三角函数课件解析

合集下载

三角函数认识ppt课件

三角函数认识ppt课件

辅助角公式
总结词
用于将三角函数式化为单一三角函数的形式。
详细描述
辅助角公式是三角函数中常用的化简工具,它可以将复杂的三角函数式化为单一三角函数的形式,便于计算和理 解。具体公式如下:sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
三角函数认识ppt课件
目录
• 三角函数的定义 • 三角函数的图像与性质 • 三角函数的应用 • 三角函数的变换公式 • 三角函数的特殊值
01
三角函数的定义
角度与弧度的关系
角度制
以度(°)为单位,规定一周为 360度,每度分为60分,每分为 60秒。
弧度制
以弧度(rad)为单位,规定圆的 周长为2π弧度。角度与弧度的转 换公式为:1° = π/180 rad。
三角函数的基本恒等式
正弦、余弦、正切之间的基本恒等式。
利用这些恒等式,可以方便地进行三角函数的转换和化简,对于解决三角函数问 题非常有用。
THANK YOU
积的和差公式
总结词
用于计算两个角的三角函数值的乘积之和或之差。
详细描述
积的和差公式也是三角函数中常用的公式之一,它可以计算两个角的三角函数值 的乘积之和或之差。具体公式如下:sin(x-y)=sinxcosy-cosxsiny,cos(xy)=cosxcosy+sinxsiny,tan(x-y)=(tanx-tany)/(1+tanxtany)。
详细描述
和差角公式是三角函数中非常重要的公式之一,它可以将两个角的三角函数值 相加或相减,得到新的三角函数值。具体公式如下: sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。

5.2.1三角函数的概念课件高一数学(人教A版必修第一册)

5.2.1三角函数的概念课件高一数学(人教A版必修第一册)
【解析】射线 = − 3 < 0 经过第二象限,
在射线上的取点 −1, 3 ,
即角 的终边经过点 −1, 3 ,
则 =
−1
2
+
3
2
= 2,
利用三角函数定义可得
sin =


=
3
,cos
2
tan =


=
3
−1
3
2
所以sin =
=


=
−1
2
1
=− ,
2
= − 3;
1
, cos = − 2 , tan = − 3.

(3)在角− 的终边上取一点 , − ,即 = , = −, = ,



= − , −




(4)在角 的终边上取一点

则 −
则 =



,


=−
=

,




= −;
−, ,即 = −, = , = ,


当 = 或



时,点的坐标是(, )和(− , )



一般地,任意给定一个角,它的终边与单位圆交点的坐标能唯一确定吗?
∀ ∈ , 其终边与单位圆交点的横坐标, 纵坐标唯一确定.
新知1:三角函数的定义
(1)把点的纵坐标叫做的正弦函数,记作 ,
即 = .
π

转 3 弧度,滚珠 按顺时针方向每秒钟转 6 弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.
(1)求滚珠 , 第一次相遇时所用的时间及相遇点的坐标;

三角函数解三角形两角和与差的正弦余弦和正切公式课件文

三角函数解三角形两角和与差的正弦余弦和正切公式课件文

三角函数解三角形两角和与差的正弦余弦和正切公式课件xx年xx月xx日CATALOGUE目录•三角函数的定义•三角函数的基本性质•三角形中的边角关系•两角和与差的正弦余弦和正切公式•解直角三角形的方法•实例讲解01三角函数的定义1正弦函数23正弦函数是三角函数的一种,记作sin(x),定义域为所有实数,值域为[-1,1]。

