201x年中考数学专题复习小练习专题29阅读理解题
初中数学专题复习专题复习阅读理解题-初中数学专题复习共35页文档
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
苏科版初三数学 2019年中考复习 专题针对训练《阅读理解题》含精品解析
2019年中考数学专题针对训练《阅读理解题》阅读理解是指先给出阅读材料,通过阅读领会其中的数学内容、方法要点,并能加以运用,然后解)决后面提出的问题的一类题型.该类题的篇幅一般较长,试题结构分两大部分,一部分是阅读材料,另一部分是需解决的有关问题,阅读材料既有选用与教材知识相关的内容,也有选用课外并不熟悉的知识.除了考查初中数学的基础知识外,更注重考查二阅读理解、迁移转化、范例运用、探索归纳等多方面的素质和能力解决该类问题的关键是读懂并理解试题阅读材料中提供的新情景、新方法与新知识等,能熟练地进行知识的迁移、转化与应用。
类型一 新定义、新运算型问题【典例1】(2018·菏泽)规定:在平面直角坐标系中,如果点P 的坐标为(m ,n ),向量OP 可以用点P 的坐标表示为:OP =(m ,n ).已知OA =(x 1,y 1),OB =(x 2,y 2),如果x 1·x 2+y 1·y 2=0,那么OA 与OB 互相垂直,下列四组向量,互相垂直的是( )A.OC =(3,2),OD =(-2,3)B.OE =(2-1,1),OF =(2+1,1)C.OG =(3,2018°),OH =(-31,-1) D.OM =(38,-21),ON =((2)2,4) 【思路导引】通过计算所给四组向量的坐标,只要符合x 1·x 2+y 1·y 2=0的向量,即为互相垂直。
【自主解答】【规律方法】新定义运算型试题,要抓住新定义运算的法则或者顺序,并将此定义作为解题的依据,通常照套法则即可,需要注意两点:(1)有括号时应当先算括号里面的.(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用运算律解题,总之,新定义型问题是“披了一件新外衣”,解决方法还是用原知识点。
针对训练1.(2018·日照)定义一种对正整数n 的“F ”运算:①当n 是奇数时,F (n )=3n +1;当n 为偶数时,F (n )=kn2(其中k 是使为奇数的正整数)……,两种运算交替重复进行例如,取n =24,则: 若n =13,则第2018次“F 运算”的结果是( )A.1B.4C.2018D.420182.(2018·济南)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”。
2019年中考数学《阅读理解专题训练》 附答案
所以可将代数式 的值看作点 到点 的距离.
利用材料一,解关于x的方程: ,其中 ;
利用材料二,求代数式 的最小值,并求出此时y与x的函数关系式,写出x的取值范图;
将 所得的y与x的函数关系式和x的取值范围代入 中解出x,直接写出x的值.
2.规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如 , 等.类比有理数的乘方, 记作 ④,读作“ 的圈4次方”,一般地,我们把 ( )记作 ⓝ,读作“a的圈n次方”.
① __________(用含有k,n的代数式表示);
②若 4420,求 的值。
4.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: 其中m>n>0,m,n是互质的奇数.
应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.
①把 拆成两个分子为1的正的真分数之差,即 _______;
②把 拆成两个分子为1的正的真分数之和,即 _______;
深入探究
定义“ ”是一种新的运算,若 , , ,则 计算的结果是_________。
拓展延伸
第一次用一条直径将圆周分成两个半圆(如图),在每个分点标上质数k,记2个数的和为 ;第二次将两个半圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记4个数的和为 ;第三次将四个 圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记8个数的和为 ;第四次将八个 圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记16个数的和为 ;……,如此进行了n次。
②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;
2019年中考数学二轮复习 阅读理解题 综合练习 (有答案)
2019年中考数学二轮复习阅读理解题综合练习1.阅读理解题:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i =7+2i ;(1+i)×(2-i)=1×2-i +2×i -i 2=2+(-1+2)i +1=3+i ;根据以上信息,完成下列问题:(1)填空:i 3=________,i 4=________;(2)计算:(1+i)×(3-4i);(3)计算:i +i 2+i 3+…+i 2017.2. (2018·湖南张家界中考)阅读理解题在平面直角坐标系xOy 中,点P(x 0,y 0)到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:d =|Ax 0+By 0+c|A 2+B 2, 例如,求点P(1,3)到直线4x +3y -3=0的距离.解:由直线4x +3y -3=0知:A =4,B =3,C =-3,所以P(1,3)到直线4x +3y -3=0的距离为:d =|4×1+3×3-3|42+32=2. 根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x -4y -5=0的距离;(2)若点P 2(1,0)到直线x +y +C =0的距离为2,求实数C 的值.3. (2018·浙江湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD 的边长为65,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD 的边长为65时,正方形EFGH 的面积的所有可能值中不包括5是哪些?4.(2018·山东济宁中考)知识背景当a >0且x >0时,因为(x -a x)2≥0,所以x -2a +a x ≥0,从而x +a x ≥2a(当x =a 时取等号).设函数y =x +a x(a >0,x >0),由上述结论可知,当x =a 时,该函数有最小值为2 a. 应用举例已知函数y 1=x(x >0)与函数y 2=4x (x >0),则当x =4=2时,y 1+y 2=x +4x有最小值为24=4.解决问题(1)已知函数y 1=x +3(x >-3)与函数y 2=(x +3)2+9(x >-3),当x 取何值时,y 2y 1有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x 天,则当x 取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?5. 如图①,△ABC 和△DEF 中,AB =AC ,DE =DF ,∠A =∠D.(1)求证:BC AB =EF DE ; (2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC)与邻边(即腰AB 或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BC AB .如T(60°)=1. ①理解巩固:T(90°)=________,T(120°)=________,若α是等腰三角形的顶角,则T(α)的取值范围是________;②学以致用:如图②,圆锥的母线长为9,底面直径PQ =8,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)6. 定义一种对正整数n 的运算“F”:(1)当n 为奇数时,结果为3n +5;(2)当n 为偶数时,结果为n 2k (其中k 是使n 2k为奇数的正整数),并且运算可以重复进行.例如n =26时,则26――→F (2)第一次13――→F (1)第二次44――→F (2)第三次11―→…那么,当n =1796时,第2010次“F”运算的结果是多少?7.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC 是比例三角形,AB =2,BC =3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD 中,AD ∥BC ,对角线BD 平分∠ABC ,∠BAC =∠ADC.求证:△ABC 是比例三角形.(3)如图2,在(2)的条件下,当∠ADC =90°时,求BD AC的值.图1 图28. (1)如图①,已知△ABC ,以AB 、AC 为边分别向△ABC 外作等边△ABD 和等边△ACE ,连接BE 、CD ,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE =CD ;(2)如图②,已知△ABC ,以AB 、AC 为边分别向外作正方形ABFD 和正方形ACGE ,连接BE 、CD ,猜想BE 与CD 有什么数量关系?并说明理由;(3)运用(1),(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B 、E 的距离,已经测得∠ABC =45°,∠CAE =90°,AB =BC =100米,AC =AE ,求BE 的长(结果保留根号).9. (2018·山东淄博中考)(1)操作发现:如图1,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连结GM,GN.小明发现了:线段GM与GN的数量关系是________________;位置关系是________________.(2)类比思考:如图2,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图3,小明在(2)的基础上,又作了进一步探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给与证明.10. 我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC 的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC为等边三角形时,AD与BC的数量关系为AD=____BC;②如图③,当∠BAC=90°,BC=8时,则AD长为________.猜想论证(2)在图①中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图④,在四边形ABCD中,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.11. 问题:如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图①证明上述结论.【类比引申】如图②,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足__________关系时,仍有EF=BE+FD.【探究应用】如图③,在某公园的同一水平面上,四条道路围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(3-1)米,现要在E、F之间修一条笔直的道路,求这条道路EF的长.(结果取整数,参考数据:2≈1.41,3≈1.73)12.问题背景:如图1,△ABC为等边三角形,作AD⊥BC于点D,将∠ABC绕点B顺时针旋转30°后,BA,BC边与射线AD分别交于点E,F,求证:△BEF为等边三角形.迁移应用:如图2,△ABC为等边三角形,点P是△ABC外一点,∠BPC=60°,将∠BPC绕点P逆时针旋转60°后,PC边恰好经过点A,探究PA,PB,PC之间存在的数量关系,并证明你的结论;拓展延伸:如图3,在菱形ABCD中,∠ABC=60°,将∠ABC绕点B顺时针旋转到如图所在的位置得到∠MBN,F是BM上一点,连结AF,DF,DF交BN于点E,若B,E两点恰好关于直线AF对称.(1)证明△BEF是等边三角形;(2)若DE=6,BE=2,求AF的长.13. 类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图①,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件;(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;(3)如图②,小红作了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连接AA′,BC′.小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?14. 理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图①,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.图①设AC=1,则BD=BA=2,BC= 3.tanD=tan15°=12+3=2-3(2+3)(2-3)=2- 3.思路二利用科普书上的和.(.差.).角正切公式.....:tan(α±β)=tanα±tanβ1∓tanαtanβ. 假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°-45°)=tan60°-tan45°1+tan60°tan45°=3-11+3=2- 3.思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图②,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,则得A、C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图③,直线y=12x-1与双曲线y=4x交于A、B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.图②图③备用图15. (2018·贵州贵阳中考)如图1,在Rt△ABC中,以下是小亮探究asin A与bsin B之间关系的方法:∵sin A =a c ,sin B =b c, ∴c =a sin A ,c =b sin B, ∴a sin A =b sin B. 根据你掌握的三角函数知识.在图2的锐角△ABC 中,探究a sin A ,b sin B ,c sin C 之间的关系,并写出探究过程.图1 图216. 请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答. 引例:设a ,b ,c 为非负实数,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a +b +c 的正方形来研究. 解:如图①,设正方形的边长为a +b +c ,则AB =a 2+b 2,BC =b 2+c 2,CD =a 2+c 2,显然AB +BC +CD ≥AD , ∴a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c).探究一:已知两个正数x ,y ,满足x +y =12,求x 2+4+y 2+9的最小值(图②仅供参考); 探究二:若a ,b 为正数,求以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积.17. 【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k ,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程:也可用图象描述:如图①,在x 轴上表示出x 1,先在直线y =kx +b 上确定点(x 1,y 1),再在直线y =x 上确定纵坐标为y 1的点(x 2,y 1),然后在x 轴上确定对应的数x 2,…,依次类推.【解决问题】研究输入实数x 1时,随着运算次数n 的不断增加,运算结果x n 怎样变化.