三角函数复习课件
合集下载
2024年度高中数学必修四三角函数PPT课件
建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式
第7章 三角函数(课件)高一数学单元复习(沪教版2020必修第二册)
1)求
2π
f 3 的值;
解析 :
-2
由题意,f(x)=-cos 2x- 3sin 2x=
π
3
1
sin 2x+ cos 2x=-2sin2x+6 ,
2
2
故
2π
4π π
f 3 =-2sin 3 +6 =-2sin
3π
=2.
2
考点2、三角函数的奇偶性与单调性
π
π
π,且在4,2 上单调递增的奇函数是
3π
A.y=sin2x+ 2
π
B.y=cos2x- 2
π
C.y=cos2x+ 2
π
D.y=sin2-x
3π
2x+
解析:y=sin
2 =-cos
π
y=cos2x-2 =sin
在_________________________
_______上是递增函数, 在
[2kπ,2kπ
单调性
____________
π
3π
上是递增函数
+2kπ, +2kπ
____
在2
2
____________
(k∈Z)上是递减函数
_______
上是递减函数
在__________________
2x 为偶函数,排除 A;
2π
f 3 的值;
解析 :
-2
由题意,f(x)=-cos 2x- 3sin 2x=
π
3
1
sin 2x+ cos 2x=-2sin2x+6 ,
2
2
故
2π
4π π
f 3 =-2sin 3 +6 =-2sin
3π
=2.
2
考点2、三角函数的奇偶性与单调性
π
π
π,且在4,2 上单调递增的奇函数是
3π
A.y=sin2x+ 2
π
B.y=cos2x- 2
π
C.y=cos2x+ 2
π
D.y=sin2-x
3π
2x+
解析:y=sin
2 =-cos
π
y=cos2x-2 =sin
在_________________________
_______上是递增函数, 在
[2kπ,2kπ
单调性
____________
π
3π
上是递增函数
+2kπ, +2kπ
____
在2
2
____________
(k∈Z)上是递减函数
_______
上是递减函数
在__________________
2x 为偶函数,排除 A;
2024届新高考一轮总复习人教版 第四章 第2节 同角三角函数的基本关系式及诱导公式 课件(35张)
所以 cos2α=190,由 α 为第二象限角,易知 cosα<0,所以 cos α=-31010,sin α= 1100,
C.sin 54π+α=12
B.cos π4-α=12 D.cos 54π-α=-12
解析:由 sin π4+α=12,可得 cos (π4+α)=± 23,sin 54π+α=sin π+π4+α=-sin π4+α=-12,cos π4-α=cos [π2-π4+α]=sin π4+α=12,cos 54π-α=cos π+π4-α= -cos π4-α=-12.
(sin α+cos α)2-(sin α-cos α)2=4sin αcos α;
sin α=tan αcos αα≠π2+kπ,k∈Z;
sin
2α=sin
sin 2α 2α+cos
2α=tanta2nα2+α 1;
cos2α=sin
cos 2α 2α+cos
2α=tan21α+1.
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)若 α,β 为锐角,则 sin2α+cos2β=1.( ) (2)sin(π+α)=-sin α 成立的条件是 α 为锐角.( ) (3)若 α∈R,则 tan α=csoins αα恒成立.( ) (4)若 sin (kπ-α)=13(k∈Z),则 sin α=13.( ) 答案:(1)× (2)× (3)× (4)×
2.三角函数的诱导公式
组数
一
二
三
四
角 2kπ+α(k∈Z) π+α
-α
π-α
正弦 余弦 正切
口诀
__s_in__α__ __c_o_s_α__ __ta_n__α__
__-__s_i_n_α__ __-__s_in__α__ __s_in__α__ __-__c_o_s_α__ __co_s__α__ _-___co_s__α__ __t_an__α__ __-__t_a_n_α__ _-___ta_n_α___
三角函数的诱导公式复习课件 PPT
答 2kπ+α(k∈Z),π+α,-α,π-α得三角函数值,等于α的同名函数值, 前面加上一个把α瞧成锐角时原函数值的符号、 简记为“函数名不变, 符号看象限”.
答案
返回
问题导学
知识点一 诱导公式五 思考 1 角π6与角π3的三角函数值有关系?
答
sinπ6=cos
π3=12,cos
π6=sin
π3=
∴cosπ3-α=cosπ2-π6+α
=sinπ6+α=
3 3.
解析答案
跟踪训练 3 已知 sin α 是方程 5x2-7x-6=0 的根,α 是第三象限角,求
sinc-osαπ2--23απscinosπ2+32πα- α·tan2(π-α)的值. 解 方程 5x2-7x-6=0 的两根为 x1=-35,x2=2, 由 α 是第三象限角,得 sin α=-35,则 cos α=-45,
∴cos56π+α-sin2α-π6=- 33-23=-2+3
3 .
