2020届鲁教版(五四制)七年级下册数学期末检测试题有答案(加精)
鲁教版七年级数学下册期末检测题(含答案分析)
鲁教版七年级数学下册期末检测题检测范围:全册教材总分:150分一、选择题(本大题共14小题,共42.0分)1.如图,已知∠1=∠2,其中能判定AB∥CD的是()A. B.C. D.2.已知等腰三角形的一边长5cm,另一边长8cm,则它的周长是A. 18cmB. 21cmC. 18cm或21cmD. 无法确定3.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于()A. 或B.C.D. 或4.若(a-2)2+|b-3|=0,则以a、b为边长的等腰三角形的周长为()A. 6B. 7C. 8D. 7或85.已知x>y,则下列不等式成立的是()A. B. C. D.6.用加减法解方程组时,若要求消去y,则应()A. B. C. D.7.如图,AB∥CD,∠DCE=80°,则∠BEF=()A.B.C.D.8.已知a、b、c均为实数,,那么下列不等式一定成立的是 .A. B.C. D.9.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A. 1B. 2C. 3D. 410.若a<b,则下列各式中一定成立的是()A. B. C. D.11.已知图中的两个三角形全等,则∠α度数是()A. B. C. D.12.若不等式组的解集为-1<x<1,则(a-3)(b+3)的值为()A. 1B.C. 2D.13.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.B. 4C.D. 814.若关于x的不等式组><无解,则a的取值范围是()A. B. C. D.二、填空题(本大题共10小题,共40.0分)15.若关于x的一元一次不等式组无解,则m的取值范围为______.16.已知,如图,BE平分∠ABC,∠1=∠2,请说明∠AED=∠C.根据提示填空.∵BE平分∠ABC(已知)∴∠1=∠3 (_____________)又∵∠1=∠2(已知)∴______=∠2 (_____________)∴______∥______(______________)∴∠AED=______(_______________).17.已知:在A BCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,S△AOE=3,S△BOF=5,则A BCD的面积是______ .18.已知x、y满足方程组,则代数式x-y=______.19.如图,把△ABC的一角折叠,若∠1+∠2=130°,则∠A的度数为______.20.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=______cm.21.已知方程组的解满足x+y=2,则k的值为______.22.不等式组><的解集是x>-1,则a的取值范围是______.23.若(2x-y)2与|x+2y-5|互为相反数,则(x-y)2005= ______ .24.长方形如图折叠,已知∠AEB′=56°,则∠BEF=______度.三、计算题(本大题共4小题,共28.0分)25.解方程组:(1)(2).26.解下列不等式组,并把解集在数轴上表示出来:(1)<-1,(2)>.27.如图,CD平分∠ACB,DE∥BC,∠AED=80°,(1)求∠ACD的度数.(2)求∠EDC的度数.28.代数式的值不大于的值,求x的范围.四、解答题(本大题共5小题,共40.0分)29.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.30.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=3,求AF的长.31.某单位需采购一批商品,购买甲商品10件和乙商品15件需资金350元,而购买甲商品15件和乙商品10件需要资金375元.求甲、乙商品每件各多少元?本次计划采购甲、乙商品共30件,计划资金不超过460元,最多可采购甲商品多少件?若要求购买乙商品的数量不超过甲商品数量的,请给出所有购买方案,并求出该单位购买这批商品最少要用多少资金.32.已知关于x、y的二元一次方程组的解满足不等式组,则m的取值范围是什么?33.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?答案和解析1.【答案】D【解析】【分析】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【解答】解:A.∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行);B.∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C.∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D.∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行).故选D.2.【答案】C【解析】【分析】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键,题目给出等腰三角形有两条边长为5cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)当腰是5cm时,三角形的三边是:5cm,5cm,8cm,能构成三角形,则等腰三角形的周长=5+5+8=18cm;(2)当腰是8cm时,三角形的三边是:5cm,8cm,8cm,能构成三角形,则等腰三角形的周长=5+8+8=21cm.因此这个等腰三角形的周长为18或21cm.故选C.3.【答案】D【解析】【分析】本题考查了等腰三角形的性质,解题关键在于分两种情况进行讨论,作出图形更形象直观.分两种情况进行讨论:当三角形是锐角三角形时,利用直角三角形两锐角互余求解;当三角形是钝角三角形时,利用三角形的一个外角等于与它不相邻的两个内角的和求解.【解答】解:如图1,三角形是锐角三角形时,∵∠ACD=50°,∴顶角∠A=90°-50°=40°;如图2,三角形是钝角三角形时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故选D.4.【答案】D【解析】【分析】本题考查了非负数的性质、等腰三角形的性质和三角形的三边关系定理的应用,注意此题要分为两种情况讨论.先根据非负数的性质得到a、b的长,再分为两种情况:①当腰是2,底边是3时,②当腰是3,底边是2时,求出即可.【解答】解:∵(a-2)2+|b-3|=0,∴a-2=0,b-3=0,解得a=2,b=3,①当腰是2,底边是3时,三边长是2,2,3,此时符合三角形的三边关系定理,即等腰三角形的周长是2+2+3=7;②当腰是3,底边是2时,三边长是3,3,2,此时符合三角形的三边关系定理,即等腰三角形的周长是3+3+2=8.故选D.5.【答案】C【解析】【分析】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变,根据不等式的性质逐项分析即可.【解答】解:A、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D、不等式两边乘(或除以)同一个正数,等式两边加(或减)同一个数(或式子),不等号方向不变,故本选项错误.6.【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.利用加减消元法消去y即可.【解答】解:用加减法解方程组时,若要求消去y,则应①×5+②×3.故选C.7.【答案】A【解析】解:∵AB∥CD,∴∠DCE+∠BEF=180°,∵∠DCE=80°,∴∠BEF=180°-80°=100°.故选:A.根据平行线的性质推出∠DCE+∠BEF=180°,代入求出即可.本题主要考查对平行线的性质,邻补角的定义等知识点的理解和掌握,根据平行线的性质推出∠DCE+∠BEF=180°是解此题的关键.8.【答案】D【解析】【分析】本题考查的是不等式的性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A.∵a<b,∴a-b<0,故本选项错误;B.∵a<b,∴-3a>-3b,故本选项错误;C.当c=0时,a|c|=b|c|,故本选项错误;D.∵a<b,c2+1>0,∴a(c2+1)<b(c2+1),故本选项正确.9.【答案】A【解析】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1,故选:A.由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.10.【答案】C【解析】【分析】本题主要考查了不等式的性质,关键是注意不等式的性质3.根据不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A.两边都加1,不等号的方向不变,故A不符合题意;B.两边都减1,不等号的方向不变,故B不符合题意;C.两边都乘以-3,不等号的方向改变,故C符合题意;D.两边都除以2,不等号的方向不变,故D不符合题意;故选C.11.【答案】A【解析】【分析】本题考查了全等三角形的性质有关知识,根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=50°.故选A.12.【答案】D【解析】解:解不等式2x-a<1,得:x<,解不等式x-2b>3,得:x>2b+3,∵不等式组的解集为-1<x<1,∴,解得:a=1,b=-2,当a=1,b=-2时,(a-3)(b+3)=-2×1=-2,故选:D.解不等式组后根据解集为-1<x<1可得关于a、b的方程组,解方程组求得a、b的值,代入代数式计算可得.本题主要考查解不等式组和方程的能力,根据不等式组的解集得出关于a、b 的方程是解题的关键.13.【答案】C【解析】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.14.【答案】B【解析】解:不等式组整理得:,由不等式组无解,得到a≥2,故选:B.分别表示出不等式组中两不等式的解集,由不等式组无解,确定出a的范围即可.此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.15.【答案】m≤0【解析】【分析】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.首先解每个不等式,然后根据不等式组无解即可得到一个关于m的不等式,从而求得m的范围.【解答】解:,解(1)得x<2,解(2)得x>2-m,根据题意得:2≤2-m,解得:m≤0.故答案是m≤0.16.【答案】角平分线的定义;∠3;等量代换;DE;BC;内错角相等,两直线平行;∠C;两直线平行,同位角相等【解析】【分析】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【解答】证明:∵BE平分∠ABC(已知)∴∠1=∠3 (角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 (等量代换)∴DE∥BC(内错角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等)故答案为角平分线的定义;∠3,等量代换;DE,BC,内错角相等,两直线平行;∠C,两直线平行,同位角相等.17.【答案】32【解析】【分析】本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点:①平行四边形的对边相等且平行,②全等三角形的对应边、对应角分别相等.利用平行四边形的性质可证明△AOE≌△COF,所以可得△COF的面积为3,进而可得△BOC的面积为8,又因为△BOC的面积=ABCD的面积,进而可得问题答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠BCA,∠AEF=∠CFE,又∵AO=CO,在△AOE与△COF中,,∴△AOE≌△COF,∴△COF的面积为3,∵S△BOF=5,∴△BOC的面积为8,∵△BOC的面积=ABCD的面积,∴ABCD的面积=4×8=32,故答案为32.18.【答案】-3【解析】【分析】本题考查了二元一次方程组的解法,此题只要两式相减即可.只要把两方程相减,再提取公因式-2,即可求得答案.【解答】解:两方程相减得:-2x+2y=6,整理得:x-y=-3.故答案为-3.19.【答案】65°【解析】解:如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°,∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°-∠3-∠4=65°.故答案为:65°.根据折叠的性质得到∠3=∠5,∠4=∠6,利用平角的定义有∠3+∠5+∠1+∠2+∠4+∠6=360°,则2∠3+2∠4+∠1+∠2=360°,而∠1+∠2=130°,可计算出∠3+∠4=115°,然后根据三角形内角和定理即可得到∠A的度数.本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了折叠的性质.作出辅助线,把图形补充完整是解题的关键.20.【答案】4【解析】【分析】本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【解答】解:根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD==4cm.故答案为4.21.【答案】2【解析】【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:3(x+y)=k+4,即x+y=,代入x+y=2中得:k+4=6,解得:k=2,故答案为2.22.【答案】a≤-【解析】解:解不等式x+1>0,得:x>-1,解不等式a-x<0,得:x>3a,∵不等式组的解集为x>-1,则3a≤-1,∴a≤-,故答案为:a≤-.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可确定a的范围.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.【答案】-1【解析】解:∵(2x-y)2与|x+2y-5|互为相反数,∴(2x-y)2+|x+2y-5|=0,∴,解得,,∴(x-y)2005=(1-2)2005=-1,故答案为-1.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.【答案】62【解析】解:∵把一张长方形纸片ABCD按如图所示折叠后,得到∠AEB′=56°,∴∠BEB′=180°-∠AEB′=124°,∠BEF=∠B′EF,∵∠BEF+∠B′EF=∠BEB′,∴∠BEF=∠B′EF=∠BEB′=62°,故答案为:62.先根据平角的定义,求出∠BEB′,再根据折叠的性质,得出∠BEF=∠B′EF=∠BEB′,即可求出答案.本题考查了平角的定义和折叠的性质的应用,关键是求出∠BEB′的度数以及得出∠BEF=∠B′EF=∠BEB′.25.【答案】解:(1),将代入得:x+2x=6,解得:x=2,将x=2代入得:y=4,则方程组的解为;(2),×3-得:11y=11,即y=1,将y=1代入得:x=1,则方程组的解为.【解析】本题考查了抛物线与x轴的交点坐标.熟练掌握抛物线解析式的三种形式是解题的关键.(1)将方程组中第二个方程代入第一个方程消去y求出x的值,进而求出y的值,即可确定出方程组的解;(2)利用加减消元法求出方程组的解即可.本题考查了抛物线与x轴的交点坐标.熟练掌握抛物线解析式的三种形式是解题的关键.26.【答案】解:(1)去分母得4(x+1)<5(x-1)-6,去括号得4x+4<5x-5-6,移项得4x-5x<-5-6-4,合并得-x<-15,系数化为1得x>15,用数轴表示为:,(2)>解得x≥7,解得x<2,所以不等式组无解,用数轴表示为:【解析】(1)先去分母,再去括号得到4x+4<5x-5-6,然后移项后合并,再把x的系数化为1得到x>15,最后用数轴表示解集;(2)先分别解两个不等式得到x≥7和x<2,再利用大大小小找不到确定不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.也考查了在数轴上表示不等式的解集.27.【答案】解:(1)∵DE∥BC,∴∠ACB=AED,而∠AED=80°,∴∠ACB=80°,∵CD平分∠ACB,∴∠ACD=∠ACB=40°;(2)∵∠ADE=∠ACD+∠EDC,∴∠EDC=80°-40°=40°.【解析】(1)根据平行线的性质得∠ACB=AED=80°,再根据角平分线的定义得∠ACD=∠ACB=40°;(2)根据三角形外角性质得∠ADE=∠ACD+∠EDC,然后把∠AED=80°,∠ACD=40°代入计算即可.本题考查了平行线的性质:;两直线平行,同位角相等;两直线平行,内错角相等.也看出了三角形外角的性质.28.【答案】解:根据题意得:解不等式≤,去分母得:6-3(3x-1)≤2(1-2x),去括号得:6-9x+3≤2-4x,移项得:4x-9x≤2-6-3,合并同类项得:-5x≤-7,解得:x≥.【解析】代数式的值不大于的值,求x的范围,就是要求解不等式≤,不等式两边同时乘以6去分母得:6-3(3x-1)≤2(1-2x)然后就可以求出x 的范围.解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.29.【答案】证明:(1)∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.【解析】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.(1)由已知角相等,利用等式的性质得到夹角相等,利用SAS即可得证;(2)利用全等三角形对应角相等得到一对角相等,再由对顶角相等及内角和定理即可得证.30.【答案】(1)证明:∵∠ABC=45°,AD⊥BD,∴∠BAD=45°,∴AD=BD,∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,在△BDF和△ACD中,,∴△BDF≌△ADC(AAS),∴BF=AC;(2)解:连接CF,∵△BDF≌△ADC,∴DF=DC,∴△DFC是等腰直角三角形.∵CD=3,,∵AB=BC,BE⊥AC,∴AE=EC,BE是AC的垂直平分线.∴AF=CF,∴.【解析】本题考查了全等三角形的判定,全等三角形对应边相等的性质,等腰三角形底边三线合一的性质,线段垂直平分线的性质和判定,等腰三角形的判定,直角三角形的判定,勾股定理等有关知识.本题中求证△BDF≌△ACD是解题的关键.(1)根据等腰三角形腰长相等性质可得AD=BD,即可求证△BDF≌△ADC,即可解题;(2)连接CF,根据全等三角形的性质得到DF=DC,得到△DFC是等腰直角三角形.推出AE=EC,BE是AC的垂直平分线.于是得到结论.31.【答案】解:(1)设甲商品每件x元,乙商品每件y元,,解得,,即甲商品每件17元,乙商品每件12元;(2)设采购甲商品m件,17m+12(30-m)≤460,解得,m≤20,即最多可采购甲商品20件;由题意可得,,解得,,∴购买方案有四种,方案一:甲商品20件,乙商品10件,此时花费为:20×17+10×12=460(元),方案二:甲商品19件,乙商品11件,此时花费为:19×17+11×12=455(元),方案三:甲商品18件,乙商品12件,此时花费为:18×17+12×12=450(元),方案四:甲商品17件,乙商品13件,此时花费为:17×17+13×12=445(元),即购买甲商品17件,乙商品13件时花费最少,最少要用445元.【解析】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以解答本题.32.【答案】解:在方程组中,+,得:3x+3y=3+m,即x+y=,-,得:x-y=-1+3m,∵ ,∴<>,解得:0<m<3.【解析】将方程组两方程相加减可得x+y、x-y,代入不等式组可得关于m的不等式组,求解可得.本题主要考查解二元一次方程组和一元一次不等式组的能力,根据题意得出关于m的不等式是解题的关键.33.【答案】解:设甲,乙速度分别为x米/秒,y米/秒.由题意可得:解得:答:每秒钟甲跑6米,乙跑4米.【解析】此题为追赶问题,可根据甲速度×时间-乙速度×时间=甲乙间距来列出方程(组)进行求解.本题考查运用二元一次方程组解决追赶问题,解题思路是利用公式:追赶者所行路程-被追赶者所行路程=初始间距.。
