高中数学函数的概念教案人教版必修一

合集下载

人教版高中数学1函数教案

人教版高中数学1函数教案

人教版高中数学1函数教案一、教学目标1. 知识目标(1) 了解函数的基本概念和符号表示;(2) 掌握函数的性质和基本类型;(3) 掌握函数的运算规则和应用。

2. 能力目标(1) 能够熟练运用函数的概念解决实际问题;(2) 能够分析不同函数类型的特点,进行综合运用。

3. 情感目标(1) 培养学生对数学的兴趣和热爱;(2) 培养学生的逻辑思维和分析能力;(3) 培养学生的合作精神和团队意识。

二、教学重点1. 函数的基本概念和性质;2. 函数的运算规则和应用。

三、教学难点1. 函数的综合运用;2. 函数的实际问题解决。

四、教学过程1. 导入新课通过一个简单的实际问题引入函数的概念,激发学生对函数的兴趣。

2. 讲解函数的概念和性质讲解函数的定义、符号表示和性质,引导学生理解函数的基本概念。

3. 学习函数的基本类型和特点学习常见的线性函数、二次函数、指数函数等函数类型的特点和图像,分析它们的特性。

4. 学习函数的运算规则和应用学习函数的四则运算规则、复合函数等运算方式,通过实例应用进行操练。

5. 练习与巩固布置相关练习,巩固学生对函数的理解和应用能力。

6. 总结与拓展总结本节课的重点知识,并引导学生进行相关思考和拓展。

五、作业布置1. 完成课堂练习题;2. 阅读相关教材内容,复习本次课的知识点;3. 拓展练习题,提高题难度。

六、教学反思通过本节课的教学,学生对函数的基本概念和运用有了初步理解,但仍需继续加强实际问题的应用能力。

下节课将进一步加强练习和案例讲解,帮助学生更好地掌握函数的运用。

《函数的概念》教学教案

《函数的概念》教学教案

《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。

2. 掌握函数的表示方法,包括列表法、图象法、解析式法。

3. 能够判断两个变量之间的关系是否为函数。

4. 理解函数的性质,如单调性、奇偶性等。

二、教学内容1. 函数的定义及概念。

2. 函数的表示方法:列表法、图象法、解析式法。

3. 判断两个变量之间的关系是否为函数。

4. 函数的性质:单调性、奇偶性。

三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。

2. 教学难点:函数的性质的理解与应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。

2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。

3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。

2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。

3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。

4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。

5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。

6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。

7. 总结本节课的主要内容,布置课后作业,巩固所学知识。

六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。

2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。

3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。

七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。

2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。

3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。

八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。

人教课标版高中数学必修1《函数的概念(第1课时)》教学设计

人教课标版高中数学必修1《函数的概念(第1课时)》教学设计

1.2.1函数的概念(第1课时)一、教学目标 (一)核心素养通过这节课学习,了解构成函数的基本要素,理解并掌握函数的概念,熟悉用“区间”、“无穷大”等符号表示取值范围,在数学抽象、数学建模中体会对应关系在刻画函数概念中的作用. (二)学习目标 1.通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.学习用集合语言和对应关系刻画函数,并明确函数的基本要素,掌握判别两个函数是否相同的方法.3.会求一些简单函数的定义域,并能正确使用“区间”表示.(三)学习重点 1.体会函数的重要模型化思想,了解构成函数的要素并理解函数的概念.2.会求一些简单函数的定义域,并能正确使用“区间”表示.(四)学习难点1.体会并理解函数概念中的“任意性”和“唯一性”.2.符号“y=f (x )”的含义. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第15页至第18页,填空:设B A ,是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作()x f y =,A x ∈.其中,x 叫做自变量,x 的取值范围A 叫做定义域,与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈叫做函数的值域. (2)写一写:区间(设a <b ){x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ){x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b } 半开半闭区间 (a ,b ] {x |x ≥a } 半开半闭区间 [a ,+∞) {x |x >a } 开区间 (a ,+∞) {x |x ≤a } 半开半闭区间 (-∞,a ] {x |x <a } 开区间(-∞,a )2.预习自测(1)()x f 与()a f 的区别与联系?答:()a f 表示当a x =时函数()x f 的值,是一个常量,而()x f 是自变量x 的函数,在一般情况下,它是一个变量;()a f 是()x f 的一个特殊值.(2)通过学习函数的概念,你觉得函数的基本要素有哪些?定义两个函数是否相等时,是否需要函数的几个基本要素必须都相同?答:基本要素有定义域、对应关系、值域。