反思与感悟 解析答案
1+2sin 290°cos 430° (2) sin 250°+cos 790° .
1+2sin(360°-70°)cos(360°+70°) 解 原式= sin(180°+70°)+cos(720°+70°)
∴sinc-osαπ2--32απscinosπ2+32πα- α·tan2(π-α) =sinπ2s-inααccoossπ2α+α·tan2α
=cossinα(α-cossinαα)·tan2α=-tan2α=-csoins22αα=-196.
解析答案
返回
(2)已知 cosπ6-α= 33,
求 cos56π+α-sin2α-π6的值. 解 ∵cos56π+α=cosπ-π6-α=-cosπ6-α=- 33, sin2α-π6=sin2-6π-α=1-cos2π6-α=1- 332=23,
答案
返回
问题导学
知识点一 诱导公式五 思考 1 角π6与角π3的三角函数值有关系?
答
sinπ6=cos
π3=12,cos
π6=sin
π3=
∴cosπ3-α=cosπ2-π6+α
=sinπ6+α=
3 3.
解析答案
跟踪训练 3 已知 sin α 是方程 5x2-7x-6=0 的根,α 是第三象限角,求
sinc-osαπ2--23απscinosπ2+32πα- α·tan2(π-α)的值. 解 方程 5x2-7x-6=0 的两根为 x1=-35,x2=2, 由 α 是第三象限角,得 sin α=-35,则 cos α=-45,
∴cos56π+α-sin2α-π6=- 33-23=-2+3
3 .
反思与感悟 解析答案
1+2sin 290°cos 430° (2) sin 250°+cos 790° .
1+2sin(360°-70°)cos(360°+70°) 解 原式= sin(180°+70°)+cos(720°+70°)
∴sinc-osαπ2--32απscinosπ2+32πα- α·tan2(π-α) =sinπ2s-inααccoossπ2α+α·tan2α
=cossinα(α-cossinαα)·tan2α=-tan2α=-csoins22αα=-196.
解析答案
返回
(2)已知 cosπ6-α= 33,
求 cos56π+α-sin2α-π6的值. 解 ∵cos56π+α=cosπ-π6-α=-cosπ6-α=- 33, sin2α-π6=sin2-6π-α=1-cos2π6-α=1- 332=23,
三角函数的综合应用+课件-2025届高三数学一轮复习
(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
三角函数的图象与性质课件高三数学一轮复习
,所以 ≤
4π
3
4π
C.
3
≤ φ ≤ 2π
4π
D.
3
≤φ≤
[解析] 因为 ∈ [− , ],所以�� + ∈ [− + , + ].
又 ≤ <
所以
+ ≤ ,
−
+ ≥ ,
解得
+<
,且函数
≤≤
,即
在[− , ]上单调递增,
φ = kπ +
π
2
k∈ .
③若y = Atan ωx + φ 为奇函数,则有φ = kπ k ∈ .
自测诊断
1.函数f x = 2sin
A.
π
2
1
x
2
−
π
4
的最小正周期为(
B.π
[解析] 由题意知,在 =
D )
C.2π
−
D.4π
中, = ,∴ =
=
π 3π
π π
A.
B. ,
C. − ,
D.
4 4
2 2
[解析] 因为 = + − = + = − ,
令 − ≤ ≤ + , ∈
,解得 − ≤ ≤ + , ∈ ,
4π
3
4π
C.
3
≤ φ ≤ 2π
4π
D.
3
≤φ≤
[解析] 因为 ∈ [− , ],所以�� + ∈ [− + , + ].
又 ≤ <
所以
+ ≤ ,
−
+ ≥ ,
解得
+<
,且函数
≤≤
,即
在[− , ]上单调递增,
φ = kπ +
π
2
k∈ .
③若y = Atan ωx + φ 为奇函数,则有φ = kπ k ∈ .
自测诊断
1.函数f x = 2sin
A.
π
2
1
x
2
−
π
4
的最小正周期为(
B.π
[解析] 由题意知,在 =
D )
C.2π
−
D.4π
中, = ,∴ =
=
π 3π
π π
A.
B. ,
C. − ,
D.
4 4
2 2
[解析] 因为 = + − = + = − ,
令 − ≤ ≤ + , ∈
,解得 − ≤ ≤ + , ∈ ,
锐角三角函数复习课课件
90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。
高三高考数学第一轮复习课件三角函数复习
]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2
。
(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+
三角函数公开课(高三复习) PPT课件 图文
(2)由S=12bcsin A=12bc·23= 43bc=5 3,得bc=20.又b= 5,知c=4.由余弦定理得a2=b2+c2-2bccos A=25+16-20= 21,故a= 21.