精品解析:鲁教版七年级下学期期末考试数学试题(原卷版)含解析答案
鲁教版七年级下期末测试题一、选择题1. 已知a<b,下列变形正确的是()A. a﹣3>b﹣3B. 2a<2bC. ﹣5a<﹣5bD. ﹣2a+1<﹣2b+12. 下列命题的逆命题成立的是()A. 对顶角相等B. 全等三角形的对应角相等C. 如果两个数相等,那么它们的绝对值相等D. 两直线平行,同位角相等3. 下列成语描述的事件中,属于随机事件的是()A. 水中捞月B. 风吹草动C. 一手遮天D. 守株待兔4. 已知x ay b=⎧⎨=⎩是方程组23327x yx y+=⎧⎨-=⎩的解,则5a b-的值是()A.10B. -10C. 14D. 21 5. 如图,在△ABC中,AC=AD=DB,∠C=70°,则∠CAB的度数为()A. 75° B. 70° C. 40° D. 35°6. 不等式235x->-的解集在数轴上表示正确的是( ) A. B. C. D. 7. 将一副三角板按照如图所示的位置摆放在同一水平面上,两条斜边互相平行,两个直角顶点重合,则∠1的度数是()A. 30oB. 45oC. 75oD. 105o8. 一种转盘游戏,每转一次赢得奖品的概率是12,小明转了2次,获得奖品的概率是( ) A. 1 B. 12 C. 14 D. 349. 若关于x 的一元一次不等式组600x x a -<⎧⎨->⎩无解,则a 的取值范围是( ) A. a ≥6 B. a >6 C. a ≤﹣6 D. a <﹣610. 某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有( )A. 152块B. 153块C. 154块D. 155块11. 一次函数y 1=kx+b 与y 2=x+a 的图象如图所示,则下列结论中正确的个数是( )①y 2随x 的增大而减小;②3k+b =3+a ;③当x <3时,y 1<y 2; ④当x >3时,y 1<y 2.A. 3B. 2C. 1D. 0 12. 如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =( )A . 2nB. 22n -C. 12n +D. 12n - 二、填空题(只要求填写最后结果。
2020-2021学年七年级数学鲁教版(五四制)下册期末练习试题(有答案)
2020-2021学年鲁教新版七年级下册数学期末练习试题(五四学制)一.选择题(共12小题,满分36分,每小题3分)1.下列方程中,是二元一次方程的有()A.6x﹣2z=5y+3B.=5C.x2﹣3y=1D.x=2y2.下列说法:①“从13张黑桃扑克牌中随机抽取一张,抽出的牌上点数小于5的概率是”;②“从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,一定抽出3个绿球”;③“射击运动员射击一次,命中靶心的概率是0.5”,其中不正确的个数是()A.0B.1C.2D.33.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定4.若x、y满足方程组,则x﹣y的值为()A.﹣2B.﹣1C.1D.25.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠2+∠7=180°;(3)∠4=∠7;(4)∠3=∠6;其中能判定a∥b的条件的序号是()A.(1)(2)B.(1)(3)C.(1)(4)D.(3)(4)6.在一个不透明的袋子中装有2个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出1个球,则摸出黑球的概率是()A.B.C.D.7.已知a<1,则下列不等式正确的是()A.a>2﹣a B.2<2+a C.a<2a D.a<a+28.要说明命题“若a >b ,则a 2>b 2”是假命题,可设( ) A .a =3,b =4B .a =4,b =3C .a =﹣3,b =﹣4D .a =﹣4,b =﹣39.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( ) A .160钱B .155钱C .150钱D .145钱10.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论中正确的个数是( ) ①AD 是∠BAC 的平分线 ②∠ADC =60°; ③AD =BD ;④点D 在AB 的垂直平分线上 ⑤S △ABD =S △ACDA .2个B .3个C .4个D .5个11.不等式组的解集是( ) A .﹣1<x ≤2B .﹣2≤x <1C .x <﹣1或x ≥2D .2≤x <﹣112.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t =或t =,其中正确的结论有( )A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)13.在平面直角坐标系中,点P(6﹣2m,4﹣m)在第三象限,则m的取值范围是.14.如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为.15.欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是°.16.小明用50元钱购买矿泉水和冰淇淋,每瓶矿泉水2元,每支冰淇淋6元,他买了6瓶矿泉水和若干支冰淇淋,则小明最多能买支冰淇淋.17.如图,已知∠B=30°,则∠A+∠D+∠C+∠G=°.18.如图,在Rt△ABC中,AB=3,AC=4,∠BAC=90°,BC的中垂线DE与∠BAC的角平分线AF交于点E,则四边形ABEC的面积为.三.解答题(共7小题,满分66分)19.(1)解不等式组,并把解集表示在数轴上.(2)已知关于x,y的二元一次方程组的解满足x+y>﹣,求出满足条件的m的所有正整数值.20.如图,已知EC=AC,∠BCE=∠ACD,∠A=∠E,BC=3.求DC的值.21.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.22.如图所示,直线l1过点A(8,0),B(0,﹣4),直线l2过点C(0,﹣1),l1,l2相交于点D,且△DCB的面积等于6.(1)求直线AB的表达式;(2)求点D的坐标;(3)求点D的坐标是哪个二元一次方程组的解?23.甲、乙两个玩具的成本共300元,商店老板为获取利润,并快速出售玩具,决定甲玩具按60%的利润率标价出售,乙玩具按50%的利润率标价出售,在实际出售时,应顾客要求,两个玩具均按标价9折出售,这样商店共获利114元.(1)求甲,乙两个玩具的成本各是多少元?(2)商店老板决定投入1000元购进这两种玩具,且为了吸引顾客,每个玩具至少购进1个,那么可以怎样安排进货?24.如图,在四边形ABCD中,AB∥CD,对角线AC与BD相交于点E,且∠DAC=∠DCA.(1)求证:AC平分∠BAD;(2)若∠AEB=125°,且∠ABD=2∠CBD,DF平分∠ADB交AB边于点F,求∠BDF ﹣∠CBD的值.25.如图,在△ABC中,点D为BC边上的一点,AB=AD,点E为AC上的一点,△CDE 为等边三角形,过点D作DF⊥CE于点F.(1)若AB=6,CD=2,求AE的长;(2)点G为AE上的一点,连接BG、BE,若BE=BG,求证:AG=EF+DF.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:A、只含有3个未知数,不符合二元一次方程的定义;B、该方程不是整式方程;C、未知数的项的最高次数是2,不符合二元一次方程的定义;D、符合二元一次方程的定义;故选:D.2.解:从13张黑桃扑克牌中随机抽取一张,抽出的牌上点数小于5的有4张,因此抽出的牌上点数小于5的概率是,故①不正确;从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,可能都是红球,因此②不正确;射击运动员射击一次,命中靶心的概率不一定是0.5,因此③不正确;综上所述,不正确的个数是3个,故选:D.3.解:∵一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,∴事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是必然事件.故选:C.4.解:,①﹣②得:3x﹣3y=6,则x﹣y=2,故选:D.5.解:(1)∵∠1=∠5,∴a∥b;(2)∵∠2+∠7=180°,∠2+∠3=180°,∴∠3=∠7,∴a∥b;(3)由∠4=∠7得不到a∥b;(4)由∠3=∠6得不到a∥b,故选:A.6.解:∵在一个不透明的袋子中装有除颜色外其他均相同的2个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是=.故选:A.7.解:A、∵a<1,∴2﹣a>1,∴a<2﹣a,故本选项不合题意;B、a<1,当a<0时,2>2+a,故本选项不合题意;C、a<1,当a<0时,a>2a,故本选项不合题意;D、∵a<1,∴a<a+2,故本选项符合题意;故选:D.8.解:当a=﹣3,b=﹣4时,a2=9,b2=16,a>b,而a2<b2,∴命题“若a>b,则a2>b2”是假命题,故选:C.9.解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.10.解:利用基本作图得AD平分∠BAC,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,而AD平分∠BAC,∴∠CAD=∠DAB=30°,∴∠ADC=90°﹣∠CAD=60°,所以②正确;∵∠DAB=∠B=30°,∴DA=DB,所以③正确;∴点D在AB的垂直平分线上,所以④正确;∵AD =2CD , ∴BD =2CD ,∴S △ABD =2S △ACD ,所以⑤错误. 故选:C . 11.解:,由①得,x ≤2, 由②得,x >﹣1,故此不等式组的解集为:﹣1<x ≤2. 故选:A .12.解:由图象可知A 、B 两城市之间的距离为300km ,故①正确; 设甲车离开A 城的距离y 与t 的关系式为y 甲=kt , 把(5,300)代入可求得k =60, ∴y 甲=60t ,把y =150代入y 甲=60t ,可得:t =2.5,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n , 把(1,0)和(2.5,150)代入可得,解得,∴y 乙=100t ﹣100,令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5, 即甲、乙两直线的交点横坐标为t =2.5, 乙的速度:150÷(2.5﹣1)=100, 乙的时间:300÷100=3,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②正确;甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y 甲﹣y 乙|=40,可得|60t ﹣100t +100|=40,即|100﹣40t |=40, 当100﹣40t =40时,可解得t =,当100﹣40t=﹣40时,可解得t=,=40,此时乙还没出发,又当t=时,y甲=260;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:根据题意,得:,解不等式①,得:m>3,解不等式②,得:m>4,则不等式组的解集为m>4,故答案为:m>4.14.解:观察发现:图中阴影部分面积=S,矩形∴针头扎在阴影区域内的概率为;故答案为:.15.解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣92°=23°.故答案为:23.16.解:设小明买了x支冰激凌,根据题意,得:6×2+6x≤50,解得:x ≤,∵x 为整数,∴小明最多能买6支冰激凌, 故答案为:6. 17.解:∵∠B =30°,∴∠BEF +∠BFE =180°﹣30°=150°, ∴∠DEF +∠GFE =360°﹣150°=210°. ∵∠DEF =∠A +∠D ,∠GFE =∠C +∠G , ∴∠A +∠D +∠C +∠G =∠DEF +∠GFE =210°, 故答案为:210.18.解:如图,过点E 作EH ⊥AB ,EG ⊥AC ,∵∠BAC =90°,EH ⊥AB ,EG ⊥AC , ∴四边形ABEG 是矩形, ∴AH =EG ,∵AE 平分∠BAC ,EH ⊥AB ,EG ⊥AC , ∴EH =EG ,∴AG =AH =HE =EG , ∵DE 垂直平分BC , ∴BE =EC ,且EH =EG , ∴Rt △BEH ≌Rt △CEG (HL ), ∴BH =GC ,S △BEH =S △CEG , ∴四边形ABEC 的面积=S 四边形AHEG ,∵AB +AC =AB +AG +GC =AB +BH +AG =AH +AG =2AG =7,∴AH=AG=,∴S=AG•AH=,四边形AHEG故答案为:.三.解答题(共7小题,满分66分)19.解:(1)解不等式①得:x≤1,解不等式②得:x<4,所以不等式组的解集为:x≤1,在数轴上表示为:(2),①+②得:3(x+y)=﹣3m+6,即x+y=﹣m+2,代入不等式得:﹣m+2>﹣,解得:m<,则满足条件m的正整数值为1,2,3.20.解:∵∠BCE=∠ACD,∴∠ACB=∠ECD,在△ACB和△ECD中,,∴△ACB≌△ECD(ASA),∴BC=CD=3.21.解:(1)列表如下:小亮和小明234 22+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率=;(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.22.解:(1)设直线l1的表达式为y=kx+b,由题意得,解得,∴直线l1的表达式为y=﹣4;(2)由题意得OB=4,OC=1,∴BC=3.设△DCB的BC边上的高为h,∵△DCB的面积等于6.∴BC•h=6,即h=6,∴h=4,即D点的横坐标为4,将x=4代入y=﹣4得y=﹣2,所以D(4,﹣2);(3)设直线l2的表达式为y=ax+c,由题意得,,解得,所以直线l2的表达式为y=﹣x﹣1,因为l1,l2相交于点D,所以点D的坐标是方程组的解.23.解:(1)设甲玩具的成本是x元,乙玩具的成本是y元,依题意得:,解得:.答:甲玩具的成本是100元,乙玩具的成本是200元.(2)设购进m个甲玩具,n个乙玩具,依题意得:100m+200n=1000,∴m=10﹣2n.又∵m,n均为正整数,∴或或或,∴共有4种进货方案,方案1:购进8个甲玩具,1个乙玩具;方案2:购进6个甲玩具,2个乙玩具;方案3:购进4个甲玩具,3个乙玩具;方案4:购进2个甲玩具,4个乙玩具.24.解:(1)证明:∵AB∥CD,∴∠BAC=∠DCA,又∵∠DAC=∠DCA,∴∠BAC=∠DAC,∴AC平分∠BAD;(2)∵∠BAC=∠DAC,∠DAC+∠ADB=∠AEB=125°,∴∠ADB=125°﹣∠BAC,又∵DF平分∠ADB交AB边于点F,∴∠BDF=,由∠AEB=125°可得∠BAC=55°﹣∠ABD,∴∠BAC=55°﹣2∠CBD,∴,∴∠BDF﹣∠CBD==35°.25.解:(1)∵△CDE为等边三角形,DF⊥CE,∴CF=EF=1,∠EDF=30°,∴DF=EF=,∴AF===,∴AE=﹣1;(2)如图,在AG上截取GN=EC,连接BN,∵BE=BG,∴∠BGE=∠BEG,∴∠BGN=∠BEC,∵△DEC是等边三角形,∴DE=EC=DC,∠C=∠DEC=∠EDC=60°,在△BGN和△BEC中,,∴△BGN≌△BEC(SAS),∴BC=BN,∠C=∠BNG=60°,∴∠NBC=∠C=60°,∵∠ABD=∠ADB,∴∠ABN+∠NBC=∠C+∠DAC,∵∠BNC=∠DEC=60°,∴∠ANB=∠AED=120°,在△ABN和△DAE中,,∴△ABN≌△DAE(AAS),∴AN=DE,∴AG=AN+NG=DE+EC=2EC,∵△DEC是等边三角形,DF⊥CE,∴EF=EC,DF=EF=EC,∴EF+DF=EC+EC=2EC,∴AG=EF+DF.。
鲁教五四制数学七年级下册期末考试数学试题及答案2020年
2019—2020学年度第二学期期末学业水平检测七年级数学试题一、选择题(本题有12小题,每小题4分,共48分,每小题只有一个选项是正确的,不选、多选、错选,均不得分) 题号 123456789101112答案1.下列命题中,属于真命题的是A .两个锐角之和为钝角B .同位角相等C .钝角大于它的补角D .相等的两个角是对顶角 2.满足-2<x ≤1的数在数轴上表示为 A .B .C .D .3.已知a <b ,下列不等式成立的是A .a +2<b +1B .-3a >-2bC .m -a >m -bD .am 2<bm 24.将一张长方形纸条折成如图所示的形状,BC 为折痕.若∠DBA =70°,则∠ABC 等于 A .45° B .55° C .70° D .110°第4题图 第5题图 第6题图5.如图,在△ABC 中,AC =4,BC 边的垂直平分线分别交BC 、AB 于点D 、E ,若△AEC 的周长是11,则AB = A .28 B .18 C .10 D .76.如图,在△ABC 中,∠A =60°,∠C =70°,BD 平分∠ABC ,DE ∥BC ,则∠BDE 的度数是A .50°B .35°C .30°D . 25°7.若方程组⎩⎪⎨⎪⎧3x −y =4k −5,2x +6y =k . 的解中x +y =2019,则k 等于A .2018B .2019C .2020D .20218.如图,△ABC 是等边三角形,AB =12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE +CF 的长是 A .6 B .5 C .12 D .8第8题图 第12题图9.掷一枚质地均匀的硬币6次,下列说法正确的是 A .必有3次正面朝上 B .可能有3次正面朝上C .至少有1次正面朝上D .不可能有6次正面朝上10.已知不等式组⎩⎪⎨⎪⎧x +a >1,2x +b <2. 的解集为-2<x <3,则(a +b )2019的值为A .-1B .2019C .1D .-201911.把一根11cm 长的绳子截成1cm 和3cm 两种规格的绳子,要求每种规格的绳子至少1根,且无浪费,则有几种不同的截法A .3种B .4种C .5种D .6种12.如图,已知一次函数y =kx +2的图象与x 轴,y 轴分别交于点A ,B ,与正比例函数y =13x 交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程kx +2=0的解为x =3;②对于直线y =kx +2,当x <3时,y >0;③对于直线y =kx +2,当x >0时,y >2;④方程组⎩⎪⎨⎪⎧3y −x =0,y −kx =2. 的解为⎩⎪⎨⎪⎧x =2,y =23. ,其中正确的是A .①②③B .②③④C .①③④D .①②④二、填空题(共6小题,每小题4分,满分24分)13.若方程x -y =-1的一个解与方程组⎩⎪⎨⎪⎧x −2y =k ,2x −y =1. 的解相同,则k 的值为 .14.如图,BD 平分∠ABC ,∠ADB =60°,∠BDC =80°,∠C =70°,则△ABD 是 三角形.