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。

[2]通过观察、画图等具体动手,体会分段函数的概念。

[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。

[2]通过细致作图,培养学生的动手能力和识图能力。

2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。

[2]分段函数的概念。

2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。

3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。

4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。

6 教学过程6.1 引入新课【师】同学们好。

初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。

这节课我们来继续进一步学习和函数有关的内容。

【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。

【板演/PPT】PPT演示三个实例。

【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。

相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。

高一数学 1.2.1函数的概念教案-人教版高一全册数学教案

高一数学 1.2.1函数的概念教案-人教版高一全册数学教案

1.2.1函数的概念一、关于教学内容的思考教学任务:帮助学生认识函数的构成要素;明确函数的定义;理解定义域、对应关系、值域的含义;掌握判断两个函数是否相等的方法;正确使用区间表示定义域、值域; 教学目的:引导学生树立函数思想研究变量之间的关系。

教学意义:培养学生通过观察事物的表象,分析事物变化的本质,揭示变量之间内在相互联系、相互制约的关系。

二、教学过程1.在背景材料下,引出函数的定义:一般地,设A,B是非空的数集,如果按照某种确定的对应关系f ,使对于集合A中的任意一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A到集合B的一个函数,记作(),y f x x A =∈。

其中,x 叫做自变量,x 的取值范围A叫做函数的定义域;与x 的值对应的y 值叫做函数值;函数值的集合{()|}f x x A ∈叫做函数的值域,值域是集合B的子集。

注意:两个非空数集;一对一或多对一;集合A中的任意一个数已知R x ∈,在解析式x y x y x y 2,|||,|2===中,哪些可以成为函数的解析式? 2.一个函数的构成要素:定义域、对应关系和值域。

3.函数相等具备的条件:定义域、对应关系完全一致。

4.对应关系常见形式:①解析法②图象法③列表法5.理解和正确使用区间符号:),(],,(),,(),,[),,(),,[],,(],,[b b a a b a b a b a b a -∞-∞+∞+∞ 注意:对区间[,],(,],[,),(,)a b a b a b a b 来说,(前提条件b a <)6.求函数定义域:①由问题的实际背景确定;②能使解析式有意义的实数的集合。

注意:通过解析式求定义域,无需化简,应注意自变量取值的等价性。

7.掌握常数函数、一元一次函数、一元二次函数、反比例函数的值域情况。

三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子 1.已知函数15)(2+=x x x f ,若2)(=a f ,则=a 。

人教A版数学必修一《函数的概念》教案【精品教案】.docx

人教A版数学必修一《函数的概念》教案【精品教案】.docx

福建省光泽第一中学高中数学人教版必修一《函数的概念》教案【教材内-容分析】通过学生的回顾,再现初中变量观点描述函数的概念,为后面用集合和对应的观点来定义函数奠定基础。

通过对实例的探究,让学生感受、体验对应关系在刻画函数概念中的作用,使学生对数学的高度抽象性、严密的逻辑性和广泛的应用性有进一步认识,提高抽象概括、分析总结、数学表达交流等基本数学思维能力;培养学生分析问题、解决问题的能力。

【学情分析】通过实例使学生进一步认识生活中充满变量间的依赖关系;激发学生学习数学的兴趣,提高发散思维能力【教学目标】知识目标:(1)会用集合与对应的语言刻画函数;(2)理解函数三要素(3)会求一些简单函数的定义域和值域,并初步■掌握换元法的简单应用情感目标:通过师生、生生互动的教学活动过程,让学生体会成功的愉悦,培养学生热爱数学的态度,提高数学学习的兴趣,树立学好数学的信心.【重点、难点】重点是函数概念的理解,难点是对函数符号y=f (x)的理解。