(1)若k =2,b =-4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k =-23,b =2,已在x 轴上表示出x 1(如图②所示),请在x 轴上表示x 2,x 3,x 4,并写出研究结论;②若输入实数x 1时,运算结果x n 互不相等,且越来越接近常数m ,直接写出k 的取值范围及m 的值(用含k ,b 的代数式表示).18.(2018·山西中考)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD =2AB ,E 是AB 延长线上一点,且BE =AB ,连结DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连结AM.试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明:∵BE =AB ,∴AE =2AB.∵AD =2AB ,∴AD =AE.∵四边形ABCD 是矩形,∴AD ∥BC.∴EM DM =EB AB.(依据1) ∵BE =AB ,∴EM DM=1.∴EM =DM. 即AM 是△ADE 的DE 边上的中线,又∵AD =AE ,∴AM ⊥DE.(依据2)∴AM 垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连结CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连结CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.19. 问题提出(1)如图①,已知△ABC.请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2.是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米.现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=5米,∠EHG=45°.经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件.试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.参考答案1.解:(1)-i ;1;【解法提示】∵i 2=-1,∴i 3=i 2·i =-i ,i 4=i 2·i 2=1.(2)原式=3-4i +3i -4i 2=3-i +4=7-i ;(3)根据题意可得i =i ,i 2=-1,i 3=-i ,i 4=1,i 5=i ,i 6=-1,…,i 2016=1,i 2017=i , ∵i +i 2+i 3+i 4=0,且2016÷4=504,∴i +i 2+i 3+i 4+…+i2017=i.2.解: (1)d =|3×0-4×0-5|32+42=1. (2)2=|1×1+1×0+C|2,∴|C +1|=2, ∴C +1=±2,∴C 1=-3,C 2=1.3.解:当DG =13,CG =213时,满足DG 2+CG 2=CD 2,此时HG =13,可得正方形EFGH 的面积为13.当DG =8,CG =1时,满足DG 2+CG 2=CD 2,此时HG =7,可得正方形EFGH 的面积为49.当DG =7,CG =4时,此时HG =3,四边形EFGH 的面积为9.故答案为9,13和49.4.解:(1)y 2y 1=(x +3)2+9x +3=(x +3)+9x +3, ∴当x +3=9x +3时,y 2y 1有最小值, ∴x =0或-6(舍弃)时,有最小值6.(2)设该设备平均每天的租赁使用成本为w 元,则w =490+200x +0.001x 2x=490x+0.001x +200, ∴当490x=0.001x 时,w 有最小值, ∴x =700或-700(舍弃)时,w 有最小值,最小值为201.4元.5. (1)证明:∵AB =AC ,DE =DF ,∴AB DE =AC DF, 又∵∠A =∠D ,∴△ABC ∽△DEF ,∴BC EF =AB DE, ∴BC AB =EF DE. (2)解:①2,3,0<T(α)<2.【解法提示】①如解图①,在Rt △ABC 中,∠A =90°,∠B =∠C =45°,∴设AB =AC =x ,由勾股定理得BC =2x ,∴T(90°)=BC AB =2x x=2;图①图② 如解图②,在△ABC 中,∠A =120°,AB =AC ,过点A 作AD ⊥BC ,∴∠BAD =60°,BD =12BC , 设AD =y ,在Rt △ABD 中,∠BAD =60°,∴BD =AD·tan60°=3y ,AB =2AD =2y ,∴BC =2BD =23y ,∴T(120°)=23y 2y=3; ∵∠A<180°,当∠A =180°时,此时AB =AC =12BC 即T(A)=BC AB =BC 12BC =2, ∵要构成三角形,∴T(A)<2,∵T(A)>0,∴0<T(α)<2.图③②如解图③,设圆锥的底面半径为r ,母线长为l ,∵圆锥的底面圆周长=圆锥展开图扇形的弧长,即2πr =nπl 180, ∴r l =n 360, ∵ r =4,l =9,∴n =160.∵T(80°)≈1.29,∴蚂蚁爬行的最短距离=T(80°)×l ≈1.29×9≈11.6.6.解:根据题意得,当n =1796时,第一次运算,179622=449; 第二次运算,3n +5=3×449+5=1352;第三次运算,135223=169; 第四次运算,3×169+5=512;第五次运算,51229=1; 第六次运算,3×1+5=8;第七次运算,823=1; 可以看出:从第五次开始,结果就只是1,8两个数轮流出现,且当次为偶数时,结果是8,次数是奇数时,结果是1,而2010是偶数,因此最后结果是8.7.解:(1)∵△ABC 是比例三角形,且AB =2,BC =3,①当AB 2=BC·AC 时,得4=3AC ,解得AC =43; ②当BC 2=AB·AC 时,得9=2AC ,解得AC =92; ③当AC 2=AB·BC 时,得AC 2=6,解得AC =6(负值舍去),∴当AC =43或92或6时,△ABC 是比例三角形. (2)∵AD ∥BC ,∴∠ACB =∠CAD.又∵∠BAC =∠ADC ,∴△ABC ∽△DCA ,∴BC CA =CA AD,即CA 2=BC·AD. ∵AD ∥BC ,∴∠ADB =∠CBD.∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∴∠ADB =∠ABD ,∴AB =AD ,∴CA 2=BC·AB ,∴△ABC 是比例三角形.(3)如图,过点A 作AH ⊥BD 于点H.∵AB =AD ,∴BH =12BD. ∵AD ∥BC ,∠ADC =90°,∴∠BCD =90°,∴∠BHA =∠BCD =90°.又∵∠ABH =∠DBC ,∴△ABH ∽△DBC ,∴AB DB =BH BC,即AB·BC =BH·DB , ∴AB·BC =12BD 2. 又∵AB·BC =AC 2,∴12BD 2=AC 2,∴BD AC = 2. 8.解:(1)作图如解图①,图①证明:∵△ABD 和△ACE 为等边三角形,则AB =AD ,AE =AC ,∠DAB =∠EAC =60°,又∵∠DAC =∠DAB +∠BAC =∠EAC +∠BAC =∠BAE ,∴△DAC ≌△BAE(SAS),∴BE =CD.(2)BE =CD.理由如下:∵四边形ABFD 和四边形ACGE 为正方形,∴AB =AD ,AC =AE ,∠DAB =∠EAC =90°,又∵∠DAC =∠DAB +∠BAC =∠EAC +∠BAC =∠BAE ,∴△DAC ≌△BAE(SAS),∴BE =CD.(3)如解图②,以AB 为边,作等腰直角三角形ABD ,∠BAD =90°,图②则AD =AB =100米,∠ABD =45°,∴BD =1002米,连接CD ,则由(2)可得,BE =CD ,∵∠ABC =45°,∴∠DBC =90°,在Rt △DBC 中,BC =100米,BD =1002米,由勾股定理得CD =1002+(1002)2=1003米,则BE =CD =1003米.9.解: (1)MG =NG MG ⊥NG 如图,连结BE ,CD 相交于H.∵△ABD 和△ACE 都是等腰直角三角形,∴AB =AD ,AC =AE ,∠BAD =∠CAE =90°,∴∠CAD =∠BAE ,∴△ACD ≌△AEB(SAS),∴CD =BE ,∠ADC =∠ABE ,∴∠BDC +∠DBH =∠BDC +∠ABD +∠ABE =∠BDC +∠ABD +∠ADC =∠ADB +∠ABD =90°,∴∠BHD =90°,∴CD ⊥BE.∵点M ,G 分别是BD ,BC 的中点,∴MG 綊12CD.同理NG 綊12BE , ∴MG =NG ,MG ⊥NG ,∴MG =NG ,MG ⊥NG.(2)连结CD ,BE 相交于点H ,同(1)的方法得MG =NG ,MG ⊥NG.(3)如图,连结EB ,DC ,延长线相交于H ,同(1)的方法得MG =NG ,同(1)的方法得△ABE ≌△ADC ,∴∠AEB =∠ACD ,∴∠CEH +∠ECH =∠AEH -∠AEC +180°-∠ACD -∠ACE =∠ACD -45°+180°-∠ACD -45°=90°,∴∠DHE =90°,同(1)的方法得MG ⊥NG ,∴△GMN 是等腰直角三角形.10.解:(1)①12,②4; 【解法提示】①如解图①中,图①∵△ABC 是等边三角形,∴AB =BC =AC =AB ′=AC ′,∵DB ′=DC ′,∴AD ⊥B ′C ′,∵∠BAC =60°,∠BAC +∠B ′AC ′=180°,∴∠B ′AC ′=120°,∴∠B ′=∠C ′=30°,∴AD =12AB ′=12BC. ②如解图②中,图②∵∠BAC =90°,∠BAC +∠B ′AC ′=180°,∴∠B ′AC ′=∠BAC =90°,∵AB =AB ′,AC =AC ′,∴△BAC ≌△B ′AC ′,∴BC =B ′C ′,∵B ′D =DC ′,∴AD =12B ′C ′=12BC =4; (2)猜想:AD =12BC. 理由:如解图③中,延长AD 到M ,使得AD =DM ,连接B ′M ,C ′M ,图③∵B ′D =DC ′,AD =DM ,∴四边形AC ′MB ′是平行四边形,∴AC ′=B ′M =AC ,∵∠BAC +∠B ′AC ′=180°,∠B ′AC ′+∠AB ′M =180°,∴∠BAC =∠MB ′A,∵AB =AB ′,∴△BAC ≌△AB ′M ,∴BC =AM ,∴AD =12BC ; (3)存在.理由:如解图④中,延长AD 交BC 的延长线于M ,作BE ⊥AD 于E ,作线段BC 的垂直平分线交BE 于P ,交BC 于F ,连接PA 、PD 、PC ,作△PCD 的中线PN ,连接DF 交PC 于O ,图④∵∠ADC =150°,∴∠MDC =30°,∴在Rt △DCM 中,∵CD =23,∠DCM =90°,∠MDC =30°,∴CM =2,DM =4,∠M =60°,在Rt △BEM 中,∵∠BEM =90°,BM =BC +CM =14,∠MBE =30°,∴EM =12BM =7, ∴DE =EM -DM =3,∵AD =6,∴AE =DE,∵BE ⊥AD ,∴PA =PD ,PB =PC ,在Rt △CDF 中,∵CD =23,CF =6,∴∠CDF =∠CPE =60°,易证△FCP ≌△CFD ,∴CD =PF ,∵CD ∥PF ,∴四边形CDPF 是矩形,∴∠CDP =90°,∴∠ADP =∠ADC -∠CDP =60°,∴△ADP 是等边三角形,∴∠APD =60°,∵∠BPF =∠CPF =60°,∴∠BPC =120°,∴∠APD +∠BPC =180°,∴△PDC 是△PAB 的“旋补三角形”,在Rt △PDN 中,∵∠PDN =90°,PD =AD =6,DN =3,∴PN =DN 2+PD 2=(3)2+62=39.11.证明:如解图①,将△ABE 绕点A 逆时针旋转90°到△ADG ,则AB 与AD 重合,图①∴∠BAE =∠DAG ,∠B =∠ADG ,BE =GD ,AE =AG ,∴∠GAF =∠DAF +∠GAD =∠BAE +∠DAF =45°,在正方形ABCD 中,∠B =∠ADC =90°,∴∠ADG +∠ADF =180°,即G 、D 、F 在一条直线上,∵∠EAF =45°,在△EAF 和△GAF 中,AE =AG ,∠EAF =∠GAF =45°,AF =AF ,∴△EAF ≌△GAF(SAS),∴EF =GF ,∴EF =FG =FD +DG =FD +BE.【类比引申】∠EAF =12∠BAD. 【解法提示】如解图②,延长CB 至M ,使BM =DF ,连接AM ,∵∠ABC +∠D =180°,∠ABC +∠ABM =180°,∴∠D =∠ABM ,在△ABM 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ∠ABM =∠D BM =DF,图②∴△ABM ≌△ADF(SAS),∴AF =AM ,∠DAF =∠BAM ,∵∠BAD =2∠EAF ,∴∠DAF +∠BAE =∠EAF =12∠BAD , ∴∠EAB +∠BAM =∠EAM =∠EAF ,在△FAE 和△MAE 中,⎩⎪⎨⎪⎧AE =AE ∠FAE =∠MAE AF =AM, ∴△FAE ≌△MAE(SAS),∴EF =EM ,又∵EM =BE +BM =BE +DF ,∴EF =BE +DF.【探究应用】解:如解图③,连接AF ,延长BA 、CD 交于点O ,∵∠BAD =150°,∠ADC =120°,∴∠OAD =30°,∠ODA =60°,∴△OAD 是直角三角形.∵AD =80,∴AO =403,OD =40,∵OF =OD +DF =40+40(3-1)=403,∴AO =OF ,图③∴∠OAF =45°,∵∠OAD =30°,∴∠DAF =15°,∵∠EAD =90°,∴∠EAF =∠EAD -∠DAF =75°=12∠BAD , 又∠B +∠ADC =180°,由(2)知EF=BE+DF.∠BAE=∠BAD-∠EAD=150°-90°=60°=∠B,∴△ABE为等边三角形,∴BE=AB=80,∴EF=BE+DF=80+40(3-1)≈109(米).12.解:问题背景:证明:∵△ABC为等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°.由题意得∠ABE=30°,∠EBF=60°,∴∠EBD=∠FBD=30°.∵BD⊥AD,∴∠BED=60°,∴△BEF为等边三角形.迁移应用:PC=PA+PB.证明:如图,在PC上截取PG=PB,连结BG.∵∠BPC=60°,∴△BPG为等边三角形,∴BG=BP,∠PBG=60°,PB=BG,∴∠PBA+∠ABG=∠ABG+∠GBC=60°,∴∠PBA=∠GBC.又AB=BC,∴△APB≌△CBG,∴PA=GC,∴PC=PG+CG=PB+PA.拓展延伸:(1)如图,∵B,E两点关于直线AF对称,∴FE=FB.∵∠EBF=60°,∴△BEF是等边三角形.(2)由(1)知,△BEF 是等边三角形,如图,连结AE ,过点A 作AH ⊥DE 于点H. ∵B ,E 两点关于直线AF 对称,∴AE =AB.∵四边形ABCD 是菱形,∴AB =AD ,∴AE =AD ,∴DH =HE =12DE =3, ∴HF =HE +EF =3+2=5.由(1)知,△BEF 是等边三角形,FA ⊥EB ,∴∠EFA =12∠EFB =30°. 在Rt △AHF 中,cos ∠HFA =HF AF =32, ∴AF =HF cos 30°=103=1033. 13.解:(1)AB =BC 或BC =CD 或CD =AD 或AD =AB ;(2)解:小红的结论正确.理由如下:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;(3)由∠ABC =90°,AB =2,BC =1,得:AC =5,∵将Rt △ABC 平移得到Rt △A ′B ′C ′,∴BB ′=AA ′,A ′B ′∥AB ,A ′B ′=AB =2,B ′C ′=BC =1,A ′C ′=AC =5,(Ⅰ)如解图①,当AA ′=AB 时,BB ′=AA ′=AB =2;图①(Ⅱ)如解图②,当AA ′=A ′C ′时,BB ′=AA ′=A ′C ′ =5;图②(Ⅲ)当A ′C ′=BC ′=5时,如解图③,延长C ′B ′交AB 与点D ,则C ′B ′⊥AB ,图③∵BB ′平分∠ABC ,∴∠ABB ′=12∠ABC =45°, ∴∠BB ′D =∠ABB ′=45°,∴B ′D =BD ,设B ′D =BD =x ,则C ′D =x +1,BB ′=2x ,∵根据在Rt △BC ′D 中,BC ′2=C ′D 2+BD 2即x 2+(x +1)2=5,解得:x =1或x =-2(不合题意,舍去),∴BB ′=2x =2;图④(Ⅳ)当 BC ′=AB =2时,如解图④,与(Ⅲ)方法同理可得: x =-1+72或x =-1-72(舍去),∴BB ′=2x =-2+142.