第二章_机器人的机械结构分析
机器人结构分析
• 例题:德国KUKA机器人手腕传动系统
•
•
三.柔顺手腕结构
机器人精密装配作业
• §2—7 机器人手臂
• 手臂自由度:一般为3 • 作用: • 承受工件重量,将抓 取的工件送到指定位 置。
六自由度工业机器人
• 类型:按手臂结构:单臂、双臂、悬挂式 • 按手臂运动形式:直线运动(伸缩、升降、纵 横)、回转运动、仰俯摆动
公共约束 m=1(X)
F (6 m)n (5 m) P5 (4 m) P4 (3 m) P3 (2 m) P2 P 1
5n 4P5 3P4 2P3 1P2
5 3 4 3 2 1 1
F 6n (5P 5 4P 4 3P 3 2P 2 P 1) 6n (5P5 ) 6 3 (5 4) 2
主要类型
(1)直角坐标型(PPP型) (2)圆柱坐标型(PPR型) (3)球坐标型(RRP型) (4)关节型 (RRR型)
• 坐标形式 • 直角坐标
• 圆柱坐标
• 球坐标
• 关节坐标
4.操作机的工作范围。
工作空间
手腕参考点空间活动最大范围-注意死区
•
• • • • • •
§2—4机器人自由度
•
气流负压吸附-流体力学原理,切断空 气卸料—成本低
• 挤压排气吸附
2.磁吸附
• 电磁吸盘
• 电磁吸盘
• 电磁吸盘
• 电磁吸盘
•
三.专用末端操作器及换接器
• 换接器或自动手爪更换装置
• 多工位换接装置
四.仿生多指灵巧手
多关节柔性手腕—牵引钢丝 驱动—电机、液压、气动
• 柔性手—柔性材料,双管,一侧充气(液体),另 一侧抽气或液
2.1.12.1机器人的机械构造
– 其作用是将一种运动形式转变为另一种运动形式,并把作用在主动构件上的力传给从动构 件以输出功率。
(3).刚度
• 刚度(Stiffness):是机器人机身或臂部在外力作用下抵抗变形的能力。它。
• 机械零件和构件抵抗变形的能力。在弹性范围内,
(5)行走机构是由驱动装置、传动 机构、位置检测元件、传感器、电缆及 管路等组成。它一方面支承机器人的机 身、臂部和手部,另一方面还根据工作 任务的要求,带动机器人实现在更广阔 的空间内运动。
第二章:机器人机械结构
2.1.4 机器人机构的运动
(1)手臂的运动
1)垂直移动 指机器人手臂的上下移动。这种运动通常采用液压缸机构或其他垂直升降 机构来完成,也可以通过调整整个机器人机身在垂直方向上的安装位置来实现。 2)径向移动 是指手臂的伸缩运动。机器人手臂的伸缩使其手臂的工作长度发生变化。
– 机器人手臂上被相邻两关节分开的部分,是保持各关节间固定关系的刚体,是机械连杆机 构中两端分别与主动和从动构件铰接以传递运动和力的杆件。
– 例如在往复活塞式动力机械和压缩机中,用连杆来连接活塞与曲柄。连杆多为钢件,其主 体部分的截面多为圆形或工字形,两端有孔,孔内装有青铜衬套或滚针轴承,供装入轴销 而构成铰接。
3)回转运动 指机器人绕铅垂轴的转动。这种运动决定了机器人的手臂所能达到的角位 置。
第二章:机器人机械结构
2.2.2 机器人机构的运动
(2).手腕的运动 1)手腕旋转 手腕绕小臂轴线的转动。有些机器人限制其手腕转动角度小于360°。 另一些机器人则仅仅受到控制电缆缠绕圈数的限制,手腕可以转几圈。 2)手腕弯曲 指手腕的上下摆动,这种运动也称为俯仰。 3)手腕侧摆 指机器人手腕的水平摆动。手腕的旋转和俯仰两种运动结合起来可以 构成侧
机器人学_第2章_机器人机械结构
– 肩关节的摆动:
• 电机M2→同步带传动B2→减速器R2→肩关节摆动n2
29
腕部俯仰
关节型机器人传动 系统图:
肘关节摆动
肩关节的摆动
腕部的旋转
30
腕部旋转局部图例:
电机M5→减速器R5→链轮 副 C5→锥齿轮副G5→旋转运动n5
上料道与下料道分 别设在机床的两侧, 双臂能同时动作, 两臂同步沿横梁移 动,缩短辅助时间
b.双臂交叉配置,
两臂轴线交于机床 的中心,两臂交错 伸缩进行上下料, 并同时沿横梁移动
c.双臂交叉配置,
悬伸梁式,横梁长 度较a,b短,双臂位 于横梁的同一侧
5
(2).双臂悬挂式(b)
双臂回转型,双 臂交叉且绕同轴 回转,分别负责 上下料(主要是 盘状零件),只 需一个动力源, 结构紧凑,动作 范围大
第2章 机器人的机械结构
2.1 机身和臂部 2.2 腕部和手部结构 2.3 传动部件设计
1
2.1 机身和臂部
• 一.机身和臂部的作用
• 机身是直接连接支承传动手臂和行走机 构的部件,机身可以是固定的,也可以 是行走式的
• 手臂部件用来支承腕部(关节)和手部 (包括工件和工具),并带动它们在空 间运动
• 远距离传动手腕:
–有时为了保证具有足够大的驱动力,驱动装 置又不能做得足够小,同时也为了减轻手腕 的重量,采用远距离的驱动方式,可以实现 三个自由度的运动。
44
1)液压直接驱动BBR手腕图例:
回转 R
俯仰 B
偏转 B
45
2). 单回转腕部 结构示例
46
3)双回转油缸驱动手腕
机器人技术及其应用第2章 机器人的机构与分类
机器人的组成和分类
表2⁃ 2 运动功能图形符号
机器人的组成和分类
表2⁃ 2 运动功能图形符号
机器人的组成和分类
四种坐标型机器人的机构简图如图2⁃8 所示。
机器人的组成和分类
图2⁃6 是典型的六自由度Stewart 并联机构。从结构上看, 它由6 根支杆将上下两平台连接而成, 6 根支杆都可以独立的自由伸缩, 分别用球铰和 虎克铰与上下平台连接, 这样上下平台就可以进行6 个独立运动。
图2⁃ 6六自由度Stewart并联机构
机器人的组成和分类
与传统串联机构相比, 并联机构的零部件数目较串联机构大幅减少, 主要由 滚珠丝杠、伸缩杆件、滑块构件、虎克铰、球铰、伺服电动机等通用组件组成, 这些通用组件由专门厂家生产, 因而其制造和库存备件成本比相同功能的传统机 构低很多, 容易组装和模块化。
机械系统包括传动机构和由连杆集合形成的开环或闭环运动链两部分。连杆 类似于人类的大臂、小臂等, 关节通常为移动关节和转动关节。移动关节允许连 杆做直线移动,转动关节允许构件之间产生旋转运动。由关节⁃连杆所构成的机械 结构一般有三个主要部件: 臂、腕和手, 它们可根据要求在相应的方向运动, 这 些运动就是机器人在“做工”。
第二章
机器人的机构分类 与设计
目录 Contents
第一节 第二节 第三节 第四节 第五节 第六节
机器人的组成和分类 机器人的主要技术参数 机器人设计和选用准则 机器人的机械结构 机器人的驱动机构 小结
机器人的组成 和分类
机器人的组成和分类
机器人机构分析
例2.2
计算图示并联机构的自由度
由图可知,该机构总的
构件数n=8,关节数g=9,
其中关节1-3为转动副,
关节4-6为移动副,关
节7-9为球面副,所以
f
i 1
9
i
15
则有
M 6(n g 1) fi 6(8 9 1) 15 3
i 1
g
对于只有一个运动平台与几个分支连接
2.1 机器人机构
2.1.1 关节
在机器人机构中,两相邻的连杆之间 有一个公共的轴线,两杆之间允许沿 该轴线相对移动或绕该轴线相对转动, 构成一个运动副,也称为关节。关节 的种类有:
1)转动关节:通常用字母R表示,它允
许两相邻连杆绕关节轴线作相对转动,
转角为θ,这种关节具有一个自由度;
2) 移动关节:用字母P表示,它允许两 相邻连杆沿关节轴线作相对移动,移动 距离为d,这种关节具有一个自由度;
6)平面关节:用字母E表示 ,允许两连杆之 间有三个相对运动,即两个沿平面的移动 和一个垂直于该平面的转动。这种关节具 有三个自由度;
7)虎克铰:用字母T表示 ,允许两连杆之 间有二个相对转动。这种关节具有二个 自由度;
以上各类关节中,串联机器人中常
用转动关节R和移动关节P两种单自
由度关节,并联机器人中常用球面
2 机器人机构分析
机器人的机械结构是用关节将一些杆件(也 称为连杆)连接起来,一般使用二元关节, 即一个关节只与两个连杆相连接。 当各连杆组成一开式机构链时,所获得的机 器人机构称为串联机器人。如PUMA系列机 器人。 当各连杆组成一闭式机构链时,所获得的机 器人机构称为并联机器人。通常,并联机器 人的闭合回路多于一个。如Stewart平台式并 联机器人就有六个分支。
第二章工业机器人的机械设计基础
水平多关节机器人( SCARA )
l 结构特点 - 作业空间与占地面积比很大, 使用起来方便; - 沿升降方向刚性好,尤其适合 平面装配作业
SCARA-Selective Compliance Assembly Robot Arm
1978年由日本山梨大学牧野洋 教授首先提出
并联机器人 模拟器
定姿态达到的点所构成的体积空间。记作Wp (P)。
➢ 次工作空间:总工作空间中去掉灵活工作空间所余下的部分。记作Ws
(P)。
工作空间
工作空间的两个基本问题: 1、给出某一结构形式和结构参数的操作机以及关节变量的变化范围,求 工作空间。称为工作空间分析或工作空间正问题。 2、给出某一限定的工作空间,求操作机的结构形式、参数和关节变量的 变化范围。称工作空间的综合或工作空间逆问题。
等,医疗外科… 微动机构和微型机构:显微外科、细胞操作、误差补偿器. 加工设备:虚拟轴机床,很容易获得6轴联动,前两年研究
的较多,近年来,大家发现虚拟机床很难获得高的加工精 度,如天津大学的黄田教授等人进行了多年的研究,发现很 难超过20μ .
