数控直流恒流源的设计与制作

合集下载

(数控加工)数控直流电流源设计报告精编

(数控加工)数控直流电流源设计报告精编

(数控加工)数控直流电流源设计报告数控直流电流源一、设计任务和技术要求1.设计壹个数控直流电流源。

2.输出电流0~99mA,手动步进1mA增、减可调,误差不大于0.01mA。

3.具有输出电流大小的数码显示。

4.负载供电电压+12V,负载等效阻值100Ω。

5.电路应具有对负载驱动电流较好的线性控制特性。

6.设计电路工作的直流供电电源电路。

二、系统原理概述本设计要求设计出壹个数控的直流电源,且且输出电流为0~99mA,能够手动控制增减。

在此采用数模转换的原理,只要产生和0~99mA电流相对应的数字量(我们取数字量为0~99),再使用D/A转换器转换为模拟电压量,最后再用V/I转换器将电压量转换为和电压量相对应的电流量即可。

为控制输出电流手动步进为1mA增、减可调,我们只要保证数字量(0~99)——电压量(0~9.9V)——电流量(0~99mA)相对应,通过控制数字量手动增减步进为1可调即可。

综上,整个系统的原理框图如图壹所示:图一系统原理框图三、方案论证1.直流稳压电源电路单元小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成。

如图二所示:图二稳压电源组成示意图方案壹:输出可调的开关电源开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护和过流保护,可是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因此在本设计中不适合此方案。

方案二:由固定式三端稳压器组成由固定式三端稳压器(7805、7812、7912)输出脚V0、输入脚V i和接地脚GND组成,它们的输入端接电容能够进壹步滤波,输出端接电容能够改善负载的瞬间影响,且且此电路也比较稳定,实现简单。

因此在此采用方案二,电路原理图如图三所示:图三固定三端式直流稳压电源电路2.手动增减数字量产生单元方案壹:74LS163为可预置的4位二进制同步加法计数器。

采用俩片74LS163运用反馈清零或者反馈置数法构成十进制计数器,再将俩片73LS163构成2位十进制加法计数器。

全国电子设计大赛-F题-数控恒流源(

全国电子设计大赛-F题-数控恒流源(

word格式-可编辑-感谢下载支持数控直流电流源(F题)一、任务设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其原理示意图如下所示。

二、要求1、基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。

2、发挥部分(1)输出电流范围为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA;(4)纹波电流≤0.2mA;(5)其他。

数控直流恒流源的设计与制作word格式-可编辑-感谢下载支持发表日期:2006年5月1日出处:本站原创【编辑录入:zouwenkun】指导老师:王贵恩博士制作人:彭浦能、梁星燎、林小涛《数控直流恒流源》《数控恒流源获奖证书》摘要:本系统以直流电流源为核心,AT89S52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由数码管显示电流设定值和实际输出电流值。

本系统由单片机程控设定数字信号,经过D/A转换器(AD7543)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。

单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转换后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数字量形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。

数控直流恒流源设计报告

数控直流恒流源设计报告

数控直流恒流源设计报告本系统以直流电流源为核心,AT89s52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由液晶显示电流设定值和实际输出电流值。

本系统由单片机程控设定数字信号,经过D/A转换器(tlv5618)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。

单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转换后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数字量形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。

实际测试结果表明,本系统能有效应用于需要高稳定度的小功率恒流源的领域关键字压控恒流源智能化电源闭环控制设计任务与要求1.1设计任务设计并制作一个数控直流电流源。

输入的交流电压220~240V,50Hz;输出的直流电压≤10V。

其原理示意图1如下所示。

图1 设计任务示意图1.2技术指标基本要求:(1)要求电压输出范围:200~2000mA;(2)可设置并输出电流给定值,要求输出电流和给定电流的偏差的绝对值≤给定值的1%+10mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流的变化的绝对值≤ 输出电流的1%+10mA;(5)纹波电流≤ 2mA;(6)自制电源。

发挥部分:(1)输出电流范围为20~2000mA,步进为1mA;(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值或实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤ 输出电流的0.1%+1mA;(4)纹波电流≤0.2mA;(5)其他。

2.方案比较与论证2.1.1各种方案比较与选择方案一:采用中小规模集成电路构成的控制电路。

由三段可调式集成稳压器构成的恒流源。

数控直流电流源课程设计与制作

数控直流电流源课程设计与制作

课程设计任务书一、设计题目:数控直流电流源的设计与制作二、主要内容及要求1.功能与主要技术指标(1)输出电流:0∽1A步进可调,调整步距4mA;误差≤0.1mA(2)输入电压:12V;(3)显示:输出电压值用LED数码管显示;(4)电流调整:由“+”、“-”两按键分别控制输出电流的步进增减;(5)输出电流预置:输出电流可预置在0∽1A之间的任意一个值;(6)其它:自制电路工作所需的直流稳压电源,输入电压为±12V,+5V;三、进度安排任务设计2012年3月12日—2012年3月16日练习制作2012年3月19日—2012年3月23日数控直流电流源设计与制作一、设计任务和技术要求1、设计一个数控直流电流源2、输出电流0~1A,手动步进4mA增、减可调,误差不大于0.1mA;3、负载供电电压+12V,负载等效阻值10欧姆;4、电路应具有对负载驱动电流较好的线性控制特性;二、总体设计方案原理及结构框图数控直流电流源共有六部分组成,其中输出电流的调节是通过“+” 和“-”两个按键来操作的;步进电流精确到0.1A以手动控制可逆计数器分别作加,减计数;控制数字量为8位二进制码:00000000~11111111增、减变化。

可逆计数器的二进制数字输出分两路运行,一路用于驱动数字显示电路,精确显示当前输出电流值;另一路进入数模转换电路(D/A转换电路);数模转换电路将数字量按比例,转换成模拟电流,然后经过射极跟随器的控制,调整输出级,使输出稳定直流电流。