教具准备:教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率【课时安排】一课时【教学方法】学.案教学法,通过不同实例的探究,让学生积极参与教学活动【教学过程和步骤】二、函数的概念 设集合A 是一个非空的数集,对A 内任意数 x,按照确定的法则f,都有唯一确定的数值y 与它对应,则这种对应关系叫做集合A 上 的一个函数,记作y=f(x),xeA, 其中x 叫做自变量,自变量的取值范围(数 集A)叫做这个函数的凫义域。

如果自变量取值a,则由法则f 确定的值y 称为函数在a 处的函数值,记作y=f (a),所 总结出 有函数宿将成的集合{y I y=f (x), xEA }叫 函数关系 做这个函数的值域。

进一步理解函数概念定实质 义域、对应法则、值域三者关系深刻理解 f(x)中的f 与x 的关系 3、怎样判断两个函数是否是同一个函数? 例1:判断下列函数,是否是同一函数 例广例3 y=x 2, xER;s=t 2, t£R 第一问均 y=x 2,xeR;s=2t 2, teR 让学生疝 y=x 2, x e Z; s=t 2, t e R 立进行 f(x)= x2,xeR ;g(x-2) = (x-2)2, xeR ; 然后师生 例2:求下列函数定义域 交流分享 f(x)=2x, 例 3 第 2 f(x)= 问及例4 f(x)= 交流后教 f (x) = (2.X-3) 际讲解板例3:求函数f (x)= ,乂,在乂=0、1、2处的 书 函数值和值域 例4: 1)已知函数f(x)= x2,求f(x-l)2)已知函数 f(x-l)= X ,,求 f(x)请同学们把下面集合用数轴表示出来 学生实物 设a 、b£R, a<b 投影展示 1、 {x | aWxWb, xWR }2、 {x I a<x<b, xER 教学环节课题引入教学内容 师生活动 概念形成回顾、实例引入1)复习初中的常量、变量 与函数的概念在一个变化过程中,有两个变 量x 和y ,如果给定了一个x 值,相应地就确 定唯一的一个y 值,那么我们称y 是x 的函 数,其中.x 是自变量,y 是因变量。

统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计

统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计
2≤2,则 y∈(-1,1].
1+x
所以所求函数的值域为(-1,1].
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
1.定义
3.1.1 函数的概念
例1 例2
例3 例4
例5
2.区间
七、作业
课本 67 页练习、72 页 1-5
本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的
题型三
区间
例 3 已知集合 A={x|5-x≥0},集合 B={x||x|-3≠0},则 A∩B 用区间可表示为
.
【答案】(-∞,-3)∪(-3,3)∪(3,5]
【解析】∵A={x|5-x≥0},∴A={x|x≤5}.
∵B={x||x|-3≠0},∴B={x|x≠±3}.
∴A∩B={x|x<-3 或-3<x<3 或 3<x≤5},
.
x+1
x+1
x+1
6

4
≠0,∴y≠3,
x+1
3x-1
∴y=
的值域为{y|y∈R 且 y≠3}.
x+1
12 15
2
2
④(换元法)设 t= x-1,则 t≥0 且 x=t +1,所以 y=2(t +1)-t=2 t- + ,由 t≥0,再结合函
4 8
15

数的图象(如图),可得函数的值域为 ,+∞.
1.试判断以下各组函数是否表示同一函数: ①f(x)=
√x
x
x
,g(x)=x-1;
x
②f(x)= ,g(x)= ;
√x
2
③f(x)=√(x + 3) ,g(x)=x+3;

人教版高中数学必修一《函数概念》教学设计

人教版高中数学必修一《函数概念》教学设计

《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。

培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。

情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。

二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。

难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。

人教版高中数学必修一教学案-函数及其表示方法

人教版高中数学必修一教学案-函数及其表示方法

人教版高中数学必修一教学案年级:高二上课次数:学员姓名:辅导科目:数学学科教师:课题课型授课日期及时段函数及其表示方法□预习课□同步课■复习课□习题课教学内容函数及其表示方法【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。

2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:{x|a<x<b}=(a,b);{x|a≤x≤b}=[a,b];{x|a<x≤b}=(a,b];{x|a≤x<b}=[a,b);{x|x≤b}=(-∞,b];{x|a≤x}=[a,+∞).要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a 叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。