定义正弦函数的图像也称为正弦曲线,它是以原点为圆心,以1为半径的圆上的一部分。

图像正弦函数是周期函数,最小正周期为2π。

性质余弦函数是三角函数的一种,记作cos(x),定义域为所有实数,值域为[-1,1]。

余弦函数定义余弦函数的图像也称为余弦曲线,它是由一系列的水平和垂直线段组成的。

图像余弦函数是周期函数,最小正周期为2π。

性质图像正切函数的图像也称为正切曲线,它是由一系列的斜线组成的。

定义正切函数是三角函数的一种,记作tan(x),定义域为所有不等于π/2+kπ(k∈Z)的实数,值域为所有实数。

性质正切函数是奇函数,图像关于原点对称。

正切函数02三角函数的基本性质正弦函数和余弦函数的周期都是2π,即$f(x+2\pi)=f(x)$和$g(x+2\pi)=g(x)$。

正切函数的周期是π,即$h(x+π)=h(x)$。

周期性1 2 3正弦函数的振幅是1,即$f(x) \in [-1,1]$。

余弦函数的振幅也是1,即$g(x) \in [-1,1]$。

正切函数的振幅需要特别注意,它的振幅不是1,而是没有限制的,即$h(x) \in \mathbf{R}$。

正弦函数和余弦函数的相位可以用正负号来表示,例如$f(x)=sin\omega x$和$g(x)=cos\omega x$,其中$\omega >0$。

正切函数的相位需要特别注意,它没有固定的相位,也就是说$h(x)$中不存在相位的概念。

正弦函数和余弦函数的初相都是一个常数,例如$f(0)=A$和$g(0)=B$。

正切函数的初相需要特别注意,它没有固定的初相,也就是说$h(x)$中不存在初相的概念。

《三角函数》课件

《三角函数》课件

斜边
b
= c ;
∠A的对边
(3)∠A的正切:tan A= ∠A的邻边 =
a
b .
2. 特殊角的三角函数
1
sin30°= 2 ,sin45°=
3
cos30°= 2 ,cos45°=
3
tan30°= 3 ,tan45°=
2
2 ,sin60°=
2
2 ,cos60°=
3
2 ;
1
2 ;
1 ,tan60°=
3.
C.cos58°<sin58°<cos28°
D.sin58°<cos58°<cos28°
cos32°
对于 cosα,角度越大,函数值越小
3
5
2.在 Rt△ABC 中,∠C=90°,sin B= ,则 sin A 的值是( B )
A.
3
5
B.B互余
D.
5
4
sin2A+sin2B=1
《三角函数》
知识梳理
正弦







sin A =
∠A的对边
斜边
∠A的邻边
(0<sinA<1)
余弦
cos A =
正切
∠A的对边
tan A =
(tanA>0)
∠A的邻边
斜边
(0<cosA<1)









由定义求锐角三角
函数值
由角的度数求锐角
三角函数值
一般锐角的三角
函数值:利用计
算器求解
特殊角的三角函

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版
2024/1/26
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。

人教A版必修第一册第五章三角函数5.2三角函数的概念-课件

人教A版必修第一册第五章三角函数5.2三角函数的概念-课件
研究:变量 x, y 与 的关系.
M
问题 2: 如何求角 终边与单位圆的交点P的坐标呢?
追问1:如何研究一般性问题?
不妨设 ,此时点P在第一象限, 过点 P作 PM x轴于M ,
3
在RtOMP中,可得OM 1 ,PM 3 ,
2
2
即x 1,y 3,
2
2
M
所以点
P的坐标为
1 2
,
3 2
三角函数的概念
问题引入
问题:匀速圆周运动是现实生活中周期现象的代表,在前面的 学习中,我们知道函数是描述客观世界变化规律的重要数学模 型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?
任务:建立一个函数模型,刻画点 P 的位置变化情况
新课学习
如图,以单位圆的圆心O 为坐标原点,以射线OA为 x轴的非负半轴,建立直角坐标系 xOy,点 A的坐标是
正切函数的定义域为 x
x
2
k, k
Z.
追问3: 这个定义相对于锐角三角函数的定义有什么不同呢?
任意角的三角函数是通过角与单位圆交点的坐标定义的,锐角三角函 数是通过直角三角形边长的比值定义的,在单位圆中直角三角形斜边 为1,所以锐角三角函数也可用角的终边与单位圆交点的坐标定义. 此 时终边上的点都在第一象限,因此锐角三角函数值都是正数,而任意 角的三角函数值可以是负数.
把点 P的纵坐标与横坐标的比值 y 叫做 的正切函数,
x
记做tan ,即 y tan x 0.
x
问题3: 正弦函数、余弦函数、正切函数的对应关系各是什么?
实数 (弧度)对应于点P的纵坐标 y——正弦函数; 实数 (弧度)对应于点P的横坐标 x——余弦函数;
当 kk Z 时,角 的终边在 y轴上,这时点P的