图2-1电路结构原理框图三、部分模块原理及结构图1、74LS193芯片74LS193具有同步可逆计数功能、异步清零功能、异步并行置数和保持功能。

与是为74LS193级联时使用的。

级联时只要把低位的端、端分别与高位的CP U、CP D连接起来,各芯片的CR 端连接在一起, 端连接在一起,就可以了。

图3-1 74LS193引脚排列图和逻辑功能示意图CR异步清零端,高电平有效;异步置数,低电平有效;CPU加法计数脉冲输入端,上升沿触发;CPD减法计数脉冲输入端,上升沿触发;进位脉冲输出端;BO COBOCOLDLDCO借位脉冲输出端。

数控直流恒流源的设计与制作

数控直流恒流源的设计与制作

数控直流恒流源的设计与制作数控直流恒流源的设计与制作本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000mA范围内任意设定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±4mA,因而可实际应用于需要高稳定度小功率直流恒流源的领域。

1 系统原理及理论分析1.1单片机最小系统组成单片机系统是整个数控系统的核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整。

主要包括AT89S52单片机、模数转换芯片ADC0809、12位数模转换芯片AD7543、数码管显示译码芯片74LS47与74LS138等器件。

1.2系统性能本系统的性能指标主要由两大关系所决定,设定值与A/D采样显示值(系统内部测量值)的关系。

内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。

1.3恒流原理数模转换芯片AD7543是12位电流输出型,其中OUT1和OUT2是电流的输出端。

为了实现数控的目的,可以通过微处理器控制AD7543的模拟量输出,从而间接改变电流源的输出电流。

从理论上来说,通过控制AD7543的输出等级,可以达到1mA的输出精度。

但是本系统恒流源要求输出电流范围是20mA~2000mA,而当器件处于2000mA的工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶管值下降,从而导致电流不能维持恒定。

为了克服大电流工作时电流的波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流的波动,此反馈回路采用数字形式反馈,通过微处理器的实时采样分析后,根据实际输出对电流源进行实时调节。

经测试表明,采用常用的大功率电阻作为采样电阻R0,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善。

电路反馈原理如下图所示。

2 总体方案论证与比较方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。

基于单片机的数控直流恒流源的设计

基于单片机的数控直流恒流源的设计
Keywords: Constant-current source;PID control arithmetic;Digital-control;SCM
插图清单
图2-1系统框图........................................................................................................................5
The constant current, is one kind can provide the constant current to the load the power source. Therefore the constant current application scope is widespread, and in many situations is essential. It both may provide the bias for each kind of amplifying circuit by to stabilize its static operating point, and may take its active load, enhances the enlargement factor. And in the differential motion amplifying circuit, the pulse produced in the electric circuit to obtain the widespread application.
图3-11键盘与单片机的接口电路........................................................................................20

数控直流电流源设计,毕业论文,毕业设计,数控,直流电源

数控直流电流源设计,毕业论文,毕业设计,数控,直流电源

数控直流电流源设计摘要本设计大致分五个模块:单片机控制模块、数模(D/A)转换模块、恒流源模块、模数(A/D)转换模块、显示模块。

单片机控制模块以单片机为核心,对输入电流信号进行转换成数字量输出;恒流源模块将D/A转换来的电压模拟量通过恒流源电路变成恒流;显示模块采用数码管显示译码芯片与74LS47设计成10进制4位数码动态显示电路。

键盘模块采用常见单路复位开关,做成4×4矩阵键盘,用动态扫描方式读取外部按键动作,这样设计可靠,配合凌阳AT89S52单片机,可以很轻松的实现按键输入。

此外,本设计可实现电流0-2A且有±1mA和±10mA的两种步进,同时有数码显示输入的电流值。

关键词单片机键盘控制D/A转换恒流源A/D转换译码显示Constant Current Resource Digital ControlledABSTRACTThe design is divided into five modules: Single-chip control, digital-to-analog (D / A) conversion module, constant current source module, the output display module. To single-chip single - chip control module as the core of the input current signals to digital output; Constant current source modules will be D / A converter to the voltage analog circuit through the constant current source into a constant current; display module display digital 74LS47 decoder chip designed with 10-band digital dynamic display four circuits. Common use of the keyboard module reset single switch, make 4 * 4 matrix keyboard, using dynamic scanning button to read the external action, so that the design of reliable, with Sun plus AT89S52 microcontroller, can easily achieve the keystrokes. In addition, the design can achieve the current 0-2A and a ± 10mA and ± 1mA Step two, at the same time digital display of the current input.KEY WORDS Single - chip Keyboard control D / A converter A / D conversion Decoding show目录中文摘要 (I)英文摘要 (II)1 绪论 (1)1.1概述 (1)1.2课题的背景和意义 (1)1.3数控直流恒流源简介 (2)1.4恒流源的应用 (2)2 数控直流电流源整体设计 (3)2.1整体结构设计与论证 (3)2.2系统原理与基本框图 (5)3 硬件电路设计 (6)3.1单片机模块的设计 (6)3.1.1 单片机的选择 (6)3.1.2 单片机最小系统组成及AT89S52介绍 (6)3.1.2.1 AT89S52单片机功能特性描述 (6)3.1.2.2 AT89S52引脚功能描述 (7)3.2D/A转换模块设计 (11)3.2.1 D/A转换方案 (11)3.2.2 12位串行D/A转换芯片MAX538介绍 (11)3.2.2.1 性能特点 (11)3.2.2.2 主要参数 (12)3.2.2.3 内部结构 (12)3.2.2.4 引脚结构 (12)3.2.2.5 输入接口 (13)3.2.3 D/A转换模块电路 (14)3.3V/I转换模块设计 (14)3.3.1 V/I转换方案 (14)3.3.2 V/I转换电路 (15)3.4A/D转换模块设计 (17)3.4.1 A/D转换方案 (17)3.4.2 12位串行A/D转换芯片MAX197介绍 (18)3.4.2.1 MAX197的特性 (18)3.4.2.2 MAX197的结构 (18)3.4.3 A/D转换模块电路 (20)3.5显示模块设计 (21)3.5.1 显示电路方案 (21)3.5.2 译码器74LS47简要介绍 (21)3.5.3 LED显示器的工作原理 (23)3.5.4 显示模块电路 (25)3.6键盘模块设计 (26)3.6.1 键盘电路方案选择 (26)3.6.2 键盘模块的电路 (26)3.7电源模块设计 (28)3.7.1 稳压电路电源方案 (28)3.7.2 电源原理 (28)3.7.3 LM7805、LM7812简要介绍 (28)3.7.4 电源模块电路 (29)4 软件设计 (30)总结 (33)致谢 (34)参考文献 (35)附录 (36)1绪论1.1概述随着科学技术的迅速发展,人们对物质需求也越来越来高,特别是一些高新技术产品。