第14题图 第15题图 第16题图15.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于 .16.如图,已知△ABC 为等边三角形,点D ,E 分别在边BC ,AC 上,且BD =CE ,若BE 交AD 于点F ,则∠AFE 的大小为 度.17.如图,已知:函数y =kx +b 和y =mx 的图象交于点P (1,1),则根据图象可得不等式kx +b >mx 的解集是 .第17题图 第18题图18.如图,已知AB =AC ,AD 平分∠BAC ,∠DEB =∠EBC =60°,若BE =3,DE =3,则BC = .三、解答题(共8小题,共78分) 19.解方程组或不等式组:(1)⎩⎪⎨⎪⎧x −16 − 2−y 3=1,2x +y =13. (2)⎩⎪⎨⎪⎧x +2>4,x +12≤3.20.如图,AD∥EF,∠1+∠2=180°,(1)求证:DG∥AB;(2)若DG是∠ADC的角平分线,∠1=30°,求∠B的度数.21.一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出1球.(1)“摸出的球是白球”是什么事件?它的概率是多少?(2)“摸出的球是黄球”是什么事件?它的概率是多少?22.如图,等边三角形ABC的边长为8,点E是边BC上一动点(不与点B,C重合),以BE为边在BC的下方作等边三角形BDE,连接AE,CD.(1)在运动的过程中,AE与CD有何数量关系?请说明理由.(2)当BE=4时,求∠BDC的度数.23.某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?24.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.25.在平面直角坐标系中,一次函数都是常数y=kx+b(k,b,且k≠0),的图象经过点(1,0)和(0,3).(1)求此函数的表达式.(2)已知点P(m,n)在该函数的图象上,且m+n=4.①求点P的坐标.②若函数y=ax(a是常数,且a≠0)的图象与函数y=kx+b的图象相交于点P,写出不等式ax<kx+b的解集.26.探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.2019——2020学年度第二学期期末考试七年级数学参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CB CB DD CA BA A D题号 13 14 15 16 17 18 答案-4直角1360x <13+ 3三、解答题:19.(每小题5分,共10分)解:(1)方程组整理得:⎩⎪⎨⎪⎧x +2y =11①,2x +y =13②.,①×2-②得:3y =9,解得:y =3,把y =3代入①得:x =5,则方程组的解为⎪⎨⎪⎧x =5,y =3. .(2)⎩⎪⎨⎪⎧x +2>4①,x +12≤3②. ,由①得:x >2;由②得:x ≤5,∴不等式组的解集为2<x ≤5.20.解:(1)证明:∵AD ∥EF (已知), ∴∠2+∠BAD =180°(两直线平行,同旁内角互补),又∵∠1+∠2=180°(已知),∴∠1=∠BAD (同角的补角相等),∴DG ∥AB (内错角相等,两直线平行);…5分 (2)∵DG 是∠ADC 的角平分线, ∴∠GDC =∠1=30°, 又∵DG ∥AB ,∴∠B =∠GDC =30°.…………………………10分21.解:(1)∵一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个, ∴“摸出的球是白球”是不可能事件,“摸出的球是白球”的概率是:0;………………5分 (2))“摸出的球是黄球”是随机事件“,摸出的球是黄球”的概率是:10−610=25.…10分22.解:(1)AE =CD ;理由如下:∵△ABC 和△BDE 等边三角形∴AB =BC ,BE =BD ,∠ABC =∠EBD =60°;在△ABE 与△CBD 中,⎩⎪⎨⎪⎧AB =BC ,∠ABE =∠CBD ,BE =BD . ,∴△ABE ≌△CBD (SAS ),∴AE =CD .………………………………………………………………5分(2)∵BE =4,BC =8,∴E 为BC 的中点; 又∵等边三角形△ABC ,∴AE ⊥BC ,由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =90°.………………10分23.解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元,由题意,得⎩⎪⎨⎪⎧30x +20y =8500,40x +10y =8000. .解得⎩⎪⎨⎪⎧x =150,y =200. .答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;…………5分(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a -10)≤9000.解得 a ≤20.答:该校至多购进速滑冰鞋20双.……………………………………10分 24.解:(1)证明:∵△ABD ,△ACE 都是等边三角形 ∴AB =AD ,AE =AC ;∠DAB =∠EAC =60° ∴∠DAC =∠BAE ,在△ABE 和△ADC 中 ∴⎩⎪⎨⎪⎧AB =AD ,∠BAE =∠DAC ,AE =AC .,∴△ABE ≌△ADC ;………………………………………………3分(2)由(1)知△ABE ≌△ADC ∴∠AEB =∠ACD ∵∠ACD =15° ∴∠AEB =15°;………………………………6分 (3)同上可证:△ABE ≌△ADC ∴∠AEB =∠ACD 又∵∠ACD =60° ∴∠AEB =60° ∵∠EAC =60° ∴∠AEB =∠EAC ∴AC ∥BE .………………9分25.解:(1)将(1,0)和(0,3)带入y =kx +b ,可得方程组:⎩⎪⎨⎪⎧0=k +b ,b =3.解得:⎩⎪⎨⎪⎧k =−3,b =3.∴所求一次函数解析式为:y =-3x +3;………………4分 (2)①将P (m ,n )带入y =-3x +3,得n =-3m +3 又∵m +n =4,解得⎩⎨⎧m =−12,n =92. ∴P 点坐标为(-12,92);………………7分②由图可知,不等式ax <kx +b 的解集为x >−12.…………………10分∴∠BAD=2∠CDE.………………………………………………………………9分七年级数学试题第11页(共8页)。
【鲁教版】初一数学下期末试卷及答案
一、选择题1.若方程组a2b43a2b8+=⎧⎨+=⎩,则a+b等于()A.3 B.4 C.2 D.12.如图,宽为25cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是()A.2200cm B.2150cm C.2100cm D.275cm3.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,根据题意列方程组正确的是()A.4.512x yyxB .4.512x yyxC .4.512x yxyD .4.512x yyx4.已知1,2xy=⎧⎨=⎩是二元一次方程24x ay+=的一组解,则a的值为()A.2 B.2-C.1 D.1-5.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6.不等式组10,{360xx-≤-<的解集在数轴上表示正确的是()A.B.C.D.7.对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为()A.0<x≤1B.0≤x<1 C.1<x≤2D.1≤x<28.点()P 3,2-在平面直角坐标系中所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112m B .2505mC .220092m D .2504m10.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是411.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 12.下列不等式中,是一元一次不等式的是( )A .2x 10->B .12-<C .3x 2y 1-≤-D .2y 35+>二、填空题13.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.14.a b ≥,1a -+_____1b -+15.某公园的门票是10元/人,团体购票有如下优惠: 购票人数1-30人31-60人60人以上票价无折扣超出30人的部分,票价打八折超出60人的部分,票价打五折分别购票,两个班一共应付598元.如果两个班作为一个团体购票,一共应付545元,则甲班有_____人,乙班有_____人.16.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.17.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.18.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 19.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=920.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.三、解答题21.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和.22.解不等式组:22(4)133x x x x -≤+⎧⎪-⎨+>⎪⎩,并求出它的所有整数解的和.23.2019年12月3日,140余件从明末清初延续至民国时期的民间晋绣在山西省太原美术馆展出,这是山西首次将这一传承百年的工艺品进行系统梳理.某校组织学生前去参观,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满.问这批学生的人数是多少?原计划租用45座客车多少辆?24.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C '''; (2)画出AB 边上的中线CD 和BC 边上的高线AE ; (3)求A B C ''的面积是多少? 25.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭; (2)()3328864-+-÷-⨯.26.如图,已知//BC GE ,//AF DE ,145∠=︒.(1)求AFG ∠的度数;(2)若AQ 平分FAC ∠,交BC 于点Q ,且20Q ∠=︒,求ACB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】两个方程相加即可求出a+b 的值. 【详解】 解:a 2b 43a 2b 8+=⎧⎨+=⎩①②①+②得,4a+4b=12 ∴a+b=3 故选:A . 【点睛】此题主要考查了解二元一次方程组,熟练、灵活运用解题方法是解答此题的关键.2.C解析:C 【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解. 【详解】设一个小长方形的长为xcm ,宽为ycm ,由图形可知,2524x y x x y +=⎧⎨=+⎩,解得:205x y =⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm 2) . 故选:C . 【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.3.A解析:A 【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得: 4.5x y ;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:12y x ;组成方程组即可. 【详解】解:如果设木条长x 尺,绳子长y 尺, 根据题意得: 4.512x yy x .故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,理解题意,找出等量关系是解题的关键.4.C解析:C【分析】把x 与y 的值代入方程计算即可求出a 的值. 【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =. 故选C. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.B解析:B 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.6.D解析:D 【解析】 试题分析:10{360x x -≤-<①②,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.7.D解析:D 【详解】 由题意得2021x x -<⎧⎨-≥-⎩ 解之得12x ≤< 故选D .8.D解析:D 【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案. 【详解】 解:30>,20-<,∴点()3,2P -所在的象限是第四象限.故选D . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(),++;第二象限(),-+;第三象限(),--;第四象限(),.+-根据各象限内点的坐标特征解答.9.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA 4n =2n 知OA 2020=2×505,据此利用三角形的面积公式计算可得. 【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 由题意知OA 4n =2n , ∵2020÷4=505, ∴OA 2020=2×505, 则△OA 2A 2020的面积是12×1×2×505=505m 2, 故选:B . 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.10.B解析:B 【分析】根据平方根、算术平方根,即可解答. 【详解】A 选项:4-没有平方根,故A 错误;B 选项:()224-=,4的算术平方根为2,故B 正确; C 选项:()224-=,4的平方根为2±,故C 错误;D 选项:8的平方根为±,故D 错误故选B.【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.11.B解析:B【分析】根据平行线的性质求出∠ABE,求出∠CBA,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.12.A解析:A【分析】只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.【详解】A、是一元一次不等式;B、不含未知数,不符合定义;C、含有两个未知数,不符合定义;D、未知数的次数是2,不符合定义,故选:A.【点睛】此题考查一元一次不等式的定义:只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.二、填空题13.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.14.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤ 【分析】根据不等式的性质判断即可. 【详解】 ∵a≥b ∴-a≤-b ∴ -a+1≤-b+1 故答案为≤. 【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号.15.25【分析】设甲班有人乙班有人根据①超出60人的的费用=545-(300+30×10×08)②甲班费用+乙班费用=598列方程组求解即可【详解】设甲班有人乙班有人根据题意可得:解得:即甲班有36人乙解析:25 【分析】设甲班有x 人,乙班有y 人,根据“①超出60人的的费用=545-(300+30×10×0.8),②甲班费用+乙班费用=598”列方程组求解即可. 【详解】设甲班有x 人,乙班有y 人, 根据题意可得:()()60554554010300308598x y y x ⎧+-⨯=-⎪⎨++-⨯=⎪⎩, 解得:3625x y =⎧⎨=⎩,即甲班有36人,乙班有25人. 故答案为:36;25 【点睛】本题主要考查二元一次方程组的应用,弄清表格中分段收费标准,根据费用确定其中蕴含的相等关系:①超出60人的的费用=545-(300+30×10×0.8)、②甲班费用+乙班费用=598是解题的关键.16.【分析】设松鹤长春欢乐远长健康长寿三种花束的销量分别为:(单位:束)再分别求解一束松鹤长春欢乐远长健康长寿的单价根据重阳节当天销售这三种花束共2549元其中百合花的销售额为458元列方程组再求解剑兰 解析:216.【分析】设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束),再分别求解一束“松鹤长春”“欢乐远长”“健康长寿”的单价,根据重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,列方程组,再求解剑兰的销量:22y z +,即可得到答案. 【详解】解:设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束), 由题意可得:一束“松鹤长春”的单价为:318+16=204⨯⨯(元), 一束“欢乐远长”花束的单价为:316+16+52=284⨯⨯⨯(元), 一束“健康长寿”花束的单价为:314+12+25=234⨯⨯⨯(元),8644582028232549x y z x y z ++=⎧∴⎨++=⎩①②②2⨯-①5⨯得:40564640302050982290,x y z x y z ++---=-∴+=y z26262808,∴+=y z108,∴+=y z22216,即剑兰的销量为:216枝.故答案为:216.【点睛】本题考查的是三元一次方程组的应用,利用整体法求解方程组中的量是解题的关键.17.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.18.-7或9【分析】根据纵坐标相同可知MN∥x轴然后分点N在点M的左边与右边两种情况求出点N的横坐标即可得解【详解】∵点M(13)与点N(x3)的纵坐标都是3∴MN∥x轴∵MN=8∴点N在点M的左边时x解析:-7或9【分析】根据纵坐标相同可知MN∥x轴,然后分点N在点M的左边与右边两种情况求出点N的横坐标,即可得解.【详解】∵点M(1,3)与点N(x,3)的纵坐标都是3,∴MN∥x轴,∵MN=8,∴点N在点M的左边时,x=1−8=−7,点N在点M的右边时,x=1+8=9,∴x的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.19.(1)x =;(2)x =或x =【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解【详解】(1)解:;(2)解:或或【点睛】本题考查解方程熟练掌握立方根平方根的定义是关键解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =, 23x =; (2)解:313x -=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.20.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.三、解答题21.