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

,解
得 ω=32 .
法二:由题意,得 f(x)max=fπ3
2.(必修 4P35 例 2 改编)若函数 y=2sin 2x-1 的最小正周期为 T,最大
值为 A,则( )
A.T=π,A=1
B.T=2π,A=1
C.T=π,A=2
D.T=2π,A=2
A [T=22π =π,A=2-1=1.]
3.(必修 4P40 练习 T4 改编)下列关于函数 y=4cos x,x∈[-π,π]的单 调性的叙述,正确的是( )
求三角函数单调区间的两种方法 (1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个 角 u(或 t),利用复合函数的单调性列不等式求解.(如本例(1)) (2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. [注意] 要注意求函数 y=A sin (ωx+φ)的单调区间时 ω 的符号,若 ω<0, 那么一定先借助诱导公式将 ω 化为正数.同时切莫漏掉考虑函数自身的定义 域.
又当 x∈[0,π2
]时,f(x)∈[-
2 2
,1],所以π2
≤ω2π
-π4
≤5π4
,解得
3 2
≤ω≤3,故选 B.
π
π
π
优解:当 ω=2 时,f(x)=sin (2x- 4 ).因为 x∈[0,2 ],所以 2x- 4 ∈
π [- 4
,3π4
π ],所以 sin (2x- 4
)∈[-
2 2
,1],满足题意,故排除 A,C,
B.[kπ,kπ+π2 ](k∈Z)
C.[kπ+π6 ,kπ+23π ](k∈Z)
D.[kπ-π2 ,kπ](k∈Z)
(2)函数 y=tan x 在-π2,32π 上的单调减区间为__________.

三角函数的概念 课件(39张)

三角函数的概念 课件(39张)







tan cos = × +1× = .



数学
方法总结
诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些
角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值
相等.其作用是可以把任意角转化为0°~360°之间的角.






因为 a<0,所以 a=- ,所以 P 点的坐标为( ,- ),



所以 sin α=- ,cos α= ,






所以 sin α+2cos α=- +2× = .
数学
[变式训练1-1] 若将本例中“a<0”删掉,其他条件不变,结果又是什么?



解:因为点 P 在单位圆上,则|OP|=1,即 (-) + () =1,解得 a=± .
②若 a<0,则 r=-5a,且 sin α=
-





-

-
=- ,cos α=
所以 sin α+2cos α=- +2× = .
= .
数学
方法总结
由角α终边上任意一点的坐标求其三角函数值
(1)已知角α的终边在直线上时,常用的解题方法有以下两种:
①先利用直线与单位圆相交,求出交点坐标,然后再利用正弦函数、余
弦函数、正切函数的定义求出相应三角函数值.

②在α的终边上任选一点 P(x,y),P 到原点的距离为 r(r>0),则 sin α= ,

5.2.1 三角函数的概念(教学课件)

5.2.1 三角函数的概念(教学课件)