统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计

统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计

【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。

《函数的概念》教案

《函数的概念》教案

课题:函数的概念(一)教材:普通高中课程标准实验教材教科数学必修(1)人教版【三维目标】1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性,激发学生学习的积极性.【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型.【教学难点】函数概念及符号y=f(x)的理解.【教学方法】诱思教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观感知→观察分析→归纳类比→抽象概括,使学生在获得知识的同时,能够掌握方法、提升能力.【教学手段】多媒体课件辅助教学【教学过程设计】一、创设情景引入课题北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系.在初中已学习过函数的概念,函数的概念从运动变化的观点描述了变量之间的依赖关系. 本节将进一步学习函数及其构成要素.二、观察分析探索新知1.实例分析(1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:h =130t -5t 2. (﹡)提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(﹡),在数集B 中都有唯一确定的高度h 和它对应.(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.提出问题:观察分析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系. 根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高. 表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.表1 “八五”计划以来我国城镇居民恩格尔系数变化情况时间(年) 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2025 5101530图126 25tSO 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001提出问题:恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.根据上表,可知时间t的变化范围是数集}=Nttt≤A,恩格≤,19912001∈{*尔系数y的变化范围是数集}8.=yyB. 并且,对于数集A中的任意≤53{≤9.37一个时间t,根据表1,在数集B中都有唯一确定的恩格尔系数y和它对应.2.问题探讨以上三个实例有什么不同点和共同点?活动:让学生分小组讨论交流,请小组代表汇报讨论结果.归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.其共同点是:①都有两个非空数集A,B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应.记作.Af→:B3.归纳概括引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?活动:让学生分组讨论交流,讨论归纳出:(1)函数的概念:一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称xx=y∈f(A),ABf→:为从集合A到集合B的一个函数,记作.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合}xxf∈叫做函数的值域.(){A显然,值域是集合B的子集.(2)函数的本质:两个非空数集间的一种确定的对应关系.(3)函数的构成要素:定义域、对应关系、值域.强调:①值域由定义域和对应关系唯一确定;②f(x)是函数符号,f表示对应关系,f(x)表示x对应的函数值,绝对不能理解为f与x的乘积.在不同的函数中f的具体含义不同,由以上三个实例可看出对应关系可以是解析式、图象、表格等.函数除了可用符号f(x)表示外,还可用g(x),F(x)等表示.三、新知演练及时反馈1. 提出问题:一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么?并用函数的概念来描述这些函数.设计意图:通过集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素.2. 思考辨析:(1)1y(x∈R)是函数吗?=(2))0x=xy是函数吗?(≥±(3)x3=1-是函数吗?y-+x方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词?由学生总结得到:(1)理解函数的定义应注意:①符号“f:A→B”表示从A到B的一个函数;②函数是非空数集A到非空数集B上的一种对应;③集合A中数的任意性,集合B中数的唯一性.(2)判断函数的标准可以简化成:两个非空数集A,B,一个对应关系.提出问题:在三个实例中,按照一定的对应关系,能看作从B到A的函数吗?你能举出函数的实例吗?设计意图:使学生更深刻理解函数的概念,培养学生的数学应用意识.3.练习反馈下列图像中不能作为函数y=f(x)图像的是( B )四、提炼总结 分享收获 1. 本节课探讨了用集合和对应的语言描述函数的概念,并引进了函数符号y =f (x ).2. 突出了函数概念的本质:两个非空数集间的一种确定的对应关系.3.明确了构成函数的三要素:定义域、对应关系、值域.五、布置作业1. 举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、对应关系和值域.2.课本P 24 习题1.2 1、3、4六、板书设计教案说明函数是高中数学的重要内容之一.它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础. 因此,函数概念是中学数学最重要的基本概念之一,本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法,初步运用函数思想理解和处理生活、社会中的简单问题.《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.学生在初中已学习过函数的概念,概念从运动的观点刻画了两变量之间的相互依赖关系,在已有认识的基础上,让学生学会用集合与对应的语言来刻画函数的概念,并体会函数是描述客观世界中变量间依赖关系的重要模型,是本节课的教学重点. 本节课的教学难点是:函数概念及符号y=f(x)的理解. 函数的概念比较抽象,但函数现象大量存在于学生周围,因此本节课教学设计的整体指导思想是:让学生通过观察分析,去发现,并归纳概括出函数的概念,从而更好的理解函数的概念,熟练的去应用概念解决问题. 通过本节课的学习,进一步培养学生观察问题,提出问题的探究能力;培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,学会数学表达和交流,发展数学应用意识;同时使学生感受到学习函数的必要性,激发学生学习的积极性.本节课对重难点的处理方法是:(1)为了让学生抽象概括出函数的概念,首先以三个实际问题引入,让学生认识到生活中充满着变量间的依赖关系,先建立起函数的背景,为学生理解函数概念打下感性基础. 在三个不同的实例中,通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征. 进而引导学生从实际问题中抽象概括出函数的概念,培养了学生的抽象概括能力. 教学中让学生体验数学发现和创造的历程,提高分析问题,解决问题的能力. 高一的学生是以感性思维为主的年龄阶段,在第一个例子中,通过动画演示炮弹的发射过程,让学生更清晰直观的感知:对于每一个时间t,都有唯一确定的高度h与它对应. 这样设计符合他们的认知规律,化抽象为直观,学生更容易理解. 第二、三个例子,让学生仿照前例,尝试用集合与对应的语言去描述两个变量之间的依赖关系,学会数学表达和交流.由学生抽象概括出函数的概念,其间经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,进一步提高了学生的数学思维能力;教学中注重培养学生积极主动,勇于探索的学习方式. 本节课选自运动、自然界、经济生活中用三种不同方法表示的函数,既可以让学生感受到函数在许多方面的广泛应用,又可以使学生意识到对应关系不仅可以是明确的解析式,也可以是形象直观的曲线和表格,为下一节函数的表示方法描下伏笔.(2)为了使学生正确理解函数的概念,首先让学生用集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素. 其次通过思考辨析,由学生讨论、列举出函数的例子,再次加深对函数概念的理解,同时也培养了学生的数学应用意识. 最后启发学生对本节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此,数学学习的核心是思考,没有思考就没有真正的数学. 在本节课的教学中,我以学生作为活动的主体, 总是创设恰当的问题情境,引导学生积极思考,大胆探索,最大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,适时地给予适当的思维点拨,必要时进行大面积提问,让学生做课堂的主人,充分发表自己的意见.这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提升能力.教学过程中既注重锻炼学生独立解决问题的能力,又注重对学生交流合作意识和创新意识的培养.通过本节课的教学,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.。