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②,由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.22.不等式组的解集是24x -≤<,所有整数解的和为3.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】22(4)133x x x x -≤+⎧⎪⎨-+>⎪⎩①②, 解不等式①得,2x ≥-,解不等式②得,4x <,所以,不等式组的解集是24x -≤<,所以,它的所有整数解是-2,-1,0,1,2,3,∴所有整数解的和为:()2101233-+-++++=.【点睛】本题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.23.学生人数为240人,原计划租用45座客车5辆【分析】此题注意总人数是不变的,设原计划租用45座客车x 辆,学生人数为y 人.根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满”列出方程组并解答.【详解】解:设原计划租用45座客车x 辆,学生人数为y 人.根据题意,得154560(1)y x x y -=⎧⎨-=⎩. 解,得5240x y =⎧⎨=⎩.答:学生人数为240人,原计划租用45座客车5辆.【点睛】本题考查了二元一次方程组的应用.此题要抓住不变量,可以有不同的解法,本题关键是找到等量关系.24.(1)见解析;(2)见解析;(3)8.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB 的中点D ,连接CD ,过点A 作AE ⊥BC 的延长线与点E 即可; (3)根据S △A′B′C =S △ABC 代入三角形公式计算即可.【详解】(1)如图,A B C '''即为所求;(2)如图,线段CD 和线段AE 即为所求;(3)1144822A B C ABC S S BC AE '''==⋅⋅=⨯⨯= 【点睛】本题考查的是平移变换,掌握图形平移但图形的形状不变是解答本题的关键. 25.(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.26.(1)45°;(2)85°.【分析】(1)先根据BC∥EG得出∠E=∠1=45°,再由AF∥DE可知∠AFG=∠E=45°;(2)作AM∥BC,由平行线的传递性可知AM∥EG,故∠FAM=∠AFG,再根据AM∥BC可知∠QAM=∠Q,故∠FAQ=∠FAM+∠QAM,再根据AQ平分∠FAC可知∠MAC=∠QAC+∠QAM=80°,根据AM∥BC即可得出结论.【详解】解:(1)∵BC∥EG,∴∠E=∠1=45°.∵AF∥DE,∴∠AFG=∠E=45°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠FAM=∠AFG=45°.∵AM∥BC,∴∠QAM=∠Q=20°,∴∠FAQ=∠FAM+∠QAM=65°.∵AQ平分∠FAC,∴∠QAC=∠FAQ=65°,∴∠MAC=∠QAC+∠QAM=85°.∵AM∥BC,∴∠ACB=∠MAC=85°.【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等.熟记平行线的各种性质是解题的关键.。
2019-2020学年鲁教版(五四学制)七年级数学第二学期期末测试题( 含答案)
精品文档 欢迎下载⎩ ⎩ ⎩ ⎩ 2019—2020 学年度第二学期期末质量监测七年级数学试题题 号 一二三 总 分得 分212223242526一、选择题(每小题 3 分,满分 30 分) x + 2 y = 10 1.下列哪组数是二元一次方程组 y = 2x的解( )⎧x = 4A. ⎨y = 3⎧x = 3 B. ⎨y = 6⎧x = 2 C. ⎨y = 4⎧x = 4 D. ⎨y = 2 2.在方程5x - 2 y + z = 3 中,若 x = -1,y = -2 ,则 z 的值为( ) A .4B .3C .2D .13. 下列式子一定成立的是( )A. 若 ac 2=bc 2,则 a=bB. 若 ac>bc,则 a>bC . 若 a>b,则 ac 2>bc 2D. 若 a<b,则 a(c 2+1)<b(c 2+1)4.已知 x = -1, 和x=2,y=0 y=3 都是方程y=ax+b 的解,则 a 和 b 的值是( ) A. a=-1 B. a=1 C. a=-1 D. a=1b=-1 b=-1 b=1 b=-15. 若关于 x 的不等式组无解,则实数 a 的取值范围是( )A.a <﹣4B.a=﹣4C.a >﹣4D.a≥﹣46. 在△ABC 中,若 AB=9,BC=6,则第三边 CA 的长度 可以是() A .3 B .9 C .15 D .167. 如图,下列条件中,不能证明△ABD ≌△ACD 的是(A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C. ∠BAD =∠CAD D .∠B =∠C ,BD =DC(第 7 题图)8.如右图,已知在△ABC 中,CD 是 AB 边上的高线,BE 平分∠A B C ,交 CD 于点E ,BC=5,DE=2,则△BCE 的面积等于()座位号⎩ A . 10 B . 7 C . 5 D . 4(第 8 题图)(第 9 题图)9.如图所示,点 D 在∠BAC 的角平线上,DE⊥AB于点 E ,DF⊥AC于点 F ,连结EF ,BC⊥AD于点 D , 则下列结论中①DE=DF ; ②AE=AF; ③∠ABD=∠ACD; ④∠E D B =∠F D C ,其中正确的序号是( ) A . ②B . ①②C . ①②③D . ①②③④10. 对于数据 3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是 3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( ) 3.1 个B .2 个C .3 个D .4 个二、填空题(每小题 3 分,满分 30 分) 11. 写出方程 x+2y=6 的正整数解:.12. 如果△ABC 的三边长 a 、b 、c 满足关系式(a + 2b - 60)2+ b -18 + c - 30 = 0 ,则△ABC 的周长是.13. 如果不等式(a -3)x <b 的解集是 x <,那么 a 的取值范围是⎧x - 2m < 0 14. 若关于 x 的一元一次不等式组 ⎨x + m > 2有解, 则 m 的取值范围为15. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为16.已知三个不相等的正整数的平均数、中位数都是 3,则这三个数分别为 或 17.如下图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积是 15cm 2 ,AB =9cm ,BC =6cm ,则 DE =cm18.如下图,在△ABC 中,点O 到三边的距离相等,∠BAC=60°,则∠BOC(17 题图)(18 题图)(19 题图)19.如上图,在△ABC中,AD⊥BC,AE 平分∠BAC,若∠1=40°,∠2=20°,则∠B=.20.已知方程(2m-6)x|m-2|+(n-2) y n2 3=0 是二元一次方程,则m,n 的值为三、解答题(本大题共6 个小题,共40 分)21.按要求解下列方程组(每小题 4 分,共 8 分)(1)Y=x+3 (代入法)(2) 4x=y=15 (加减法)7x+5y=9 3x-2y=322.解下列不等式(组),并把解集在数轴上表示出来(每小题 4 分,共8 分)。
鲁教版五四制七年级数学下册期末达标检测卷考试题含答案
网友可以在线阅读和下载这些文档让每个人平等外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为( )A .14B .13C .16D .122.若a <b ,则下列各式中一定成立的是( )A .ac <bcB .-a <-bC .a -1<b -1D .a 3>b33.如图,直线l ,n 分别截过∠A 的两边,且l ∥n .根据图中标示的角,下列各角的度数关系中正确的是( )A . ∠2+∠5>180°B .∠2+∠3<180°C .∠1+∠6>180°D .∠3+∠4<180°4.如图,已知∠C =∠D =90°,有四个可添加的条件:①AC =BD ;②BC =AD ;③∠CAB =∠DBA ;④∠CBA =∠DA B .能使△ABC ≌△BAD 的条件有( )A .1个B .2个C .3个D .4个 5.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是120°,第二次拐的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 的大小是( ) A .150° B .130° C .140° D .120° 6.若关于x 的不等式(2-m )x <1的解集为x >12-m,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <28.如图,在△ABC 中,∠C =90°,AB 的垂直平分线交AB 于点D ,交BC 于点E ,连接AE ,若CE =5,AC =12,则BE 的长是( )A .5B .10C .12D .139.如图,一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解是( )A .⎩⎨⎧x =-4,y =3B .⎩⎨⎧x =3,y =-4C .⎩⎨⎧x =4,y =3D .⎩⎨⎧x =-4,y =-310.六一儿童节前夕,某超市用3 360元购进A ,B 两种童装共120套,其中A型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A .⎩⎨⎧x +y =120,36x +24y =3 360B .⎩⎨⎧x +y =120,24x +36y =3 360C .⎩⎨⎧36x +24y =120,x +y =3 360D .⎩⎨⎧24x +36y =120,x +y =3 360 二、填空题(每题3分,共30分)11.如果⎩⎪⎨⎪⎧x =12,y =1是方程组⎩⎨⎧ax -3y =5,2x +by =1的解,则a -b 的值是________.12.如果关于x 的不等式组⎩⎨⎧x <m +1,x >3-m无解,那么m 的取值范围是________.让每个人平等14.在一个不透明的袋子中装有若干个除颜色外完全相同的球,如果其中有3个白球,且从袋子中随机摸出一个球,摸到白球的概率是14,那么袋子中共有球________个.15.如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为________.16.把命题“两条直线被第三条直线所截且同位角相等,这两条直线平行”改为“如果……那么……”的形式为________________________________________________________. 17.如图,点E 在AC 的延长线上,给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A =∠DCE ;(4)∠D +∠ABD =180°,能判断AB ∥CD 的有________个. 18.如果关于x ,y 的方程组⎩⎨⎧x +2y =6+k ,2x -y =9-2k的解满足3x +y =5,则k 的值为________.19.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,甲工人步行的速度为1米/秒,骑自行车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于________米.20.阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n -12≤x <n +12,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的结论:①《2》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m +2x 》=m +《2x 》;④若《2x -1》=5,则实数x 的取值范围是114≤x <134;⑤满足《x 》=32x 的非负整数x 有三个.其中正确结论是________(填序号).三、解答题(每题10分,共60分) 21.(1)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.(2)解不等式组:⎩⎪⎨⎪⎧2x -1>5, ①3x -12≥x , ②并在数轴上表示出各不等式的解集.(2)如果厨房也要铺设这两种地砖共60块,且购进地砖的费用不超过3 200元,那么彩色地砖最多能购进多少块?23.如图所示,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一直线上,连接B D.(1)求证:△BAD≌△CAE;(2)试猜想BD,CE有何特殊位置关系,并证明.两种型号计算器的销售价格分别是每台多少元?(利润=销售价格-进货价格)25.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当成指向右边的扇形).(1)求事件“转动一次转盘,得到的数恰好是0”发生的概率;(2)写出此情境下一个不可能发生的事件.克)与上市时间x(单位:天)的函数关系如图②所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数关系式;(3)试比较:第10天与第12天的销售金额哪天多?答案一、1.B 2.C 3.A 4.D 5.A 6.C 7.A 8.D 9.A 10.B二、11.16 12.m ≤1 13.60° 14.12 15.x ≥3216.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行17.318.10 点拨:对于方程组⎩⎨⎧x +2y =6+k ,①2x -y =9-2k ,②由①+②得,3x +y =15-k .因为3x +y =5,所以15-k =5,解得k =10.19.1.3 点拨:解答本题的关键是确定甲工人转移到安全区域需要的时间要大于401+400-404=130(秒).20.③④ 点拨:①《2》=1,故①错误;②例如当x =0.3时,《2x 》=1,2《x 》=0,故②错误;③当m 为非负整数时,不影响“四舍五入”,故《m +2x 》=m +《2x 》是正确的;④若《2x -1》=5,则5-12≤2x -1<5+12,解得114≤x <134,故④正确;⑤《x 》=32x ,则32x -12≤x <32x +12,解得-1<x ≤1,非负整数解有0和1,而当x =1时,32x =32,不为整数,应舍去,故⑤错误.综上可得,③④正确.三、21.解:(1)方程组整理得⎩⎨⎧3x -5y =3,①3x -2y =6.②②-①得3y =3,即y =1,将y =1代入①得x =83,则方程组的解为⎩⎪⎨⎪⎧x =83,y =1.(2)解①得x >3,解②得x ≥1.则不等式组的解集是x >3.不等式①,②的解集表示如图所示.在线分享文档22.解:(1)设彩色地砖购进了x 块,单色地砖购进了y 块. 由题意,得⎩⎨⎧x +y =100,80x +40y =5 600.解得⎩⎨⎧x =40,y =60.所以,彩色地砖购进了40块,单色地砖购进了60块.(2)设购进彩色地砖a 块,则购进单色地砖(60-a )块,由题意,得80a +40(60-a )≤3 200. 解得a ≤20.所以,彩色地砖最多能购进20块. 23.(1)证明:∵∠BAC =∠DAE =90°, ∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE . 又∵AB =AC ,AD =AE , ∴△BAD ≌△CAE (SAS ). (2)解:BD ⊥CE .证明如下:由(1)知△BAD ≌△CAE ,∴∠ADB =∠E . ∵∠DAE =90°,∴∠E +∠ADE =90°.∴∠ADB +∠ADE =90°, 即∠BDE =90°. ∴BD ⊥CE .24.解:设A ,B 两种型号计算器的销售价格分别是每台x 元、y 元.由题意得 ⎩⎨⎧5(x -30)+(y -40)=76,6(x -30)+3(y -40)=120.解得⎩⎨⎧x =42,y =56.所以,A ,B 两种型号计算器的销售价格分别为每台42元、56元. 25.解:(1)P (得到的数为0)=13(2)(答案不唯一)如事件“转动一次转盘,得到的数恰好是3”或事件“转动两次转盘,第一次得到的数与第二次得到的数之和为3”.26.解:(1)120千克. (2)当0≤x ≤12时,设日销售量y 与上市时间x 的函数关系式为y =kx , ∵点(12,120)在y =kx 的图象上,∴k =10. ∴函数关系式为y =10x .当12<x ≤20时, 设日销售量y 与上市时间x 的函数关系式为y =k 1x +b .∵点(12,120),(20,0)在y =k 1x +b 的图象上, ∴⎩⎨⎧12k 1+b =120,20k 1+b =0.∴⎩⎨⎧k 1=-15,b =300. ∴函数关系式为y =-15x +300.∴小明家樱桃的日销售量y 与上市时间x 的函数关系式为 y =⎩⎨⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)∵第10天和第12天在第5天和第15天之间, ∴当5<x ≤15时,设樱桃价格z 与上市时间x 的函数关系式为z =k ′x +b ′. ∵点(5,32),(15,12)在z =k ′x +b ′的图象上, ∴⎩⎨⎧5k ′+b ′=32,15k ′+b ′=12.∴⎩⎨⎧k ′=-2,b ′=42. ∴函数关系式为z =-2x +42.当x =10时,y =10×10=100,z =-2×10+42=22. 销售金额为100 ×22=2 200(元).当x =12时,y =120,z =-2×12+42=18. 销售金额为120×18=2 160(元). ∵2 200>2 160, ∴第10天的销售金额多.。
鲁教版(五四制)2019-2020学年度第二学期七年级期末考试数学试卷
(1)会有哪些可能的结果?
(2)若从中任意摸出一个球是白球的概率为0.5,求口袋中红球的个数.
25.(本题9分)A,B两种型号的空调,已知购进3台A型号空调和5台B型号空调共用14500元;购进4台A型号空调和10台B型号空调共用25000元.
A. B. C. D.
5.(本题3分)下列说法正确的是( )
A.某事件发生的概率为0,则该事件不可能发生
B.一种彩票中奖率为千分之一,那么买一千张彩票就一定能中奖
C.调查一批灯泡的使用寿命可以采取普遍调查的方式进行
D.掷一枚骰子两次,掷得的点数之和可能等于8
6.(本题3分)不等式组 的解集在数轴上表示为()
A.70°B.80°C.90°D.100°
评卷人
得分
二、填空题(共32分)
11.(本题4分)方程4x-y=7中,用含 的式子表示 ,则y=__________
12.(本题4分)质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为
13.(本题4分)如图所示的网格是正方形网格,则∠PAB+∠PBA=_____°(点A,B,P是网格线交点).
14.(本题4分)如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.
15.(本题4分)如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,还需再添加一个条件,你添加的条件是______.(只需写出一个条件,不能添加辅助线和字母)
16.(本题4分)已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是________.