y
( ) ( )
o
x
( )( )
y
( ) ( )
o
x
( )( )
y
( ) ( )
o
x
( )( )
sin
cos
tan
正弦值y对于第一、二象限的角是正的,对于第三、四象限的 角是负的。
余弦值x 对于第一、四象限的角是
正的,对于第二、三象限的角是 负的。
y
正切值 x 对于第一、三象限的角是正的, 对于第二、四象限的角是负的。
人教A版2019必修第一册
第 5章 三角函数
5.2.1 三角函数的概念
学习目标
1.借助单位圆理解任意角三角函数(正弦、余弦、 正切)的定义.
2.掌握任意角三角函数(正弦、余弦、正切)在各 象限的符号.
3.掌握公式一并会应用.
复习
1.1弧度的角: 等于半径长的圆弧所对的圆心角
2.角度制与弧度制的换算 180 弧度
提醒:注意巧用口诀记忆三角函数值在各象限符号.
例5 求下列三角函数值:
(1) sin148010 (精确到0.001);
(2) cos 9 ; 4
(3)
tan
11 6
可以直接利用计算工具求三角函数的值.用计算工具求值时要 注意设置角的适当的度量制.
(1) sin148010 sin(4010 4 360) sin 4010 0.645
x
x
唯一确定的. 所以, y tan( x 0)也是以角为自变量, 以单位圆上点
x 的纵坐标与横坐标的比值为函数值的函数, 称为正切函数.
我们将正弦函数、余弦函数和正切函数统称为三角函数 (trigonometic function),通常将它们记为:

高三数学第二轮复习三角函数的图像与性质ppt课件.ppt

高三数学第二轮复习三角函数的图像与性质ppt课件.ppt

直于 x 轴的直线, 对称中心为图象与 x 轴的交点).
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
[2k5.单+ 2调, 性2k:+y=3s2in]x(k在[Z2)k上-单2调, 2递k减+2;
注 一般说来, 某一周期函数解析式加绝对值或平方, 其周期 性是: 弦减半、切不变.

前 热 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物

1.给出四个函数:
(A)y=cos(2x+π/6) (B)y=sin(2x+π/6)
要特别注意, 若由 或向右平移应平移 |
y=s| i个n(单x位) 得. 到
y=sin(x+)
的图象,
则向左
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
二、三角函数图象的性质
1.正弦函数 y=sinx(xR) 是奇函数, 对称中心是 (k, 0)(kZ), 对 对称称轴 中是 心直 是线(kx+=k2,+0)2(k(kZZ),);对余称弦轴函是数直y线=coxs=xk(x(kR)Z是)(偶正函, 数余,
1、 解:(1) m n 2 3sin xcos x 2cos2 x
作函数
y
2
s
in(1
x
3
)
的图象,并说明图象可
由函数 y sin x 的图象经过怎样的变换得到.

三角函数定义课件(角度、弧度及基本关系式)

三角函数定义课件(角度、弧度及基本关系式)
倍角公式
$sin 2theta = 2sin theta cos theta$
半角公式
$sin frac{theta}{2} = pm sqrt{frac{1-cos theta}{2}}$
03 弧度制下三角函数关系式
弧长与圆心角关系
弧长公式
$l = rtheta$,其中 $l$ 是弧长,$r$ 是半径,$theta$ 是圆心角的弧度。
正切函数 $tan x$
定义域为 $x neq frac{pi}{2} + kpi, k in Z$,值域为全体实数 $R$。
弧度制下三角函数图像变换
01
平移变换
02
伸缩变换
函数 $y = Asin(omega x + varphi)$ 或 $y = Acos(omega x + varphi)$ 的图像可以通过平移 $varphi$ 个单 位得到。
最值问题和极值点求解
最值问题
余弦函数的最大值为1,最小值为-1。
正弦函数在 $x = frac{pi}{2} + 2kpi$($k in mathbb{Z}$)处取得最大值,在 $x = -frac{pi}{2} + 2kpi$($k in mathbb{Z}$)处取得最小值。
正弦函数的最大值为1,最小值为-1。
3
记忆常用弧度的角度值
与角度转弧度类似,也可以记忆一些常用弧度的 角度值。
转换过程中注意事项和技巧
保持单位一致
在进行角度和弧度转换时,要确保所使用的单位是一致的,避免出 现混淆。
注意精度问题
由于π是一个无理数,因此在转换过程中可能会遇到精度问题。在 需要高精度计算时,可以使用专门的数学软件或库来进行转换。