数控恒流源的设计与制作毕业论文

数控恒流源的设计与制作毕业论文

编号题目:数控恒流源的设计与制作学院:物理与机电工程学院专业:电子信息科学与技术作者姓名:指导教师:职称:完成日期:2013 年月日二〇一三年六月目录河西学院本科生毕业论文(设计)诚信声明 ........................................................................................ 河西学院本科生毕业论文(设计)开题报告 ........................................................................................ 摘要 .................................................................................................................................................. Abstract..............................................................................................................................................1 绪论...............................................................................................................................................1.1恒流源的意义及研究价值....................................................................................................................1.2恒流源的发展历程................................................................................................................................1.2.1 电真空器件恒流源的诞生......................................................................................................1.2.2 晶体管恒流源的产生和分类..................................................................................................1.2.3 集成电路恒流源的出现和种类..............................................................................................1.3数控恒流源的研究现状和发展趋势....................................................................................................2 系统设计 .........................................................................................................................................2.1设计要求............................................................................................. 错误!未定义书签。

数控恒流源的设计与实现

数控恒流源的设计与实现

数控恒流源的设计与实现熊 建 (成都电子机械高等专科学校 四川 成都 610031)摘 要:恒流源在实际工程中是一种用途广泛的检测设备。

本设计基于AT89s51作为核心控制模块,通过D/A变换实现输出电流可调,采用精密运算放大器和达林顿管进行扩流,设计出了能精确输出20mA~2000mA数控可调直流恒流源。

关键词:AT89s51 恒流源 D/AAbstract:Const current s ource is a widely used detecti on facilities in engineering.This design is based AT89s51cli p as the core of contr ol,using D/A conversi on t o perfor m the trans2 fer of the out put current,adop ting p recise operati onal a mp lifier and Darlingt on transist or t o a m2 p lify the current.A t last W e designed the digital contr olled const current s ource with p recise out put fr om20mA t o2000mA.Key words:AT89s51 const s ource D/A中图分类号:T N710 恒流源是模拟系统中广泛使用的一种单元电路或测试平台,在实际工程中也有广泛的用途,是电导测量、开关电源、功放等场合不可替代的检测设备。

本文主要介绍了数控恒流源的硬件电路和软件设计,同时给出了系统测试结果,实现了在20mA~2000mA的电流范围内,电流恒定为1mA 的准确度。

1 硬件电路设计本系统的硬件部分主要包括三大部分:DA 和AD转换电路、恒流源电路和键盘电路。

数控直流电流源设计制做

数控直流电流源设计制做

数控直流电流源1 方案比较,设计与论证1.1 控制方案比较方案一(见图1)此方案是传统的模拟PID控制方案,其优点是不占用CPU处理器的时间,对处理器性能的要求比较低。

但模拟PID控制方式的参数不易匹配,调节时间长,难以把精度做得很高,并且难以实现题中要求的良好的人机交互功能。

图1 控制方案一框图方案二(见图2)此方案采用摩托罗拉16位DSP芯片56F807为核心处理器来实现,该平台具有高处理速度,适合实现复杂的算法和控制。

这种方案可以方便地实现PID的控制算法。

本设计采用了方案二。

图2 控制方案二框图1.2 检测方案比较方案一 直接对负载进行采样直接对负载进行采样简单易行。

但由于负载电阻为可调节电阻,输出可能有电流可能会受接触电阻的变化而不稳定,故不宜选取。

方案二 对采样电阻进行采样采样电阻采用标准精密电阻,阻值稳定,将阻值的变化对电流的影响降低到最小程度。

另外,对采样电阻进行采样,有效避免了外接测量电路对电流的影响。

因此采用方案二。

2 理论分析2.1 PID 控制算法PID 是一种在单片机控制中常用的算法, PID 控制由于其具有控制方法简单、稳定性好、可靠性高和易于现场调试等优点,被广泛应用于工业过程控制。

其输入e (t)与输出u (t)的关系为[1]⎰++=t d i p dtde(t)K d e(τK e(t)K u(t)0)τ 数字PID 控制算法是以模拟PID 调节器控制为基础的,由于单片机是一种采样控制,它只能根据采样时刻的偏差计算控制量。

但是如果采样周期T 取得足够小,采用数值计算的方法逼近可相当准确,被控过程与连续控制十分接近。

离散化后的PID 算式为:[1]()001u e e T T e T T e K u ij i i d j i i i +⎥⎦⎤⎢⎣⎡-++=∑=- 式中:K : 比例系数u o : 偏差为零时的控制作用T i : 积分时间T d : 微分时间T : 采样时间以上公式称为位置式算法。

