. 43,αα线性无关7. 设A 为m n ⨯矩阵,方程AX=0仅有零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的行向量组线性相关 C.A 的列向量组线性无关 D.A 的列向量组线性相关 8. 设3阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是( ) A .E-A B .-E-AC .2E-AD .-2E-A9. 与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( )A.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001 B.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011 C.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001 D.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101 10. 设A=⎥⎦⎤⎢⎣⎡--2111,则二次型f(x 1,x 2)=x T Ax 是( ) A.正定 B.负定 C.半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。

(完整版)历年全国自考线性代数试题及答案

(完整版)历年全国自考线性代数试题及答案

浙02198# 线性代数试卷 第1页(共25页)全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。

1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

2011线性代数试卷答案

2011线性代数试卷答案

线性代数模拟试卷答案(仅供参考)一.1.4;2.[]T 3,21,+k []T 2,1,0 (k 为任意数);3. ƒ=-y 21-y 22+5y 234.3;5.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2-12-1102-01 二.1.D2.A3.C4.B三.1.解:原式=9-405-1000215-0242-11=1×(-1)21+9-45-100215-2(4分)=29-45-50115-2=21645019-5-0(1分)=-21649-5-=88(1分)2.解:用初等变换法[]E A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100431010332001221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----101210012110001221(2分)→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---113-100012110023-001→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡113-1001-2-5010023-001 所以A 1-=11312523----(4分)3.Ã=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡332322212111111→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110101*********→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000001101000101(2分) 与原方程组同解方程⎩⎨⎧-=-=42311x x x x ,得特解X 0=[]T 0,0,1,0,对应的其次线性方程组的基础解系1ξ=[]T 0,1-0,1,,2ξ=[]T1-0,1,0,(3分)方程组的通解是X 0+k 11ξ+k 22ξ( k 1, k 2为任意数)(1分) 4.解:由AX+B=X 得(E-A)X=B因为E-A=21101011--=2111-=3≠0,所以E-A 可逆,于是X=(E-A)1-B(2分) 由于[]B A E -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---352010*********→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----333000*********→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---111001*********→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111002********* 因此X=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡112213。

线性代数试题集与答案解析大全(2)

线性代数试题集与答案解析大全(2)

线性代数期末考试试卷及答案一、单项选择题(每小题2分,共40分)。

1.设矩阵22, B 23, C 32A ⨯⨯⨯为矩阵为矩阵为矩阵,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2 +E =0,其中E 是n 阶单位矩阵,则必有 【 】A. 矩阵A 不是实矩阵B. A=-EC. A=ED. det(A)=1 3.设A 为n 阶方阵,且行列式det(A)=1 ,则det(-2A)= 【 】A. 2-B. ()n2- C. n 2- D. 14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 1321,,a a a a -6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C.332211b a b a b a == D. 02131= b b a a 9.方程组12312312321 21 3 321x x x x x x x x x a ++=⎧⎪++=⎨⎪++=+⎩有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=110. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1-η3,η1-η2-η311. 已知非齐次线性方程组的系数行列式为0,则 【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni in aa a aC. },,2,1,|),,,{(21n i z a a a a i n =∈D. }1|),,,{(121∑==n i inaa a a14.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 201B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 101 B. ⎥⎦⎤⎢⎣⎡4- 1 01- C. ⎥⎦⎤⎢⎣⎡4 2-00 D. ⎥⎦⎤⎢⎣⎡4- 2-01-15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。

线性代数复习题带参考答案

线性代数复习题带参考答案

线性代数复习题带参考答案线性代数考试练习题带答案说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =() A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =() A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=() A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则()A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0 B.A =E C.r (A )=nD.0<="" )6.设A 为n 阶方阵,r (A )B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则()A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =??200540093的三个特征值,则321λλλ=() A.20 B.24 C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=() A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为() A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

10-11-2线性代数1A卷答案(评分细则)

10-11-2线性代数1A卷答案(评分细则)

2010—2011学年度第二学期 农机、电气、电子、机制、网络、土木工程、工 管、物理、计算机、工管接本、机制接本 专业线性代数Ⅰ试卷(A 卷)答案一.选择题(每小题5分,共25分)1.设,A B 均为n 阶矩阵,且AB O =,则有( C )A .A O =或B O =; B .A B O +=;C .0A =或0B =;D .0A B +=。