又由正弦定理得sin Bsin C=basin A·acsin A=bac2sin2A=2201 ×34=57.
(1)求ω的值; (2)求 f(x)在区间 π,32π 上的最大值和最小值.
[自主解答]
(1)f(x)= 3- 3sin2ωx-sin ωxcos ωx 2
= 3- 2
3·1-cos 2
2ωx-12sin
2ωx
=
3cos 2
2ωx-1sin 2
2ωx=-sin
2ωx-π 3
.
因为图像的一个对称中心到最近的对称轴的距离为π, 4
入手); (3)将已知条件代入所求式子,化简求值. 2.三角恒等变换的“五遇六想” (1)遇正切,想化弦;(2)遇多元,想消元;(3)遇差异,想联
系;(4)遇高次,想降次;(5)遇特角,想求值;(6)想消元,引辅 角.
——————————————————————
练习 1.(2013·北京高考)已知函数 f(x)=(2cos2x-1)sin 2x+ 1cos 4x. 2
(1)求三角函数的周期、单调区间、最值及判断三角函数 的奇偶性,往往是在定义域内,先化简三角函数式,尽量化 为y=Asin(ωx+φ)的形式,然后再求解.
(2)对于形如y=asin ωx+bcos ωx型的三角函数,要通过
引入辅助角化为y= a2+b2 sin(ωx+φ) cos φ= a2a+b2,
b
=cos C,求函数 f(A)的取值范围. cos B
第5章 三角函数(复习课件) 高一数学 (人教A版2019必修第一册)
6
6
变、横坐标缩短为原来的 1 ,得到 y=sin(2x+ π ),再横坐标保持不变,纵坐
2
6
标变为原来的 1 得到 y= 1 sin(2x+ π ),最后把函数 y= 1 sin(2x+ π )的图
2
2
6
2
6
象向下平移 1 个单位,得到 y= 1 sin(2x+ π )-1 的图象.
2
6
解题方法(三角函数的图象及变换注意事项)
=14.
解法3:令M=sin 220°+cos 280°+ 3sin 20°cos 80°,
则其对偶式N=cos 220°+sin 280°+ 3cos 20°sin 80°.
因为M+N
=(sin 220°+cos 220°)+(cos 280°+sin 280°)+ 3(sin 20°cos 80°+cos 20°sin
(1)求 f(x)的解析式; (2)将 y=f(x)的图象上的所有点的横坐标伸长到原来的 2 倍 (纵坐标不变),然后再将所得的图象沿 x 轴向右平移π6个单位长 度,得到函数 y=g(x)的图象,写出函数 y=g(x)的解析式.
[解] (1)由题可知 T=2ωπ=π,所以 ω=2. 又 f(x)min=-2,所以 A=2. 由 f(x)的最低点为 M, 得 sin43π+φ=-1. 因为 0<φ<π2,所以43π<43π+φ<116π. 所以43π+φ=32π.所以 φ=π6. 所以 f(x)=2sin2x+π6.
知识梳理
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
二倍角公式sin2α=2sinαcosα
三
tan2α=1-2tatannα2α
2025高考数学一轮复习-4.4-三角函数的图象与性质【课件】
第四章 三角函数、解三角形
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
1.用五点法作正弦函数和余弦函数的简图 ((π1),正0弦),函_数_3_2π_y,_=_-_s_in1__x,,(x2∈π,[0,0).2π]的图象中,五个关键点是:(0,0),π2,1, (2)余弦函数 y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),π2,0, ____(π__,__-__1_)_____,32π,0,(2π,1).
f-π8= 2sin2×-π8+π4+1=1,则 f(x)的图象关于点-π8,1对称,故 C 正确; 当 x∈-π4,π4时,2x+π4∈-π4,34π,故当 2x+π4∈-π4,π2,即 x∈-π4,π8 时,函数单调递增; 当 2x+π4∈π2,34π,即 x∈π8,π4时,函数单调递减,故 D 错误.
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
{xx∈R,且 x≠kπ+π2}
值域
___[_-__1_,__1_]____ ___[_-__1_,__1_] __
R
最小正周期
___2_π__
__2_π___
__π__
奇偶性
_奇__函__数___
3.函数 y=3tan
2x+π 4
的定义域是(
C
)
A.xx≠kπ+π2,k∈Z
B.xx≠k2π-π8,k∈Z
C.xx≠k2π+π8,k∈Z
D.xx≠k2π,k∈Z
解析 要使函数有意义,则 2x+π4≠kπ+π2,k∈Z,
即 x≠k2π+π8,k∈Z,
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
1.用五点法作正弦函数和余弦函数的简图 ((π1),正0弦),函_数_3_2π_y,_=_-_s_in1__x,,(x2∈π,[0,0).2π]的图象中,五个关键点是:(0,0),π2,1, (2)余弦函数 y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),π2,0, ____(π__,__-__1_)_____,32π,0,(2π,1).
f-π8= 2sin2×-π8+π4+1=1,则 f(x)的图象关于点-π8,1对称,故 C 正确; 当 x∈-π4,π4时,2x+π4∈-π4,34π,故当 2x+π4∈-π4,π2,即 x∈-π4,π8 时,函数单调递增; 当 2x+π4∈π2,34π,即 x∈π8,π4时,函数单调递减,故 D 错误.