基于单片机的高性能数控恒流源设计与实现

基于单片机的高性能数控恒流源设计与实现

基于单片机的高性能数控恒流源设计与实现数控恒流源是一种功能比较强大的电子元器件。

它能够为其他电子元器件提供稳定的电流输出,这对很多电子设备的正常运行起到了重要的保障作用。

在工业生产领域,尤其是半导体、电路板等领域,数控恒流源的应用相当广泛。

在本文中,我将介绍一种基于单片机的高性能数控恒流源,让我们一起来看看吧。

一、设计原理该数控恒流源主要由单片机、操作界面、甄别功放和恒流稳压器四部分组成。

单片机和操作界面相连,利用程序控制电流的大小,同时可以显示电流大小和一些操作信息。

甄别功放是用来放大输出电流的,而恒流稳压器则是保证输出电流的稳定性。

二、具体实现1. 单片机电路在本设计中,我们选择了AVR单片机,主要是因为其性价比高以及易于编程的特点。

使用单片机所需的周边电路如晶振、电源电路等,这里就不再赘述。

2. 操作界面我们选择了一个12864的液晶显示器,以及四个按键,分别为上、下、左、右。

通过这些按键来选择电流大小和操作模式等。

3. 甄别功放甄别功放主要是用来放大输出电流的,我们选择了OPA548T 作为甄别功放。

其最大音量及输出功率分别为24V和200W,应该足够满足在工业生产领域的需求。

4. 恒流稳压器稳压芯片使用的是LM317,它可以输出1.2V至37V的电压,并可以有一个电流稳定的输出。

在本设计中,我们将其设置为输出1A的电流。

并用一个调节电阻来实现输出电流的调节。

三、总结本文介绍了一种基于单片机的高性能数控恒流源。

它具有功能强大、精度高、控制方便等优点。

在工业生产领域中,它有着广泛的应用。

希望本文能够对大家在这一领域里的设计和实现提供一些启示和帮助。

数控恒流源的设计与制作

数控恒流源的设计与制作

数控恒流源的设计与制作一,解析课题设计并制作一个数控恒流源电路,数控恒流源电路原理图如下图所示。

数控恒流源是指在给定的数字量控制下,负载电阻阻值在一定范围内调节变化时输出电流恒定不变,改变控制数字量,输出恒定电流不随负载改变。

二,设计原理四,单元电路元器件选择(1)计数器采用74HC161计数器。

74HC161的主要功能:1,异步清零功能:当CLR 的反为零时,不论有无时钟脉冲CLK和其他信号输入,计数器被清零,即Qd~Qa都为0。

2,同步并行置数功能:当CLR的反=1,LOAD的反=0时,在输入时钟脉冲CLK上升沿的作用下,并行输入的数据dcba被置入计数器,即Qd~Qa=dcba。

3,计数功能:当LOAD的反=CLR的反=ENP=ENT=1,当CLK端输入计数脉冲时,计数器进行二进制加法计数4,保持功能:当LOAD的反=CLR 的反=1时,且ENP和ENT中有”0“时,则计数器保持原来状态不变。

(2)驱动译码器采用74HC4511芯片。

74HC4511将输入BCD标准代码变换成驱动七段数码管所需的码信号,其中四线A~D为BCD码输入端,高电平有效,A为低位输入端,D为高位端,七段a~g输出高电平以驱动共阴极数码管发光。

LE为锁存控制端,高电平时能够锁存输入的BCD码。

LT为灯测试反相控制端,BI为消隐反相控制端。

(3)数模转换器DAC0832是采样频率为8位的D/A转换芯片,集成电路内有两级输入寄存器,使DAC0832芯片具备双缓冲、单缓冲和直通三种输入方式,以便适于各种电路的需要(如要求多路D/A异步输入、同步转换等)。

DAC0832中有两级锁存器,第一级锁存器称为输入寄存器,它的锁存信号为ILE;第二級锁存器称为DAC 寄存器,它的锁存信号为传输控制信号。

因为有两级锁存器,DAC0832可以工作在双缓冲器方式,即在输出模拟信号的同时采集下一个数字量,这样能有效地提高转换速度。

此外,两级锁存器还可以在多个D/A转换器同时工作时,利用第二级锁存信号来实现多个转换器同步输出。

数控直流恒流源的设计

数控直流恒流源的设计

数控直流恒流源的设计摘要直流恒流源是提供稳定直流电流的电源装置,是科学实验和设备调试中的一种必备设备。

本文介绍了采用AT89C51单片机为主控制器,通过键盘来设置直流恒流源的输出电流,并由数码管显示电流设定值的数控直流恒流源。

本系统由单片机程控设定数字信号经过D/A转换器输出模拟量,再经过V/I转换电路的转换输出不同的电流。

输出电流范围为10~100mA,电流设置步进为1mA,输出电流调整率≤2%。

本文主要分析了数控直流恒流源系统的设计需求,阐述了数控直流恒流源的软硬件的设计原则,介绍了数控直流恒流源各模块电路的功能及设计思路,完成了数控直流恒流源系统的全部设计,给出了完整的电路图和程序。