高一数学教案:函数的概念4篇

高一数学教案:函数的概念4篇

高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。

教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。

教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。

步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。

步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。

步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。

步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。

步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。

教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。

教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。

在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。

在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。

高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。

高中数学必修一(人教A版) 函数的概念 教案1

高中数学必修一(人教A版)  函数的概念 教案1

必修一 1.2.1 函数概念
【教学目标】
1、通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
2、了解构成函数的要素;
3、会求一些简单函数的定义域和值域;
4、能够正确使用“区间”的符号表示某些函数的定义域.
【重点难点】
重点:理解函数的模型化思想,用合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;函数的概念,函数的三要素.
【教学策略与方法】
讲述法、讲练结合法
【教学过程】
的取值范围:数集A={t|0≤t≤26}
t的取值范围:数集A={t|1979≤t≤2001} S的取值范围:数集B={S|0≤S≤26} (3) 国际上常用恩格尔系数反映一个国家
思考:你能从图表中看出自变量和因变量么?它们的关系怎样?
(二)典型例题
例1、已知函数2
13)(+++=x x x f
(1)求函数的定义域;(2)求f(-3), f(3
2
)
练习、 下列各组中的两个函数是否为相等 的函数?
到再到后到理器。

高中数学必修一函数教案

高中数学必修一函数教案

高中数学必修一函数教案授课内容:1. 函数的定义2. 函数的自变量和因变量3. 函数的符号表示4. 函数的图象5. 函数的性质:奇函数、偶函数、单调性、周期性等教学目标:1. 理解函数的基本概念和符号表示方式2. 掌握函数的图象及性质3. 能够应用函数解决实际问题教学重点:1. 函数的定义和性质2. 函数的图象和符号表示教学难点:1. 函数的奇偶性质的理解2. 函数的周期性的应用教学过程:一、导入(5分钟)通过实际生活中的例子引入函数的概念,让学生了解函数在数学中的重要性和应用价值。