娱乐:《真实的谎言》中的拍摄施瓦辛格驾驶鹞式飞机,就 是在一个stewart平台上进行的.
主要内容
工业机器人常见构型 机器人基本概念与关键参数 机器人的运动学 机器人工作空间与轨迹规划 机器人静力学与动力学 机器人关键功能部件 机器人元器件与传动方式 机器人典型结构与运动 机器人设计与分析 机器人设计思想与设计方法
机器人组成
机器人是一个高度自动化的机电一体化设备。从控制观点来看,机器人系统 可以分成四大部分:机器人执行机构、驱动装置、控制系统、感知反馈系统。
9. 示教再现:具有记忆再现功能的机器人。操作者预先进行逐步示教,机器人记 忆有关作业程序、位置及其他信息,然后按照再现指令,逐条取出解读,在一 定精度范围内重复被示教的程序,完成工作任务。
机器人的机械结构 ppt课件
PPT课件
22
行走结构
PPT课件
23
行走结构
PPT课件
24
5.3步行机器人机构
PPT课件
行走结构
两 足 步 行 机 器 人
25
1.
2.多足机器人
行走结构
PPT课件
26
常用的机身结构:1)升降回转型机身结构;2)俯仰型机 身结构;3)直移型机身结构;4)类人机器人机身结构。
PPT课件
6
2.2 臂部结构
机身和臂部结构
手臂部件(简称臂部)是机器人的主要执行部件,它的主 要作用是支撑腕部和手部,并带动他们在空间运动。机器 人的臂部主要包括臂杆以及与其伸缩、屈伸或自转等运动 有关的构件,如传动机构、驱动装置、导向定位装置、支 撑连接和位置检测元件等。此外,还有与腕部或臂部的运 动和联接支撑等有关的构件、配管配线等。
(1)横梁型
(2)立柱式
(3)机座式
(4)屈伸式
PPT课件
8
2.3.1 横梁式
运动形式大多为直移型 (1)单臂悬挂式 (2)双臂悬挂式 (3)多臂悬挂式
机身和臂部结构
PPT课件
9
2.3.2 立柱式
机身和臂部结构
这类机器人多采用回转型、俯仰型或曲伸 型
(1)单臂 (2)双臂
PPT课件
2
一 机器人机械结构的组成
由于应用场合的不同,机器人结构形式有多种多样,各组 成部分的驱动方式、传动原理和机械结构有各种不同的类 型。通常根据机器人各部分功能,其机械部分主要由以下 部分组成。
PPT课件
3
机器人机械结构的组成
机器人的机械结构ppt课件
精选PPT课件
39
图为采用四根导向柱的臂伸缩结构.手臂的垂直伸缩 运动由油缸3驱动.其特点是行程长,抓重大.工件形 状不规则时,为了防止产生较大的偏重力矩,采用四根 导向柱.这种结构多用于箱体加工线上.
精选PPT课件
40
三、机器人机身和臂部的配置形式(4种)
1. 横梁式 ① 单臂悬挂式 ② 双臂悬挂式 ③ 多臂悬挂 ④ 多用于自动化生产中,在工位间传送工 件
精选PPT课件
18
圆柱坐标机器人: 1个回转运动,2个直线运动
精选PPT课件
19
球坐标(极坐标)机器人: 2个转动, 1个直线运动
精选PPT课件
20
关节坐标机器人:3个转动自由度
精选PPT课件
21
SCARA机器人:2个旋转运动, 1个直线运动
精选PPT课件
22
机器人 关节1 关节2 关节3 转动关节数
精选PPT课件
4
按照应用领域
工业机器人、农业机器人、军事机器人、 医用机器人、空间机器人、水下机器人
按照驱动方式
•液压驱动:机构紧凑、力大、运行平稳,密封
要求高
•气压驱动:结构简单造价低,负荷能力小
•电动驱动:结构简单紧凑,控制灵活
•新型:记忆合金、人工肌肉、压电
精选PPT课件
5
按控制方式分类(4种)
5、控制方式:机器人用于轴的控制方式,
伺服/非伺服,PTP/CP
6、驱动方式:关节执行器的动力源形式
精选PPT课件
27
7、精度、重复精度、分辨率:用来定义机 器人手部的定位能力。
▪ 分辨率 指机器人每根轴能够实现的最小移动距离 或最小转动角度。
▪ 精度 指机器人到达指定点的精确程度。它与机器 人驱动器的分辨率及反馈装置有关。
工业机器人技术基础-第二章-机器人结构认识
任务二 工业机器人机械结构的认知
1.关节机器人的特点
1)有很高的自由度,适合于几乎任何轨迹或角度的工作。 2)可以自由编程,完成全自动化的工作。 3)提高了生产率,降低了可控制的错误率。 4)代替很多不适合人力完成、对身体健康有害的复杂工作。 5)价格高,初期投资成本高。 6)生产前期的工作量大。
3.图解法确定工作空间
图解法求工作空间边界,得到的往往是工作空间的各类剖面(或截线),如图1-2-11所 示。它直观性强,便于和计算机结合,以显示操作机的构形特征。用图解法获得的工作 空间不仅与机器人各连杆的尺寸有关,还与机器人 的总体结构有关。