本文设计的重点是单片机主控系统和D/A转换电路,设计的难点是高线性、高稳定度的电压/电流转换电路(V/I转换电路)。

测试结果表明,本系统能满足需要高稳定度的小功率直流恒流源领域的应用要求。

关键词数控恒流源 V/I转换ABSTRACTNumerical control DC constant current source is to provide a stable DC power devices, and equipment for scientific experiments debugging necessary equipment. This paper instructed the numerical control DC constant current source which makes use of the AT89C51 version single chip microcontroller is the main controller in this system, while the set value and the real output current can be displayed by LED. In this system, the digitally programmable signal from Single Chip Micro controller is converted to analog value by D/A converter, and then transited by voltage/current converter circuit, so adjustable output different current. Output current range of 10~100mA, current set of 1mA step, the output current adjustment rate of less than 2%.This paper analyzes the numerical control DC constant current source system design needs, expounded numerical-controlled DC constant current source of the hardware and software design principles, instructed the numerical-controlled DC constant current source circuit of the module function and design ideas, completed the numerical-controlled DC current source of all design, and the circuit is complete and procedures. This paper focuses on the design of the control system microcontroller and D/A Conversion Circuit, The difficulty in the design of high linearity, high stability of the voltage/current converter circuit (V/I Conversion Circuit). The test results have showed that it can be applied in need areas of constant current source with high stability and low power.KEY WORDS numerical control constant current source V/I convert目录前言 (1)第1章系统总体设计 (2)1.1 系统设计任务与要求 (2)1.1.1 系统设计任务 (2)1.1.2 系统设计要求 (2)1.2 重点研究内容与实现方法 (2)1.2.1 重点研究内容 (2)1.2.2 实现途径及方法 (3)1.3 系统总体方案设计 (3)1.3.1 主控模块 (3)1.3.2 键盘与显示模块 (4)1.3.3 恒流源模块 (4)1.3.4 存储器扩展模块 (4)1.3.5 电源模块 (5)1.3.6 系统原理框图 (5)第2章系统硬件各功能模块的设计 (6)2.1 主控模块的设计 (6)2.1.1 AT89C51单片机简介 (6)2.1.2 D/A转换电路的设计 (7)2.1.3 恒流源电路的设计 (9)2.1.4 数据存储器的扩展 (10)2.1.5 系统资源分配 (11)2.2 人机接口的设计 (12)2.2.1 键盘的设计 (12)2.2.2 显示电路的设计 (14)2.3 系统抗干扰设计 (15)2.3.1 看门狗电路的设计 (15)2.3.2 电源供电系统的设计 (16)2.3.3 基准电压的设计 (17)第3章控制软件的设计 (19)3.1 主程序的设计 (19)3.1.1 读写EEPROM子程序的设计 (19)3.1.2 键盘处理子程序的设计 (20)3.1.3 D/A转换子程序的设计 (20)3.2 键盘中断服务程序的设计 (21)3.3 显示中断服务程序的设计 (21)3.1.1 正常显示程序模块 (21)3.1.2 闪烁显示程序模块 (21)第4章系统调试 (28)4.1 硬件仿真调试 (28)4.2 软件的调试 (31)4.3 数据测试及误差分析 (35)第5章结论 (41)致谢 (42)参考文献 (43)附录1:电路原理图 (44)附录2:源程序 (48)附录3:英文原文 (62)附录4:中文译文 (69)前言直流恒流源是提供稳定直流电流的电源装置,是科学实验和设备调试中的一种必备设备。

数控直流电流源的设计与实现

数控直流电流源的设计与实现

数控直流电源的设计与实现一、实验目的1.了解数控技术和电源技术。

2.熟悉微机原理及其接口技术。

3.运用微机系统实现一个数控直流电源。

二、实验内容与要求基于80x86实验箱平台设计并制作数控直流电源。

要求由键盘预置输入直流电压在0~+9.9V之间的任意一个值,数控直流电源输出,且输出电压与给定值偏差不大于0.1V。

主要技术指标:(1)输出电压:范围0~+9.9V,纹波不大于10mV,电压值由数码管显示;(2)具有“+”、“-”步进调整的功能,步进0.1V;(3)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变)。

三、实验报告要求1.设计目的和内容2.总体设计3.硬件设计:原理图(接线图)及简要说明4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法)四、总体设计采用8086处理机构成该系统的核心——数控模块,与基本接口实验板相连,通过软件编译实现设计各种功能的实现,输出部分也不再采用传统的调整管方式,而是在D/A转换后,经过稳定的功率放大电路得到。

由于使用了微处理器,整个系统可编程实现,系统的灵活性大大增加。

系统设计框图如图1所示。

图1 方案三系统设计框图为实现数控直流电源的各项功能,系统分为三个组成部分:键盘/显示电路,数控模块,稳压输出电路。

下面介绍系统各部分的基本功能:(1)键盘/显示电路:该电路的显示部分又可分为电压预制值显示电路和电压实际输出值显示电路。

系统利用可编程并行接口8255单元电路构成实验板上4*4小键盘的接口和LED 数码管电路的接口,从而识别键码同时显示电压预置值;在得到实际输出值后,实验板上提供了模数转换ADC0809单元电路,转化成数字量后传递给LED数码管就可以显示实际输出值。

(2)数控模块:该部分主要由8086微处理器和数模转换DAC0832单元电路组成。

其中通过编写汇编语言程序控制8086微处理器快速完成各功能所需的复杂运算,然后数模转换电路DAC0832可将运算所得的数字量转换为模拟量。

高效数控恒流源设计报告

高效数控恒流源设计报告

高效数控恒流源设计报告一、引言数控恒流源(Numerical Control Constant Current Source)是一种广泛应用于电子设备和工业生产中的电源设备,主要用于稳定输出恒定的电流信号。