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
{xx∈R,且 x≠kπ+π2}
值域
___[_-__1_,__1_]____ ___[_-__1_,__1_] __
R
最小正周期
___2_π__
__2_π___
__π__
奇偶性
_奇__函__数___
3.函数 y=3tan
2x+π 4
的定义域是(
C
)
A.xx≠kπ+π2,k∈Z
B.xx≠k2π-π8,k∈Z
C.xx≠k2π+π8,k∈Z
D.xx≠k2π,k∈Z
解析 要使函数有意义,则 2x+π4≠kπ+π2,k∈Z,
即 x≠k2π+π8,k∈Z,
公开课锐角三角函数复习课件
特殊角的三角函数值
• 0°、30°、45°、60°、90°等特殊角的三角函数值应熟练掌握, 包括sin、cos、tan、cot、sec、csc等函数。
02
锐角三角函数的图像与 性质
正弦函数的图像与性质
正弦函数的周期性和对称性
正弦函数是周期函数,具有轴对称性和中心对称性。
正弦函数的单调性
在每个周期内,正弦函数在一定区间内单调递增或递减。
正切函数的图像与性质
正切函数的定义域
正切函数只在直角三角形 中定义,表示对边与邻边 的比值。
正切函数的单调性
正切函数在每个区间内单 调递增,无周期性。
正切函数的值域
正切函数的值域为全体实 数,表示任意两个边的比 值。
三角函数图像的变换
平移变换
翻折变换
通过平移正弦、余弦、正切函数的图 像,可以得到其他三角函数图像。
根据数学模型,选择合适的三角 函数公式进行计算。
计算结果
根据选择的公式进行计算,得出 结果。
理解题意
首先需要仔细阅读题目,理解题 目的要求和所给条件,明确解题 的目标。
检验结果
最后需要对计算结果进行检验, 确保结果的正确性。经典Leabharlann 角三角函数综合题解析题型一
求角度问题
题型二
求边长问题
题型三
求面积问题
02
通过已知的边长和角度,利用三角函数可以求出其他边长或角
度,从而解决实际问题。
特殊角的三角函数值
03
对于一些特殊角,如30°、45°、60°等,其三角函数值是已知的
,这些值在解直角三角形时非常有用。
三角函数在实际问题中的应用
测量问题
在建筑、工程和地理测量等领域 ,经常需要使用三角函数来解决 实际问题,如计算距离、高度和
2025届高中数学一轮复习课件《三角函数的图象与性质》ppt
高考一轮总复习•数学
第28页
对点练 2(1)(2024·广东茂名模拟)下列四个函数中,最小正周期与其余三个函数不同的 是( )
A.f(x)=cos2x+sin xcos x B.f(x)=21s-incxocso2sxx C.f(x)=cosx+π3+cosx-π3 D.f(x)=sinx+π6cosx+π6 (2)若 f(x)=sin ωx(ω>0)在[0,1]上至少存在 50 个最小值点,则 ω 的取值范围是 ____1_92_9_π_,__+__∞__ ______.
32π,0 ,(2π,1).
高考一轮总复习•数学
第6页
二 正弦函数、余弦函数、正切函数的图象和性质
函数
y=sin x
y=cos x
y=tan x
图象
定义域
x∈R
x∈R
{x∣x∈R 且 x≠π2 +kπ,k∈Z}
高考一轮总复习•数学
第7页
函数
y=sin x
值域
[-1,1]
y=cos x [-1,1]
第22页
对点练 1 函数 y=lg sin 2x+ 9-x2的定义域为__-__3_,__-__π2_∪___0_,__π2__.
解析:由s9i-n 2xx2≥>00,,
得kπ<x<kπ+π2,k∈Z, -3≤x≤3,
∴-3≤x<-2π或 0<x<π2.∴函数 y=lg sin 2x+
9-x2的定
义域为-3,-π2∪0,π2.
高考一轮总复习•数学
第12页
1.判断下列结论是否正确. (1)正切函数 y=tan x 在定义域内是增函数.( ) (2)已知 y=ksin x+1,x∈R,则 y 的最大值为 k+1.( ) (3)y=sin|x|是偶函数.( √ ) (4)若非零实数 T 是函数 f(x)的周期,则 kT(k 是非零整数)也是函数 f(x)的周期.( √ )
高三数学第二轮复习三角函数的图像与性质课件ppt.ppt
则同时具有以下两个性质的函数是( A ) ①最小正周期是π ②图象关于点(π/6,0)对称.