故应平移2或5或2或-2+142的距离. 14.解:(1)如解图①,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB 至点D ,使BD =BA ,连接AD.图①设AC =1,则BD =BA =2,BC =3, tan ∠DAC =tan75°=DC AC =BD +BC AC =2+31=2+ 3. 【一题多解】tan75°=tan(45°+30°)=tan45°+tan30°1-tan45°·tan30°=1+331-33=3+33-3=2+ 3.图②(2)如解图②,在Rt △ABC 中,AB =AC 2-BC 2=602-302=303,sin ∠BAC =BC AC =3060=12,即∠BAC =30°, ∵∠DAC =45°,∴∠DAB =45°+30°=75°.在Rt △ABD 中,tan ∠DAB =DB AB=2+3, ∴DB =AB·tan ∠DAB =303·(2+3)=603+90,∴DC =DB -BC =603+90-30=603+60.(米)答:这座电视塔CD 的高度为(603+60)米.图③(3)直线AB 能与双曲线相交,点P 的坐标为(-1,-4)或(43,3), 理由如下:若直线AB 绕点C 逆时针旋转45°后,与双曲线相交于点P 1、P 2,如解图③,过点C 作CD ∥x 轴,过点P 1作P 1E ⊥CD 于点E ,过点A 作AF ⊥CD 于点F.解方程组⎩⎨⎧y =12x -1y =4x , 得⎩⎪⎨⎪⎧x =4y =1,或⎩⎪⎨⎪⎧x =-2y =-2, ∴点A(4,1),点B(-2,-2).对于y =12x -1,当x =0时,y =-1,则C(0,-1),OC =1, ∴CF =4,AF =1-(-1)=2,∴tan ∠ACF =AF CF =24=12, ∴tan ∠P 1CE =tan(∠ACP 1+∠ACF)=tan(45°+∠ACF)=tan45°+tan ∠ACF 1-tan45°·tan ∠ACF =1+121-12=3,即P 1E CE=3. 设点P 的坐标为(a ,b),则有⎩⎪⎨⎪⎧ab =4b +1a =3, 解得⎩⎪⎨⎪⎧a =-1b =-4,或⎩⎪⎨⎪⎧a =43b =3, ∴点P 的坐标为(-1,-4)或(43,3); (ii)若直线AB 绕点C 顺时针旋转45°后,与x 轴相交于点G ,如解图④.由(i)可知∠ACP =45°,P(43,3),则CP ⊥CG . 过点P 作PH ⊥y 轴于H ,则∠GOC =∠CHP =90°,∠GCO =90°-∠HCP =∠CPH ,图④∴△GOC ∽△CHP ,∴GO CH =OC HP. ∵CH =3-(-1)=4,PH =43,OC =1, ∴GO 4=143=34, ∴GO =3,G(-3,0).设直线CG 的解析式为y =kx +b ,则有⎩⎪⎨⎪⎧-3k +b =0b =-1, 解得⎩⎪⎨⎪⎧k =-13b =-1, ∴直线CG 的解析式为y =-13x -1. 联立⎩⎨⎧y =-13x -1y =4x, 消去y ,得4x =-13x -1, 整理得x 2+3x +12=0,∵b 2-4ac =32-4×1×12=-39<0,∴方程没有实数根,∴直线绕点C 顺时针旋转45°,与双曲线无交点.综上所述,直线AB 绕点C 逆时针旋转45°后,能与双曲线相交,交点P 的坐标为(-1,-4)或(43,3). 15.解:a sin A =b sin B =c sin C.理由如下: 如图,过A 作AD ⊥BC ,过点B 作BE ⊥AC.在Rt △ABD 中,sin B =AD c, 即AD =csin B ,在Rt △ADC 中,sin C =AD b, 即AD =bsin C ,∴csin B =bsin C ,即b sin B =c sin C, 同理可得a sin A =c sin C, 则a sin A =b sin B =c sin C. 16.解:探究一:如解图①,构造矩形AECF ,并设矩形的两边长分别为12,5,图①则x +y =12,AB =x 2+4,BC =y 2+9,显然AB +BC ≥AC ,当A ,B ,C 三点共线时,AB +BC 最小, 即x 2+4+y 2+9的最小值为AC ,∵AC =122+52=13, ∴x 2+4+y 2+9的最小值为13;图②探究二:如解图②,设矩形ABCD 的两边长分别为2a ,2b ,E ,F 分别为AB ,AD 的中点, 则CF =4a 2+b 2,CE =a 2+4b 2,EF =a 2+b 2, 设以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积为S △CEF ,∴S △CEF =S 矩形ABCD -S △CDF -S △AEF -S △BCE=4ab -12×2a ×b -12ab -12a ×2b =32ab , ∴以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积为32ab. 17.解:(1)若k =2, b =-4,①x 1=3时,x 2=2×3-4=2,x 3=2×2-4=0,x 4=2×0-4=-4,x 5=2×(-4)-4=-12; ②x 1=4时,x 2=2×4-4=4,x 3=2×4-4=4,x 4=2×4-4=4,x 5=2×4-4=4; ③x 1=5时,x 2=2×5-4=6,x 3=2×6-4=8,x 4=2×8-4=12,x 5=2×12-4=20, 由上面的特殊值可得,y =2x -4与y =x 交点的横坐标为4,所以当输入的值x>4时,x n 的值会随着运算次数的增大而增大;当输入的值x =4时,x n 的值不变;当输入的值x<4时,x n 的值会随着运算次数的增大而减小.(2)当k>1时,y =kx +b 与y =x 的交点坐标横坐标为x =-b k -1, 所以当输入的值x>-b k -1时,x n 的值会随着运算次数的增大而增大; 当输入的值x =-b k -1时,x n 的值不变; 当输入的值x<-b k -1时,x n 的值会随着运算次数的增大而减小. 理由如下:直线y =kx +b 与直线y =x 的交点坐标为(b 1-k ,b 1-k ),当x >b 1-k时,对于同一个x 的值,kx +b >x ,∴y 1>x 1,∵y 1=x 2,∴x 1<x 2,同理x 2<x 3<…<x n ,∴当x 1>b 1-k时,随着运算次数n 的增加,x n 越来越大,同理,当x 1<b 1-k时,随着运算次数n 的增加,x n 越来越小,当x =b 1-k时,随着运算次数n 的增加,x n 保持不变. (3)①画如解图,结论:通过画图可得,x n 的值越来越靠近两个函数图象交点的横坐标即65; ②|k|<1且k ≠0时,m =-b k -1.即-1<k <1且k ≠0, 18.解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A 在线段GF 的垂直平分线上.(2)证明:如图,过点G 作GH ⊥BC 于点H.∵四边形ABCD 是矩形,点E 在AB 的延长线上,∴∠CBE =∠ABC =∠GHC =90°,∴∠BCE +∠BEC =90°.∵四边形CEFG 为正方形,∴CG =CE ,∠GCE =90°,∴∠BCE +∠BCG =90°,∴∠BEC =∠BCG ,∴△GHC≌△CBE,∴HC=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH,∴GH垂直平分BC,∴点G在BC的垂直平分线上.(3)点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证明:如图,过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°,∴∠2+∠3=90°,∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF≌△EBC,∴NE=BE,∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE,∴BC=2BM,∴BM=MC,∴FM垂直平分BC,∴点F在BC边的垂直平分线上.19. (1)解:如解图①,△ADC即为所求作三角形.图①【作法提示】(1)过点B作直线AC的垂线,垂足为点O;(2)在垂线上截取OD=OB,连接AD,CD,则△ADC即为所要求作的三角形.(2)【思路分析】四边形EFGH的周长=EF+FG+GH+HE,由题意可知AF和AE的长均为定值,利用勾股定理可求得EF的长为定值,所以要求四边形周长的最小值,只需令FG +GH+HE最小即可,利用作对称线段将所求线段和转化到三角形中进行求解,进而利用直角三角形三边关系求出线段和最小值.图②解:存在.理由如下:如解图②,作点E关于CD的对称点E′,作点F关于BC的对称点F′,连接E′F′,交BC于点G,交CD于点H,连接FG、EH,则F′G=FG,E′H=EH,所以此时四边形EFGH的周长最小.这是因为:在BC上任取一点G′,在CD上任取一点H′,则FG′+G′H′+H′E=F′G′+G′H′+H′E′≥E′F′.由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8.∴E′F′=10,EF=2 5.∴四边形EFGH周长的最小值为EF+FG+GH+HE=EF+E′F′=25+10.∴在BC、CD上分别存在满足条件的点G、H,使四边形EFGH的周长最小,最小值是25+10.(3)【思路分析】要使四边形EFGH面积最大,因为E、F、G的位置确定,即△EFG的面积是固定的,只要求以EG为底边的△EGH最大面积即可,且∠EHG为45°,作△EFG关于EG 的对称图形,以点F的对称点O为圆心,作以EG为弦的圆,根据圆的基本性质,即EG的中垂线与圆的交点即为所求的点H′,然后再由对称的性质和勾股定理求解即可.解:能裁得.∵∠EFG=∠A=90°,∴∠2+∠AFE=∠1+∠AFE=90°,∴∠1=∠2,∵EF=FG=5,∴△AEF≌△BFG(AAS),∴AF=BG,AE=BF.设AF=x,则AE=BF=3-x,∴x2+(3-x)2=(5)2解得x1=1或x2=2,∵AF<BF,∴x2=2舍去,∴AF=BG=1,AE=BF=2,∴DE=4,CG=5.如解图③,连接EG,作△EFG关于EG的对称图形△EOG,则四边形EFGO为正方形,∠EOG=90°.以点O为圆心,OE长为半径作⊙O,则∠EHG=45°的点H在⊙O上.连接FO,并延长交⊙O于点H,则点H在EG中垂线上.图③连接EH、GH,则∠EHG=45°.此时,四边形EFGH就是想要裁得的四边形EFGH中面积最大的.连接CE,则CE=CG=DE2+CD2=5.∴点C在线段EG的中垂线上,连接HC,∴点F、O、H、C在一条直线上,又∵EG=EF2+FG2=10,∴FO=EG=10.又∵CF=BF2+BC2=210,∴OC =10.又∵OH =OE =FG =5,∴OH <OC ,∴点H 在矩形ABCD 的内部,∴可以在矩形板材ABCD 中,裁得符合条件的面积最大的四边形EFGH 部件,这个部件的面积即S 四边形EFGH =12EG·FH =12×10×(10+5)=(5+522)m 2. ∴所裁得的四边形部件EFGH 是符合条件的面积最大的部件,这个部件的面积为(5+522) m 2.【一题多解】能裁得.∵∠EFG =∠A =∠B =90°,∴∠2+∠AFE =∠1+∠AFE =90°,∴∠1=∠2, ∵EF =FG =5,∴△AEF ≌△BFG(AAS),∴AF =BG ,AE =BF ,设AF =x ,则AE =BF =3-x ,∴x 2+(3-x)2=(5)2,解得x 1=1或x 2=2,∵AF <BF ,∴x 2=2舍去,∴AF =BG =1,BF =AE =2,∴DE =4,CG =5,如解图③,连接CE ,则CE =5=CG ,∴点C 在线段EG 的中垂线上,连接EG ,作△EFG 关于EG 的对称图形△EOG ,则△EOG 为等腰直角三角形且∠EOG =90°,OE =OG ,∴点F 、O 、C 在同一条直线上,以O 为圆心,OE 长为半径作⊙O ,交FC 于点H ,则∠EHG =45°,此时,四边形EFGH 就是想要裁得的四边形EFGH 中面积最大的.又∵CF =BF 2+BC 2=22+62=210,且FO =EG =EF 2+FG 2=10,∴OC =10.又∵OH =OE =EF =5,∴OH <OC ,∴点H 在矩形ABCD 的内部,∴可以在矩形板材ABCD 中,裁得符合条件的面积最大的四边形EFGH ′部件,这个部件的面积即S 四边形EFGH =12EG·FH =12×10×(10+5)=(5+522) m 2. ∴所裁得的四边形部件EFGH 是符合条件的最大部件,这个部件的面积为(5+522) m 2.。
2019全国中考数学真题分类汇编之29:数学文化(含答案)
2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( ) ()A 1,11()B 7,53 ()C 7,61 ()D 6,50【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读个字,则下面所列方程正确的是( ) A .+2+4=34685 B .+2+3=34685C .+2+2=34685D .+12+14=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685, 故选:A .7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为y ,可列方程组为( ) A . B .C D .【考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为y ,可列方程组为: . 故:D .8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为y 斤,则可列方程组为( ) A . B .CD .【考由际问抽出二元一次方程组 【解答】解:由题意可得, , 故:C .9.(019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为y 尺,则所列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头y两,根据题意可列方程组为()A.B.C.D【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头y两,根据题意可列方程组为:.故:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C . 二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛, 根据题意得:, 故案为.3(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长y尺,依题意,得:.答案为:..(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y两,根据题意可列方程组为____.【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1.(2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2=,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60y100∴y=500答:走路快的人走500步才能追上走路慢的人.。
中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)