图解法确定工作空间的边界时,需要将关节分为两组,即前三关节和后三关节(有时 为两关节或单关节)。前三关节称为位置结构,主要确定工作空间的大小;后三关节称为 定向结构,主要决定手部姿势。首先分别求出两组关节所形成的腕点空间和参考点在腕 坐标系中的工作空间,再进行包络整合。
利用机器人结构运动简图,能够更好地分析和记录机器人的各种运动和运动组合 ,可简单、清晰地表明机器人的运动状态,有利于对机器人设计方案进行比较和选择。
任务二 工业机器人机械结构的认知
二、工业机器人的运动自由度
1.自由度的概念 描述物体相对于坐标系进行独立运动的数目称为自由度。物体在三维空间有6个
自由度,如图1-2-1所示。
任务二 工业机器人机械结构的认知
3.工件坐标系 工件坐标系是用户自定义的坐标系,用户坐标系也可以定义为工件坐标系。
可根据需要定义多个工件坐标系,当配备多个工作台时,选择工件坐标系操作更为 简单。 4.工具坐标系
工具坐标系是原点位于机器人末端的工具中心点(Tool Center Point,TCP)处 的坐标系,原点及方向都是随着末端位置与角度不断变化的。该坐标系实际是将 基坐标系通过旋转及位移变化而来的。因为工具坐标系的移动以工具的有效方 向为基准,与机器人的位置、姿势有关,所以不改变工具姿势,进行相对于工件的平 行移动最为适宜。
第二章_机器人的机械结构
2016/6/27
第二章 机器人的机械结构
气吸式手部
真空气吸吸附手部
气流负压吸附手部
挤压排气式手
2016/6/27
第二章 机器人的机械结构
气吸式手部具有结构简单、重量轻、使用方便可 靠等优点。广泛用于非金属材料或不可有剩磁的材料 的吸附。 气吸式手部的另一个特点是对工件表面没有损伤, 且对被吸持工件预定的位置精度要求不高;但要求工 件上与吸盘接触部位光滑平整、清洁,被吸工件材质 致密,没有透气空隙。
(1)夹持类
(2)吸附类
2016/6/27
第二章 机器人的机械结构
1.夹持类 (1)夹钳式 • 手指1 • 传动机构2
• 驱动装置3
• 支架4
2016/6/27
1)手指 ①指端的形状
第二章 机器人的机械结构
V型指
平面指
尖指
2016/6/27
特形指
第二章 机器人的机械结构
②指面型式 根据工件形状、大小及其被夹持部位材质软硬、表 面性质等的不同,手指的指面有光滑指面、齿型指面 和柔性指面三种形式。 ③手指的材料 对于夹钳式手部,其手指材料可选用一般碳素钢和 合金结构钢。为使手指经久耐用,指面可镶嵌硬质合金; 高温作业的手指,可选用耐热钢;在腐蚀性气体环境下 工作的手指,可镀铬或进行搪瓷处理,也可选用耐腐蚀 的玻璃钢或聚四氟乙烯。
2016/6/27
第二章 机器人的机械结构
(2)磁吸式
磁吸式手部是利用永久磁铁或电磁铁通电后产生 的磁力来吸附材料工件的,应用较广。磁吸式手部不 会破坏被吸件表面质量。磁吸式手部比气吸式手部优 越的方面是:有较大的单位面积吸力,对工件表面光 洁度及通孔、沟槽等无特殊要求。磁吸式手部的不足 之处是:被吸工件存在剩磁,吸附头上常吸附磁性屑 (如铁屑等),影响正常工作。因此对那些不允许有 剩磁的零件要禁止使用。对钢、铁等材料制品,温度 超过723℃就会失去磁性,故在高温下无法使用磁吸式 手部。磁吸式手部按磁力来源可分为永久磁铁手部和 电磁铁手部。电磁铁手部由于供电不同又可分为交流 电磁铁和直流电磁铁手部。
机器人技术基础教学课件第2章
Ti ——输入力矩(N·m);
To ——输出力矩(N·m);
i ——输入齿轮角位移;
o ——输出齿轮角位移;
机器人技术基础
第二节 机器人的驱动机构
1.齿轮机构
Ti ,i
啮合齿轮转过的总的圆周距离相等,可以 得到齿轮半径与角位移之间的关系:
Rii Roo
TO ,O
Ri ——输入轴上的齿轮半径(m); R0 ——输出轴上的齿轮半径(m)。
第一节 工业机器人的结构
(3)连杆杠杆式回转型夹持器
夹紧力FN和驱动力Fp之间关系:
FN
Fpc
2b tan a
连杆杠杆式回转型夹持器 1—杆;2—-连杆;3—-摆动钳爪;4—-调整垫片
机器人技术基础
第一节 工业机器人的结构
(4)齿轮齿条平行连杆式平移型夹持器
夹紧力FN和驱动力Fp之间关系:
FN
Fp R
Fp c
2b sin
楔块杠杆式回转型夹持器 1—-杠杆;2—弹簧;3—滚子;4—楔块;5—气缸
机器人技术基础
第一节 工业机器人的结构
(2)滑槽杠杆式回转型夹持器
夹紧力FN和驱动力Fp之间关系:
FN
Fp a 2b cos2
a
滑槽杠杆式回转型夹持器 1—支架;2—杆;3—圆柱销;4—-杠杆;
机器人技术基础
1.液压驱动
液压隧道凿岩机器人 机器人技术基础