2.已知f(x)=sin(x+π/2),g(x)=cos(x-π/2),则下列结论
中正确的是( D) (A)函数y=f(x)·g(x)的周期为2π (B)函数y=f(x)·g(x)的最大值为1 (C)将f(x)的图象向左平移π/2单位后得g(x)的图象 (D)将f(x)的图象向右平移π/2单位后得g(x)的图象
直于 x 轴的直线, 对称中心为图象与 x 轴的交点).
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
[2k5.单+ 2调, 性2k:+y=3s2in]x(k在[Z2)k上-单2调, 2递k减+2;
](kZ)上单调递增, 在
6
是 (k ,k ],k z 使 g(x) 0 且递减的区间是
12
6
(k ,k 5 ],k z ,
6
12
∴当 0 a 1时,函数 f (x) 的递增的区间是
(k ,k 5 ],k z ,
6
12
当 a 1时,函数 f (x) 的递增的区间是 (k ,k ],k z .
且f (0) 3 , f ( ) 1 .
2 42
(1)求 f (x) 的最小正周期; (2)求 f (x) 的单调递减区间; (3)函数 f (x) 的图象经过怎样的平移才能 使所得图象对应的函数成为奇函数?
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.几何法 y=sinx 作图步骤: P (1)等分单位圆作出特殊角的三角函数线; (2)平移三角函数线; M (3)用光滑的曲线连结各点. y 1 y=sinx o1 o
y
A
x
Ao -1
3 2
2 x
2
一、三角函数图象的作法
2.五点法作函数 y=Asin(x+) 的图象的步骤: (1)令相位 x+=0, , , 3, 2, 解出相应的 x 的值; 2 2 (2)求(1)中 x 对应的 y 的值, 并描出相应五点; (3)用光滑的曲线连结(2)中五点. 3.变换法: 函数 y=Asin(x+)+k 与 y=sinx 图象间的关系: ①函数 y=sinx 的图象纵坐标不变, 横坐标向左 (>0) 或向右 (<0) 平移 || 个单位得 y=sin(x+) 的图象; 1 ②函数 y=sin(x+) 图象的纵坐标不变, 横坐标变为原来的 , 得到函数 y=sin(x+) 的图象;
1.下列函数中,周期为
2 的偶函数是
(
B)
A. y=sin4x B.y=cos4x C.y=tan2x 2 .函数 y=sin(2x+ ( )
D.y=cos2x
B
5 ) 的图象的一条对称轴是直线 2
8
A. x= -
4
B. x=
C. x= -
2
D.5
4
3.下列各式中,正确的是
A. Sin
y y
x
3、角的终边落在“射线上”、“直线上”及“互相 垂直的两条直线上”的一般表示式
y
O
x
O
x
O
x
2k k Z
k k Z
k k Z 2
四、任意角的三角函数定义
y
P(x,y)
●
的终边
r
y x y sin , cos , tan r r x
(把α看成锐角)
诱导公式四
诱导公式五
sin( ) sin cos( ) cos
奇变偶不变 符号看象限
用诱导公式求值的一般步骤
任 意 负 角 或公式一 任 意 正 的三角函 角 的 三 数 用公式三 角函数 用公式一 0° 到 360° 的角的三角 函数
用公式二
(一)三角函数的图象与性质
y=sinx y 图 象 定义域 值 域 性 周期性 奇偶性 1
y=cosx y 1
3 2
2
-1
o
2
2 x
2
o -1 R
2
3 2
2 x
R [-1,1] T=2
[-1,1]
奇函数
T=2 偶函数
质 单调性 [2k 2 ,2k 2 ]增函数 3 [2k ,2k ]减函数 2 2
三角函数复习
主 三角函数的相关概念 要 三角变换与求值 内 容 三角函数的图象和性质
高一数学(必修4) 24 January 2018 2018年1月24日 星期三
一、角的有关概念
1、角的概念的推广
y
的终边
正角 零角
x
(,)
的终边
2、角度与弧度的互化
o
负角
180
180 1弧度 ( ) 57.30 5718, π π 1 180
4
)的单调递增区间,
2k 7 2k 解得 x (k Z ) 4 3 12 3
2k 7 2k 故f ( x) sin( -3x )的单调递增区间为 [ , ], k Z 4 4 3 12 3
变式2
解 :
当x (
6 12 ,
)时,求函数 y 2 cos( 2 x
一、三角函数图象的作法
3.变换法: 函数 y=Asin(x+)+k 与 y=sinx 图象间的关系: ③函数 y=sin(x+) 图象的横坐标不变, 纵坐标变为原来的 A 倍, 得到函数 y=Asin(x+) 的图象; ④函数 y=Asin(x+) 图象的横坐标不变, 纵坐标向上 (k>0) 或向下 (k<0) 平移 |k| 个单位得 y=Asin(x+)+k 的图象. 要特别注意, 若由 y=sin(x) 得到 y=sin(x+) 的图象, 则向左 或向右平移应平移 | | 个单位.