中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.阅读下列有关材料并解决有关问题.我们知道|x|={x (x>0) 0 (x=0)−x (x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x−2|时,可令x+1=0和x−2=0,分别求得x=−1和x=2(称-1,2分别为|x+1|与|x−2|的零点值).在有理数范围内,零点值x=−1和x=2可将全体有理数分成不重复且不遗漏的三种情况:①x<−1;②−1≤x<2;③x≥2.化简|x+1|+|x−2|时,对应三种情况为:①当x<−1时,原式=−(x+1)−(x−2)=−2x+1;②当−1≤x<2时,原式=(x+1)−(x−2)=3;③当x≥2时,原式=(x+1)+(x−2)=2x−1.通过以上阅读,请你解决问题:(1)|x−3|+|x+4|零点值是_________和__________;(2)化简代数式|x−3|+|x+4|;(3)解方程|x−3|+|x+4|=9;(4)|x−3|+|x+4|+|x−2|+|x−2020|的最小值为_________,此时x的取值范围为____________.2.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式x2−xy+4x−4y和a2−b2−c2+2bc.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:(1)x2−xy+4x−4y=(x2−xy)+(4x−4y)=x(x−y)+4(x−y)=(x−y)(x+4)(2)a2−b2−c2+2bc=a2−(b2+c2−2bc)=a2−(b−c)2=(a+b−c)(a−b+c)这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)m3−2m2−3m+6(2)x2−2xy−9+y23.阅读下列材料:已知实数x y 满足(x 2+y 2+1)(x 2+y 2−1)=63 试求x 2+y 2的值.解:设x 2+y 2=a 则原方程变为(a +1)(a −1)=63 整理得a 2−1=63 a 2=64 根据平方根意义可得a =±8 由于x 2+y 2⩾0 所以可以求得x 2+y 2=8.这种方法称为“换元法” 用一个字母去代替比较复杂的单项式、多项式 可以达到化繁为简的目的.根据阅读材料内容 解决下列问题:(1)已知实数x y 满足(2x +2y +3)(2x +2y −3)=27 求x +y 的值.(2)已知a b 满足方程组{3a 2−2ab +12b 2=472a 2+ab +8b 2=36;求1a +12b 的值; (3)填空:已知关于x y 的方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 则关于x y 的方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2的解是_______. 4.例:解不等式(x ﹣2)(x +3)>0解:由实数的运算法则:“两数相乘 同号得正”得①{x −2>0x +3>0 或②{x −2<0x +3<0解不等式组①得 x >2解不等式组②得 x <﹣3所以原不等式的解集为x >2或x <﹣3.阅读例题 尝试解决下列问题:(1)平行运用:解不等式x 2﹣9>0;(2)类比运用:若分式x+1x−2的值为负数 求x 的取值范围.5.定义:有一个内角为90° 且对角线相等的四边形称为准矩形.(1)如图1 准矩形ABCD 中 ∠ABC =90° 若AB =2 BC =3 则BD =_____;(2)如图2 正方形ABCD中点E F分别是边AD AB上的点且CF∠BE 求证:四边形BCEF是准矩形;(3)已知准矩形ABCD中∠ABC=90° ∠BAC=60° AB=2 当△ADC为等腰三角形时求这个准矩形的面积.6.仔细阅读下面例题解答问题.【例题】已知:m2−2mn+2n2−8n+16=0求m n的值.解:∠m2−2mn+2n2−8n+16=0∠(m2−2mn+n2)+(n2−8n+16)=0∠(m−n)2+(n−4)2=0∠m−n=0n−4=0∠m=4n=4.∠m的值为4 n的值为4.【问题】仿照以上方法解答下面问题:(1)已知x2+2xy+2y2−6y+9=0求x y的值.(2)在Rt∠ABC中∠C=90°三边长a b c都是正整数且满足a2+b2−12a−16b+100=0求斜边长c的值.x+4与x轴y轴分别交于点A和点B.7.如图直线y=43(1)求A B两点的坐标;(2)过B点作直线与x轴交于点P 若∠ABP的面积为8 试求点P的坐标.(3)点M是OB上的一点若将∠ABM沿AM折叠点B恰好落在x轴上的点B1处求出点M的坐标.(4)点C在y轴上连接AC 若∠ABC是以AB为腰的等腰三角形请直接写出点C的坐标.8.定义:把斜边重合且直角顶点不重合的两个直角三角形叫做共边直角三角形.(1)概念理解:如图1 在△ABC和△DBC中∠A=90∘,AB=3,AC=4,BD=2,CD=√21说明△ABC 和△DBC是共边直角三角形.(2)问题探究:如图2 △ABC和△DBC是共边直角三角形E F分别是AD BC的中点连结EF求证EF⊥AD.(3)拓展延伸:如图3 △ABC和△DBC是共边直角三角形且BD=CD连结AD求证:AD平分∠BAC.9.【定义】如果1条线段将一个三角形分成2个等腰三角形那么这1条线段就称为这个三角形的“好线” 如果2条线段将一个三角形分成3个等腰三角形那么这2条线段就称为这个三角形的“好好线”.【理解】如图① 在△ABC中∠A=27° ∠C=72° 请你在这个三角形中画出它的“好线” 并标出等腰三角形顶角的度数.如图② 已知△ABC是一个顶角为45°的等腰三角形请你在这个三角形中画出它的“好好线” 并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中已知一个内角为24° 若它只有“好线” 请你写出这个三角形最大内角的所有可能值(按从小到大写);(2)在△ABC中∠C=27° AD和DE分别是△ABC的“好好线” 点D在BC边上点E在AB边上且AD =DC BE=DE 根据题意写出∠B的度数的所有可能值.10.【阅读】如图1 若ΔABD∽ΔACE且点B,D,C在同一直线上则我们把ΔABD与ΔACE称为旋转相似三角形.【理解】(1)如图2 ΔABC和ΔADE是等边三角形点D在边BC上连接CE.求证:ΔABD与ΔACE是旋转相似三角形.【应用】(2)如图3 ΔABD与ΔACE是旋转相似三角形AD//CE.求证:AC=DE.【拓展】(3)如图4 AC是四边形ABCD的对角线∠D=90°∠B=∠ACD BC=25AC=20AD= 16.试在边BC上确定一点E使得四边形AECD是矩形并说明理由.11.定义:如果三角形上有两点其中一点为一边的中点且这两点的连线将三角形分成周长相等的两部分我们就称这条线段为该三角形的“等分周线”.如图1 在△ABC中D是BC的中点点E在AB上若BD+BE=CD+AC+AE则DE为△ABC的一条“等分周线”.概念理解:(1)任意三角形的“等分周线”有______条若某三角形的一条“等分周线”有一个端点是三角形的顶点则这个三角形是______.规律探究:(2)如图1 在△ABC中DE为△ABC的一条“等分周线”.若AB>AC∠A=αAC=m求DE 的长.(用含mα的代数式表示).拓展应用(3)如图2 在四边形ABCD中BC=2CD AC平分∠BCD BA⊥AC点E在线段AC上连接ED EB 且AB=√3EC=√3+1∠BEC=120°求ED的长.12.(1)如图① 四边形ABCD中AB=AD ∠B=∠ADC=90°.E F分别是BC CD上的点且BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.小明同学探究此问题的方法是:延长FD到G 使DG=BE 连结AG.先证明△ABE≌△ADG再证明△AEF≌△AGF从而得出∠EAF=∠GAF 最后得出∠EAF与∠BAD之间的数量关系是.(2)将(1)中的条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②)其余条件不变上述数量关系是否成立成立请证明;不成立说明理由(3)如图③ 中俄两国海军在南海举行联合军事演习中国舰艇在指挥中心(O)北偏西30°的A处俄罗斯舰艇在指挥中心南偏东70°的B处两舰艇到指挥中心距离相等.接到行动指令后中国舰艇向正东方向以60海里/小时的速度前进俄罗斯舰艇沿北偏东50°的方向以80海里/小时的速度前进2小时后指挥中心观测到两舰艇分别到达E F处且相距280海里.求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.13.定义:如图1 点M N把线段AB分割成AM MN和BN若以AM MN BN为边的三角形是一个直角三角形则称点M N是线段AB的勾股点.已知点M N是线段AB的勾股点若AM=1 MN=2 则BN =.(1)【类比探究】如图2 DE是△ABC的中位线M N是AB边的勾股点(AM<MN<NB)连接CM CN 分别交DE于点G H.求证:G H是线段DE的勾股点.(2)【知识迁移】如图3 C D是线段AB的勾股点以CD为直径画∠O P在∠O上AC=CP连结P A PB若∠A=2∠B求∠B的度数.(x>0)上的动点直线y=−x+2与坐标轴(3)【拓展应用】如图4 点P(a b)是反比例函数y=2x分别交于A B两点过点P分别向x y轴作垂线垂足为C D且交线段AB于E F.证明:E F是线段AB的勾股点.14.【了解概念】有一组对角互余的凸四边形称为对余四边形连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图① 对余四边形ABCD中AB=5 BC=6 CD=4 连接AC.若AC=AB求sin∠CAD的值;(2)如图② 凸四边形ABCD中AD=BD AD∠BD当2CD2+CB2=CA2时判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中点A(﹣1 0)B(3 0)C(1 2)四边形ABCD是对余四边形点E=u点D的纵坐标为t请直接写出u关于t 在对余线BD上且位于∠ABC内部∠AEC=90°+∠ABC.设AEBE的函数解析式.15.定义:若四边形有一组对角互补一组邻边相等且相等邻边的夹角为直角像这样的图形称为“直角等邻对补”四边形简称“直等补”四边形根据以上定义解决下列问题:(1)如图1 正方形ABCD中E是CD上的点将ΔBCE绕B点旋转使BC与BA重合此时点E的对应点F在DA的延长线上则四边形BEDF为“直等补”四边形为什么?(2)如图2 已知四边形ABCD是“直等补”四边形AB=BC=5CD=1AD>AB点B到直线AD的距离为BE.①求BE的长.②若M N分别是AB AD边上的动点求ΔMNC周长的最小值.16.定义:在平行四边形中若有一条对角线是一边的两倍则称这个平行四边形为两倍四边形其中这条对角线叫做两倍对角线这条边叫做两倍边.如图1 四边形ABCD是平行四边形BE//AC延长DC交BE于点E连结AE交BC于点F AB=1AD=m.(1)若∠ABC=90°如图2.①当m=2时试说明四边形ABEC是两倍四边形;②是否存在值m使得四边形ABCD是两倍四边形若存在求出m的值若不存在请说明理由;(2)如图1 四边形ABCD与四边形ABEC都是两倍四边形其中BD与AE为两倍对角线AD与AC为两倍边求m的值.17.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.【问题理解】(1)如图1 点A B C在∠O上∠ABC的平分线交∠O于点D 连接AD CD.求证:四边形ABCD是等补四边形;【拓展探究】(2)如图2 在等补四边形ABCD中AB=AD 连接AC AC是否平分∠BCD?请说明理由;【升华运用】(3)如图3 在等补四边形ABCD中AB=AD 其外角∠EAD的平分线交CD的延长线于点F.若CD=6 DF =2 求AF的长.18.我们把方程(x−m)2+(y−n)2=r2称为圆心为(m,n)半径长为r的圆的标准方程.例如圆心为(1,−2)半径长为3的圆的标准方程是(x−1)2+(y+2)2=9.在平面直角坐标系中⊙C与x轴交于点A B且点B的坐标为(8,0)与y轴相切于点D(0,4)过点A B D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)求抛物线的解析式;(3)试判断直线AE与⊙C的位置关系并说明理由.19.定义:点P(a b)关于原点的对称点为P' 以PP'为边作等边∠PP'C则称点C为P的“等边对称点”;(1)若P(1 √3)求点P的“等边对称点”的坐标.(x>0)上一动点当点P的“等边对称点”点C在第四象限时(2)若P点是双曲线y=2x①如图(1)请问点C是否也会在某一函数图象上运动?如果是请求出此函数的解析式;如果不是请说明理由.②如图(2)已知点A(1 2)B(2 1)点G是线段AB上的动点点F在y轴上若以A G F C 这四个点为顶点的四边形是平行四边形时求点C的纵坐标y c的取值范围.20.【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”两条弦所在直线..的交点为等垂弦的分割点.如图① AB CD是∠O的弦AB=CD AB∠CD垂足为E则AB CD是等垂弦E为等垂弦AB CD的分割点.【数学理解】(1)如图② AB是∠O的弦作OC∠O A OD∠OB分别交∠O于点C D连接CD.求证:AB CD是∠O的等垂弦.(2)在∠O中∠O的半径为5E为等垂弦AB CD的分割点BEAE =13.求AB的长度.【问题解决】(3)AB CD是∠O的两条弦CD=12AB且CD∠AB垂足为F.①在图③中利用直尺和圆规作弦CD(保留作图痕迹不写作法).②若∠O的半径为r AB=mr(m为常数)垂足F与∠O的位置关系随m的值变化而变化直接写出点F 与∠O的位置关系及对应的m的取值范围.参考答案1.解:(1)令x−3=0和x+4=0解得:x=3和x=−4故答案为:3 ﹣4.(2)当x<−4时|x−3|+|x+4|=−(x−3)−(x+4)=−2x−1;当−4≤x<3时|x−3|+|x+4|=−(x−3)+(x+4)=7;当x≥4时|x−3|+|x+4|=x−3+x+4=2x+1综上所述|x−3|+|x+4|={−2x−1,x<−4 7,−4≤x<32x+1,x>3.(3)当x<−4时3−x−x−4=9解得x=−5;当−4≤x<3时3−x+x+4=9方程无解;当x≥3时x−3+x+4=9解得x=4;∠方程的解为x=−5或x=4.(4)|x−3|+|x+4|+|x−2|+|x−2020|中的零点值分别为:x=3,x=−4,x=2,x=2020当x<−4时|x−3|+|x+4|+|x−2|+|x−2020|=3−x−x−4−x+2−x+2020=−4x+2021;当−4≤x<2时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4−x+2−x+2020=−2x+ 2029;当2≤x≤3时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4+x−2−x+2020=2025;当3<x<2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2−x+2020=2x+ 2019;当x≥2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2+x−2020=4x−2021;显然当2≤x≤3时原式取得最小值最小值为2025故答案为:2025 2≤x≤3.2.解:(1)m3−2m2−3m+6=m2(m−2)−3(m−2)=(m−2)(m2−3);(2)x2−2xy−9+y2=x2−2xy+y2−9=(x−y)2−32=(x−y+3)(x−y−3).3.解:(1)设2x +2y =a 则原方程变为(a +3)(a −3)=27整理 得:a 2−9=27 即a 2=36解得:a =±6则2x +2y =±6∴x +y =±3;(2)令a 2+4b 2=x ab =y则原方程变为:{3x −2y =472x +y =36解之得:{x =17y =2 ∠a 2+4b 2=17 ab =2∠(a +2b )2=a 2+4ab +4b 2=17+8=25∠a +2b =±5∠1a +12b =2b+a2ab =±54; (3)由方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2 得{a 1x 2−2a 1x +a 1+b 1y =c 1a 2x 2−2a 2x +a 2+b 2y =c 2整理 得:{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2∵方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 ∴方程组{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2的解是:{(x −1)2=9y =5 ∴x −1=±3 且y =5解得:{x =4y =5 或{x =−2y =5. 4.解:(1)解不等式x 2﹣9>0 即为解(x +3)(x −3)>0根据“两数相乘 同号得正”得①{x −3>0x +3>0 或②{x −3<0x +3<0解不等式组①得 x >3解不等式组②得 x <﹣3∠原不等式的解集为x >3或x <﹣3;(2)由题得不等式x+1x−2<0根据“两数相除 同号得正 异号得负”得①{x +1>0x −2<0 或②{x +1<0x −2>0解不等式组①得−1<x<2不等式组②无解∠原不等式的解集为−1<x<2.5.