液压混凝土破碎切割机器人
第二节 机器人的驱动机构
2.气压驱动
优点:
缺点:
(1)容易达到高速(1m/s);
(1)压缩空气压力低;
(2)对环境无污染,使用安全;
(2)实现精确位置控制难度大;
2.3.12.3机器人的腕部结构
(b)所示为弯转,其特点是两个零件的转动轴线相互垂直,这种运动会受
到结构的限制,相对转动角度一般小于360°,弯转通常用B来标记。
第二章:机器人机械结构
2.3.1 腕部结构的基本形式和特点
根据使用要求,手腕的自由度不一定是3个,可以是1个、2个或3个 以上。手腕自由度的选用与机器人的通用性、加工工艺要求、工件放置 方位和定位精度等因素有关。3自由度手腕能使手部取得空间任意姿态。
柔顺装配技术有两种:
(1)主动柔顺装配:一种是从检测、控制的角度,采取各种不同的搜索方法,实现边校正 边装配。如在手爪上装有视觉传感器、力传感器等检测元件。主动柔顺腕部需要装配一定功能的传 感器,价格较贵;另外,由于反馈控制响应能力的限制,装配速度较慢。
(2)被动柔顺装配:一种是从机械结构的角度在手腕部配置一个柔顺环节,以满足柔顺装 配的要求。被动柔顺腕部结构比较简单,价格比较便宜,装配速度较快。相比主动柔顺装配技术, 他要求配件要有倾角,允许的校正补偿量受到倾角的限制,轴孔间隙不能太小。采用被动柔顺装配 技术的机器人腕部称为机器人的柔顺腕部。
2.3.2 机器人的柔顺腕部
腕部结构的设计要满足传动灵活、结构紧凑轻巧、避免干涉。首先设法使几个电动机的运动 传递到同轴旋转的心轴和多层套筒上去。运动传入腕部后再分别实现各个动作。
在用机器人进行精密装配作业中,当被装配零件的不一致、工件的定位夹具、机器人的定位 精度不能满足装配要求时,会导致装配困难。这就提出了柔顺性要求。
2.3.1 腕部结构的基本形式和特点
2)下图所示为2自由度手腕
其设计思想是通过B轴转动实现 “腕摆”运动,通过S轴转动实现夹持 器的“手转”运动,当B轴不动S轴转 动的时候,通过锥齿轮1-2-4的传动使 得手部8和夹持器9产生手转运动,当S 轴不动而B轴回转时,B轴带动手腕绕 A轴上下摆动,由于S轴不动,故锥齿 轮3绕A轴无转动,但锥齿轮4随着构架 7绕A轴转动的同时还绕C轴转动,从而 带动手腕产生“手转”运动,这个运动 称为手腕的附加回转运动。这种因“腕 摆”运动而引起的“手转”运动被称为 诱导运动。
机器人的机械结构与设计
两自由度手腕的另两种结构。图1属汇交型,将谐波减速器 置于臂部,驱动器通过齿形带带动谐波,或经锥齿轮再带 动谐波使末杆获得沿x、y轴两自由度运动。图2为偏置型, 则是将驱动电机和谐波减速器连成一体,放于偏置的腕壳 中直接带动腕完成角转动。
1 —扁平谐波; 2 —杯式谐波; 3 —齿形带轮; 4 —锥齿轮;5 —腕壳 图1 谐波前置汇交手腕
1一齿轮;2一返回装置;
3一键; 4一滚珠;
5一丝杠;6一螺母; 7—支座
19
滚动螺旋特点: (1)摩擦小、效率高。一般情况下,传动的效率在90%以上。 (2)动、静摩擦系数相差极小,传动平稳,灵敏度高。 (3)磨损小、寿命长。 (4)可以通过预紧消除轴向间隙,提高轴向刚度。
滚动螺旋传动不能自锁,必须 有防止逆转的制动或自锁机构才 能安全地用于有自重下降的场合。 最怕落入灰尘、铁屑、砂粒。通 常,螺母两端必须密封,丝杠的 外露部分必须用“风箱”套或钢 带卷套加以密封。
2.2.1 驱动—传动系统的构成
在机器人机械系统中,驱动器通过联轴器带动传动装 置(一般为减速器),再通过关节轴带动杆件运动。
机器人一般有两种运动关节——转动关节和移(直)动 关节。 为了进行位置和速度控制,驱动系统中还包括位置和 速度检测元件。检测元件类型很多,但都要求有合适的精 度、连接方式以及有利于控制的输出方式。对于伺服电机 驱动,检测元件常与电机直接相联;对于液压驱动,则常 通过联轴器或销轴与被驱动的杆件相联。
20
另外,对于齿轮传动、蜗轮传动和齿轮齿条传动,须特别 注意消除间隙问和钢丝绳传动, 必须考虑张紧问题,否则也会产生很大的回差。
21
2.3 工业机器人关节的构造及其传动配置
关节是操作机各杆件间的结合部分,有转动和移动两种类 型。工业机器人前三关节通常称作腰关节、肩关节和肘关节, 它们构成了操作机的位置机构。后面关节构成了操作机的姿 态机构,称作腕部。下面分别讨论这些关节的构造和传动配 置。
工业机器人技术及应用2-工业机器人的机械结构和运动控制
第二章工业机器人的机械结构和运动控制章节目录工业机器人的系统组成操作机控制器示教器工业机器人的技术指标学习目标导入案例课堂认知扩展与提高本章小结思考练习工业机器人的运动控制机器人运动学问题机器人的点位运动…机器人的位置控制课前回顾何为工业机器人?工业机器人具有几个显著特点,分别是什么?工业机器人的常见分类有哪些,简述其行业应用。