【鲁教版】初一数学下期末试卷(含答案)
一、选择题1.下列事件属于必然事件的是( ) A .掷一枚均匀的硬币,正面朝上 B .车辆行驶到下一路口,遇到绿灯。
C .若a 2=b 2,则a=b D .若|a|>|b|,则a 2>b 22.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( ) A .一定是正面 B .是正面的可能性较大 C .一定是反面D .是正面或反面的可能性一样大 3.在七年(1)与七年(2)班举行拔河比赛前,根据双方的实力,环环预测:“七年(1)获胜的机会是80%”,那么下面四个说法正确的是( ) A .七年(2)班肯定会输掉这场比赛 B .七年(1)班肯定会赢得这场比赛 C .若比赛10次,则七年(1)班会赢得8次 D .七年(2)班也有可能会赢得这场比赛 4.下列图形是轴对称图形的是( )A .B .C .D .5.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADC E 为BC 的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCD GECS m m S=≠,则AGGC=( )A .mB .11m m +- C .1m + D .1m -6.如图,在△ABC 中,点D 、E 在BC 边上,点F 在AC 边上,将△ABD 沿着AD 翻折,使点B 和点E 重合,将△CEF 沿着EF 翻折,点C 恰与点A 重合.结论:①∠BAC=90°,②DE=EF ,③∠B=2∠C ,④AB=EC ,正确的有( )A .①②③④B .③④C .①②④D .①②③7.如图,∠ACD 是△ABC 的一个外角,过点D 作直线,分别交AC 和AB 于点E ,H .则下列结论中错误的是( )A .∠HEC >∠BB .∠B +∠ACB =180°-∠AC .∠B +∠ACB <180°D .∠B >∠ACD8.下列长度的三条线段中,有组成三角形的是( ) A .3cm,4cm,9cm B .8cm,7cm,15cm C .12cm,13cm,24cm D .2cm,2cm,6cm 9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、310.某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下: 定价/元 70 80 90 100 110 120 销量/把801001101008060现销售了105把水壶,则定价约为( ) A .115元B .105元C .95元D .85元11.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒- 12.23ab a ⋅的计算结果是( ) A .3abB .6abC .32a bD .33a b二、填空题13.有一小球在如图所示的地板上自由滚动,地板上的每个三角形均为等边三角形,则小球在地板上最终停留在黑色区域的概率为__.14.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是______.15.如图,在△ABC 中,AB =10,BC =8,AC =9,如果将△BCD 沿BD 翻折与△BED 重合,点C 的对应点E 落在边AB 上,那么△AED 的周长是_____.16.如图,点P 是AOB 内任意一点,OP =10cm ,点P 与点1P 关于射线OA 对称,点P 与点2P 关于射线OB 对称,连接12PP 交OA 于点C ,交OB 于点D ,当△PCD 的周长是10cm时,∠AOB 的度数是______度.17.AC 、BD 是四边形ABCD 的两条对角线,△ABD 是等边三角形,∠DCB =30°,设CD =a ,BC =b ,AC =4,则a +b 的最大值为_____.18.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧的过程,如图是夏季晴朗的白天某种绿色植物叶片光合作用强度的曲线图,分析曲线图回答下列问题:(1)大约从7时到__________时的光合作用的强度不断增强. (2)__________时和__________时的光合作用强度不断下降.19.如图,已知://AB DE ,80B ∠=︒,CM 平分BCD ∠,CN CM ⊥,则NCE ∠的度数是______.20.若2a x =,3b x =,4c x =,则2a b c x +-=__________.三、解答题21.有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A .平行四边形,B .菱形,C .矩形,D .正方形,将这四张卡片背面朝上洗匀后. (1)随机抽取一张卡片图案是轴对称图形的概率是 ;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是轴对称图形的概率,并用树状图或列表法加以说明.22.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)在y 轴上求作一点P ,使△PAC 的周长最小,并直接写出P 的坐标.23.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.24.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:(其中0≤x≤30) 提出概念所 用时间(x ) 257101213141720对概念的接受能力(y )47.8 53.5 56.3 59.0 59.8 59.9 59.8 58.3 55.0(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是5分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表中可知,当时间x 在什么范围内,学生的接受能力逐步增强?当时间x 在什么范围内,学生的接受能力逐步降低?25.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH EG ⊥,求证://PF GH ;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使PHK HPK∠=∠,作PQ平分EPK∠,问HPQ∠的大小是否发生变化?若不变,请求出其值;若变化,说明理由.26.计算(1)(65x2y-4xy2)•13xy(2)[(x+3y)•(x-3y)-(x-y)2]÷(-2y)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.根据定义即可解决.【详解】A. 任意掷一枚均匀的硬币,正面朝上是随机事件,故本选项错误;B. 车辆行驶到下一路口,遇到绿灯是随机事件,故本选项错误;C. 若a2=b2,则a=b,也可能a,b互为相反数,所以是随机事件,故本选项错误;D. |a|>|b|,则a2>b2,是必然事件,故本选项正确。
2020-2021学年鲁教版(五四制)七年级下册数学期末练习试题
2020-2021学年鲁教五四新版七年级下册数学期末练习试题一.选择题(共10小题,满分30分,每小题3分)1.若是关于x、y的方程组的解,则a+b的值为()A.3B.﹣3C.2D.﹣22.在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形:③有一边上的高也是这边上的中线的三角形是等边三角形:④三个外角都相等的三角形是等边三角形正确的命题有()A.4个B.3个C.2个D.1个3.一个不透明的盒子中装有3个白球、9个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.4.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.5.方程4x+5y=98的正整数解的个数是()A.4B.5C.6D.76.已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=360°B.∠α﹣∠β+∠γ=180°C.∠α+∠β﹣∠γ=180°D.∠α+∠β+∠γ=180°7.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°8.不等式组的解集是()A.﹣1<x≤2B.﹣2≤x<1C.x<﹣1或x≥2D.2≤x<﹣1 9.一次函数y1=mx+n与y2=﹣x+a的图象如图所示,则mx+n<﹣x+a的解集为()A.x>3B.x<1C.x<3D.0<x<310.如图,C是线段AB上一点,且△ACD和△BCE都是等边三角形,连接AE、BD相交于点O,AE、BD分别交CD、CE于M、N,连接MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120°;⑤OC平分∠AOB.其中结论正确的个数是()A.2B.3C.4D.5二.填空题(共8小题,满分28分)11.填空:①2﹣x<0,则x>;②若﹣2<x,则0x+2;③若﹣2a≥﹣8,则a4.12.在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为.13.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.14.如图,直线l1⊥直线l2,垂足为O,Rt△ABC如图放置,过点B作BD∥AC交直线l2于点D,在△ABC内取一点E,连接AE,DE.(1)若∠CAE=15°,∠EDB=25°,则∠AED=.(2)若∠EAC=∠CAB,∠EDB=∠ODB,则∠AED=°.(用含n的代数式表示)15.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.16.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了道题.17.若关于x,y的二元一次方程组的解互为相反数,则k的值为.18.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆O n与直线l相切.设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当直线l与x轴所成锐角为30°,且r1=1时,r2021=三.解答题(共7小题,满分62分)19.按要求作答.(1)解方程组:;(2)解不等式:,并把解集表示在数轴上;(3)解不等式组并写出它的所有非负整数解.20.如图,AD∥BC,∠1=∠C,∠B=60°,DE平分∠ADC交BC于点E,试说明AB∥DE.请完善解答过程,并在括号内填写相应的理论依据.解:∵AD∥BC,(已知)∴∠1=∠=60°.()∵∠1=∠C,(已知)∴∠C=∠B=60°.(等量代换)∵AD∥BC,(已知)∴∠C+∠=180°.()∴∠=180°﹣∠C=180°﹣60°=120°.(等式的性质)∵DE平分∠ADC,(已知)∴∠ADE=∠ADC=×120°=60°.()∴∠1=∠ADE.(等量代换)∴AB∥DE.()21.如图,若△ABD和△ACE都是等边三角形,求∠BOC的度数.22.迎宾超市为促销一批新品牌的商品,设立了一个不透明的纸箱,纸箱里装有1个红球、2个白球和12个黄球,并规定每购买60元的新品牌商品,就能获得一次摸球的机会.如果摸得红球,顾客可以得到一把雨伞;摸到白球,可以得到一个文具盒;摸到黄球,可以获得一支铅笔.小颖购此新商品花了85元(1)她获得奖品的概率是多少?(2)她得到一把雨伞、一个文具盒、一支铅笔的概率分别是多少?23.如图,直线y=2x+6与直线l:y=kx+b交于点P(﹣1,m)(1)求m的值.(2)方程组的解是.(3)若直线y=ax+n与直线y=2x+6平行,且经过点(0,﹣2),直接写出直线y=ax+n 的表达式.24.若方程组与有相同的解,则a、b的值为多少?25.2021年元旦班级活动中,西大附中初2023级(1)班决定到晨光文具店采购一批本子和笔对本学年各方面表现优异的学生作为奖励.已知购买3个本子,4支笔需要花费29元;购买2个本子,5支笔需要花费24元.(1)试问本子和笔的单价分别是多少钱?(2)根据班级商量,决定购进本子和笔共150件,要求购买本子的数量不低于购买笔的,且购买本子和笔所用班费不超过525元,请通过计算设计出所有可能的购买方案.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:把代入方程组中,得到,①+②,得3a+3b=9,所以a+b=3.故选:A.2.解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:C.3.解:∵一个不透明的盒子中装有3个白球,9个红球,∴球的总数=3+9=12(个),∴这个盒子中随机摸出一个球,摸到红球的可能性==.故选:A.4.解:不等式组的解集为:1≤x≤3,故选:A.5.解:方程4x+5y=98,解得:y=,当x=2时,y=18;当x=7时,y=14;当x=12时,y=10;当x=17时,y=6;当x =22时,y=2;则方程的正整数解有5对.故选:B.6.解:过点E作EF∥AB,则EF∥CD.∵EF∥AB∥CD,∴∠α+∠AEF=180°,∠FED=∠γ,∴∠α+∠β=180°+∠γ,即∠α+∠β﹣∠γ=180°.故选:C.7.解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.8.解:,由①得,x≤2,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤2.故选:A.9.解:根据图象得,当x<3时,y1<y2,所以mx+n<﹣x+a的解集为x<3.故选:C.10.解:∵△ACD和△BCE都是等边三角形,∴AC=CD,CE=CB,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=BD(①正确),∠CAM=∠CDN,在△ACM和△DCN中,,∴△ACM≌△DCN(ASA),∴CM=CN;②正确;∵CM=CN,∠DCE=180°﹣∠ACD﹣∠BCE=60°,∴△MCN为等边三角形,∴∠MNC=60°,∴∠MNC=∠ECB=60°,∴MN∥AB,③正确;∵∠AOD=∠CAM+∠CBD=∠CDN+∠CBD=∠ACD=60°,∴∠AOB=180°﹣∠AOD=120°,④正确;作CG⊥AE于G,CH⊥BD于H,如图所示:则∠AGC=∠DHC=90°,在△ACG和△DCH中,,∴△ACG≌△DCH(AAS),∴CG=CH,又∵CG⊥AE于G,CH⊥BD于H,∴OC平分∠AOB,⑤正确;故选:D.二.填空题(共8小题,满分28分)11.解:①2﹣x<0,则x>2;②若﹣2<x,则0<x+2;③若﹣2a≥﹣8,则a≤4.故答案为:①2;②<;③≤.12.解:根据题意得,解得n=8,经检验:n=48是分式方程的解,故答案为:8.13.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.14.解:(1)过点E作EF∥AC,∵AC∥EF,∵AC∥BD,∴AC∥EF∥BD,∴∠CAE=∠AEF,∠EDB=∠FED,∴∠AED=∠AEF+∠FED=∠CAE+∠EDB=15°+25°=40°;(2)∵AC∥BD,∴∠AGD=∠ODB,∠CAO+∠AGD=90°,∴∠CAB+∠ODB=90°,∵∠EAC=∠CAB,∠EDB=∠ODB,由(1)同理可得:∠AED=∠CAE+∠EDB=(∠CAB+∠ODB)=,故答案为:40°;().15.解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.16.解:设小聪答对了x道题,则答错了(20﹣1﹣x)道题,依题意,得:5x﹣2(20﹣1﹣x)>80,解得:x>16,∵x为正整数,∴x的最小值为17.故答案为:17.17.解:因为关于x,y的二元一次方程组的解互为相反数,所以x+y=0,方程组,②﹣①,得x﹣y=2,解方程组,得,将x=1,y=﹣1代入①得,1﹣2=k﹣1,解得k=0.故答案为:0.18.解:分别过半圆O1,半圆O2,…,半圆O n的圆心作O1A⊥l,O2B⊥l,O3C⊥l,如图,∵半圆O1,O2,O3,…,O n与直线l相切,∴O1A=r1,O2B=r2,O3C=r3,当直线l与x轴所成锐角为30°时,OO1=2O1A=2,在Rt△OBO2中,OO2=2BO2,即2+1+r2=2r2,∴r2=3,在Rt△OCO3中,OO3=2CO3,即2+1+2×3+r3=2r3,∴r3=9=32,同理可得,r4=27=33,∴r2021=32020,故答案为:32020.三.解答题(共7小题,满分62分)19.解:(1)方程组整理得:,②×2﹣①得:7y=42,解得:y=6,把y=6代入②得:x=18,则方程组的解为;(2)去分母得:4(2x+1)≤3(3x+2)﹣12,去括号得:8x+4≤9x+6﹣12,移项得:8x﹣9x≤6﹣12﹣4,合并得:﹣x≤﹣10,解得,x≥10,;(3),由①得:x≥﹣2,由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.20.解:∵AD∥BC,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C,(已知)∴∠C=∠B=60°.(等量代换)∵AD∥BC,(已知)∴∠C+∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°﹣∠C=180°﹣60°=120°.(等式的性质)∵DE平分∠ADC,(已知)∴∠ADE=∠ADC=×120°=60°.(角平分线定义)∴∠1=∠ADE.(等量代换)∴AB∥DE.(内错角相等,两直线平行.)故答案为:B,两直线平行,同位角相等,ADC,两直线平行,同旁内角互补,ADC,角平分线定义,内错角相等,两直线平行.21.解:∵△ABD,△ACE都是等边三角形,∴AB=AD,AE=AC,∠ADB=∠ABD=∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,,∴△ABE≌△ADC(SAS),∴∠ABE=∠ADC,∴∠BOC=∠OBD+∠ODB=∠ABD+∠ABE+∠ODB=∠ABD+∠ADC+∠ODB=∠ABD+∠ADB=60°+60°=120°.22.解:(1)她获得奖品的概率是为1;(2)她得到一把雨伞的概率为=;她得到一个文具盒的概率为=;她得到一支铅笔的概率为=.23.解:(1)∵直线y=2x+6与直线l:y=kx+b交于点P(﹣1,m),∴把P点的坐标代入y=2x+6得:m=2×(﹣1)+6=4,即m=4;(2)∵直线y=2x+6与直线l:y=kx+b交于点P的坐标为(﹣1,4),∴方程组的解是,故答案为:;(3)∵直线y=ax+n与直线y=2x+6平行,∴a=2,即y=2x+n,∵直线y=ax+n经过点(0,﹣2),∴代入得:﹣2=0+n,解得:n=﹣2,即直线y=ax+n的表达式是y=2x﹣2.24.解:联立得:,①+②×4得:11x=22,即x=2,将x=2代入②得:4﹣y=5,即y=﹣1,∴方程组的解为,代入得:,解得:a=,b=﹣.25.解:(1)设本子单价是x元,笔的单价是y元,由题意得,,解得,答:本子单价是7元,笔的单价是2元.(2)设购进本子a件,则笔购进(150﹣a)件,由题意得,,解得4245,∵a为整数,∴a=43,44,45.∴有三种购买方案:购进本子43件,笔购进107件;购进本子44件,笔购进106件;购进本子45件,笔购进105件.。
2020-2021学年鲁教版(五四制)七年级下册数学期末练习试题(有答案)