解:(1)∠∠ABC=90∠BD=√AB2+BC2=√4+9=√13故答案为√13(2)∠四边形ABCD是正方形∠AB=BC,∠A=∠ABC=90°∠∠EBF+∠EBC=90°∠BE∠CF∠∠EBC+∠BCF=90°∠∠EBF=∠BCF∠∠ABE∠∠BCF(AAS)∠BE=CF 且∠CBF=90°∠四边形BCEF是准矩形;(3)∠∠ABC=90° ∠BAC=60°∠∠ACB=30°∠AB=2∠AC=4 BC=2√3准矩形ABCD中BD=AC=4①当AC=AD时则AD=AC=BD 如图1 作DE∠AB∠AE=BE=12AB=1∠DE=√AD−2AE2=√16−1=√15∠S准矩形ABCD =S△ADE+S梯形BCDE=12DE×AE+12(BC+DE )×BE=12×√15×1+12(2√3+√15)×1=√15+√3;②当CA=CD 时 则CD=CA=BD 如图2 作DF∠BC 垂足为F∠BD=CD∠BF=CF=12BC=√3∠DF=√CD 2−CF 2=√16−3=√13∠S 准矩形ABCD =S △DCF +S 梯形ABFD=12FC×DF+12(AB+DF )×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当DA=DC 如图3 取AC 中点G 连DG 则DG∠AC . 连接BG过B 作BH∠DG 垂足为H .在Rt △ABC 中 ∠ABC =90° ∠BAC =60° AB =2 G 为AC 中点∠AG=BG=12AC=AB=2∠∠ABG 为等边三角形 ∠∠BGC=120° ∠BGH=30°又BD=AC=4在Rt △BHG 中 BG=2 ∠BGH=30°∠BH=1 HG=√3在Rt △DHB 中 BH=1 BD=4∠DH=√15∠DG=DH ﹣HG=√15﹣√3∠S 准矩形ABCD =S △ABC +S △ACD=12AB×BC+12AC×DG=12×2√3×2+12×4×(√15﹣√3) =2√15;故答案为√15+√3;√39+√3;2√15.6.解:(1)∠x 2+2xy +2y 2−6y +9=0∠(x 2+2xy +y 2)+(y 2−6y +9)=0∠(x +y)2+(y −3)=20∠x +y =0,y −3=0∠x =−3,y =3(2)∠a 2+b 2−12a −16b +100=0∠(a 2−12a +36)+(b 2−16b +64)=0∠(a −6)2+(b −8)2=0∠a −6=0 b −8=0∠a =6 b =8 在Rt ∠ABC 中 ∠C =90°∠c =√a 2+b 2=√62+82=10.7.解:(1)对于y =43x +4 令y =0 即y =43x +4=0 解得x =﹣3 令x =0 则y =4 故点A B 的坐标分别为(﹣3 0) (0 4);(2)设点P (x 0)则∠ABP 的面积=12×AP ×OB =12×4×|x +3|=8 解得x =1或﹣7故点P 的坐标为(1 0)或(﹣7 0);(3)由点A B 的坐标知 OA =3 BO =4 则AB =√AO 2+BO 2=5=AB 1 故点B 1的坐标为(2 0)设点M 的坐标为(0 m )由题意得:MB =MB 1 即m 2+4=(m ﹣4)2 解得m =1.5故点M 的坐标为(0 1.5);(4)设点C (0 t )则AB =5 AC =√32+t 2当AB =BC 时 则5=|t ﹣4| 解得t =9或﹣1当AB =AC 时 即25=9+t 2 解得t =4(舍去)或﹣4故点C 的坐标为(0 9)或(0 ﹣1)或(0 ﹣4).8.解:(1)∠在△ABC 中∠BC=√32+42=5∠BD =2,CD =√21∠BD 2+CD 2=25=BC 2∠∠BCD 是直角三角形∠△ABC 和△DBC 是共边直角三角形.(2)如图 连接AE,DE∠E 点是BC 中点∠AE,DE 分别是Rt∠ABC 和Rt∠DBC 斜边上的中线∠AE=12BC DE=12BC ∠AE=DE∠∠ADE 是等腰三角形∠F 点是AD 中点∠EF∠AD ;(3)作DN∠AB DM∠AC 的延长线于M 点∠∠BAC=90°∠四边形ANDM 是矩形∠∠NDM=90°∠∠NDC+∠CDM=90°又∠BDC=90°∠∠NDC+∠BDN=90°∠∠BDN= CDM∠∠BND=∠CMD=90° BD=CD∠∠BDN∠∠CDM∠DN=DM∠AD平分∠BAC.9.解:(理解)如图① 如图②所示(应用)(1)①如图③当∠B=24° AD为“好线”则A C=AD=BD这个三角形最大内角是∠BAC=106°;②如图④当∠B=24° AD为“好线”则AB=AD AD=CD 这个三角形最大内角是∠BAC=144°;③如图⑤当∠ABC=24°时BD为“好线”则AD=BD CD=BC 故这个三角形最大内角是∠C=148°④如图⑥ 当∠B=24°时CD为“好线”则AD=CD=BC 故这个三角形最大内角是∠ACB=117°⑤如图⑦ 当∠B=24°时CD为“好线”则AD=AC CD=BD 故这个三角形最大内角是∠ACB=70°⑥如图⑧ 当∠B=24°时AD为“好线”则AB=BD AD=CD 故这个三角形最大内角是∠BAC=117°上所述这个三角形最大内角的所有可能值是70°或106°或117或144°或148°故答案为70°或106°或117或144°或148°;(2)设∠B=x°①当AD=DE时如图1(a)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠DAE=2x°∠27×2+2x+x=180∠x=42∠∠B=42°;②当AD=AE时如图1(b)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠ADE=2x°∠2x+x=27+27∠x=18∠∠B=18°.③当EA=DE时∠90﹣x+27+27+x=180∠x不存在应舍去.综合上述:满足条件的x=42°或18°.10.(1)证明:ΔABC和ΔADE是等边三角形∠AB=AC AD=AE∠BAC=∠DAE=60°∠AB AD =ACAE∠BAD=∠CAE∠ΔABD∽ΔACE又∠点B,D,C在同一直线∠ΔABD和ΔACE是旋转相似三角形.(2)证明:∠ΔABD与ΔACE是旋转相似三角形∠ΔABD∽ΔACE∠AB AC =ADAE∠BAD=∠CAE∠B=∠ACE∠∠BAC=∠DAE∠ΔABC∽Δ∠ADE∠∠B=∠ADE∠AED=∠ACB ∠ ∠ADE=∠ACE.∠AD//CE∠∠ADE=∠DEC∠ ∠ACE=∠DEC.∠∠AED=∠ACB∠∠AEC=∠DCE.又∠CE=CE∠ΔAEC≌ΔDCE(ASA)∠AC=DE.(3)解:如图过点A作AE⊥BC垂足为E连接DE.∠∠AEB=∠ADC=90°∠B=∠ACD∠ ΔABE∽ΔACD∠AB AC =AEAD∠BAE=∠CAD∠∠BAC=∠EAD ∠ΔABC∽ΔAED∠BC DE =ACAD∠ 25DE =2016∠DE=20.∠ΔABE∽ΔACD∠AE AD =BECD∠AE BE =√202−162=43.设AE=4k则BE=3k CE=25−3k在ΔACE中(4k)2+(25−3k)2=202解得k=3∠AE=12.又AD=16DE=20∠ΔADE是直角三角形∠DAE=90°.又∠AEC=∠ADC=90°∠四边形AECD是矩形.11.解:(1)∠任意三角形有三条边∠任意三角形有三条“等分周线”∠某三角形的一条“等分周线”有一个端点是三角形的顶点而另一点为一边的中点且将三角形的周长分为相等的两部分∠这个三角形是等腰三角形故答案为:3 等腰三角形;(2)延长BA 使AF=AC 连接CF 过点A 作AG∠CF 于G则∠ACF 为等腰三角形∠CG=GF=12CF ∠AGC=90° ∠ACF=∠AFC∠∠A =α 即∠BAC =α又∠BAC=∠ACF+∠AFC∠∠ACF=∠AFC=12∠BAC=12α∠ED 为∠ABC 的“等分周线”∠EB+BD=CD+CA+AE 又BD=CD∠EB=CA+AE=AF+AE=EF∠点E 为BF 的中点∠DE=12CF=CG在Rt∠AGC 中 ∠ACF=12α AC=m∠CG=m·cos 12α∠DE= m·cos 12α;(3)取BC 的中点F 连接EF 则BF=FC∠∠BEC=120°∠∠BEA=60°∠BA∠AC∠在Rt∠ABE 中 ∠ABE=30°∠AE=AB tan60∘=√3√3=1 BE=2AE=2∠EC =√3+1∠AB +AE =√3+1=EC∠BF=FC∠AB+AE+BF=CE+CF∠EF是∠ABC的一条“等分周线”由(2)知EF=AB·cos12∠BAC=√3cos45∘=√62∠BC=2CD∠CD=CF又∠AC平分∠BCD∠∠FCE=∠DCE 又CE=CE∠∠FCE∠∠DCE(SAS),∠ED=EF=√62.12.解:(1)如图① 延长FD到G 使DG=BE 连结AG.在∠ABE和∠ADG中AB=AD BE=DG ∠B=∠ADG=90°∠∠ABE∠∠ADG ∠AE=AG在∠AEF和∠AGF中AE=AG AF=AF EF=BE+FD=DG+FD=GF ∠∠AEF∠∠AGF ∠∠EAF=∠GAF=∠GAD+∠DAF=∠EAB+∠DAF∠∠BAD=∠EAF+∠EAB+∠DAF=2∠EAF∠∠EAF=12∠BAD(2)∠EAF=12∠BAD仍然成立.证明:如图② 延长FD到G 使DG=BE 连接AG.∠∠B+∠ADC=180° ∠ADC+∠ADG=180° ∠∠B=∠ADG∠∠ABE∠∠ADG(SAS).∠AE=AG ∠BAE=∠DAG.又∠EF=BE+DF DG=BE ∠EF=DG+DF=GF.∠∠AEF∠∠AGF(SSS).∠∠EAF=∠GAF.又∠∠GAF=∠DAG+∠DAF ∠∠EAF=∠DAG+∠DAF=∠BAE+∠DAF.而∠EAF+∠BAE+∠DAF=∠BAD∠∠EAF=1∠BAD2(3)如图③ 连接EF 延长AE BF相交于点C.∠2小时后舰艇甲行驶了120海里舰艇乙行驶了160海里即AE=120 BF=160.而EF=280 ∠在四边形AOBC中有EF=AE+BF又∠OA=OB 且∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°∠符合(2)中的条件.∠AOB =70°.又∠∠AOB=30°+90°+(90°﹣70°)=140° ∠∠EOF=12答:此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小为70°.13.解:定义:∠点M N是线段AB的勾股点∠BN=√AM2+MN2=√5或BN=√MN2−AM2=√3∠BN=√3或√5.(1)如图∠CD =DA CE =EB∠DE ∠AB∠CG =GM CH =HN∠DG =12AM GH =12MN EH =12BN ∠BN 2=MN 2+AM 2∠14BN 2=14MN 2+14AM 2 ∠(12BN )2=(12MN )2+(12AM )2∠EH 2=GH 2+DG 2∠G H 是线段DE 的勾股点.(2)如图所示 连接PD∠AC =PC∠∠A =∠APC∠∠PCD =2∠A∠C D 是线段AB 的勾股点∠AC 2+BD 2=CD 2∠PC 2+BD 2=CD 2∠CD 是∠O 的直径∠∠CPD =90°∠PC 2+PD 2=CD 2∠PD=BD∠∠PDC=2∠B∠∠A=2∠B∠∠PDC=∠A在Rt∠PCD中∠∠PCD+∠PDC=90°∠2∠A+∠A=90°解得∠A=30°则∠B=12∠A=15°.(3)∠点P(a b)是反比例函数y=2x(x>0)上的动点∠b=2a.∠直线y=﹣x+2与坐标轴分别交于A B两点∠点B的坐标为(0 2)点A的坐标为(2 0);当x=a时y=﹣x+2=2﹣a∠点E的坐标为(a2﹣a);当y=2a 时有﹣x+2=2a解得:x=2﹣2a∠点F的坐标为(2﹣2a 2a ).∠BF=√(2−2a −0)2+(2a−2)2=√2(2﹣2a)EF=√(2−2a −a)2+[2a−(2−a)]2,=√2|2﹣a﹣2a| AE=√(2−a)2+[0−(2−a)]2=√2(2﹣a).∠BF2+AE2=16+2a2﹣8a+8a2﹣16a=EF2∠以BF AE EF为边的三角形是一个直角三角形∠E F是线段AB的勾股点.14.解:(1)过点A作AE∠BC于E 过点C作CF∠AD于F.∠AC=AB∠BE=CE=3在Rt∠AEB中AE=√AB2−BE2=√52−32=4∠CF∠AD∠∠D+∠FCD=90°∠∠B+∠D=90°∠∠B=∠DCF∠∠AEB=∠CFD=90°∠∠AEB∠∠DFC∠EB CF =ABCD∠3 CF =54∠CF=125∠sin∠CAD=CFAC =1255=1225.(2)如图②中结论:四边形ABCD是对余四边形.理由:过点D作DM∠DC 使得DM=DC 连接CM.∠四边形ABCD中AD=BD AD∠BD∠∠DAB=∠DBA=45°∠∠DCM=∠DMC=45°∠∠CDM=∠ADB=90°∠∠ADC=∠BDM∠AD=DB CD=DM∠∠ADC∠∠BDM(SAS)∠AC=BM∠2CD2+CB2=CA2CM2=DM2+CD2=2CD2∠CM2+CB2=BM2∠∠BCM=90°∠∠DCB=45°∠∠DAB+∠DCB=90°∠四边形ABCD是对余四边形.(3)如图③中过点D作DH∠x轴于H.∠A(﹣1 0)B(3 0)C(1 2)∠OA=1 OB=3 AB=4 AC=BC=2√2∠AC2+BC2=AB2∠∠ACB=90°∠∠CBA=∠CAB=45°∠四边形ABCD是对余四边形∠∠ADC+∠ABC=90°∠∠ADC=45°∠∠AEC=90°+∠ABC=135°∠∠ADC+∠AEC=180°∠A D C E四点共圆∠∠ACE=∠ADE∠∠CAE+∠ACE=∠CAE+∠EAB=45°∠∠EAB=∠ACE∠∠EAB=∠ADB∠∠ABE=∠DBA∠∠ABE∠∠DBA∠BE AB =AEAD∠AE BE =ADAB∠u=AD4设D(x t)由(2)可知BD2=2CD2+AD2∠(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2整理得(x+1)2=4t﹣t2在Rt∠ADH中AD=√AH2+AD2=√(x+1)2+t2=2√t∠u=AD4=√t2(0<t<4)即u=√t2(0<t<4).15.解:(1)如图1由旋转的性质得:∠F=∠BEC ∠ABF=∠CBE BF=BE ∠∠BEC+∠BED=180° ∠CBE+∠ABE=90°∠∠F+∠BED=180°∠ABF+∠ABE=90°即∠FBE=90°故满足“直等补”四边形的定义∠四边形BEDF为“直等补”四边形;(2)∠四边形ABCD是“直等补”四边形AB=BC∠∠A+∠BCD=180° ∠ABC=∠D=90°如图2 将∠ABE绕点B顺时针旋转90°得到∠CBF则∠F=∠AEB=90° ∠BCF+∠BCD=180° BF=BE∠D C F共线∠四边形EBFD是正方形∠BE=FD设BE=x 则CF=x-1在Rt∠BFC中BC=5由勾股定理得:x2+(x−1)2=25即x2−x−12=0解得:x=4或x=﹣3(舍去)∠BE=4(3)如图3 延长CD到P 使DP=CD=1 延长CB到T 使TB=BC=5,则NP=NC MT=MC,∠∠MNC的周长=MC+MN+NC=MT+MN+NP≥PT当T M N P共线时∠MNC的周长取得最小值PT过P作PH∠BC 交BC延长线于H∠∠F=∠PHC=90°,∠BCF=∠PCH,∠∠BCF∠∠PCH,∠BC PC =BFPH=CFCH,即52=4PH=3CH解得:CH=65,PH=85,在Rt∠PHT中TH=5+5+65=565,PT =√PH 2+HT 2=8√2,∠ΔMNC 周长的最小值为8√2.16.(1)①证明:∠四边形ABCD 是平行四边形∠AB∠CD BC=AD=2∠BE//AC AB∠CE∠四边形ABEC 是平行四边形 BC =2AB∴四边形ABEC 是两倍四边形;②存在 理由如下:当AC=2AB 时 则AC=2∠∠ABC =90° ∠BC =√AC 2−AB 2=√22−12=√3,∠m=AD=BC=√3;当AC=2AD 时 则AC=2m∠m 2+12=(2m)2解得m=√33或m=-√33(舍去)∠m 的值为√3或√33时 四边形ABCD 是两倍四边形;(2)∠四边形ABCD 是两倍四边形 BD 为两倍对角线 AD 为两倍边∠AD=DG∠∠DAG=∠AGD∠四边形ABEC 是两倍四边形 AE 为两倍对角线 AC 为两倍边∠AC=AF∠∠ACF=∠AFC又∠∠DAG=∠ACF∠∠DAG=∠AGD=∠ACF=∠AFC ∠∠ADG=∠CAF又∠ADBD =12ACAE=12∠AD BD =ACAE∠∠ADB∠∠ACE又∠AB=CE∠相似比为1∠∠ADB∠∠ACE∠AC=AD作DM∠AC于M 如图1设AM=x 则AC=AD=4x在Rt∠ADM中由勾股定理得:DM=√15x在Rt∠DMC中由勾股定理得:CD=2√6x∠CD=AB=1∠ 2√6x=1∠x=√612∠AD=4x=√63即m=√63.17.