15 C.tan >tan(7 8
4 5 >sin 7 7
)
B. sin(- 5 )>sin(- 6 ) 3 D.cos(- )>cos(-9 ) 5 4
(
) C
4.要得到函数y=cos(2x4 象 ( ) A.向左平移
)的图象,只需将函数y=sin2x的图
A
C.向左平移 (单位长) 4
[2k ,2k ]增函数 [2k ,2k ]减函数
3、正切函数的图象与性质
y=tanx y 图 象
3 2
o
2
2
3 2
x
定义域 值域 周期性 奇偶性 单调性
{x | x k
R
2
, k N}
T
(k
奇函数
, k )( k Z ) 2 2
3
)的值域 .
因为 x (
6 12 ,
),
所以0 2 x
) 1
3
2
所以0 cos( 2 x
3
0 y 2
故函数 y 2 cos( 2 x )的值域为 [0,2]. 3
典型例题
2.已知函数 f(x)=Asin(x+)(A>0, >0, xR) 在一个周期内 y 的图象如图所示: 求直线 y= 3 与函数 2 f(x) 图象的所有交点的坐标. 7 7 5 解: 根据图象得 A=2, T= 2 -(- 2 )=4, 2 2 - o 3 1 1 2 2 2 ∴= 2 . ∴y=2sin( 2 x+). 1 1 x+ ). 由 (- 2 )+=0 得 = . ∴ y =2sin( 4 2 4 2 1 x+ )= 3 . 1 sin( 由 3=2sin( 2 x+ 4 ) 得 2 4 2 2 1 ∴ x+ 4 =2k+ 3 或 2k+ 3 (kZ). 2 5 (kZ). ∴x=4k+ 或 4 k + 6 6 5 故所有交点坐标为 (4k+ 6 , 3 ) 或 (4k+ 6 , 3 ) (kZ).
8 (单位长)
B. 向右平移 8 (单位长)
D. 向右平移 (单位长) 4
5.函数y=2cos(2x- )的一个单调区间是 ( ) 6 7 5 , , ] B.[ A.[] C.[- ,0] D. [- , ] 2 12 12 12 12 2 2
A
6.将函数y=sinx的图象向左平移 (单位长),再把所得 3 图象上各点的横坐标伸长到原来的 2 倍,则最后得到的 曲线的解析式为 ( A) x A. y=sin( + ) B.y=sin(2x- ) 3 2 3
C.y=sin( x + ) 3 3
D.y=sin(3x+ 3 )
三角函数部分题型
一、概念题:
1、任意角的概念 2、弧度制概念 3、任意角的三角函数概念; 4、周期 5、三角函数线 概念是逻辑判断的依据,是数学分析、理解的基础
二、考查记忆、理解能力题
如:简单的运用诱导公式 要求做到:记忆熟悉、计算细心、答案正确 三、求值题 1、特殊角、非特殊角的三角函数求值题
tan( k 2 ) tan sin( k 2 ) sin
诱导公式六
诱导公式二 sin( ) sin
cos( ) cos
公式记忆
诱导公式三 sin( ) sin ,
cos( ) cos .
o
2
x
r x y
2
三角函数值的符号:“第一象限全为正,二正三切四余弦”
五、同角三角函数的基本关系式
商数关系: sin tan cos cos cot sin 平方关系:
sin 2 cos 2 1
一、诱导公式
诱导公式一 cos( k 2 ) cos
或四或五
锐角 ,大化小,化到锐角为终了”
解题分析
1.在利用诱导公式求三角函数的值时,一定要注意符号
2。三角变换一般技巧有 ①切化弦, ②降次, ③变角, ④化单一函数, ⑤妙用1, ⑥分子分母同乘除,
方法不当就会很繁,只能通过总结积累解题经验, 选择出最佳方法.