在很多应用场景中,对电流的精确控制和稳定性要求较高。

本文将介绍一种高效数控恒流源的设计方案,并详细讨论其工作原理、电路结构和性能指标。

二、设计方案2.1 工作原理数控恒流源的工作原理基于负反馈机制,通过对输出电流进行监测并与设定值进行比较,调整反馈回路中的控制信号,使输出电流保持在设定值附近。

典型的数控恒流源由四个主要部分组成:直流电源、电流检测电路、比较器和功率调节器。

2.2 电路结构本设计方案采用基本的电流控制回路,电路结构如下:电路示意图电路示意图主要组成部分包括:•直流电源:提供基准电压以供电路工作。

•电流检测电路:通过高精度电流传感器对输出电流进行实时监测,并输出检测信号。

•参考电流源:提供设定值参考电流作为比较器的输入。

•比较器:将检测信号与设定值参考电流进行比较,并产生误差信号。

•误差放大器:对比较器输出的误差信号进行放大,以提供足够的调节信号给功率调节器。

•功率调节器:根据误差信号的大小和方向,控制输出电流的大小和稳定性。

2.3 性能指标为了评估数控恒流源的性能,我们需要考虑以下指标:•稳定性:输出电流的稳定性是衡量数控恒流源性能的重要指标,要求输出电流在设定值附近波动幅度小。

•精度:指数控恒流源输出的电流与设定值之间的偏差程度,要求尽可能小。

•响应速度:数控恒流源对于设定值的改变能够快速响应并调整输出电流,要求响应速度较快。

•效率:数控恒流源的电能转换效率,要求尽可能高。

三、实验步骤3.1 集成电路选择和布局设计为了实现高效的数控恒流源设计,我们首先需要选择适合的集成电路并进行布局设计。

考虑到稳定性和性能需求,我们选择了XXX型号的集成电路,并根据电路结构进行布局设计。

3.2 元器件选型和连接根据设计方案,选择适合的元器件,并根据电路结构进行连接。

直流数控电流源的设计与实现.

直流数控电流源的设计与实现.

直流数控电流源的设计与实现直流数控电流源的设计与实现类别:单片机/DSP流电流源作为稳定电源的分支,在工程技术和测量领域中有着重要的实用价值,其涉及的应用由稳定电磁场、校正电流表等扩展至激光、超导、现代通信和传感技术等领域。

基于模拟电路的电流源虽然可以实现高精度、宽电流范围输出,但其结构复杂, 调整困难,指示不直观。

随着单片机技术的发展,数字控制电流源开始出现,其以控制灵活、调节方便等特点展示了良好的应用前景。

一般的恒流电流源往往是电流值固定,或是有限数值档的电流值输出,不便于通用。

数字控制的电流源则通过单片机作为核心控制器,通过键盘设置所需的电流值,电流值取值范围大,使用方便灵活。

本文将介绍数字电流源设计方案,实现基于单片机控制的程控电流源硬件及软件设计。

数控电流源硬件设计数字控制电流源可以有多种方案,如基于PWM技术的开关电源、基于模拟器件的模拟反馈压控,以及基于微控制器的数字反馈数控方案。

本设计采用基于微处理控制器的数字控制方案,硬件系统框图如图1所示。

利用单片机AT89C51将输入的控制信号进行处理输出数字量,再把输出的数字量转换成模拟电压量,最后把转换后的模拟电压量进行电压/电流的转换供给负载。

图1 硬件电路框图 1 单片机控制与显示电路直流数控电流源原理图如图2所示。

控制电路由AT89C51、晶振、按键等构成,包括单片机时钟电路、复位电路以及按键输入电路。

该电路的工作原理为:AT89C51单片机通电后复位,P0和P1口均输出高电平。

当按键输入电路给电路输入控制信号后,通过程序控制经过内部处理,在P0及P1口输出处理后的信号。

P0的信号送至DAC0832的数字输入端进行数模转换,P1的输出信号送至显示电路进行显示。

键盘作为输入控制的信号,如图2所示,总共有8个按键,具体功能为:++键用于实现步进加,--键用作实现步进减,S1~S4用于实现从最低位至最高位设置时的位选,位选后,由+、-键调节各位的数值。

数控直流恒流源

数控直流恒流源

数控直流恒流源 Last updated on the afternoon of January 3, 2021数控恒流源设计与总结报告摘要:本设计以89C52为主控器件,采用了高共模抑制比低温漂的运算放大器OP07和大功率场效应管IRF640构成恒流源,通过12位A/D、D/A转换芯片,完成了单片机对输出电流的实时检测和实时控制,控制界面直观、简洁,具有良好的人机交互性能,人机接口采用4*4键盘及LCD液晶显示器。

该系统电流输出范围为20mA~2000mA的数控直流电流源。

该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。

关键词: 89C52 恒流源 AD DA1 系统设计设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其原理示意图如下所示。

图数控直流电流源原理示意图设计要求题目要求设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其要求如下:1.1.1 基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。

1.1.2 发挥部分(1)输出电流范围为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置 (可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的%+1 mA;(4)纹波电流≤;(5)其他。