(1)证明:∠四边形ABCD为圆内接四边形∠∠A+∠C=180° ∠ABC+∠ADC=180°.∠BD平分∠ABC∠∠ABD=∠CBD∠弧AD=弧CD∠AD=CD∠四边形ABCD是等补四边形(2)AC平分∠BCD 理由如下:过点A作AE∠BC于E AF∠CD于F则∠AEB=∠AFD=90°∠四边形ABCD是等补四边形∠∠ADC+∠B=180°又∠∠ADC+∠ADF=180°∠∠B=∠ADF在∠AFD与∠AEB中{∠ADF=∠B ∠AEB=∠AFD AB=AD∠ΔAFD∠ΔAEB∠AE=AF∠点A一定在∠BCD的平分线上即AC平分∠BCD.(3)连接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=12∠BCD同理∠FAD=12∠EAD∠∠FCA=∠FAD.又∠∠F=∠F∠∠FAD∠∠FCA∠AF DF =CFAF即AF2=DF⋅CF=DF(DF+CF)=2×(2+6)=16∠AF=418.解:(1)如图连接CD CB 过点C作CM∠AB于M 设∠C的半径为r.∠与y轴相切于点D(0 4)∠CD∠OD∠∠CDO=∠CMO=∠DOM=90°∠四边形ODCM是矩形∠CM=OD=4 CD=OM=r∠B(8 0)∠OB=8 ∠BM=8-r在Rt∠CMB中∠BC2=BM2+CM2∠ r2=42+(8−r)2解得r=5 ∠C (5 4)∠∠C 的标准方程为(x −5)2+(y −4)2=25.(2)连接AC CE .∠CM∠AB ∠AM=BM=3 ∠A (2 0) B (8 0)∠可设抛物线的解析式为y=a (x -2)(x -8)把D (0 4)代入y=a (x -2)(x -8) 可得a=14 ∠抛物线的解析式为y=14(x -2)(x -8)=14x 2−52x +4=14(x −5)2−94;(3)结论:AE 是∠C 的切线.理由:由(2)可得抛物线的顶点E (5 −94) ∠AE=√(5−2)2+(−94)2=154 CE= 4−(−94)=4+94=254 AC=5∠CE 2=AC 2+AE 2 ∠∠CAE=90° ∠CA∠AE∠AE 是∠C 的切线.19.解:(1)∠P (1 √3)∠P '(﹣1 ﹣√3)∠PP '=4设C (m n )∠等边∠PP ′C∠PC =P 'C =4∠√(m −1)2+(n −√3)2=√(m +1)2+(n +√3)2=4∠m =﹣√3n∠(﹣√3n ﹣1)2+(n ﹣√3)2=16.解得n =√3或﹣√3∠m =﹣3或m =3.如图1 观察点C 位于第四象限 则C (﹣3 √3).即点P 的“等边对称点”的坐标是(3 √3).(2)①设P (c 2c )∠P '(﹣c ﹣2c )∠PP'=2√c2+4c2设C(s t)PC=P'C=2√c2+4c2∠√(s−c)2+(t−2c )2=√(s+c)2+(t+2c)2=2√c2+4c2∠s=﹣2tc2∠t2=3c2∠t=±√3c∠C(﹣2√3c √3c)或C(2√3c﹣√3c)∠点C在第四象限c>0∠C(2√3c﹣√3c)令{x=2√3cy=−√3c∠xy=﹣6 即y=﹣6x(x>0);②当AG为平行四边形的边时G与B重合时为一临界点通过平移可求得C(1 ﹣6)∠y c≤﹣6;当AG为平行四边形的对角线时G与B重合时求得C(3 ﹣2)G与A重合时C(2 ﹣3)此时﹣3<y c≤﹣2综上所述:y c≤﹣6或﹣3<y c≤﹣2.20.解:(1)如图① 连接BC∠OC∠O A OD∠OB∠∠AOC=∠BOD=90°∠∠AOB=∠COD∠AB=CD∠AC=AC∠∠ABC=1∠AOC=45°.2∠BOD=45°同理∠∠BCD=12∠∠AEC=∠ABC+∠BCD=90°即AB∠CD∠AB=CD AB∠CD∠ AB CD是∠O的等垂弦.(2)如图② 若点E在∠O内作OH∠AB垂足为H作OG∠CD垂足为G∠AB CD是∠O的等垂弦∠AB=CD AB∠CDAB OA=OD∠AHO=∠DGO∠AH=DG=12∠∠AHO∠∠DGO∠OH=OG∠矩形OHEG为正方形∠OH=HE .∠BE AE =13又AH=BH∠AH=2BE=2OH在Rt∠AOH中AO2=AH2+OH2.即(2OH)2+OH2=AO2=25解得OH=√5则AB=4HE=4√5;若点E在∠O外同理AH=√5则AB=2AH=2√5.(3)①如图所示弦CD即为所求;②∠AB是∠O的弦∠AB≤2r 即m≤2当点F在圆上时如图所示此时AB=mr CD=mr2AD=2r由勾股定理得(mr)2+(mr2)2=(2r)2解得m=45√5因此当0<m<45√5时点F在∠O外;当m=45√5时点F在∠O上;当45√5<m≤2时点F在∠O内.。
(完整版)中考数学阅读理解题试题练习题
中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)
中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
(完整版)中考数学阅读理解题试题练习题
中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。
2019届初三数学中考复习 阅读理解型问题 专项训练 含答案.doc
2019届初三数学中考复习 阅读理解型问题 专项训练1. 定义新运算:a*b =a(1-b).若a ,b 是方程x 2-x +14m =0(m <0)的两根,则b*b -a*a 的值为( )A .0B .1C .2D .与m 有关2. 已知点A 在函数y 1=-1x (x >0)的图象上,点B 在直线y 2=kx +1+k(k 为常数,且k≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1,y 2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( ) A .有1对或2对 B .只有1对 C .只有2对 D .有2对或3对3. 若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图,如果扇形AOB 与扇形A 1O 1B 1是相似扇形,且半径OA∶O 1A 1=k(k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A 1O 1B 1;②△AOB∽△A 1O 1B 1;③ABA 1B 1=k ;④扇形AOB 与扇形A 1O 1B 1的面积之比为k 2.成立的个数为( )A.1个 B.2个 C.3个 D.4个4. 我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.(a+b)0①(a+b)1①①(a+b)2①②①(a+b)3①③③①(a+b)4①④⑥④①(a+b)5①⑤⑩⑩⑤①……根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为( ) A.2017 B.2016 C.191 D.1905. 对于实数a,b,定义一种新运算“⊗”为a⊗b=a2+ab-2.有下列命题:①1⊗3=2;②关于x的方程x⊗1=0的根为x1=-2,x2=1;③不等式组⎩⎪⎨⎪⎧(-2)⊗x -4<0,1⊗x -3<0的解集为-1<x <4;④点(12,52)在函数y =x ⊗(-1)的图象上.其中正确的是( )A .①②③④B .①③C .①②③D .③④6. 若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( ) A.12 B.23 C.25 D.357.“如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根”.请根据你对这句话的理解,解决下面问题:若m ,n(m <n)是关于x 的方程1-(x -a)(x -b)=0的两根,且a <b ,则a ,b ,m ,n 的大小关系是( )A .m <a <b <nB .a <m <n <bC .a <m <b <nD .m <a <n <b8.对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a<b 时,max{a ,b}=b ;如:max{4,-2}=4,max{3,3}=3,若关于x 的函数为y =max{x +3,-x +1},则该函数的最小值是( ) A .0 B .2 C .3 D .49.定义新运算:a ⊗b =⎩⎪⎨⎪⎧ab(b >0),-ab (b <0),例如:4⊗5=45,4⊗(-5)=45,则函数y=2⊗x (x≠0)的图象大致是( )10. 阅读理解:如图①,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox上,则正六边形的顶点C的极坐标应记为( )A.(60°,4) B.(45°,4) C.(60°,22) D.(50°,22) 11. 实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM·AB,BN2=AN·AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b-a=2时,a,b的大黄金数与小黄金数之差m-n=__________.12. 阅读材料并解决问题:求1+2+22+23+…+22 014的值,令S=1+2+22+23+…+22 014,等式两边同时乘以2,则2S=2+22+23+…+22 014+22 015,两式相减:得2S-S=22 015-1,所以S=22 015-1.根据以上计算方法,计算1+3+32+33+…+32 015=____.13.阅读材料:设→,a)=(x1,y1),→,b)=(x2,y2),→,a)∥→,b),则x1·y2=x2·y1.根据该材料填空:已知→,a)=(2,3),→,b)=(4,m),且→,a)∥→,b),则m=____.14.我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4,一次函数y =kx+2与它的交换函数图象的交点横坐标为____.15.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的牌面上的数为x,淇淇猜中的结果应为y,则y=____.16. 高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如[2.3]=2,[-1.5]=-2,则下列结论:①[-2.1]+[1]=-2;②[x]+[-x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当-1≤x≤1时,[x+1]+[-x+1]的值为0,1,2.其中正确的结论有_______(写出所有正确结论的序号).17. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图甲,在等腰直角四边形ABCD中,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图乙,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP =2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.18. 阅读下列材料:解答“已知x-y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:∵x-y=2,∴x=y+2.又∵x>1,∴y+2>1,∴y>-1.又∵y<0,∴-1<y<0.①同理,得1<x<2.②由①+②,得-1+1<y+x<0+2,∴x+y 的取值范围是0<x +y <2. 请按照上述方法,完成下列问题:(1)已知x -y =3,且x >2,y <1,求x +y 的取值范围;(2)已知y >1,x <-1,若x -y =a(a <-2)成立,求x +y 的取值范围(结果用含a 的式子表示).19. 对于函数y =x n +x m ,我们定义y′=nx n -1+mx m -1(m ,n 为常数),例如y =x 4+x 2,则y′=4x 3+2x.已知:y =13x 3+(m -1)x 2+m 2x.(1)若方程y′=0有两个相等的实数根,则m 的值为____; (2)若方程y′=m -14有两个正数根,求m 的取值范围.20.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.(1)在跑步的全过程中,甲共跑了____米,甲的速度为____米/秒;(2)乙在途中等候甲用了多少时间?(3)甲出发多长时间第一次被乙追上?此时乙跑了多少米?21.如图,某日的钱塘江观测信息如下:2018年×月×日,天气:阴;能见度:1.8千米.11:40时,甲地“交叉潮”形成,潮水匀速奔向乙地.12:10时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西.12:35时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=1125 t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+2125(t -30),v0是加速前的速度).22. 我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.(1)如图甲,已知四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数;(2)在探究等对角四边形的性质时:①小红画了一个等对角四边形ABCD(如图乙),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立,请你证明此结论;②由此小红猜想:“对于任意等对角四边形,当一组邻边相等时,另一组邻边也相等”;你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例. (3)在等对角四边形ABCD 中,∠DAB=60°,∠ABC=90°,AB =5,AD =4,求对角线AC 的长.23. 阅读下列材料,然后解答下面的问题:我们知道方程2x +3y =12有无数组解,但在实际生活中,我们往往只需要求出其正整数解,例:由2x +3y =12,得y =12-2x 3=4-23x(x ,y 为正整数),而⎩⎪⎨⎪⎧x >0,4-23x >0,则有0<x <6,又y =4-23x 为正整数,则23x 为正整数,由2与3互质,可知x 为3的倍数,从而x =3,则y =4-23x =2.所以,2x +3y =12的正整数解为⎩⎪⎨⎪⎧x =3,y =2.参考答案:1---10 AADDC CABDA 11. 25-4 12. 32 016-1213. 6 14. 1 15. 3 16. ①③17. 解:(1)①∵AB=BC =CD =1,AB ∥CD ,∠ABC =90°,∴四边形ABCD 是正方形.∴BD =AC =12+12= 2.②连结AC ,BD ,∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD.又∵BD =BD ,∴△ABD≌△CBD,∴AD =CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE 不是等腰直角四边形,不符合条件.若EF 与BC 不垂直,当AE =AB 时,此时四边形ABFE 是等腰直角四边形,∴AE=AB =5. 当BF =AB 时,此时四边形ABFE 是等腰直角四边形,∴BF=AB =5. ∵DE∥BF,∴DE∶BF=PD∶PB=1∶2,∴DE=2.5,∴AE=9-2.5=6.5. 综上所述,满足条件的AE 的长为5或6.5.18. 解:(1)∵x-y =3,∴x=y +3.又∵x >2,∴y+3>2,∴y>-1.又∵y <1,∴-1<y <1.①同理,得2<x <4.②由①+②,得-1+2<y +x <1+4,∴x+y 的取值范围是1<x +y <5.(2)∵x-y =a ,∴x=y +a ,又∵x <-1,∴y+a <-1,∴y<-a -1.又∵y >1,a <-2,∴1<y <-a -1.①同理,得a +1<x <-1.②由①+②,得1+a +1<y +a <-a -1+(-1),∴x+y 的取值范围是a +2<x +y <-a -2. 19. 解:(1) 12(2) y′=m -14,即x 2+2(m -1)x +m 2=m -14,化简,得:x 2+2(m -1)x +m 2-m+14=0.∵方程有两个正数根,∴2(m -1)<0,m 2-m +14>0,[-2(m -1)]2-4(m 2-m +14)≥0,解得m ≤34,且m≠12.20. 