一、三角函数图象的作法
三、三角函数的图象与性质题 1、求定义域(注意与不等式的结合) 2、求值域题 4、奇偶性 3、求周期 5、单调性:如求单调区间、比较大小 四、图象变换题 1、画图和识图能力题:如:描点法、
五点法作图、变换法
2、已知图象求解析式(五点法作图的应用)
x
3.已知 f(x)=-2asin(2x+ )+2a+b, x[ , 3 ], 是否存在常数 6 4 4 a, bQ, 使得 f(x) 的值域为[-3, 3 -1]? 若存在, 求对应的 a 和 b, 若不存在, 说明理由. 3 2 5 解: 由已知 4 ≤x≤ 4 ∴ 3 ≤2x+ 6 ≤ 3 .∴-1≤sin(2x+ 6 )≤ 3 . 2 若存在这样的常数 a, b, 则 当 a>0 时, 有 - 3 a+2a+b=-3, 且 4a+b= 3 -1. 解得 a=1, b= 3 -5. ∵bQ, 故此时不存在符合条件的 a, b. 当 a<0 时, 有 - 3 a+2a+b= 3 -1, 且 4a+b=-3. 解得 a=-1, b=1, 且 aQ, bQ. 故符合条件的有理数 a, b 存在, 且 a=-1, b=1.
y
A
x
Ao -1
3 2
2 x
2
一、三角函数图象的作法
2.五点法作函数 y=Asin(x+) 的图象的步骤: (1)令相位 x+=0, , , 3, 2, 解出相应的 x 的值; 2 2 (2)求(1)中 x 对应的 y 的值, 并描出相应五点; (3)用光滑的曲线连结(2)中五点. 3.变换法: 函数 y=Asin(x+)+k 与 y=sinx 图象间的关系: ①函数 y=sinx 的图象纵坐标不变, 横坐标向左 (>0) 或向右 (<0) 平移 || 个单位得 y=sin(x+) 的图象; 1 ②函数 y=sin(x+) 图象的纵坐标不变, 横坐标变为原来的 , 得到函数 y=sin(x+) 的图象;
1.下列函数中,周期为
2 的偶函数是
(
B)
A. y=sin4x B.y=cos4x C.y=tan2x 2 .函数 y=sin(2x+ ( )
D.y=cos2x
B
5 ) 的图象的一条对称轴是直线 2
8
A. x= -
4
B. x=
C. x= -
2
D.5
4
3.下列各式中,正确的是
A. Sin
y y
x
3、角的终边落在“射线上”、“直线上”及“互相 垂直的两条直线上”的一般表示式
y
O
x
O
x
O
x
2k k Z
k k Z
k k Z 2
四、任意角的三角函数定义
y
P(x,y)
●
的终边
r
y x y sin , cos , tan r r x
(把α看成锐角)
诱导公式四
诱导公式五
sin( ) sin cos( ) cos
奇变偶不变 符号看象限
用诱导公式求值的一般步骤
任 意 负 角 或公式一 任 意 正 的三角函 角 的 三 数 用公式三 角函数 用公式一 0° 到 360° 的角的三角 函数
用公式二
(一)三角函数的图象与性质
y=sinx y 图 象 定义域 值 域 性 周期性 奇偶性 1
y=cosx y 1
3 2
2
-1
o
2
2 x
2
o -1 R
2
3 2
2 x
R [-1,1] T=2
[-1,1]
奇函数
T=2 偶函数
质 单调性 [2k 2 ,2k 2 ]增函数 3 [2k ,2k ]减函数 2 2
三角函数复习
主 三角函数的相关概念 要 三角变换与求值 内 容 三角函数的图象和性质
高一数学(必修4) 24 January 2018 2018年1月24日 星期三
一、角的有关概念
1、角的概念的推广
y
的终边
正角 零角
x
(,)
的终边
2、角度与弧度的互化
o
负角
180
180 1弧度 ( ) 57.30 5718, π π 1 180
4
)的单调递增区间,
2k 7 2k 解得 x (k Z ) 4 3 12 3
2k 7 2k 故f ( x) sin( -3x )的单调递增区间为 [ , ], k Z 4 4 3 12 3
变式2
解 :
当x (
6 12 ,
)时,求函数 y 2 cos( 2 x
一、三角函数图象的作法
3.变换法: 函数 y=Asin(x+)+k 与 y=sinx 图象间的关系: ③函数 y=sin(x+) 图象的横坐标不变, 纵坐标变为原来的 A 倍, 得到函数 y=Asin(x+) 的图象; ④函数 y=Asin(x+) 图象的横坐标不变, 纵坐标向上 (k>0) 或向下 (k<0) 平移 |k| 个单位得 y=Asin(x+)+k 的图象. 要特别注意, 若由 y=sin(x) 得到 y=sin(x+) 的图象, 则向左 或向右平移应平移 | | 个单位.