学习目标认知目标*熟悉工业机器人的常见技术指标*掌握工业机器人的机构组成及各部分的功能*了解工业机器人的运动控制能力目标*能够正确识别工业机器人的基本组成*能够正确判别工业机器人的点位运动和连续路径运动导入案例国产机器人竞争力缺失关键技术是瓶颈众所周知,中国机器人产业由于先天因素,在单体与核心零部件仍然落后于日、美、韩等发达国家。
虽然中国机器人产业经过 30 年的发展,形成了较为完善的产业基础,但与发达国家相比,仍存在较大差距,产业基础依然薄弱,关键零部件严重依赖进口。
整个机器人产业链主要分为上游核心零部件(主要是机器人三大核心零部件——伺服电机、减速器和控制系统,相当于机器人的“大脑”)、中游机器人本体(机器人的“身体”)和下游系统集成商(国内 95% 的企业都集中在这个环节上)三个层面。
课堂认知工业机器人的系统组成第一代工业机器人主要由以下几部分组成:操作机、控制器和示教器。
对于第二代及第三代工业机器人还包括感知系统和分析决策系统,它们分别由传感器及软件实现。
工业机器人系统组成操作机操作机(或称机器人本体)是工业机器人的机械主体,是用来完成各种作业的执行机构。
它主要由机械臂、驱动装置、传动单元及内部传感器等部分组成。
关节型机器人操作机基本构造机器人操作机最后一个轴的机械接口通常为一连接法兰,可接装不同的机械操作装置,如夹紧爪、吸盘、焊枪等。
(1) 机械臂关节型工业机器人的机械臂是由关节连在一起的许多机械连杆的集合体。
实质上是一个拟人手臂的空间开链式机构,一端固定在基座上,另一端可自由运动,由关节 - 连杆结构所构成的机械臂大体可分为基座、腰部、臂部(大臂和小臂)和手腕 4 部分。
机器人的机械结构
机器人的机械结构概述机器人的机械结构是指由各种零部件组成的,用于支撑机器人身体、传递运动和力量的框架和连接装置。
机械结构是机器人的基础,直接影响机器人的稳定性、灵活性和执行力。
本文将介绍机器人的机械结构的种类、设计原则和常用零部件。
机械结构种类机器人的机械结构可以分为刚性结构和柔性结构两种类型。
刚性结构刚性结构是指由刚性材料组成的,具有较高强度和刚度的结构。
刚性结构适用于需要精确运动和力量传递的场景。
常见的刚性结构包括铝合金框架、钢材支撑等。
刚性结构在机器人工业和军事领域广泛应用。
柔性结构柔性结构是指由弹性材料或具有一定弯曲能力的部件组成的结构。
柔性结构充分利用材料的柔韧性,可以实现机器人的柔软运动和机械灵活性。
常见的柔性结构包括聚合物弹性体、液体材料、软体机械构件等。
柔性结构适用于需要具有触觉、变形和适应性的场景。
设计原则机器人的机械结构设计需要考虑以下几个原则:1.强度和刚度:机械结构需要具有足够的强度和刚度,以承受机器人的运动、载荷和外界干扰。
在材料选择和结构设计上,需要考虑机械结构的受力分布和应力集中情况,以确保结构的稳定性和耐久性。
2.灵活性:机械结构需要具有一定的灵活性,以适应不同工作场景和任务需求。
灵活性可以通过使用柔性结构或可调节的连接件来实现。
同时,机械结构还应该考虑易于改装和扩展的设计,以便于后期功能的升级和增加。
3.重量和尺寸:机械结构应该尽可能轻量化和紧凑化,以减少机器人的整体重量和尺寸。
轻量化可以提高机器人的运动灵活性和功耗效率,同时降低机器人的成本和能源消耗。
4.可维护性和易装配:机械结构应该易于维护和维修,以减少机器人的停机时间和维护成本。
同时,机械结构应该采用模块化设计和标准化连接方式,以方便零部件的更换和装配。
常用零部件机器人的机械结构由各种零部件组成,下面介绍几种常见的机器人零部件:关节关节是机器人运动的基本单元,通过关节的转动实现机器人的运动灵活性。
常见的关节类型包括旋转关节、平移关节、万向关节等。
3.1机器人的机械结构
柔顺装配技术
机器人进行精密作业,被装配零件大小不 一致,工件的定位夹具或机器人定位精度不满 足要求,装配困难,需要柔顺装配技术 主动柔顺装配:利用传感器测量反馈,边校正 边装配,价格贵,速度慢 被动柔顺装配:有机械柔顺环节,价格低,结 构简单,速度快,但轴孔间隙不能太小
3.3机器人臂部设计
3、专用的末端操作器与换接器
如:在通用机器人上安装焊枪成为焊接机器人;
在通用机器人上安装拧螺母机成为装配机器人;
不用的手部对手腕的要求不一样,需要换接器
换接器包括插座和插头,分别装在手腕和手部上
4、仿人机器人手
能进行复杂作业,如装配、维修、操作设备等 ♣柔性手:可对不同外形物体抓取,物体受力均匀