三角函数的定义ppt课件

三角函数的定义ppt课件
(2) 熟 记 几 组 常 用 的 勾 股 数 组 , 如 (3,4,5) , (5,12,13) , (7,24,25),(8,15,17),(9,40,41)等,会给我们解题带来很多方便.
(3)若角 α 已经给定,不论点 P 选择在 α 的终边上的什么 位置,角 α 的三角函数值都是确定的;另一方面,如果角 α 终 边上一点坐标已经确定,那么根据三角函数定义,角 α 的三角 函数值也都是确定的.
∴角 2α 的终边在第一或第二象限或 y 轴的非负半轴上. (2)在(0,π)内终边在直线 y= 3x 上的角是π3, ∴终边在直线 y= 3x 上的角的集合为 α|α=π3+kπ,k∈Z.
(3)∵θ=67π+2kπ(k∈Z),∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π(k∈Z)⇒-37≤k<178(k∈Z). ∴k=0,1,2,即在[0,2π)内终边与θ3角的终边相同的角为27π, 2201π,3241π.
1.了解任意角的概念和弧度制,能进行弧度与角度的互 化.
2.理解任意角的三角函数(正弦、余弦、正切)的含义. 3.借助单位圆中理解三角函数线。
一.角及有关概念
1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到
另一个位置所成的图形.旋转开始时的射线 OA 叫做角的 始边 ,旋转终止时的射线 OB 叫做角的终边 ,按逆 时针 方向旋转所形成的角叫做正角,按顺 时针方向旋转所形成的 角叫做负角.若一条射线没作任何旋转,称它形成了一个零
(2)若 θ 是第二象限角,则csoinsscions2θθ的符号是什么? [分析] (1)由点 P 所在的象限,知道 sinθ·cosθ,2cosθ 的 符号,从而可求 sinθ 与 cosθ 的符号. (2)由 θ 是第二象限角,可求 cosθ,sin2θ 的范围,进而把 cosθ,sin2θ 看作一个用弧度制的形式表示的角,并判断其所在 的象限,从而 sin(cosθ),cos(sin2θ)的符号可定.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)0°<∠A≤ 30 ° (B) 30°<∠A≤45°
(C)45°<∠A≤ 60 ° (D) 60°<∠A≤ 90 °
思考:
在Rt△ABC中,∠C=90°斜边AB=2,直角 边AC=1,∠ABC=30°,延长CB到D,连接 AD使∠D=15°求tan15°的值。
A
D
B
C
四、解直角三角形
1、解直角三角形的定义:
注意
▪ sinA、cosA、tanA、是一个完整的符号, 它表示∠A的余弦、正切,记号里习惯省去 角的符号“∠”;
▪ sinA、cosA,tanA没有单位,它表示一 个比值,即直角三角形中∠A的对边与斜边 的比、邻边与斜边的比,对边与邻边的比;
▪ sinA不表示“sin”乘以“A”,cosA不表 示“cos”乘以“A”, tanA不表示“tan” 乘以“A”
2
☆ 应用练习
1.已知角,求值 2.已知值,求角 3. 确定值的范围
确定值的范围
1. 当 锐角A>45°时,sinA的
值( B )
(A)小于
2 2
(C) 小于 3
2
(B)大于
2 2
(D)大于 3
2
2. 当锐角A>30°时,cosA的
值( C )
(A)小于
1 2
(C) 小于 3
2
(B)大于
1 2
(D)大于 3
解:cos CAD AC 6 3
AD 4 3 2
CAD 30
A
6 43
因为AD平分∠BAC
CAB 60, B 30 C D
B
AB 12, BC 6 3
例2、 如图,在△ABC中,∠A=30度,tanB 3 , AC 2 3,
2
求AB。
C
解:过点C作CD⊥AB于点D
∠A=30度, AC 2 3
cos A b , cos B a
c
c