2020-2021学年鲁教五四新版七年级下册数学期末练习试题一.选择题(共12小题,满分48分,每小题4分)1.在﹣,,﹣,3.,﹣1,,|﹣1|中,有理数有()个.A.3B.4C.5D.62.在实数,,,3.14,,,0.1010010001…中,无理数有()A.2个B.3个C.4个D.5个3.数16的算术平方根是()A.8B.4C.±4D.24.9的平方根是()A.3B.±3C.D.﹣5.如图,点Q(m,n)是第二象限内一点,则点Q到y轴的距离是()A.m B.n C.﹣m D.﹣n6.已知点P1(a,2)与点P2(﹣3,b)关于原点对称,则a﹣b的值是()A.﹣5B.﹣1C.1D.57.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限8.估计的值应该在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间9.一次函数y=﹣x﹣1的图象不经过第()象限.A.四B.三C.二D.一10.如图,函数y=ax+b和y=kx的图象交于点P,关于x,y的方程组的解是()A.B.C.D.11.若方程组的解中x+y=16,则k等于()A.15B.18C.16D.1712.下列各组x、y的值中,是方程3x+y=5的解的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)13.若方程组与方程组的解相同,则a+b的值为.14.一个正数的两个平方根分别为2a﹣1和a+7,则a的值为.15.=16.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是.17.已知线段AB∥y轴,若点A的坐标为(5,n﹣1),B(n2+1,1),则n为.18.已知一次函数的图象经过点(0,5),且与直线y=x平行,则一次函数的表达式为.三.解答题(共6小题,满分78分)19.(14分)(1)求出下列各数:①﹣27的立方根;②5的平方根;③4的算术平方根.(2)将(1)中求出的每一个数准确地表示在数轴上(可通过构造相应的直角三角形准确地找到无理数所对应的点),并用<连接大小.20.(15分)解方程组:(1)(2)(3)(4)x:y=3:4,,求x,y的值.21.(8分)如图直线l:y=﹣x+t(t>0)与x轴,y轴分别交于B,C两点,过点A(﹣1,0)的直线交y轴于点G,GQ∥x轴交直线BC于点Q,QP∥y轴交直线AG于点P(m,n),n与m之间存在一种确定的函数关系,其图象是一条常见的曲线记作曲线F.(1)若t=4,G为OC的中点,求出点P的坐标;(2)当曲线F最高点的纵坐标为4时,求出t的值;(3)向下平移直线l与曲线F交于D,E两点(D在E的右侧),直线AE,AD与y轴分别交于M,N两点,求的值.22.(12分)在平面直角坐标系xOy中,一次函数的图象经过点(2,1),(4,﹣2).(1)求该一次函数的表达式;(2)若点A(2m,y1),B(m+1,y2)在该一次函数的图象上,且y1>y2,求实数m 的取值范围.23.(17分)快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?24.(12分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准目的地起步价(元)超过1千克的部分(元/千克)上海a b北京a+3b+4实际收费目的地质量费用(元)上海29北京322求a,b的值.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:∵﹣是分数,﹣=﹣是分数,3.是循环小数,|﹣1|=1是整数,∴﹣,﹣,3.,|﹣1|是有理数,∴有理数有4个.故选:B.2.解:=﹣2,=6,,,0.1010010001…是无理数,共有3个,故选:B.3.解:∵42=16,∴数16的算术平方根是4.故选:B.4.解:9的平方根是:±=±3.故选:B.5.解:因为Q(m,n)是第二象限内一点,所以m<0,所以点Q到y轴的距离是|m|=﹣m.故选:C.6.解:∵点P1(a,2)与点P2(﹣3,b)关于原点对称,∴a=3,b=﹣2,∴a﹣b=5,故选:D.7.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.8.解:(3﹣)÷=3﹣2,∵7<3<8,∴5<3﹣2<6,∴估计的值应该在5和6之间.故选:C.9.解:∵一次函数y=﹣x﹣1中的k=﹣1<0,∴该函数图象经过第二、四象限.又∵b=﹣1<0,∴该函数图象与y轴交于负半轴,∴该函数图象经过第二、三、四象限,即不经过第一象限.故选:D.10.解:由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是.故选:D.11.解:由题意得,①+③得:4x=4k+11④,①×6+②得:20x=25k﹣30,即4x=5k﹣6⑤,⑤﹣④得:k=17,故选:D.12.解:A、3×1+2=5,故选项A符合题意;B、3×2+1=7,故选项B不合题意;C、﹣1×3+2=﹣1,故选项C不合题意;D、﹣2×3+1=﹣5,故选项D不合题意,故选:A.二.填空题(共6小题,满分24分,每小题4分)13.解:把代入,得:,①+②得:7(a+b)=14,则a+b=2,故答案为:2.14.解:由一个正数的两个平方根分别为2a﹣1和a+7,得(2a﹣1)+(a+7)=0,解得a=﹣2.故答案为:﹣2.15.解:=2.故答案为2.16.解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故答案为:1.17.解:∵线段AB∥y轴,点A的坐标为(5,n﹣1),B(n2+1,1),∴5=n2+1,n﹣1≠1,解得:n=﹣2,故答案为:﹣2.18.解:设一次函数的表达式为y=kx+b,∵y=kx+b与直线y=x平行,∴y=x+b,把(0,5)代入y=x+b中,得b=5,∴一次函数解析式是y=x+5,故答案为y=x+5.三.解答题(共6小题,满分78分)19.(1)=﹣3.5的平方根:.4的算术平方根:=2.故答案为:﹣3,,2.(2)如图所示故答案为:﹣3<<2<.20.解:(1),②﹣①×2,得y=﹣1,将y=﹣1代入①,得x=5,∴原方程组的解为;(2),化简方程组为,③+④×5,得y=1,将y=1代入④得,x=7,∴原方程组的解为;(3),①+②,得x+z=2④,③+④,得x=5,将x=5代入④得z=﹣3,将x=5,z=﹣3代入②得,y=2,∴原方程组的解为;(4)∵x:y=3:4,设x=3k,y=4k,∴可以化为﹣=,∴k﹣=﹣,∴k=2,∴x=6,y=8.21.解:(1)∵t=4,∵C(0,4),∵G为OC的中点,GQ∥x轴,∴G(0,2),Q(2,2),∵A(﹣1,0),G(0,2),∴直线AG:y=2x+2,当x=2时,y=2×2+2=6,∴P(2,6);(2)P(m,n),QP∥y轴,∴Q(m,﹣m+t),∵GQ∥x轴,∴G(0,﹣m+t),由A(﹣1,0),G(0,﹣m+t)得AG的解析式为:y=(﹣m+t)x+(﹣m+t),当x=m时,n=(﹣m+t)m+(﹣m+t)=﹣m2+(t﹣1)m+t,∴曲线F为y=﹣x2+(t﹣1)x+t,当x=时,y=﹣()2+(t﹣1)()+t =4,解得t1=﹣5(舍去),t2=3,∴t=3:(3)由DE∥BC,可设DE的解析式为y=﹣x+k,联立得x2﹣tx+k ﹣t=0∴x D+x E=t,设直线AE的解析式为:y=a(x+1),联立得x2+(a﹣t+1)x+a﹣t=0,∴﹣1•x E=a﹣t,∴x E=t﹣a,设直线AD:y=b(x+1),同理x D=t﹣b,∴t﹣b+t﹣a=t,∴a﹣t=﹣b,∵M(0,a),N(0,b),∴CM=a﹣t,ON=﹣b=a﹣t,∴=1.22.解:(1)设一次函数的表达式为y=kx+b(k≠0),把(2,1),(4,﹣2)代入得,解得,∴一次函数的表达式为y=﹣x+4;(2)∵k=﹣<0,∴y随x的增大而减少,∵y1>y2∴x1<x2,即2m<m+1,∴m<1.23.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.24.解:依题意,得:,解得:.答:a的值为7,b的值为2.。
【鲁教版】七年级数学下期末试卷附答案
一、选择题1.下列事件为必然事件的是( ) A .打开电视,正在播放新闻B .买一张电影票,座位号是奇数号C .任意画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上2.下列事件属于必然事件的是( ) A .掷一枚均匀的硬币,正面朝上 B .车辆行驶到下一路口,遇到绿灯。
C .若a 2=b 2,则a=bD .若|a|>|b|,则a 2>b 23.下列说法正确的是( )A .“打开电视机,正在播放《新闻联播》”是不可能事件B .“两直线被第三条直线所截,同位角相等”是必然事件C .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D .“篮球队员在罚球线上投篮一次,投中”为随机事件 4.下列命题正确的是( ) A .全等三角形的对应边相等 B .面积相等的两个三角形全等 C .两个全等三角形一定成轴对称 D .所有等腰三角形都只有一条对称轴 5.下列说法中错误的是( )A .成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B .关于某条直线对称的两个图形全等C .全等的三角形一定关于某条直线对称D .若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称6.正方形是轴对称图形,它的对称轴有( ) A .2条B .4条C .6条D .8条7.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .58.下列长度的三条线段中,有组成三角形的是( ) A .3cm,4cm,9cmB .8cm,7cm,15cmC .12cm,13cm,24cmD .2cm,2cm,6cm9.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A.S.S.S B.S.A.S C.A.S.A D.A.A.S 10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.2t B.Q=20﹣0.2tC.t=0.2Q D.t=20﹣0.2Q11.下列说法正确的有()①绝对值等于本身的数是正数.②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离.④若AC=BC,则点C就是线段AB的中点.⑤不相交的两条直线是平行线A.1个B.2个C.3个D.4个12.下列计算正确的是()A.(a+b)(a﹣2b)=a2﹣2b2B.(a﹣12)2=a2﹣14C.﹣2a(3a﹣1)=﹣6a2+a D.(a﹣2b)2=a2﹣4ab+4b2二、填空题13.一个不透明的袋子中装有12个小球,其中5个红球、7个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为________.14.同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是______.15.如图,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=50°,则∠2-∠1=_____.16.把一张长方形纸按图所示折叠后,如果∠AOB′=20°,那么∠BOG的度数是_____.17.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.18.小雨画了一个边长为3cm 的正方形,如果将正方形的边长增加xcm 那么面积的增加值y (cm 2)与边长的增加值x (cm )之间的关系式为_____. 19.如图,直线AB 、CD 相交于点O ,OE AB ⊥,垂足为点O ,:2:3COE BOD ∠∠=,则AOD ∠=__________.20.计算:20162015(8)0.125-⨯=______.三、解答题21.口袋里有红,黄,绿,三种颜色的球,这些球除颜色外完全相同,其中有红球4个,绿球5个,从中任意摸出一个球是绿色的概率是14. 求:(1)口袋里黄球的个数; (2)任意摸出一个球是黄球的概率.22.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.23.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.24.观察下图,回答问题. (1)反映了哪两个变量之间的关系? (2)点A ,B 分别表示什么?(3)说一说速度是怎样随时间变化而变化的;(4)你能找到一个实际情境,大致符合下图所刻画的关系吗?25.如图,直角三角板的直角顶点O 在直线AB 上,OC 、OD 是三角板的两条直角边,OE 平分AOD ∠.(1)若20COE ∠=︒,求BOD ∠的度数;(2)若COE α∠=,则BOD ∠= ︒(用含α的代数式表示);(3)当三角板绕点O 逆时针旋转到图2的位置时,其他条件不变,请直接写出COE ∠与BOD ∠之间有怎样的数量关系.26.利用乘法公式计算: (1)198×202 (2)(2y +1)(﹣2y -1)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、打开电视,正在播放新闻,是随机事件,故A错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.根据定义即可解决.【详解】A. 任意掷一枚均匀的硬币,正面朝上是随机事件,故本选项错误;B. 车辆行驶到下一路口,遇到绿灯是随机事件,故本选项错误;C. 若a2=b2,则a=b,也可能a,b互为相反数,所以是随机事件,故本选项错误;D. |a|>|b|,则a2>b2,是必然事件,故本选项正确。
2020届鲁教版(五四制)七年级下册数学期末检测试题有答案
鲁教版七年级第二学期期末检测数学试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A) (B)(C) (D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB;在边A 1B 上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D 上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65° (C)()n-1·75° (D)()n ·85° 解析:因为A 1B=CB,∠B=30°, 所以∠C=∠BA 1C=75°. 又因为A 1A 2=A 1D,所以∠A 1A 2D=∠A 1DA 2=∠DA 1C=×75°=()2-1×75°;同理,∠A 2A 3E=∠A 2EA 3=∠DA 2A 1 =××75°=()3-1×75°;∠A 3A 4F=()4-1×75°;…第n 个三角形中以A n 为顶点的内角度数是()n-1×75°. 故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1, 所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是 0 .解析:解不等式组,得-1<x ≤2, 所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,_....._ 所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2._....._。
【期末检测】初中数学鲁教版五四制七年级下册期末测试(含答案)
鲁教版五四制初中数学 七下期末检测题(含答案)一、选择题1.方程2735=+y x 与下列方程( )所组成的方程组的解是⎩⎨⎧==43y xA.664-=+y xB.1332=-y xC.04074=-+y xD.以上答案都不对 2.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )A.能开门的可能性大于不能开门的可能性;B.不能开门的可能性大于能开门的可能性C.能开门的可能性与不能开门的可能性相等D.无法确定3.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有—个小朋友所分苹果不到8个.若小朋友的人数为x ,则列式正确的是( )A.0≤)1(8125--+x x <8B.0<)1(8125--+x x ≤8C.1≤)1(8125--+x x <8D.1<)1(8125--+x x ≤84.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为( )A.32B.52C.3D.45.如图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA =PB.下确定P 点的方法正确的是( )A.P为∠A、∠B两角平分线的交点B.P为AC、AB两边上的高的交点C.P为∠A的角平分线与AB的垂直平分线的交点D.P为AC、AB两边的垂直平分线的交点6.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是()A.2719B.2712; C.32D.2787.如图,在△中,,点是斜边的中点,,且,则∠()A. B. C. D.8.已知不等式组2112xx a-⎧⎪⎨⎪⎩≥,≥的解集是,则的取值范围为()A. B. C. D.二、填空题9.甲种物品每个4千克,乙种物品每个7千克,现有甲种物品x个,乙种物品y 个,共76千克,列出关于x,y的二元一次方程是________________________.10.在标号为1、2、3……19的19个同样的小球中任选一个,则选中标号为偶数的小球的可能性_____选中标号为奇数的小球的可能性.11.如图,在△中,∠,是△的角平分线,于点,.则∠等于______.CDB12.关于的不等式组⎩⎨⎧<->-b a x a b x 22,的解集为,则的值分别为_______.13.若不等式组⎩⎨⎧-<+>531m x m x 无解,则m 的取值范围是 .三、解答题14.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”,乙对甲说:“当我的岁数是你现在的岁数时,你将61.”问甲、乙现在各多少岁?15.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为32,求男女生数各多少?16.阅读下列解题过程: 已知为△的三边长,且满足,试判断△的形状.解:因为, ①所以. ②所以. ③ 所以△是直角三角形. ④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为 ; (2)错误的原因为 ; (3)请你将正确的解答过程写下来.17.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3 本,则剩余8 本;如果前面每人送 5 本,则最后一人得到的课外读物不足3 本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.18.在△中,,AB的垂直平分线交AC于点N,交BC的延长线于点M,.(1)求的大小.(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠的大小. (3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?19.青岛发生燃爆事故后,泰安市中心医院立即组织医护工作人员赶赴青岛参加伤员抢救工作. 拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴青岛.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.20.如图甲,四边形ABCD是等要梯形,AB∥DC,由4个这样的等要梯形可以拼出如图乙所示的平行四边形.(1)求四边形ABCD各个内角的度数;(2)试探究四边形ABCD四条边之间存在的等量关系,并说明理由;(3)现有图甲中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你在图丙中画出大致的示意图.D CBA丙乙甲参考答案1.C2.B3.C4.C5.C6.D7.B8.B9.7674=+y x 10.小于 11.解析:因为∠,所以又因为是△的角平分线,,所以.因为所以,所以. 又因为即,所以.12.解析:解关于的不等式组⎩⎨⎧<->-,,b a x a b x 22得⎩⎨⎧+<+>.22b a x b a x ,由关于的不等式组⎩⎨⎧<->-b a x a b x 22,的解集为,知⎩⎨⎧=-=⎩⎨⎧=+-=+.333232b a b a b a ,解得,, 13.3≤m14.解:设甲为x 岁,乙为y 岁,则甲比乙大)(y x -岁 根据题意得:⎩⎨⎧=-+=--61)(4)(y x x y x y 解得⎩⎨⎧==2342y x答:甲为42岁,乙为23岁 15.男生24人,女生12人16.(1)③(2)忽略了的可能(3)解:因为, 所以. 所以或.故或.所以△是等腰三角形或直角三角形.17.解:(1).(2)根据题意,得⎩⎨⎧<--+≥--+,,3)1(5830)1(583x x x x解不等式组,得156.2x <≤因为为正整数,所以. 当时,所以该校有6人获奖,所买课外读物共26本. 18. 解:画出图形如图所示. (1)因为,所以∠∠.所以.因为MD 是AB 的垂直平分线,所以∠,所以∠∠.(2)同(1),同理可得.(3)AB 的垂直平分线与底边BC 的延长线所夹的锐角 等于∠A 的一半. (4)将(1)中的改为钝角,这个规律的认识无需修改,仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交,所成的锐角等于顶角的一半. 19.(1)解得7≤x≤8所以 方案一:甲型车7辆,乙型车1辆 方案二:甲型车8辆,乙型车0辆 (2分) (2)方案一:7×8000﹢1×6000=62000(元) 方案二:8×8000=64000(元) ∵ 62000<64000 ∴ 选择第一种方案。
2019-2020学年鲁教版七年级第二学期期末考试数学模拟试卷含答案解析
2019-2020学年鲁教版七年级第二学期期末考试数学模拟试卷
(五四学制)
一、选择题(每小题3分,共36分)
1.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()
A.80°B.40°C.60°D.50°
2.二元一次方程组的解x,y的值相等,则k的值为()
A.
B.1 C.2 D.