3.重量要轻 为提高机器人的运动速度,要尽量减小臂 部运动部分的重量,以减小整个手臂对回转轴 的转动惯量。 4.运动要平稳、定位精度要高 由于臂部运动速度越高,惯性力引起的定 位前的冲击也就越大,运动既不平稳,定位精 度也不高。因此,除了臂部设计上要力求结构 紧凑、重量轻外,同时要采用一定形式的缓冲 措施。
2.回转与俯仰机身 机器人手臂的俯仰运动,一般采用活塞油(气)缸 与连杆机构来实现的。手臂俯仰运动用的活塞缸位于 手臂的下方,其活塞杆和手臂用铰链连接,缸体采用 尾部耳环或中部销轴等方式与立柱连接,图所示。此 外还有采用无杆活塞缸驱动齿条齿轮或四连杆机构实 现手臂的俯仰运动。
机器人机身和臂部的配臵形式(4种)
一、手部的典型结构
1. 夹钳类
2. 吸附类
3. 专用操作器 4. 仿人机器人手部
1、夹钳类
① 夹钳式:常用结构
包括手指、传动机构、驱动装臵、支架
手指:两指、多指; 指端形状:V形、平面、尖指、特形指
机器人基础技术教学 书
机器人基础技术教学书机器人基础技术教学书第一章:机器人概述1.1 机器人的定义和分类1.2 机器人的发展历程1.3 机器人的应用领域第二章:机器人的机械结构2.1 机器人的基本结构和组成部件2.2 机器人的关节类型和运动方式2.3 机器人的传感器和执行器第三章:机器人的感知与认知3.1 机器人的感知技术3.1.1 视觉传感器3.1.2 声音传感器3.1.3 触觉传感器3.2 机器人的认知技术3.2.1 环境建模与感知分析3.2.2 机器人的自主导航与定位第四章:机器人的控制与决策4.1 机器人的控制系统4.1.1 开环控制与闭环控制4.1.2 反馈控制与前馈控制4.2 机器人的路径规划与运动控制4.3 机器人的决策与智能算法4.3.1 强化学习算法4.3.2 遗传算法4.3.3 模糊控制算法第五章:机器人的人机交互与协作5.1 机器人的语音识别和语音合成技术5.2 机器人的自然语言理解和生成技术5.3 机器人的姿态识别和情感分析技术5.4 机器人的协作与协同技术第六章:机器人的安全与伦理6.1 机器人的安全保障措施6.1.1 硬件安全:碰撞检测与防护装置6.1.2 软件安全:权限控制与隐私保护6.2 机器人的伦理问题与社会影响6.2.1 机器人的道德规范和法律法规6.2.2 机器人的就业和人类替代性第七章:机器人的未来发展与应用展望7.1 机器人技术的发展趋势7.2 机器人在工业制造领域的应用展望7.3 机器人在医疗卫生领域的应用展望7.4 机器人在农业和服务领域的应用展望结语:机器人基础技术的学习与应用通过本书的学习,读者将掌握机器人的基本概念和分类,了解机器人的机械结构和组成部件,熟悉机器人的感知与认知技术,了解机器人的控制与决策方法,掌握机器人的人机交互与协作技术,了解机器人的安全与伦理问题,并展望机器人技术的未来发展与应用前景。
通过学习,读者将能够在机器人相关领域进行研究和创新,为推动机器人技术的发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关节型搬运机器人
关节型焊接机器人
第二章
机器人的机械结构
机器人的构型
5、平面关节型 (Selective Compliance Assembly Robot Arm ,简称SCARA) 仅平面运动有耦合性,控制较通用关节型简单。运动灵活 性更好,速度快,定位精度高,铅垂平面刚性好,适于装 配作业。
SCARA型装配机器人
有较大的作业空间,结构紧凑较复杂,定位精度较低。
极坐标型机器人模型
2018/11/2
Unimate
机器人
第二章
机ห้องสมุดไป่ตู้人的机械结构
机器人的构型
4、关节坐标型 (3R) 对作业的适应性好,工作空间大,工作灵活,结构紧凑, 通用性强,但坐标计算和控制较复杂,难以达到高精度。
2018/11/2
关节型机器人模型
2、圆柱坐标型 (R2P)
结构简单紧凑,运动直观,其运动耦合性较弱,控制也较 简单,运动灵活性稍好。但自身占据空间也较大,但转动 惯量较大,定位精度相对较低。
圆柱坐标型机器人模型
2018/11/2
Verstran 机器人
Verstran 机器人
第二章
机器人的机械结构
机器人的构型
3、极坐标型(也称球面坐标型)(2RP)
• 电动式
电源方便,响应快,驱动力较大,可以采用多种灵活的控制方案。
2018/11/2
第二章
机器人的机械结构
二、机器人的分类
1.按机器人的控制方式分类 (1)非伺服机器人 非伺服机器人按照预先编好的程序顺序进行工作, 使用限位开关、制动器、插销板和定序器来控制机器 人的运动。 (2)伺服控制机器人 通过传感器取得的反馈信号与来自给定装置的综合信 号比较后,得到误差信号,经放大后用以激发机器人 的驱动装置,进而带动手部执行装置以一定规律运动, 到达规定的位置或速度等,这是一个反馈控制系统。