总体设计方案本设计要设计的基于单片机控制的直流恒流源,以直流稳压电源和稳流电源为核心,结合单片机最小系统实现对输出电流的控制。

数控恒流源的设计与实现

数控恒流源的设计与实现

数控恒流源的设计与实现数控恒流源是一种电子设备,它可以在恒定的电流范围内自动调节输出电流。

这种设备被广泛应用于电子、机械、光学、医疗等领域。

它具有精度高、效率高、可靠性强等优点。

下面,我们将详细讨论数控恒流源的设计与实现。

一、设计方案1.数控恒流源的工作原理数控恒流源的工作原理是利用电阻、电感和开关管等元件组成一个功率电路,通过对开关管的控制,来调节输出电流。

具体过程如下:①从外部输入一个控制信号。

②控制信号由微控制器或其他控制元件解码。

③解码器将控制信号转换为PWM信号。

④PWM信号控制开关管,使其按照一定的频率开闭。

⑤开关管在闭合瞬间,会将电源的电能存储在电感中。

⑥当开关管打开时,存储在电感中的电能会被释放,形成一定的输出电流。

(注:开关管的频率一般在几十KHz以上,这样可以减小开关管的体积,并提高效率。

)2.电路设计数控恒流源的电路设计需要考虑到以下因素:(1)电路的精度:为保证电路输出的电流精度,需要选择高精度的元件。

(2)电路的效率:在能满足精度要求的前提下,应尽量提高电路的效率,以减小体积和降低成本。

(3)电路的稳定性:电路需要在多种不同的工作条件下稳定地输出电流,因此需要在设计中考虑到各种因素的影响。

(4)电路的控制:为了保证电路的稳定和精度,需要采用数字控制技术,实现对电流的精确控制。

基于以上考虑,我们可以设计出如下电路:(1)控制电路:采用单片机或FPGA等数字控制芯片,实现对电路的精确控制。

(2)功率电路:由电源、电感、开关管、稳压电路等部分组成。

(3)反馈电路:通过反馈电路,实现对输出电流的精确测量和控制。

二、实现方法1.电路的制作电路的制作需要根据电路设计方案进行,选择合适的元件进行制作。

在制作的过程中需要注意以下几点:(1)元件的选取需要严格参照设计方案,要保证元件的精度、效率和稳定性。

(2)焊接需要仔细,避免焊接不牢固或损坏元件。

(3)在调试电路时,需要注意安全,避免电路损坏或对人身安全造成影响。

数控直流电流源课程设计与制作

数控直流电流源课程设计与制作

课程设计任务书一、设计题目:数控直流电流源的设计与制作二、主要内容及要求1.功能与主要技术指标(1)输出电流:0∽1A步进可调,调整步距4mA;误差≤0.1mA(2)输入电压:12V;(3)显示:输出电压值用LED数码管显示;(4)电流调整:由“+”、“-”两按键分别控制输出电流的步进增减;(5)输出电流预置:输出电流可预置在0∽1A之间的任意一个值;(6)其它:自制电路工作所需的直流稳压电源,输入电压为±12V,+5V;三、进度安排任务设计2012年3月12日— 2012年3月16日练习制作2012年3月19日— 2012年3月23日数控直流电流源设计与制作一、设计任务和技术要求1、设计一个数控直流电流源2、输出电流0~1A,手动步进4mA增、减可调,误差不大于0.1mA;3、负载供电电压+12V,负载等效阻值10欧姆;4、电路应具有对负载驱动电流较好的线性控制特性;二、总体设计方案原理及结构框图数控直流电流源共有六部分组成,其中输出电流的调节是通过“+” 和“-”两个按键来操作的;步进电流精确到0.1A以手动控制可逆计数器分别作加,减计数;控制数字量为8位二进制码:~增、减变化。

可逆计数器的二进制数字输出分两路运行,一路用于驱动数字显示电路,精确显示当前输出电流值;另一路进入数模转换电路(D/A转换电路);数模转换电路将数字量按比例,转换成模拟电流,然后经过射极跟随器的控制,调整输出级,使输出稳定直流电流。

图2-1电路结构原理框图三、部分模块原理及结构图1、74LS193芯片74LS193具有同步可逆计数功能、异步清零功能、异步并行置数和保持功能。

与 是为74LS193级联时使用的。

级联时只要把低位的 端、 端分别与高位的CP U 、CP D 连接起来,各芯片的CR 端连接在一起, 端连接在一起,就可以了。

图3-1 74LS193引脚排列图和逻辑功能示意图CR 异步清零端,高电平有效; 异步置数,低电平有效;CPU 加法计数脉冲输入端,上升沿触发; CPD 减法计数脉冲输入端,上升沿触发;BO COBOCO LD LD进位脉冲输出端; 借位脉冲输出端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控直流恒流源的设计与制作
本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000mA范围内任意设定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±4mA,因而可实际应用于需要高稳定度小功率直流恒流源的领域。

1 系统原理及理论分析
1.1单片机最小系统组成
单片机系统是整个数控系统的核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整。

主要包括AT89S52单片机、模数转换芯片ADC0809、12位数模转换芯片AD7543、数码管显示译码芯片74LS47与74LS138等器件。

1.2系统性能
本系统的性能指标主要由两大关系所决定,设定值与A/D采样显示值(系统内部测量值)的关系。

内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。

1.3恒流原理
数模转换芯片AD7543是12位电流输出型,其中OUT1和OUT2是电流的输出端。

为了实现数控的目的,可以通过微处理器控制AD7543的模拟量输出,从而间接改变电流源的输出电流。

从理论上来说,通过控制AD7543的输出等级,可以达到1mA的输出精度。

但是本系统恒流源要求输出电流范围是20mA~2000mA,而当器件处于2000mA的工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶管
值下降,从而导致电流不能维持恒定。

为了克服大电流工作时电流的波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流的波动,此反馈回路采用数字形式反馈,通过微处理器的实时采样分析后,根据实际输出对电流源进行实时调节。

经测试表明,采用常用的大功率电阻作为采样电阻R0,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善。

电路反馈原理如下图所示。

2 总体方案论证与比较
方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。

本方案电路复杂,灵活性不高,效率低,
不利于系统的扩展,对信号处理比较困难。

方案二:采用AT89S52单片机作为整机的控制单元,通过改变AD7543的输入数字量来改变输出电压值,从而使输出功率管的基极电压发生变化,间接地改变输出电流的大小。

为了能够使系统具备检测实际输出电流值的大小,可以将电流转换成电压,并经过ADC0809进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理及显示。

此系统比较灵活,采用软件方法来解决数据的预置以及电流的步进控制,使系统硬件更加简洁,各类功能易于实现,能很好地满足题目的要求。

本方案的基本原理如图2所示。

3 模块电路设计与比较
3.1恒流源方案选择
方案一:采用恒流二极管或者恒流三极管,精度比较高,但这种电路能实现的恒流范围很小,只能达到十几毫安,不能达到题目的要求。

方案二:采用四端可调恒流源,这种器件靠改变外围电阻元件参数,从而使电流达到可调的目的,这种器件能够达到1~2000毫安的输出电流。

改变输出电流,通常有两种方法:一是通过手动调节来改变输出电流,这种方法不能满足题目的数控调节要求;二是通过数字电位器来改变需要的电阻参数,虽然可以达到数控的目的,但数字电位器的每一级步进电阻比较大,所以很难调节输出电流。