3.下列事件是确定事件的是()
A.买彩票中奖B.走到路口正好是绿灯
C.掷一枚均匀的骰子,掷出的点数为6 D.早上的太阳从西方升起
4.如图,AE与CD相交于点O,∠ADO=∠CEO=90°,下列条件中,不能证明△AOD≌△COE的是()
A.AO=CO B.DO=EO C.AD=CE D.∠A=∠C
5.下列命题是真命题的是()
A.两直线平行,同旁内角相等
B.三角形的一个外角大于任何一个内角
C.三角形三条边的垂直平分线相交于一点,且这一点到三边的距离相等
D.两角分别相等且其中一组等角的对边相等的两个三角形全等
6.已知a、b 满足方程组,则a﹣b的值为()
第1 页共26 页。
2020届鲁教版(五四制)七年级下册数学期末检测试题有答案(已审阅)
鲁教版七年级第二学期期末检测数学试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A) (B)(C) (D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB;在边A 1B 上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D 上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65° (C)()n-1·75° (D)()n ·85° 解析:因为A 1B=CB,∠B=30°, 所以∠C=∠BA 1C=75°. 又因为A 1A 2=A 1D,所以∠A 1A 2D=∠A 1DA 2=∠DA 1C=×75°=()2-1×75°;同理,∠A 2A 3E=∠A 2EA 3=∠DA 2A 1 =××75°=()3-1×75°;∠A 3A 4F=()4-1×75°;…第n 个三角形中以A n 为顶点的内角度数是()n-1×75°. 故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1, 所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是 0 .解析:解不等式组,得-1<x ≤2, 所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,/--------/ 所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2./--------/。
【鲁教版】初一数学下期末试卷(带答案)
一、选择题1.投掷一枚质地均匀的硬币4次,其中3次正面向上,1次反面向上,则第5次掷出反面向上的概率为()A.12B.13C.14D.152.下列说法正确的是()A.明天会下雨是必然事件B.不可能事件发生的概率是0C.在水平的桌面上任意抛掷一枚图钉,一定针尖向下D.投掷一枚之地近月的硬币1000次,正面朝下的次数一定是500次3.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则()A.P1=1,P2=1B.P1=0,P2=1C.P1=0,P2=1 4D.P1=P2=1 44.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A.B.C.D.5.下列图形中是轴对称图形的是()A.B.C.D.6.如图,在△ABC中,∠A=70°,∠B=90°,点A关于BC的对称点是A',点B关于AC 的对称点是B',点C关于AB的对称点是C',若△ABC的面积是1,则△A'B'C'的面积是()A.2 B.3 C.4 D.57.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为( )A.50°B.65°C.70°D.80°8.如图,ABC中,D、E分别是BC、AD的中点,若ABC的面积是10,则△的面积是()ABEA .54B .52C .5D .109.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是( )A .AC=CDB .BE=CDC .∠ADE=∠AED D .∠BAE=∠CAD 10.某地区用电量与应缴电费之间的关系如下表:则下列叙述错误的是( ) 用电量(千瓦•时)1 2 3 4 … 应缴电费(元) 0.55 1.10 1.65 2.20 …A .用电量每增加1千瓦•时,电费增加0.55元B .若用电量为8千瓦•时,则应缴电费4.4元C .若应缴电费为2.75元,则用电量为6千瓦•时D .应缴电费随用电量的增加而增加11.如图,在△ABC 中,∠ABC =60°,点C 在直线b 上,若直线a ∥b ,∠2=26°,则∠1的度数为( )A .26°B .28°C .34°D .36° 12.已知:2m a =,2n b =,则232m n +用a ,b 可以表示为( )A .6abB .23a b +C .23a b +D .23a b 二、填空题13.从箱子中摸出红球的概率为14,已知口袋中红球有4个,则袋中共有球__________个. 14.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是______.15.如图,将∠ACB 沿EF 折叠,点C 落在C ′处.若∠BFE =65°.则∠BFC ′的度数为_____.16.如图,四边形ABCD 中,∠A=100°,∠C=70°,将△BMN 沿MN 翻折,得到△FMN ,若MF ∥AD ,FN ∥DC ,则∠D=________.17.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.18.如图,是小明从学校到家里行进的路程s (米)与时间t (分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).19.如果一个角的补角是120°,那么这个角的余角的度数是________.20.设23P x xy =-,239Q xy y =-,若P Q =,则x y的值为__________. 三、解答题21.已知直线1l ∥2l ,点A ,B ,C 在直线1l 上,点E ,F ,G 在直线2l 上,任取三个点连成一个三角形,求:(1)连成△ABE 的概率;(2)连成的三角形的两个顶点在直线2l 上的概率.22.如图,在由长度为1个单位长度的小正方形组成的网格中,ABC 的三个顶点A ,B ,C 都在格点上,分别按下列要求在网格中作图:(1)画出与ABC 关于直线l 成轴对称的111A B C △;(2)在直线l 上找出一点P ,使得||PA PC -的值最大;(保留作图痕迹,并标上字母P )(3)在直线l 上找出一点Q ,使得1QA QC +的值最小.(保留作图痕迹,并标上字母Q )23.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.24.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写下表:链条的节数/节2 3 4 链条的长度/cm(2)如果x 节链条的长度是y ,那么y 与x 之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?25.如图,O 是直线AB 上的一点,90BOD COE ∠=∠=︒.(1)图中与1∠互余的角有______;(2)写出图中相等的角______;(直角除外)(3)3∠的补角是______.26.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值.根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >); (2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先确定掷硬币共有正面和反面两种可能性,后根据概率计算公式计算即可.【详解】∵掷硬币共有正面和反面两种可能性,∴第5次掷出反面向上的概率为:12; 故选A .【点睛】本题考查了简单概率的计算,准确计算事件的所有等可能性和事件A 的等可能性是解题的关键. 2.B解析:B【解析】【分析】根据确定事件,不确定事件的定义;随机事件概率的意义;找到正确选项即可.【详解】A.每天可能下雨,也可能不下雨,是不确定事件,故该选项不符合题意,B.不可能事件发生的概率是0,正确,故该选项符合题意,C.在水平的桌面上任意抛掷一枚图钉,一定针尖向上,故该选项不符合题意,D.投掷一枚之地近月的硬币1000次,正面朝下的次数不一定是500次,故该选项不符合题意,故选B.【点睛】本题主要考查了事件的可能性的大小,掌握事件的类型及发生的概率是解题的关键.3.B解析:B【详解】解:由题意可知:摸到红球是必然发生的事件,摸到白球是不可能发生的事件,所以P1=0,P2=1故选B.【点睛】本题考查概率的意义及计算,掌握概念是关键,此题难度不大.4.D解析:D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.5.C解析:C【解析】【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【详解】A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、是轴对称图形,故C正确;D、不是轴对称图形,故D错误.故选:C.【点睛】本题考查了轴对称图形的判断问题,掌握轴对称图形的定义以及性质是解题的关键.6.B解析:B【分析】BB′的延长线交A′C′于E ,如图,根据轴对称的性质得到DB′=DB ,BB′⊥AC ,BC=BC′,AB=A′B ,则可判断△ABC ≌△A′BC′,所以∠C=∠A′C′B ,AC=A′C′,则AC ∥A′C′,所以DE ⊥A′C′,且BD=BE ,即B′E=3BD ,然后利用三角形面积公式可得到S △A′B′C′=3S △ABC .【详解】BB ′的延长线交A ′C ′于E ,如图,∵点B 关于AC 的对称点是B ',∴DB ′=DB ,BB ′⊥AC ,∵点C 关于AB 的对称点是C ',∴BC =BC ′,∵点A 关于BC 的对称点是A ',∴AB =A ′B ,而∠ABC =∠A ′BC ′,∴△ABC ≌△A ′BC ′(SAS ),∴∠C =∠A ′C ′B ,AC =A ′C ′,∴AC ∥A ′C ′,∴DE ⊥A ′C ′,而△ABC ≌△A ′BC ′,∴BD =BE ,∴B ′E =3BD ,∴S △A ′B ′C ′=12A ′C ′×B ′E =3×12×BD ×AC =3S △ABC =3×1=3. 故选:B .【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线. 7.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.8.B解析:B【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出△ABE 的面积.【详解】∵AD 是BC 上的中线,∴ S △ABD =S △ACD =12S △ABC , ∵BE 是△ABD 中AD 边上的中线, ∴ S △ABE =S △BED =12S △ABD , ∴ S △ABE =14S ΔABC , ∵△ABC 的面积是10,∴ S △ABE =14×10=52. 故选:B.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等. 9.A解析:A【详解】∵△ABD ≌△ACE ,∴∠ADB=∠AEC ,∠BAD=∠CAE ,BD=CE ,∴180°-∠ADB=180°-∠AEC ,∠BAD+∠DAE=∠CAE+∠DAE ,BD+DE=CE+DE ,即∠ADE=∠AED ,∠BAE=∠CAD ,BE=CD ,故B 、C 、D 选项成立,不符合题意;无法证明AC=CD ,故A 符合题意,故选A.10.C【分析】根据用电量与应缴电费之间成正比例关系逐项判断即可.【详解】解:A、若用电量每增加1千瓦•时,则电费增加0.55元,故本选项叙述正确,符合题意;B、若用电量为8千瓦•时,则应缴电费=8×0.55=4.4元,故本选项叙述正确,符合题意;C、若应缴电费为2.75元,则用电量=2.75÷0.55=5千瓦•时,故本选项叙述错误,不符合题意;D、应缴电费随用电量的增加而增加,故本选项叙述正确,符合题意.故选:C.【点睛】本题考查了用表格表示变量之间的关系,列表法能具体的反映自变量与因变量的数值对应关系,掌握基础知识是关键.11.C解析:C【分析】如图,过点B作BE∥a.想办法证明∠1+∠2=60°即可解决问题.【详解】如图,过点B作BE∥a.∵a∥b,a∥BE,∴b∥BE,∴∠1=∠ABE,∠2=∠CBE,∵∠ABC=∠ABE+∠CBE=60°,∴∠1+∠2=60°,∵∠2=26°,∴∠1=34°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.12.D解析:D【分析】根据同底数幂的乘法和幂的乘方计算即可;()()23232322222+=⨯=⨯m n m n m n , ∵2m a =,2n b =,∴原式23a b =;故答案选D .【点睛】本题主要考查了幂的运算,准确计算是解题的关键.二、填空题13.16【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x 个则解得x=16即箱子中共有16个球故答案为:16【点睛】此题考查了概率 解析:16【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x 个, 则414x =, 解得x=16,即箱子中共有16个球,故答案为:16.【点睛】 此题考查了概率的求法:如果一个事件有n 中可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=. 14.【解析】试题解析:.【解析】试题∵一个不透明的箱子里有1个白球,2个红球,共有3个球,∴从箱子中随机摸出一个球是红球的概率是.考点:概率. 15.50°【分析】设∠BFC′的度数为α则∠EFC =∠EFC′=65°+α依据∠EFB+∠EFC=180°即可得到α的大小【详解】解:设∠BFC′的度数为α则∠EFC′=65°+α由折叠可得∠EFC =∠解析:50°.【分析】设∠BFC ′的度数为α,则∠EFC =∠EFC ′=65°+α,依据∠EFB +∠EFC =180°,即可得到α的大小.【详解】解:设∠BFC ′的度数为α,则∠EFC ′=65°+α,由折叠可得,∠EFC =∠EFC ′=65°+α,又∵∠BFC =180°,∴∠EFB +∠EFC =180°,∴65°+65°+α=180°,∴α=50°,∴∠BFC ′的度数为50°,故答案为:50°【点睛】本题考查了平角的定义以及折叠的性质,解题时注意:折叠前后的两个图形对应角相等,对应线段相等.16.【解析】【分析】首先根据MF ∥ADFN ∥DC 可得由于△FMN 是△BMN 沿MN 翻折得到的所以可得故可得的度数进而可得∠D 的度数【详解】解:MF ∥ADFN ∥DC △FMN 是△BMN 沿MN 翻折得到的故答案为解析:95︒【解析】【分析】首先根据MF ∥AD ,FN ∥DC ,可得100,70BMF BNF ︒︒∠=∠=,由于△FMN 是△BMN 沿MN 翻折得到的,所以可得,BMN FMN BNM FNM ∠=∠∠=∠,故可得MFN ∠ 的度数,进而可得∠D 的度数.【详解】 解: MF ∥AD ,FN ∥DC100,70,BMF BNF D MFN ︒︒∴∠=∠=∠=∠△FMN 是△BMN 沿MN 翻折得到的∴ ,BMN FMN BNM FNM ∠=∠∠=∠100701809522MFN ︒︒︒︒∴∠=--= 95D ︒∴∠=故答案为95︒【点睛】本题主要考查折叠图形的性质,关键在于折叠后的图形的性质与原图形全等.17.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.18.①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米故①正确;②由图象的横坐标可以看出小明用了20到家故②正确;③由图象的纵横坐标可以看出小明前10分钟走的路程较少故③错误;④由图象的纵横坐 解析:①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米,故①正确;②由图象的横坐标可以看出小明用了20到家,故②正确;③由图象的纵横坐标可以看出,小明前10分钟走的路程较少,故③错误;④由图象的纵横坐标可以看出,小明后10分钟比前10分钟走得快,故④正确; 故答案为①,②,④.点睛: 主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.19.30°【分析】根据余角和补角的定义即可解答【详解】解:∵一个角的补角是120°∴这个角为:180°−120°=60°∴这个角的余角为:90°−60°=30°故答案为:30°【点睛】本题考查了余角和补解析:30°【分析】根据余角和补角的定义,即可解答.【详解】解:∵一个角的补角是120°,∴这个角为:180°−120°=60°,∴这个角的余角为:90°−60°=30°,故答案为:30°.【点睛】本题考查了余角和补角的定义,解决本题的关键是熟记余角和补角的定义.20.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.三、解答题21.(1)连成△ABE 的概率为118; (2)连成的三角形的两个顶点在直线l 2上的概率为12. 【解析】试题分析:列举出符合题意的各种情况的个数,再根据概率公式解答即可.试题:由l 1上选一个点,在l 2上选两个点可以得到3×3=9个三角形,由l 1上选两个点,在l 2上选一个点可以得到3×3=9个三角形,即任取三个点连成一个三角形总个数为18个,(1)连成△ABE 的概率为118; (2)连成的三角形的两个顶点在直线l 2上的概率为12.考点:几何概率.22.(1)见解析 (2)见解析 (3)见解析【分析】(1)根据轴对称的性质解答即可;(2)连接1AC 并延长,交直线l 于点P ,点P 即为所求;(3)直线AC 与直线l 的交点Q 即为所求.【详解】解:(1)如图,111A B C △即为所求.(2)如图,连接1AC 并延长,交直线l 于点P ,点P 即为所求.∵点C 1点C 关于直线l 对称,∴||PA PC -=AC 1,∴连接1AC 并延长,交直线l 于点P ,点P 即为所求.(3)如图,直线AC 与直线l 的交点Q 即为所求,∵点C 1点C 关于直线l 对称,∴1QA QC +=QA+QC=AC ,∴直线AC 与直线l 的交点Q.【点睛】此题考查轴对称图形的作图方法,轴对称图形的性质,线段和差的作图,正确理解轴对称图形的性质是解题的关键.23.(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.24.(1)4.2;5.9;7.6;(2) 1.70.8y x =+;(3)102cm .【分析】(1)首先根据题意并结合1节链条的图形可得每节链条两个圆之间的距离为(2.5-0.8×2)cm ;接下来再结合图形可得到2节链条的长度为2.5+0.9+0.8,按此规律,自己写出3节链条、4节链条的长度,再进行填表即可;(2)结合(1)中各节链条长度的表达式,则不难得到y 与x 之间的关系式了;(3)将x=60代入(2)中的关系式中,可求得y 值,此时,注意:自行车上的链条为环形,在展直的基础上还要缩短0.8cm.【详解】解:(1)每节链条两个圆之间的距离为:2.5-0.8×2=0.9,观察图形可得,2节链条的长度为2.5+0.9+0.8=4.2;3节链条的长度为4.2+0.9+0.8=5.9;4节链条的长度为5.9+0.9+0.8=7.6;填表如下:链条的节数/节 2 3 4 …链条的长度/cm 4.2 5.9 7.6 …(2)1节链条、2节链条、3节链条、4节链条的长度分别可表示为:2.5=0.8+1.7×1,4.2=0.8+1.7×2,5.9=0.8+1.7×3,7.6=0.8+1.9×4=7.6,故y 与x 之间的关系为:y=1.7x+0.8;(3)当x=60时,y=1.7×60+0.8=102.8,因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm ,故自行车60节链条的长度为102.8-0.8=102(cm ),所以这辆自行车上的链条(安装后)总长度是102cm.【点睛】本题主要考查了函数关系式,根据题意得出n 节链条的长度与每节长度之间的关系是解决问题的关键.25.(1)2∠,4∠;(2)13∠=∠,24∠∠=;(3)AOE ∠【分析】(1)由90BOD COE ∠=∠=︒推出∠1+∠2=∠1+∠4=90︒,即可得到答案;(2)由∠1+∠2=∠2+∠3=∠1+∠4=90︒,推出∠1=∠3,∠2=∠4;(3)由∠1+∠AOE=180︒,∠1=∠3,推出∠3+∠AOE=180︒得到答案.【详解】(1)∵90BOD COE ∠=∠=︒,∴∠1+∠2=∠1+∠4=90︒,故答案为:2∠,4∠;(2)∵∠1+∠2=∠2+∠3=∠1+∠4=90︒,∴∠1=∠3,∠2=∠4,故答案为:13∠=∠,24∠∠=;(3)∵∠1+∠AOE=180︒,∠1=∠3,∴∠3+∠AOE=180︒,故答案为:AOE ∠.【点睛】此题考查余角的定义,补角的定义,同角的余角相等,同角的补角相等,熟记定义是解题的关键.26.(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2 (2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.。
【鲁教版】七年级数学下期末试题(附答案)