tan A a , tan B b
b
a
在直角三角形的5个元素中(除直角外),根据
以上关系只要已知两个(至少有一个是边),就可
求出其余的三个来
例1、如图,在Rt△ABC中,∠C=90°,AC=6, ∠BAC的平分线 AD 4 3 ,解这个直角三角形。
2
☆ 应用练习
1.已知角,求值 2.已知值,求角 3. 确定值的范围 4. 确定角的范围
确定角的范围
1. 当∠A为锐角,且tgA的值
大于 3 时,∠A( B )
3
(A)小于30° (B)大于30° (C) 小于60° (D)大于60°
2. 当∠A为锐角,且tanA的
值小于 3 时,∠A( C )
(A)小于30° (B)大于30° (C) 小于60° (D)大于60°
解:根据勾股定理
B
C a2 b2 302 202 10 13 tan A a 30 3 1.5
b 20 2
c a=30
A b=20 C
A 56.3
B 90 A 90 56.3 33.7
sin A CD 1 CD 1 2 3 3
AC 2
2
A
cos A AD 3 AD 3 2 3 3
AC 2
2
D
B
tan B CD 3 BD 2
BD
3 2 2 3
AB AD BD 3 2 5
练习
在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(1)a = 30 , b = 20 ;
(3)同角的正弦 和余弦,与正切 有何关系?
二、几个重要关系式
B
tanA·tan(90°- A )=1
c a
tanA=
sin A cos A
sin2A+cos2A=1
A
b
C
sinA=cos(90°- A )=cosB cosA=sin(90°- A)=sinB
练习2
⑴ 已知:Rt△ABC中,∠C=90°∠A
一、基本概念
B
c a
a 1.正弦 sinA= c A
b
C
b 2.余弦 cosA= c
a 3.正切 tanA= b
锐角三角函数的定义:
锐角A的正弦、余弦、 正切、都叫做∠A的锐角三角 函数.
对于锐角A的每 一个确定的值sinA 有唯一确定的值与 它对应,所以sinA 是A的函数。
同样地, cosA, tanA也是A的函数。
rldmm8989889
练习1
如右图所示的Rt⊿
A
ABC中∠C=90°,
a=5,b=12,5
c b
那么sinA= _1_3___,
cosA=__11_23___
B
,
aC
cosB=___15_3__,
5
tanA = ___1_2__
思考
(1)互余两角的 正弦与余弦有 何关系?
(2)同角的正弦 与余弦的平方 和等于?
☆ 应用练习
1.已知角,求值 2.已知值,求角 3. 确定值的范围 4. 确定角的范围
确定角的范围
3. 当∠A为锐角,且cosA= 1
5
那么( D ) (A)0°<∠A≤ 30 ° (B) 30°<∠A≤45°
(C)45°<∠A≤ 60 ° (D) 60°<∠A≤ 90 °
1
4. 当∠A为锐角,且sinA= 3 那么( A )
角度
三角函数
sinα
3 0°
1 2
cosα
3
2
ta锐n角α A的正弦值、
余弦值有无变化范
3 3
围?
0< sinA<1
45 °
2 2 2 2
1
6 0°
3 2
1 2
3
0<cosA<1
☆ 练一练
1.已知角,求值
求下列各式的值
1. 2sin30°+3tan30°+tan45° 2. cos245°+ tan60°cos30°
cos45o sin 30o 3. cos45o sin 30o
☆ 应用角
求锐角A的值
1. 已知 tanA= 3 ,求锐角A .
2. 已知2cosA - 3 = 0 , 求锐角A的度数 .
解:∵ 2cosA - 3 = 0 ∴ 2cosA = 3
∴cosA= 3 ∴∠A= 30°
由直角三角形中除直角外的已知两个元 素(至少有一个是边),求出其余的三个未 知元素的过程,叫做解直角三角形.
2、几个常用关系(依
B
据):
角与角的关系:∠A+ ∠ B=90° c
a
解直角
边与边的关系:
a2+b2=c2(勾股定理)
A

b
C
三角形
sin A a ,sin B b
c
c
边与角的关系: 三角函数关系
为锐角,且tanA=0.6,tanB3=/(5 ).
⑵ sin2A+tanAtanB -2+cos2A=( 0 )
⑶ tan44°tan46°=1( ).
(4)tan29°tan60°tan61°3=( ).
(5) sin53°cos37°+cos53°sin37°
=( 1 )
三、特殊角三角函数值
相关文档
最新文档