方案三:压控恒流源,通过改变恒流源的外围电压,利用电压的大小来控制输出电流的大小。

电压控制电路采用数控的方式,利用单片机送出数字量,经过D/A转换转变成模拟信号,再送到大功率三极管进行放大。

单片机系统实时对输出电流进行监控,采用数字方式作为反馈调整环节,由程序控制调节功率管的输出电流恒定。

当改变负载大小时,基本上不影响电流的输出,采用这样一个闭路环节使得系统一直在设定值维持电流恒定。

该方案通过软件方法实现输出电流稳定,易于功能的实现,便于操作,故选择此方案。

电路原理图如图3所示。

3.2反馈闭环方案选择
方案一:采样电阻上的电压,可知输出电流与采样电阻存在近似线性关系,因此可以从检测电阻上电压的大小来直接增减反馈深度。

方案二:从采样电阻上得到一个反馈电压,由于采样电阻阻值比较小,在该电阻上的压降相应也小,为了提高系统控制的灵敏度,采用一级运算放大器对采样电压进行放大,再送到ADC0809进行A/D转换。

数据由单片机系统进行相应处理,为了达到1mA步进,选用12位串行D/A转换器件AD7543可以满足题目要求,而且该芯片是采用串行数据传送方式,硬件电路简单。

同时反馈系统控制灵活,易于达到1mA的步进要求。

3.3控制单元方案选择
由于要实现人机对话,至少要有10个数字按键和两个步进按键,考虑到还要实现其它的功能键,选用16按键的键盘来完成整个系统控制。

显示部分采用8位LED数码管,而且价格便宜,易于实现。

考虑到单片机的I/O端口有限,为了充分优化系统,采用外部扩展一片8155来实现键盘接口与显示功能。

电路原理如图4所示。

图3 压控恒流源电路原理
图4键盘及显示电路
3.4电源方案选择
方案一:用开关稳压电源给整机供电,此方案能够完成本作品电流源的供电,但开关电源比较复杂,而且体积也比较大,制作不便,因而此方案难以实现。

方案二:单片机控制系统以及外围芯片供电采用78系列三端稳压器件,通过全波整流,然后进行滤波稳压。

电流源部分由于要给外围测试电路提供比较大的功率,因此必须采用大功率器件。

考虑到该电流源输出电压在10V以内,最大输出电流不大于2000mA,由公式P=U*I可以粗略估算电流源的功耗为20W。

同时考虑到恒流源功率管部分的功耗,需要预留功率余量,因此供电电源要求能输出30W以上。

为了尽量减少输出电流的纹波,要求供电源要稳定,因此采用隔离电源,选用由LM338构成的高精度大电流稳压电源。

此方案输出电流精度高,能满足题目要求,而且简单实用,易于自制,故选用方案二。

稳压电源原理如图5所示。

3.5过压报警功能设计
为了使本数控直流电流源进一步智能化,考虑到要求输出电压不大于10V,因此系统测试部分设计了一个过压报警电路,用于对电压的实时监测,一旦有过压现象,控制器响应后会发出报警控制信号。

电路原理参见图3。

4 软件设计
根据实际的硬件电路,为了有效地减小纹波电流,用软件方法实现去峰值数值滤波,以减小环境参数对输出控制量的影响。

软件设计主程序流程图和闭环比较子程序流程图;电流设置子程序流程图;键盘中断子程序流程图;显示中断子程序流程图。

分别如下图所示。

根据本系统的实际要求软件设计可分为以下几个功能模块:
4.1主程序模块MAIN:流程图如图6所示。

主程序负责与各子程序模块的接口和检查键盘功能号。

4.2闭环比较子程序模块BIHUAN:流程图如图7所示。

通过调用闭环比较子程序得出实际值与设定值的差值,如果是实际值大于设定值则将原来的D/A的入口数值减去这个差值再送去D/A转换,如果是实际值小于设定值则把原来的D/A的入口数值加上这个差值再送去转换。

如果输出值与设定值仍然不一致,再将差值和设定值相加送D/A 转换,以逐步逼近的形式使实际值和设定值相一致后通过LED把稳定的实际值显示出来。

而逐步逼近过程中的实际值不送显示因此减少了实际显示值的不稳定。

这也是结构化程序的要点(合理设置程序的顺序结构)。

4.3电流设置子程序模块SETUP:流程图如图8所示。

通过键盘设置电流的大小,因为本系统最大输出电流是2000mA,所以该子程序兼有电流设置合法性,也就是说设置电流不能大于2000mA。

4.4键盘中断子程序模块KEYSCAN:流程图如图9所示。

本系统采用外部中断1来实现实时扫描,使程序及时响应按键请求而无需顾虑其它程序模块运行情况。

4.5显示中断子程序模块LED:流程图如图10所示。

本系统采用定时中断0来实现逐位动态显示,每位显示间隔固定为2ms,使LED输示非常稳定,无法考虑定时刷新显示,使得该显示子程序简单灵活,适用性广。

5 数据测试及分析
数据测试是反映系统性能的重要指标。

因此对本系统进行了全面的测试,分别为输出电流测试、步进电流测试、工作时间测试、负载阻值变化测试、纹波电流测试。

本系统测试采用的仪表如下:当测试系统电流分别0~200mA和200mA~2000mA时,分别采用数字表DT9801的200mA档和10A档。

测试电压采用数字表XB-9208B的2V档和20V档。

测试纹波电流采用低频毫伏表DA—16D来测试纹波电压,但当测量值与对应量程相差较大时,会有一定的误差。

图2系统原理框图
比较以上两种方案的优缺点,方案二简洁、灵活、可扩展性好,能达到题目的设计要求,因此采用方案二来实现。

图5稳压电源原理。

相关文档
最新文档