一、选择题1.抛掷一枚质地均匀、六个面上分别刻有点数1~6的正方体骰子2次,则“向上一面的点数之和为10”是()A.必然事件B.不可能事件C.确定事件D.随机事件2.下列说法正确的是()A.明天会下雨是必然事件B.不可能事件发生的概率是0C.在水平的桌面上任意抛掷一枚图钉,一定针尖向下D.投掷一枚之地近月的硬币1000次,正面朝下的次数一定是500次3.下列说法中正确的是()A.367人中至少有两人是同月同日生B.某商场抽奖活动的中奖率为1‰,说明每抽1000张奖券,一定有一张能中奖C.“打开电视机,正在播放《动物世界》”是必然事件D.“明天降雨的概率是80%”表示明天有80%的时间降雨4.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分AFC的面积是()A.8 B.10 C.20 D.325.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A .B .C .D .6.如图所示,在锐角三角形ABC中,AB=8,AC=5,BC=6,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,下列结论:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周长是7,④3 4BCDABDSS=△△,⑤34CDAD=.其中正确的个数有()A.2 B.3 C.4 D.57.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD = D .CAB DAB ∠=∠8.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .18 9.以下列长度的各组线段为边,能组成三角形的是( )A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm 10.正常人的体温一般在37℃左右,在不同时刻体温也在变化.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是( ).A .清晨5时体温最低B .下午5时体温最高C .这一天中小明体温T (单位:℃)的范围是36.5T 37.5≤≤D .从5时至24时,小明体温一直在升高11.在同一平面内,a 、b 、c 是直线,下列说法正确的是( )A .若a ∥b ,b ∥c 则 a ∥cB .若a ⊥b ,b ⊥c ,则a ⊥cC .若a ∥b ,b ⊥c ,则a ∥cD .若a ∥b ,b ∥c ,则a ⊥c 12.计算()3222()m m m -÷⋅的结果是( ) A .2m - B .22m C .28m - D .8m -二、填空题13.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.14.从一副扑克牌中级抽取一张,①抽到王牌;②抽到Q ;③抽到梅花.上述事件,概率最大的是_____.15.如图,三角形纸片中,AB=5cm ,AC=7cm ,BC=9cm.沿过点B 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为BD,则△DEC 的周长是________cm.16.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为_____.17.等腰三角形的底边长为6cm ,一腰上的中线把三角形分成的两部分周长之差为4cm ,则这个等腰三角形周长为_____cm .18.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y (千克)与同一物体在地球上的重量x (千克)之间的关系式为y=16x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克.19.已知如图,直线AB 、CD 相交于点O ,OE 平分COB ∠,若55EOB ∠=︒,则DOB ∠的度数是______.20.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.三、解答题21.丹尼斯超市举行有奖促销活动:顾客凡一次性购买满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被等分成16个扇形,如果转盘停止后,指针正好对准红黄或蓝色区域,顾客就可以分别获得一、二、三等奖奖金依次为60元、50元、40元一次性购物满300元者,如果不摇奖可返还奖金15元.(1)摇奖一次,获一等奖、二等奖、三等奖的概率分别是多少?(2)小李一次性购物满300元他是参与摇奖划算,还是领15元现金划算?请你帮他算算 22.如图,在ABC 中,(1,1),(4,2),(3,4)A B C ---.(1)求ABC 的面积;(2)在图中画出ABC 关于x 轴对称的图形111A B C △;(3)在y 轴上找一点P ,使得PA PC +最小.23.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______. 24.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油实验,得到如下数据: 轿车行驶的路程()s km0 10 20 30 40 ···油箱剩余油量()w L50 49.2 48.4 47.6 46.8 ···(1)该轿车油箱的容量为 L ,行驶100km 时,油箱剩余油量为 L(2)根据上表的数据,写出油箱剩余油量()w L 与轿车行驶的路程()s km 之间的表达式w = .(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时油箱剩余油量为26L ,求,A B 两地之间的距离?25.如图,已知A 、O 、B 三点在同一条直线上,OD 平分AOC ∠,OE 平分BOC ∠.(1)若54BOC ∠=︒,求DOE ∠的度数;(2)若BOC α∠=,求DOE ∠的度数;(3)请写出图中与∠BOE 互余的角.26.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系;(2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值; (3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】解:因为抛掷2次质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,向上一面的点数之和为10”是随机事件.故选:D .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.B解析:B【解析】【分析】根据确定事件,不确定事件的定义;随机事件概率的意义;找到正确选项即可.【详解】A.每天可能下雨,也可能不下雨,是不确定事件,故该选项不符合题意,B.不可能事件发生的概率是0,正确,故该选项符合题意,C.在水平的桌面上任意抛掷一枚图钉,一定针尖向上,故该选项不符合题意,D.投掷一枚之地近月的硬币1000次,正面朝下的次数不一定是500次,故该选项不符合题意,故选B.【点睛】本题主要考查了事件的可能性的大小,掌握事件的类型及发生的概率是解题的关键.3.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、367人中至少有两人是同月同日生,正确;B、某商场抽奖活动的中奖率为1‰,是随机事件,不一定每抽1000张奖券,一定有一张能中奖,故本选项错误;C、“打开电视机,正在播放《动物世界》”是随机事件,故本选项错误;D、“明天降雨的概率是80%”表示明天降雨的可能性大,但不一定是明天有80%的时间降雨,故本选项错误;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选:B.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质.5.D解析:D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C解析:C【分析】根据翻折变换的性质得到DC=DE,BE=BC,BCD BED∠=∠,根据已知求出AE的长,根据三角形周长公式计算即可,根据高相等判断34BCDABDSS=△△,根据△BCD≅△BDE判断①的对错,根据等高,则面积的比等于底边的比判断⑤.【详解】根据翻折变换的性质得到DC=DE,BE=BC=6,BCD BED∠=∠,故DE⊥AB错误,即②错误∴△BCD≅△BDE,∴∠CBD=∠EBD,故①正确;∵AB=8,∴AE=AB-BE=2,△AED的周长为:AD+AE+DE=AC+AE=7,故③正确;设三角形BCD的高为h,则三角形BAD的高也为h∴116322114822BCD ABD h BC h S S h AB h ⨯⨯⨯⨯==⨯⨯⨯⨯△△=,故④正确; 当三角形BCD 的高为H ,底边为CD ,则三角形BAD 的高也为H ,底边为AD ∴34BCD ABD S C S D AD ==△△,故⑤正确. 故选C.【点睛】本题考查的是翻折变换的知识涉及了三角形全等、等高等知识点,掌握翻折变换的性质、找准对应关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明7.B解析:B【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断.【详解】解:∵AB CD ⊥,∴∠ABC=∠ABD=90°,∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意; 若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意;若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B .【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.8.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键.9.C解析:C【分析】根据三角形三边关系解答.【详解】A 、∵2+3<6,∴以此三条线段不能组成三角形;B 、3+4<8,∴以此三条线段不能组成三角形;C 、∵5+6>10,∴以此三条线段能组成三角形;D 、∵5+6=11,∴以此三条线段不能组成三角形;故选:C .【点睛】此题考查三角形的三边关系:三角形两边的和大于第三边.10.D解析:D【解析】观察图象可知:A. 清晨5时体温最低,正确;B. 下午5时体温最高,正确;C. 这一天中小明体温T (单位:℃)的范围是36.537.5T ≤≤,正确;D. 从5时至17时,小明体温一直在升高,故D 选项错误,故选D.11.A解析:A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解.【详解】解:A.在同一平面内,若a ∥b ,b ∥c ,则a ∥c 正确,故本选项正确;B.在同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ,故本选项错误;C.在同一平面内,若a ∥b ,b ⊥c ,则a ⊥c ,故本选项错误;D.在同一平面内,若a ∥b ,b ∥c ,则a ∥c ,故本选项错误.故选:A .12.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅=()468m m -÷ =()468m m -÷=28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.二、填空题13.【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值【详解】如图所示:因为整个圆面被平均分成6个部分其中阴影部分占3份时指针落在阴影区域的概率为:【点睛】本题考 解析:12【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值.【详解】如图所示:因为整个圆面被平均分成6个部分,其中阴影部分占3份时,指针落在阴影区域的概率为: 3162=,本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率. 14.③抽到梅花【解析】【分析】根据概率公式先求出各自的概率再进行比较即可得出答案【详解】∵一副扑克牌有54张王牌有2张抽到王牌的可能性是;Q牌有4张抽到Q牌的可能性是;梅花有13张抽到梅花牌的可能性是;解析:③抽到梅花.【解析】【分析】根据概率公式先求出各自的概率,再进行比较,即可得出答案.【详解】∵一副扑克牌有54张,王牌有2张,抽到王牌的可能性是21=5427;Q牌有4张,抽到Q牌的可能性是42= 5427;梅花有13张,抽到梅花牌的可能性是13 54;∴概率最大的是抽到梅花;故答案为:③抽到梅花.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.11【解析】【分析】根据折叠的性质可知ED=ADBE=BA结合AB=5cmBC=9cmAC=7cm可得出CE=4cmAC=CD+AD再套用三角形的周长公式即可得出△CED的周长【详解】∵△BDA与△解析:11【解析】【分析】根据折叠的性质可知ED=AD、BE=BA,结合AB=5cm、BC=9cm、AC=7cm可得出CE=4cm、AC=CD+AD,再套用三角形的周长公式即可得出△CED的周长.【详解】∵△BDA与△BDE关于BD对称,∴△BDA≌△BDE,∴DA=DE,BA=BE.∴CE=CB−BE =CB−BA.∵BC=9cm,AB=5cm,∴CE=4cm.∴△CDE的周长=CE+DE+CD=CE+AC∵AC=7cm,∴△CED的周长=7+4=11cm.本题考查翻转问题,解题关键在于熟练掌握折叠的性质.16.12【分析】根据题意利用翻折不变性可得AE=ACCD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题【详解】解:由翻折的性质可知:AE=ACCD=DE且AB=10AC=6BC=解析:12【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,且AB=10,AC=6,BC=8,∴BE=AB-AE=10-6=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.17.26【分析】首先设腰长为xcm等腰三角形底边长为6cm一腰上的中线将其周长分成两部分的差为4cm可得x﹣6=4或6﹣x=4继而可求得答案【详解】解:设腰长为xcm根据题意得:x﹣6=4或6﹣x=4解解析:26【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为4cm,可得x﹣6=4或6﹣x=4,继而可求得答案.【详解】解:设腰长为xcm,根据题意得:x﹣6=4或6﹣x=4,解得:x=10或x=2(舍去),∴这个等腰三角形的周长为10+10+6=26cm.故答案为:26.【点睛】考核知识点:等腰三角形.理解三角形中线的意义是关键.18.100【解析】当x=120时y=x==20120-20=100即在月求上重量减少了100千克故答案为:100解析:100【解析】当x=120时,y=16x=11206=20,120-20=100,即在月求上重量减少了100千克,故答案为:100.19.【分析】先根据角平分线的定义可得再根据邻补角的定义即可得【详解】平分由邻补角的定义得:故答案为:【点睛】本题考查了角平分线的定义邻补角的定义熟记各定义是解题关键解析:70︒【分析】先根据角平分线的定义可得110COB ∠=︒,再根据邻补角的定义即可得.【详解】 OE 平分COB ∠,55EOB ∠=︒2110COB EOB ∴∠=∠=︒由邻补角的定义得:11071801800DOB COB ∠=︒∠-︒-==︒︒故答案为:70︒.【点睛】本题考查了角平分线的定义、邻补角的定义,熟记各定义是解题关键.20.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.三、解答题21.(1)获得一等奖的概率为116,二等奖概率为18,三等奖概率为14;(2)转转盘划算. 【分析】(1)分别找到红色,黄色,蓝色区域的份数占总份数的多少即可解答;(2)游戏是否合算,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【详解】(1)整个圆周被分成了16份,红色为1份,黄色为2份,蓝色为4份,所以获得-等奖的概率为116,二等奖概率为2=1618,三等奖概率为416=14. (2)转转盘:118160504020146⨯+⨯+⨯=(元), 20元15>元,∴转转盘划算.【点睛】此题考查几何概率,解题关键在于掌握其公式.22.(1)S △ABC 72=;(2)画图见解析;(3)见解析. 【分析】(1)依据割补法进行计算,矩形的面积-3个直角三角形的面积即可得到△ABC 的面积; (2)分别作出点A 、B 、C 关于x 轴的对称点,再首位顺次连接即得;(3)作点C 关于y 轴的对称点C ',再连接AC ',与y 轴的交点即为所求.【详解】(1)ABC 的面积为:111733232113=2222⨯-⨯⨯-⨯⨯-⨯⨯ (2)111A B C △的图形如图所示:(3)取点C 关于y 轴的对称点(3,4)C ',连接AC '交y 轴于点P ,即为所求.【点睛】本题考查了作图−轴对称变换、轴对称−最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.23.(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP =⎧⎨=⎩∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.24.(1)50,42;(2)500.08w s =-;(3)A 、B 两地之间的距离是300km.【分析】(1)由表格中的数据可知,该轿车的油箱容量为50L ,汽车每行驶10km ,油量减少0.8L ,据此可求油箱剩余油量;(2)由表格中的数据可知汽车每行驶10km ,油量减少0.8L ,据此可求w 与s 的关系式; (3)把w =26代入(2)中的关系式求得相应的s 值即可.【详解】解:(1)由表格中的数据可知,该轿车的油箱容量为50L ,行驶100km 时,油箱剩余油量为100500.84210-⨯=(L ); 故答案是50,42;(2)观察表格在的数据可知,汽车每行驶10km ,油量减少0.8L ,据此可得w 与s 的关系式为500.08w s =-;故答案为500.08w s =-;(3)当w =26时,50-0.08s =26,解得s =300.答:A 、B 两地之间的距离是300km.【点睛】本题考查的是一次函数的应用,关键是读懂题意,找出规律,正确列出w 与s 的关系式,明确行驶路程为0时,即为油箱的容量.25.(1)90︒;(2)90︒;(3)COD ∠,AOD ∠【分析】(1)由OD 平分∠AOC ,OE 平分∠BOC ,得出∠DOE=12(∠BOC+∠COA)求解即可; (2)利用(1)的结论求解即可;(3)根据(1)(2)找出互余的角即可.【详解】解:(1)∵OE 平分BOC ∠, ∴1=2COE BOE BOC ∠∠=∠, OD 平分AOC ∠,12AOD DOC AOC ∴∠=∠=∠, ∴∠DOE=12(∠BOC+∠COA)=12×180°=90°;(2)由(1)知11()1809022DOE BOC COA ∠=∠+∠=⨯︒=︒; (3)∵90DOE ∠=︒,∴∠AOD+∠BOE=90°,∵∠AOD=∠COD ,∴∠COD+∠BOE=90°,∴与∠BOE 互余的角有COD ∠,AOD ∠;【点睛】此题考查角平分线的意义,以及余角的意义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.26.(1)()()224a b a b ab +--=;(2)6x y +=±;(3)-15.【分析】(1)由长方形的面积公式解得图1的面积,图2中白色部分面积为大正方形面积与小正方形面积的差,又由图1与图2中的空白面积相等,据此列式解题;(2)由(1)中结论可得()()224x y x y xy +--=,将5x y -=,114xy =整体代入,结合平方根性质解题;(3)将()2019m -与()2021m -视为一个整体,结合(1)中公式,及平方的性质解题即可.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为()()()()2222a b b a a b a b +--=+-- ∵图1的面积和图2中白色部分的面积相等 ∴()()224a b a b ab +--=(2)根据(1)中的结论,可知()()224x y x y xy +--=∵5x y -=,114xy =∴()2211544x y +-=⨯∴()236x y += ∴6x y +=±(3)∵()()201920212m m -+-=-∴()()2201920214m m -+-=⎡⎤⎣⎦ ∴()()()()22201922019202120214m m m m -+--+-= ∵()()222019202134m m -+-=∴()()22019202143430m m --=-=-∴()()2019202115m m --=-.【点睛】本题考查完全平方公式在几何图形中的应用,是重要考点,难度较易,掌握相关知识是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版七年级第二学期期末检测数学试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A) (B)(C) (D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB;在边A 1B 上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D 上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65° (C)()n-1·75° (D)()n ·85° 解析:因为A 1B=CB,∠B=30°, 所以∠C=∠BA 1C=75°. 又因为A 1A 2=A 1D,所以∠A 1A 2D=∠A 1DA 2=∠DA 1C=×75°=()2-1×75°;同理,∠A 2A 3E=∠A 2EA 3=∠DA 2A 1 =××75°=()3-1×75°;∠A 3A 4F=()4-1×75°;…第n 个三角形中以A n 为顶点的内角度数是()n-1×75°. 故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1, 所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是 0 .解析:解不等式组,得-1<x ≤2, 所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数. 解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,/-------/-/ 所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2./-------/-/。