解:(1) 900 1.5(2)甲跑500秒时的路程是:500×1.5=750(米),则CD 段的长是900-750=150(米),时间是560-500=60(秒),则速度是150÷60=2.5(米/秒).甲跑150米用的时间是150÷1.5=100(秒),则甲比乙早出发100秒,乙跑750米用的时间是750÷2.5=300(秒),则乙在途中等候甲用的时间是500÷300-100=100(秒).(3)甲每跑1.5米,则甲的路程与时间的函数关系式是y =1.5x.乙晚跑100秒,且每秒跑2.5米,则AB 段的函数表达式是y =2.5(x -100),根据题意得1.5x =2.5(x -100),解得:x =250秒,乙的路程是2.5×(250-100)=375(米). 21. 解:(1)12时10分-11时40分=30分,12÷30=0.4(千米/分).∴m 的值为30.潮头从甲地到乙地的速度为0.4千米/分.(2)0.4×(30+40-59)=4.4(千米),4.4÷(0.4+0.48)=5(分钟).即小红出发五分钟后与潮头相遇.(3)将B(30,0),C(55,15)代入s =1125t 2+bt +c 中,求得b =-225,c =-245,∴曲线BC 的函数表达式为s =1125t 2-225t -245.令0.4+2125(t -30)=0.48,解得t =35,当t =35时,s =2.2.根据题意,得1125t 2-225t -245-0.48(t -35)-2.2=1.8,∴t 2-70t +1 000=0,解得t 1=50,t 2=20(不合题意,舍去).小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,∴共需时间为6+50-30=26(分钟).22. (1) 解:∠A≠∠C,∴∠D=∠B =80°, ∠C=360°-∠A -∠B -∠D =130°.(2) 解:①如图甲,连结BD ,∵AB=AD ,∴∠ABD=∠ADB.∵∠ABC=∠ADC ,∴∠ABC-∠ABD =∠ADC -∠ADB.∴∠CBD=∠CDB ,∴CB=CD.②不正确.反例:如图乙,∠A=∠C=90°,AB=AD,但BC≠CD.图甲图乙(3) 解:如图丙,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E.∵∠ABC =90°,∠DAB=60°,AB=5,∴AE=10,∠E=30°.∴DE=AE-AD=10-4=6.∵∠EDC=90°,∠E=30°,∴CD=23.∴AC=AD2+CD2=42+(23)2=27.如图丁,当∠BCD=∠DAB=60°时,过点D分别作DE⊥AB于点E,DF⊥BC于点F.∵DE⊥AB,∠DAB=60°,AD=4,∴AE=2,DE=23.∴BE=AB-AE=3.∵易得四边形BFDE是矩形,∴DF=BE=3,BF=DE=23.∵∠BCD=60°,∴CF=3.∴BC=CF+BF=3 3.∴AC=AB2+BC2=52+(33)2=213.综上所述,对角线AC的长为27或213.23. 解:(1)⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =1.(2) C(3) 解:设购买笔记本x 本,钢笔y 支,则3x +5y =35,5y =35-3x ,y =7-35x.∵x ,y 为正整数,∴⎩⎪⎨⎪⎧x >0,7-35x >0,解得0<x <1123,且x 为5的整数倍,∴x可取5,10,相应的y 的值分别为4,1,∴正整数解为⎩⎪⎨⎪⎧x =5,y =4或⎩⎪⎨⎪⎧x =10,y =1.答:共有两种购买方案:买5本笔记本,4支钢笔或10本笔记本,1支钢笔.。
2019年中考数学二轮复习真题演练:阅读理解型问题(含答案)
二轮复习真题演练阅读理解型问题1.(2018•义乌)在义乌市中小学生“我的中国梦”读数活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的学生有人,最喜爱甲类图书的人数占本次被调查人数的 %;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?1.解:(1)共调查的学生数:40÷20%=200(人);(2)最喜爱丁类图书的学生数:200-80-65-40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.2.(2018•天门)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占15,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料? 2.解:(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1-10%-30%-54%=6%,∴有害垃圾为:50×6%=3吨;(3)5000×54%×15×0.7=378(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.3.(2018•河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.3.解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②x=4458667220⨯+⨯+⨯+⨯=5.3,估计260名学生共植树5.3×260=1378(颗).4.(2018•海南)如图,在正方形格中,△ABC各顶点都在格点上,点A,C的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是 ;点C 2的坐标是 ;过C 、C 1、C 2三点的圆的圆弧¼12CC C 的长是 (保留π4.解:(1)△A 1B 1C 1如图所示;(2)△A 2B 2C 2如图所示;(3)C 1(1,4),C 2(1,-4),根据勾股定理,过C 、C 1、C 2三点的圆的圆弧是以CC 2为直径的半圆,¼12CC C 的长π.故答案为:(1,4);(1,-4).5.(2018•龙岩)如图①,在矩形纸片ABCD 中,,(1)如图②,将矩形纸片向上方翻折,使点D 恰好落在AB 边上的D′处,压平折痕交CD 于点E ,则折痕AE 的长为 ;(2)如图③,再将四边形BCED′沿D′E 向左翻折,压平后得四边形B′C′ED′,B′C′交AE 于点F ,则四边形B′FED′的面积为 ; (3)如图④,将图②中的△AED′绕点E 顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B ,求弧D′D″的长.(结果保留π)5.解:(1)∵△ADE 反折后与△AD′E 重合,∴==(2)∵由(1)知 ∴BD′=1,∵将四边形BCED′沿D′E 向左翻折,压平后得四边形B′C′ED′, ∴B′D′=BD′=1,∵由(1)知 ∴四边形ADED′是正方形,,∴S 梯形B′FED′=12(B′F+D′E)•B′D′=1212;(3)∵∠C=90°,EC=1,∴tan ∠BEC=BCCE= ∴∠BEC=60°,由翻折可知:∠DEA=45°, ∴∠AEA′=75°=∠D′ED″,∴¼DD '''=75360•2π12.6.(2018•北京)第九届中国国际园林博览会(园博会)已于2019年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为 平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据; (3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2019年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).则牡丹园的面积为:15%×0.0420%=0.03(平方千米); (2)植物花园的总面积为:0.04÷20%=0.2(平方千米), 则第九届园博会会园区陆地面积为:0.2×18=3.6(平方千米), 第七、八界园博会的水面面积之和=1+0.5=1.5(平方千米), 则水面面积为1.5平方千米, 如图:;(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,[ww~w.z%^z&.c@om] 则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3700. 故答案为:0.03;3700. 7.(2018•六盘水)(1)观察发现 如图(1):若点A 、B 在直线m 同侧,在直线m 上找一点P ,使AP+BP 的值最小,做法如下: 作点B 关于直线m 的对称点B′,连接AB′,与直线m 的交点就是所求的点P ,线段AB′的长度即为AP+BP 的最小值.如图(2):在等边三角形ABC 中,AB=2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP+PE 的值最小,做法如下:作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求的点P ,故BP+PE 的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,»AC的度数为60°,点B是»AC的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸]如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法.7.解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=12∠BCA=30°,BE=1,∴(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵»AC的度数为60°,点B是»AC的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴∵AE的长就是BP+AP的最小值.(3)拓展延伸如图(4).8.(2018•盐城)阅读材料如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.解决问题(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出BF CD的值(用含α的式子表示出来)8.解:(1)猜想:BF=CD .理由如下: 如答图②所示,连接OC 、OD .∵△ABC 为等腰直角三角形,点O 为斜边AB 的中点, ∴OB=OC ,∠BOC=90°.∵△DEF 为等腰直角三角形,点O 为斜边EF 的中点, ∴OF=OD ,∠DOF=90°.∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF , ∴∠BOF=∠COD .∵在△BOF 与△COD 中,OB OC BOF COD OF OD =⎧⎪∠=∠⎨⎪=⎩, ∴△BOF ≌△COD (SAS ), ∴BF=CD . (2)答:(1)中的结论不成立. 如答图③所示,连接OC 、OD .∵△ABC 为等边三角形,点O 为边AB 的中点, ∴OB OC,∠BOC=90°. ∵△DEF 为等边三角形,点O 为边EF 的中点,∴OF OD=tan30°=3,∠DOF=90°. ∴OB OF OC OD =∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF , ∴∠BOF=∠COD .在△BOF 与△COD 中, ∵OB OF OC OD =BOF=∠COD ,∴△BOF ∽△COD ,∴BF CD =. (3)如答图④所示,连接OC 、OD .∵△ABC 为等腰三角形,点O 为底边AB 的中点, ∴OB OC =tan 2α,∠BOC=90°. ∵△DEF 为等腰三角形,点O 为底边EF 的中点,∴OF OD =tan 2α,∠DOF=90°. ∴OB OF OC OD ==tan 2α. ∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF , ∴∠BOF=∠COD .在△BOF 与△COD 中, ∵OB OF OC OD ==tan 2α,∠BOF=∠COD , ∴△BOF ∽△COD , ∴2BF CD α=. 9.(2018•日照)问题背景: 如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B′,连接A B′与直线l 交于点C ,则点C 即为所求.(1)实践运用: 如图(b ),已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为 . (2)知识拓展: 如图(c ),在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 于点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程. 9.解:(1)如图,作点B 关于CD 的对称点E ,连接AE 交CD 于点P , 此时PA+PB 最小,且等于AE . 作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=即AP+BP的最小值是故答案为:(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×2∴BE+EF的最小值为10.(2018•衢州)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.10.(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN ,∵在△BAM 和△CAN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩, ∴△BAM ≌△CAN (SAS ), ∴∠ABC=∠ACN .(2)解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC 、△AMN 是等边三角形, ∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°, ∴∠BAM=∠CAN ,∵在△BAM 和△CAN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩, ∴△BAM ≌△CAN (SAS ), ∴∠ABC=∠ACN .(3)解:∠ABC=∠ACN .理由如下:∵BA=BC ,MA=MN ,顶角∠ABC=∠AMN , ∴底角∠BAC=∠MAN , ∴△ABC ∽△AMN , ∴AB ACAM AN=, 又∵∠BAM=∠BAC-∠MAC ,∠CAN=∠MAN-∠MAC , ∴∠BAM=∠CAN , ∴△BAM ∽△CAN , ∴∠ABC=∠ACN . 11.(2018•咸宁)阅读理解:如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2,在矩形ABCD 中,AB=5,BC=2,且A ,B ,C ,D 四点均在正方形格(格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个强相似点E ; 拓展探究:(3)如图3,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处.若点E 恰好是四边形ABCM 的边AB 上的一个强相似点,试探究AB 和BC 的数量关系.11.解:(1)点E 是四边形ABCD 的边AB 上的相似点. 理由:∵∠A=55°, ∴∠ADE+∠DEA=125°. ∵∠DEC=55°,∴∠BEC+∠DEA=125°. ∴∠ADE=∠BEC .(2分) ∵∠A=∠B ,∴△ADE ∽△BEC .∴点E 是四边形ABCD 的AB 边上的相似点.(2)作图如下:(3)∵点E 是四边形ABCM 的边AB 上的一个强相似点,∴△AEM ∽△BCE ∽△ECM ,∴∠BCE=∠ECM=∠AEM .由折叠可知:△ECM ≌△DCM ,∴∠ECM=∠DCM ,CE=CD , ∴∠BCE=13∠BCD=30°, ∴BE=12CE=12AB . 在Rt △BCE 中,tan ∠BCE=BE BC=tan30°,∴BE BC =,∴AB BC =. 12.(2018•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC ∽△A′B′C′,且沿周界ABCA 与A′B′C′A′环绕的方向相同,因此△ACB 和△A′B′C′互为顺相似;如图②,△ABC ∽△A′B′C′,且沿周界ABCA 与A′B′C′A′环绕的方向相反,因此△ACB 和△A′B′C′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE 与△ABC ;②△GHO 与△KFO ;③△NQP 与△NMQ ;其中,互为顺相似的是 ;互为逆相似的是 .(填写所有符合要求的序号).(2)如图③,在锐角△ABC 中,∠A <∠B <∠C ,点P 在△ABC 的边上(不与点A ,B ,C 重合).过点P 画直线截△ABC ,使截得的一个三角形与△ABC 互为逆相似.请根据点P 的不同位置,探索过点P 的截线的情形,画出图形并说明截线满足的条件,不必说明理由.12.解:(1)互为顺相似的是 ①;互为逆相似的是 ②③;(2)根据点P 在△ABC 边上的位置分为以下三种情况:第一种情况:如图①,点P 在BC (不含点B 、C )上,过点P 只能画出2条截线PQ 1、PQ 2,分别使∠CPQ 1=∠A ,∠BPQ 2=∠A ,此时△PQ 1C 、△PBQ 2都与△ABC 互为逆相似.第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC于点M.当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC互为逆相似;当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AQP1与△ABC互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2、△Q2BP2都与△ABC互为逆相似;当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q′,使∠BP3Q′=∠BCA,此时△Q′BP3与△ABC互为逆相似.。