15 C.tan >tan(7 8
4 5 >sin 7 7
)
B. sin(- 5 )>sin(- 6 ) 3 D.cos(- )>cos(-9 ) 5 4
(
) C
4.要得到函数y=cos(2x4 象 ( ) A.向左平移
)的图象,只需将函数y=sin2x的图
A
C.向左平移 (单位长) 4
[2k ,2k ]增函数 [2k ,2k ]减函数
3、正切函数的图象与性质
y=tanx y 图 象
3 2
o
2
2
3 2
x
定义域 值域 周期性 奇偶性 单调性
{x | x k
R
2
, k N}
T
(k
奇函数
, k )( k Z ) 2 2
3
)的值域 .
因为 x (
6 12 ,
),
所以0 2 x
) 1
3
2
所以0 cos( 2 x
3
0 y 2
故函数 y 2 cos( 2 x )的值域为 [0,2]. 3
典型例题
2.已知函数 f(x)=Asin(x+)(A>0, >0, xR) 在一个周期内 y 的图象如图所示: 求直线 y= 3 与函数 2 f(x) 图象的所有交点的坐标. 7 7 5 解: 根据图象得 A=2, T= 2 -(- 2 )=4, 2 2 - o 3 1 1 2 2 2 ∴= 2 . ∴y=2sin( 2 x+). 1 1 x+ ). 由 (- 2 )+=0 得 = . ∴ y =2sin( 4 2 4 2 1 x+ )= 3 . 1 sin( 由 3=2sin( 2 x+ 4 ) 得 2 4 2 2 1 ∴ x+ 4 =2k+ 3 或 2k+ 3 (kZ). 2 5 (kZ). ∴x=4k+ 或 4 k + 6 6 5 故所有交点坐标为 (4k+ 6 , 3 ) 或 (4k+ 6 , 3 ) (kZ).
8 (单位长)
B. 向右平移 8 (单位长)
D. 向右平移 (单位长) 4
5.函数y=2cos(2x- )的一个单调区间是 ( ) 6 7 5 , , ] B.[ A.[] C.[- ,0] D. [- , ] 2 12 12 12 12 2 2
A
6.将函数y=sinx的图象向左平移 (单位长),再把所得 3 图象上各点的横坐标伸长到原来的 2 倍,则最后得到的 曲线的解析式为 ( A) x A. y=sin( + ) B.y=sin(2x- ) 3 2 3
C.y=sin( x + ) 3 3
D.y=sin(3x+ 3 )
三角函数部分题型
一、概念题:
1、任意角的概念 2、弧度制概念 3、任意角的三角函数概念; 4、周期 5、三角函数线 概念是逻辑判断的依据,是数学分析、理解的基础
二、考查记忆、理解能力题
如:简单的运用诱导公式 要求做到:记忆熟悉、计算细心、答案正确 三、求值题 1、特殊角、非特殊角的三角函数求值题
tan( k 2 ) tan sin( k 2 ) sin
诱导公式六
诱导公式二 sin( ) sin
cos( ) cos
公式记忆
诱导公式三 sin( ) sin ,
cos( ) cos .
o
2
x
r x y
2
三角函数值的符号:“第一象限全为正,二正三切四余弦”
五、同角三角函数的基本关系式
商数关系: sin tan cos cos cot sin 平方关系:
sin 2 cos 2 1
一、诱导公式
诱导公式一 cos( k 2 ) cos
或四或五
锐角 ,大化小,化到锐角为终了”
解题分析
1.在利用诱导公式求三角函数的值时,一定要注意符号
2。三角变换一般技巧有 ①切化弦, ②降次, ③变角, ④化单一函数, ⑤妙用1, ⑥分子分母同乘除,
方法不当就会很繁,只能通过总结积累解题经验, 选择出最佳方法.
一、三角函数图象的作法
三、三角函数的图象与性质题 1、求定义域(注意与不等式的结合) 2、求值域题 4、奇偶性 3、求周期 5、单调性:如求单调区间、比较大小 四、图象变换题 1、画图和识图能力题:如:描点法、
五点法作图、变换法
2、已知图象求解析式(五点法作图的应用)
x
3.已知 f(x)=-2asin(2x+ )+2a+b, x[ , 3 ], 是否存在常数 6 4 4 a, bQ, 使得 f(x) 的值域为[-3, 3 -1]? 若存在, 求对应的 a 和 b, 若不存在, 说明理由. 3 2 5 解: 由已知 4 ≤x≤ 4 ∴ 3 ≤2x+ 6 ≤ 3 .∴-1≤sin(2x+ 6 )≤ 3 . 2 若存在这样的常数 a, b, 则 当 a>0 时, 有 - 3 a+2a+b=-3, 且 4a+b= 3 -1. 解得 a=1, b= 3 -5. ∵bQ, 故此时不存在符合条件的 a, b. 当 a<0 时, 有 - 3 a+2a+b= 3 -1, 且 4a+b=-3. 解得 a=-1, b=1, 且 aQ, bQ. 故符合条件的有理数 a, b 存在, 且 a=-1, b=1.