二、讲解函数的定义(15分钟)1. 定义函数及其自变量和因变量2. 函数的符号表示3. 图示函数的图象三、讨论函数的性质(20分钟)1. 函数的奇偶性质2. 函数的单调性3. 函数的周期性四、示范应用题(15分钟)提供几个实际问题,让学生运用所学的函数知识解决问题。

五、总结与作业布置(5分钟)总结本节课的内容,强调函数的重要性及应用。

布置相关作业,巩固学生对函数的理解和应用能力。

教学资源:1. 纸板、彩色粉笔2. 多媒体教学设备3. 课本、练习册课后延伸:1. 自学函数的相关知识2. 通过做更多的习题,巩固函数的概念和性质3. 向教师请教不懂的地方,及时纠正错误教学反馈:1. 收集学生对本课内容的理解程度2. 解答学生提出的问题3. 督促学生完成作业,并及时批改和反馈以上为高中数学必修一函数教案范本,希望能够对您的教学工作有所帮助。

祝您教学顺利!。

人教版高中数学必修第一册函数的概念教案

人教版高中数学必修第一册函数的概念教案

函数的概念一、课题:函数的概念二、教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三、教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法那么是核心,定义域是灵魂.四、教学过程:〔一〕主要知识:1.对应、映射、像和原像、一一映射的定义;2.函数的传统定义和近代定义;3.函数的三要素及表示法.〔二〕主要方法:1.对映射有两个关键点:一是有象,二是象惟一,缺一不可;2.对函数三要素及其之间的关系给以深刻理解,这是处理函数问题的关键;3.理解函数和映射的关系,函数式和方程式的关系.〔三〕例题分析:例1.〔1〕A R =,{|0}B y y =>,:||f x y x →=;〔2〕*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;〔3〕{|0}A x x =>,{|}B y y R =∈,:f x y →=上述三个对应〔2〕是A 到B 的映射.例2.集合{}(,)|1M x y x y =+=,映射:f M N →,在f 作用下点(,)x y 的象是(2,2)x y ,那么集合N = 〔 D 〕()A {}(,)|2,0,0x y x y x y +=>>()B {}(,)|1,0,0x y xy x y =>>()C {}(,)|2,0,0x y xy x y =<<()D {}(,)|2,0,0x y xy x y =>>解法要点:因为2x y +=,所以2222x y x y +⋅==.例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,那么映射f 的个数是 〔 D 〕()A 8个 ()B 12个 ()C 16个 ()D 18个解法要点:∵()x f x +为奇数,∴当x 为奇数1-、1时,它们在N 中的象只能为偶数2-、0或2,由分步计数原理和对应方法有239=种;而当0x =时,它在N 中的象为奇数1-或1,共有2种对应方法.故映射f 的个数是9218⨯=.例4.矩形ABCD 的长8AB =,宽5AD =,动点E 、F 分别在BC 、CD 上,且CE CF x ==,〔1〕将AEF ∆的面积S 表示为x 的函数()f x ,求函数()S f x =的解析式;〔2〕求S 的最大值.解:〔1〕2111()408(5)5(8)222ABCD CEF ABE ADF S f x S S S S x x x ∆∆∆==---=--⨯⨯--⨯⨯-22113113169()22228x x x =-+=--+. ∵CE CB CD ≤≤,∴05x <≤,∴函数()S f x =的解析式:2113169()()(05)228S f x x x ==--+<≤; 〔2〕∵()f x 在(]0,5x ∈上单调递增,∴max (5)20S f ==,即S 的最大值为20.例5.函数()f x 对一切实数x ,y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =, 〔1〕求(0)f 的值;〔2〕对任意的11(0,)2x ∈,21(0,)2x ∈,都有12()2log a f x x +<成立时,求a 的取值X 围. 解:〔1〕由等式()()(21)f x y f y x y x +-=++,令1x =,0y =得(1)(0)2f f -=, 又∵(1)0f =,∴(0)2f =-.〔2〕由()()(21)f x y f y x y x +-=++,令0y =得()(0)(1)f x f x x -=+,由〔1〕知(0)2f =-,∴2()2f x x x +=+. ∵11(0,)2x ∈,∴22111111()2()24f x x x x +=+=+-在11(0,)2x ∈上单调递增,∴13()2(0,)4f x +∈. 要使任意11(0,)2x ∈,21(0,)2x ∈都有12()2log a f x x +<成立,当1a >时,21log log 2a a x <,显然不成立.当01a <<时,21log log 2a a x >,∴0113log 24a a <<⎧⎪⎨≥⎪⎩,解得14a ≤<∴a 的取值X围是4.〔四〕巩固练习:1.给定映射:(,)(2,)f x y x y xy →+,点11(,)66-的原象是11(,)32-或12(,)43-.2.以下函数中,与函数y x =相同的函数是 〔 C 〕()A 2x y x =()B 2y =()C lg10x y =()D 2log 2x y =3.设函数3,(10)()((5)),(10)x x f x f f x x -≥⎧=⎨+<⎩,那么(5)f =8.。