中考数学复习阅读理解专题试题
阅读理解专题阅读理解型问题一般文字表达较长,信息量较大,各种关系错综复杂,往往是先给一个材料,或者介绍一个新的知识点,或者给出针对某一种题目的解法,然后再给合条件出题.解决这类题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含的数学知识、结论,或者提醒的数学规律,或者暗示的解题方法,然后展开联想,如何从题目给定的材料获得新信息、新知识、新方法进展迁移,建模应用,解决题目中提出的问题.一、新定义型例1 对于实数a ,b ,定义运算“*〞:a*b =22()().a ab a b ab b a b ⎧-⎪⎨-⎪⎩≥,<例如:4*2,因为4>2,所以4*2=42-4×2=8.假设x 1,x 2是一元二次方程x 2-5x +6=0的两个根,那么x 1*x 2=_________________.分析:用公式法或者因式分解法求出方程的两个根,然后利用新定义解之.解:可以用公式法求出方程x 2-5x +6=0的两个根是2和3,可能是x 1=2,x 2=3,也可能是x 1=3,x 2=2,根据所给定义运算可知原题有两个答案3或者-3..此题容易无视讨论思想,会少一种情况.评注:此题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考察了学生观察问题,分析问题,解决问题的才能. 跟踪训练:1.假设定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,那么((2,3))g f -等于〔 〕A .〔2,-3〕B .〔-2,3〕C .〔2,3〕D .〔-2,-3〕2.对于实数x,我们规定【x 】表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,假设5104=⎥⎦⎤⎢⎣⎡+x ,那么x 的值可以是〔 〕 A .40 B .45 C .51 D .56二、类比型例2 阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:01-x 3x 2 01x 2-x <,>++等 .那么如何求出它们的解集呢?根据我们学过的有理数除法法那么可知,两数相除,同号得正,异号得负,其字母表达式为:〔1〕假设a >0 ,b >0 ,那么b a >0,假设a <0 ,b <0,那么b a>0; 〔2〕假设a >0 ,b <0 ,那么b a <0 ,假设a <0,b >0 ,那么ba<0.反之,〔1〕假设b a>0,那么⎩⎨⎧⎩⎨⎧;<,<或,>,>0b 0a 0b 0a 〔2〕假设ba<0 ,那么__________或者_____________. 根据上述规律,求不等式 ﹙A ﹚ ,>012x +-x ﹙B ﹚2x 2-3x+2021<2021的解集. 分析:对于〔2〕,根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后解一元一次不等式组即可.对于〔A 〕,据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;对于〔B 〕,将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可. 解:〔2〕假设<0,那么或者故答案为或者;由上述规律可知,不等式﹙A ﹚转化为或者所以x >2或者x <﹣1.不等式﹙B ﹚即为2x 2-3x+1<0.∵2x 2-3x+1=﹙x -1﹚〔2x-1〕,∴2x 2-3x+1<0可化为﹙x -1﹚〔2x-1〕<0.由上述规律可知①10230x x ->⎧⎨-<⎩或者②10230x x -<⎧⎨->⎩解不等式组①,无解, 解不等式组②,得21<x<1. ∴不等式2x 2-3x+2021<2021的解集为21<x<1. 评注:此题本质是一元一次不等式组的应用,读懂题目信息,理解不等式转化为不等式组的方法是解题关键.例4 阅读材料:关于三角函数还有如下的公式:sin 〔α±β〕=sinαcosβ±cosαsinβ;tan 〔α±β〕=tan tan 1tan tan αβαβ± .利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan〔45°-30°〕=tan 45-tan 301tan 45tan 30︒︒+︒︒=1==根据以上阅读材料,请选择适当的公式解答下面问题 〔1〕计算:sin15°;〔2〕一铁塔是标志性建筑物之一〔图1〕,小草想用所学知识来测量该铁塔的高度,如图2,小草站在与塔底A 相距7米的C 处,测得塔顶的仰角为75°,小草的眼睛离地面的间隔DC ,〕.分析:〔1〕把15°化为〔45°-30°〕以后,再利用公式sin 〔α±β〕=sinαcosβ±cosαsinβ计算,即可求出sin15°的值;〔2〕先根据锐角三角函数的定义求出BE 的长,再根据AB=AE+BE 即可得出结论. 解:﹙1﹚sin15°=sin〔45°-30°〕=sin45°cos30°-232162622-==〔2〕在Rt △BDE 中,∵∠BED=90°,∠BDE=75°,DE=AC=7米, ∴BE=DEtan ∠BDE=DEtan75°. ∵tan75°=tan〔45°+30°〕=tan 45tan 301tan 45tan 30︒+︒-︒︒=31(33)(33)126333(33)(33)1+++==+--3∴BE=7〔333≈27.7〔米〕. 答:乌蒙铁塔的高度约为.评注:此题考察了特殊角的三角函数值和仰角的知识,此题难度中等,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.例5阅读材料:小艳在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=〔1+〕2.擅长考虑的小艳进展了以下探究:设a+b=〔m+n〕2〔其中a,b,m,n均为正整数〕,那么有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小艳就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小艳的方法探究并解决以下问题:〔1〕当a,b,m,n均为正整数时,假设a+b=,用含m,n的式子分别表示a,b,得:a= ,b= ;〔2〕利用所探究的结论,找一组正整数a,b,m,n填空: + =〔 + 〕2;〔3〕假设a+4=,且a,m,n均为正整数,求a的值.分析:〔1〕根据完全平方公式的运算法那么,即可得出a,b的表达式;〔2〕首先确定m,n的正整数值,然后根据〔1〕的结论即可求出a,b的值;〔3〕根据题意,4=2mn,首先确定m,n的值,通过分析m=2,n=1或者者m=1,n=2,然后即可确定a的值.解:〔1〕∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn.〔2〕设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4,2,1,1.〔3〕由题意,得a=m2+3n2,b=2mn.∵4=2mn,且m,n为正整数,∴m=2,n=1或者者m=1,n=2.∴a=22+3×12=7,或者a=12+3×22=13.评注:此题主要考察二次根式的混合运算,完全平方公式,关键在于纯熟运算完全平方公式和二次根式的运算法那么.例6 阅读:大家知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图3-①.观察图①可以得出,直线x=1与直线y=2x+1的交点P 的坐标(1,3)就是方程组⎩⎨⎧=+-=012,1y x x 的解,所以这个方程组的解为⎩⎨⎧==.3,1y x 在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧局部,如图3-②. y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的局部,如图3-③.(5) 图3答复以下问题:(1)在如图3-④所示直角坐标系中,用作图象的方法求出方程组⎩⎨⎧+-=-=22,2x y x 的解;(2)用阴影表示不等式组⎪⎩⎪⎨⎧≥+-≤-≥0,22,2y x y x 所围成的区域.分析:通过阅读材料可知,要解决第(1)小题,只要画出函数x=-2和y=-2x+2的图象,找出它们的交点坐标即可;第(2)小题,该不等式组表示的区域就是直线x=-2及其右侧的局部,直线y=-2x+2及其下方的局部和y=0及其上方的局部所围成的公一共区域.解:〔1〕如图3-⑤所示,在坐标系中分别作出直线x=-2和直线y=-2x+2,观察图象可知,这两条直线的交点是P(-2,6). 所以⎩⎨⎧=-=6,2y x 是方程组⎩⎨⎧+-=-=22,2x y x 的解. 〔2〕如图3-⑤所示.评注:此题给出了一个全新的知识情景,通过阅读材料,可知材料中给出一种解决问题的方法,即方程组的解就是两个函数图象的交点坐标;不等式或者不等式组的解集可以用坐标系中图形区域直观地表示出来,不仅要掌握这种方法,还能在原解答的根底上,用这种方法解决类似的问题.解答这类问题的关键是弄清解题原理,详细分析解题思路,梳理前后的因果关系以及每一步变形的理论根据,然后给出问题的解答.通过该题的解答,我们理解了用函数的图象来解方程组或者不等式组,是解方程组或者不等式组的一种特殊方法. 跟踪训练:3.先阅读理解下面的例题,再按要求解答以下问题:解一元二次不等式x 2-4>0. 解:不等式x 2-4>0可化为 〔x+2〕〔x-2〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得 ①2020x x +>⎧⎨->⎩②2020x x +<⎧⎨-<⎩解不等式组①,得x >2,解不等式组②,得x <-2.∴〔x+2〕〔x-2〕>0的解集为x >2或者x <-2,即一元二次不等式x 2-4>0的解集为x >2或者x <-2.〔1〕一元二次不等式x 2-16>0的解集为 ; 〔2〕分式不等式103x x ->-的解集为 ;材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为23326A =⨯=.一般地,从n 个不同的元素中选取m 个元素的排列数记作mn A .(1)(2)(3)(1)m n A n n n n n m =---⋅⋅⋅-+ 〔m ≤n 〕.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个不同的元素中选取2个元素的组合,组合数为2332321C ⨯==⨯. 例:从6个不同的元素选3个元素的组合数为3665420321C ⨯⨯==⨯⨯.阅读后答复以下问题:〔1〕从5张不同的卡片中选出3张排成一列,有几种不同的排法? 〔2〕从某个学习小组8人中选取3人参加活动,有多少种不同的选法? 答案:1. 解:由题意,得f(2,-3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),应选B . 2 .C3.解:〔1〕不等式x 2-16>0可化为 〔x+4〕〔x-4〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得①4040x x +>⎧⎨->⎩或者②4040x x +<⎧⎨-<⎩解不等式组①,得x>4,解不等式组②,得x<-4.∴〔x+4〕〔x-4〕>0的解集为x>4或者x<-4,即一元二次不等式x2-16>0的解集为x>4或者x<-4.〔2〕∵13xx->-,∴1030xx->⎧⎨->⎩或者1030xx-<⎧⎨-<⎩解得x>3或者x<1.4.解:〔1〕3554360A=⨯⨯=;〔2〕3887656 321C⨯⨯==⨯⨯.励志赠言经典语录精选句;挥动**,放飞梦想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题29 阅读理解题
1.xx·潍坊在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图Z-29-1,在平面上取定一点O为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O 成中心对称的点Q的极坐标表示不正确的是( )
图Z-29-1
A.Q(3,240°) B.Q(3,-120°)
C.Q(3,600°) D.Q(3,-500°)
2.xx·义乌利用如图Z-29-2①的二维码可以进行身份识别.某校建立了一个身份识别系统,图②是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图Z-29-2②,第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是( )
图Z-29-2
图Z-29-3
3.xx·天水规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数.例如:[2.3]=2,(2.3)=3,[2.3)=2.按此规定:[1.7]+(1.7)+[1.7)=________.
4.xx·常州阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式,求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,因为“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x =0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;
(2)拓展:用“转化”思想求方程2x+3=x的解;
(3)应用:如图Z-29-4,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边PD,DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
图Z-29-4
详解详析
1.D 2.B
3.5 [解析] 根据题意可知[1.7]=1,(1.7)=2,[1.7)=2,则[1.7]+(1.7)+[1.7)=1+2+2=5.
4.解:(1)1 -2
(2)2x+3=x.
两边平方,得2x+3=x2.
解此方程,得x1=3,x2=-1.
检验:当x=3时,满足题意;当x=-1时,不满足题意,舍去.
故原方程的解为x=3.
(2)设AP=x m,则PD=(8-x)m.
在Rt△ABP中,PB=AP2+AB2=x2+32=x2+9(m).
在Rt△PCD中,PC=PD2+CD2=(8-x)2+32=x2-16x+73(m).
∵PB=10-PC,
∴x2+9=10-x2-16x+73.
两边平方,化简得5 x2-16x+73=41-4x.
再次两边平方,整理得到x2-8x+16=0,即(x-4)2=0.
解得x=4.经检验,x=4满足题意.
答:AP的长为4 m.
如有侵权请联系告知删除,感谢你们的配合!。