2. 若2317A -⎛⎫=⎪-⎝⎭,1213B ⎛⎫= ⎪-⎝⎭,则AB A B E --+=( B ) A . 3-; B. 6; C. 9-; D. 12. 3.设矩阵12340113004503A ⎛⎫ ⎪-⎪= ⎪ ⎪⎝⎭,4维列向量1α ,2α ,3α ,4α 线性无关,则向量组1A α ,2A α ,3A α ,4A α 的秩为( D )A .1; B. 2; C .3; D .4;4. 设1α ,2α ,3α 是0Ax =的基础解系,则基础解系还可以是( B )A .112233k k k ααα++ ;B .122331,,αααααα+++; C .1223,αααα-- ; D .112332,,αααααα-+-。

5. 若二次型22212312313(,,)2f x x x a x b x a x c x x =+++是正定的,数,,a b c 满足条件( D )A 0,0,0a b c >>>B ,0a c b >>C ,0a c b <>D ,0a c b >> 二.设121314A ⎛⎫ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪⎝⎭,解矩阵方程16AXA A AX -=+。

(13分) 答案:方程两边左乘1A -,右乘A ,得6X A X A =+,所以()6X E A A -=,所以16()X A E A -=-,-----------------------5分因为122334E A ⎛⎫ ⎪⎪⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭,()123243E A -⎛⎫ ⎪⎪⎪-= ⎪ ⎪ ⎪⎝⎭ -----------------3分 则11226136()633224134X A E A -⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪⎪ ⎪=-==⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪ ⎪⎝⎭⎝⎭-----------5分 三.求4阶行列式1123234a a a ab b b b Dc c c c dddd +---+=++的值。

线性代数复习题带参考答案

线性代数复习题带参考答案

线性代数考试练习题带答案说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解 B.21ηη-是Ax =b 的解 C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( ) A.20 B.24 C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011-2线性代数试卷及答案
2-1
四、 (20分)







=
3
3
3
2
2
2
1
1
1
*
A,求齐次线性方程组0
=
Ax的通解.
解由于0
*≠
A,且1
)
(*=
A
R得R(A)=2,所以,0
=
Ax的解空间是1维的。

又由于0
|
|
*=
=E
A
AA,所以,*A的列向量是0
=
Ax的解。

于是,(1,2,3)T是0
=
Ax的基础解系,所以,通解为:
R
k
k
x∈







=,
3
2
1
五、(15分) A
2
2=,且向量T)0,1
,1(-
=
α是齐次方程0
=
Ax的一个基础解系,求
矩阵A。

解由0
=
Ax的基础解系含一个解知A的秩为2。

由A
A2
2=知A的特征值只能为2或0,所以,A的三个特征值为:2,2,0。

由0
=
α
A知α是属于特征值0的特征向量。

所以,A的属于特征值2的特征向量必与α正交,所以,特征值2的特征向量可取为:
T
)0,1,1(
1
=
β和T)1,0,0(
2
=
β,
于是,可构造正交矩阵:
⎪⎪









-
=
1
2
1
2
1
2
1
2
1
Q
满足:Λ
=
AQ
Q T
所以,
=
Λ
=T
Q
Q
A
⎪⎪









-
1
2
1
2
1
2
1
2
1







2
2









-0
2
1
2
1
1
2
1
2
1







=
2
1
1
1
1
(15分)某仓库有A,B,C三种物品若干件,现按下述方案进行采
购:购进原B物品件数30%和原C物品件数50%的A物品;购进原A物品件数30%的
B物品;购进原B物品件数60%的C物品。

试建立采购前后仓库A,B,C三种物品件
数间的关系式。

若采购后仓库A,B,C三种物品件数分别为290,330,380,求采购
前仓库A,B,C三种物品的件数。

解记采购前仓库A,B,C三种物品件数分别为:
,
,z
y
x,采购后仓库A,B,C三种物品件数分
别为:
1
1
1
,
,z
y
x,则由已知有:





+
=
+
=
+
+
=
1
1
1
6.0
3.0
5.0
3.0
z
y
z
y
x
y
z
y
x
x
即:














=







1
1
1
1
6.0
1
3.0
5.0
3.0
1
z
y
x
z
y
x
所以,若380
,
330
,
290
1
1
1
=
=
=z
y
x时,有
仅供学习与交流,如有侵权请联系网站删除谢谢3
仅供学习与交流,如有侵权请联系网站删除 谢谢4
⎪⎪⎪

⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-38033029016.0001
3.05.03.011
000z y x ⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=20030010038033029091.06.018.015.013.05.001 即采购前仓库A,B,C 三种物品的件数分别为100,300, 200.
2-2。

相关文档
最新文档