第二章
机器人的机械结构
4.工作载荷 机器人在规定的性能范围内,机械接口处能承受 的最大负载量(包括手部)。用质量、力矩、惯性矩 来表示。 5.控制方式
机器人用于控制轴的方式,是伺服还是非伺服, 伺服控制方式是实现连续轨迹还是点到点的运动。
6.驱动方式 指关节执行器的动力源。 7.精度、重复精度和分辨率
2018/11/2
第二章
机器人的机械结构
机器人的构型
最常见的构型是用其坐标特性来描述的。
一、工业机器人 (操作臂 /工业机械手/机械臂/操作手)
1、直角坐标型 (3P) 结构、控制算法简单,定位精度高;但工作空间较小, 占地面积大,惯性大,灵活性差。
2018/11/2
第二章
机器人的机械结构
机器人的构型
机器人 执行机构 手 腕 臂 肩 部 部 部 部
2018/11/2
驱动装置
( 固 定 或 移 动 )
控制系统 处 理 器
关 节 伺 服 控 制 器
感知系统 内 部 传 感 器 外 部 传 感 器
基 座
电 驱 动 装 置
液 压 驱 动 装 置
气 压 驱 动 装 置
一、执行机构
第二章 机器人的机械结构 包括:手部、腕部、臂部、肩部和基座等。相当于人的肢体。
1.自由度 自由度是指描述物体运动所需要的独立坐标数。 2.工作空间 机器人在工作载荷条件下、匀速运动过程中, 机械接口中心或工具中心点在单位时间内所移动的 距离或转动的角度。 3.工作速度 机器人的工作空间是指机器人手臂或手部安装点 所能达到的所有空间区域,不包括手部本身所能达 到的区域。
2018/11/2
500mm 1200mm / s
2.10rad / s 重复定位误差:±0.05mm A5 1900 1.05rad / s 控制方式:五轴同时可控,点位控制; 持重(最大伸长、最高速度下):30kg 驱动方式:三个基本关节由交流伺服电机驱动,并采 用增量式角位移检测装置;
2018/11/2
第二章
机器人的机械结构
机器人的构型
二、特种机器人 仿生型 自由度一般较多,具有更强的适应性和灵活性,但控制更 复杂,成本更高,刚性较差。
类人型机器人
2018/11/2
蛇形机器人
仿狗机器人
第二章
机器人的机械结构
六足漫游机器人
六轮漫游机器人
仿鱼机器人
2018/11/2
仿鸟机器人
第二章
1 处理器
2018/11/2
关节控制器
工作对象
外部传感器(环境检测)
第二章
机器人的机械结构
机器人的执行机构的驱动方式
• 液压式
具有大的抓举能力,结构紧凑,动作平稳,耐冲击;但要求液压 元件有较高的制造精度,密封性能。
• 气动式
气源方便,动作迅速,结构简单,造价较低;但难以进行速度控 制,抓紧能力较低。
精度、重复精度和分辨率用来定义机器人手部的 定位能力。
2018/11/2
第二章
机器人的机械结构
一台持重30kg,供搬运、检测、装配用的圆柱坐 标型工业机器人,这台机器人的主要技术指标如下:
自由度:共有三个基本关节1, 2,3和两个选用关节4,5; 工作范围:见左图所示; 关节移动范围及速度:
A1 A2 A3 A4 3000 500mm 3600 2.10rad / s 600mm / s
机器人的机械结构
2.按机器人结构坐标系特点方式分类
(1)直角坐标型 (2)圆柱坐标型(3) 极坐标型 (4) 多关节型
2018/11/2
第二章
机器人的机械结构
四种坐标型机器人的机构简图
(1)直角坐标型 (2)圆柱坐标型 (3)极坐标型 (4)关节型
2018/11/2
第二章
机器人的机械结构
第二节 机器人的主要技术参数
二、驱动装置 包括:驱动源、传动机构等。相当于人的肌肉、筋络。
三、感知反馈系统
包括:内部信息传感器,检测位置、速度等信息;外部信息传感器,检测 机器人所处的环境信息。相当于人的感官和神经。 四、控制系统 包括:处理器及关节伺服控制器等,进行任务及信息处理,并给出控制信 号。相当于人的大脑和小脑。
内部传感器(位形检测) 控制系统 驱动 装置 执行 机构
第二章
机器人的机械结构
第二章 机器人本体的机械结构
第一节 机器人的组成和分类 第二节 机器人的主要技术参数 第三节 机器人的机械结构与运动 第四节 机器人的驱动机构
2018/11/2
第二章
机器人的机械结构
第一节 机器人的组成和分类
一、机器人的组成 机器人是一个机电一体化的设备。从控制观点来看, 机器人系统可以分成四大部分:机器人执行机构、驱 动装置、控制系统、感知反馈系统。