高中数学函数的概念教案人教版必修一

高中数学函数的概念教案人教版必修一

第二章--------映射与函数一、基本概念:1.映射: f 是A →B 的映射 (1)A,B 非空,(2)A 中的任一元素在f 法则对应下,在B 中总有唯一的元素与之对应一一映射: f 是A →B 的一一映射(1) 映射,(2)○1 A 中不同的元素B 中有不同的象 ○2B 中每一元素都有原象 2.函数: f 是A →B 的函数 (1)是映射 (2)A,B 非空数集 (3)A 中的任一元素在f 法则对应下,在B 中总有唯一的元素与之对应 (3)定义域:A (4)值域:象的集合C 有C ⊆B 基础练习A:1.下列对应能构成映射的是:(1)信与信封的关系 (2)班级学生与班级的座位 (3)班级学生与学生的学号(5)(2)A=R,B={0,1},x f :x → 对应法则f :x →y=log 2(1+2x ) 3.A 到集合B 的对应:f :x →y=1/x ;f:x →2x f:x →2X<0x x xy ±=⑵A =N ,B =Z ,f :x →y =(-1)X ;⑶A ={x|x 是平面内的三角形},B ={y|y 是平面内的圆},f :x →y 是x 的外接圆。

其中能构成映射的是4.设“f :A →B ”是从A 到B 的一个映射,其中A=B={(x,y)|x,y ∈R},f(x,y)→(X+y,xy)则A 中的元素(1,-2)的象是______;B 中的元素(1,-2)的原象是______。

5.集合A ={2,3,4},B ={5,6,7,8},则可建立从A 到B 的映射个数 是___;从B 到A 的映射个数是___。

6.集合A={1,2,3},B={4,5,6,7},映射f:A →B,若X ∈A,x+f(x)+xf(x)为奇数,则这样的映射的个数7.集合A={1,2,3},B={-1,0,1},满足f(3)=f(1)+f(2) f:A →B 的个数 二、函数三要素:定义域 法则 值域同一函数的判断:(1)定义域相同(2)法则相同 例1:以下四组函数中,表示同一函数的是 A.f(x)=x -1, g(x)=(x 2-1)/(x+1) B.f(x)=x -1,C.f(x)=x -1,D.f(x)=(x -1)0, g(x)=(x ―1)/(x ―1)2)1()(-=x x g 2)1()(-=x x g变2:集合M={x|-2≤x ≤2}, N={y|0≤y ≤2}, 给出下列四种对应的图形变1:可作为函数y=f(x)的图象是xyxyxyABCD其中能表示从M 到N 的函数关系的序号为____ 变3:直线x=4与函数y=f(x)图象的交点的个数 A 至少一个 B 恰有一个 C 可以有两个或两个以上 D 至多一个 例2 已知A ={1,2,3,k},B ={4,7,a 4,a 2+3a},a ∈N *,x ∈A ,y ∈B ,f :x →y=3x+1是从定义域A 到值域B 的一个函数,求a 、k 、A 、B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章--------映射与函数
一、基本概念:
1.映射: f 是A →B 的映射 (1)A,B 非空,(2)A 中的任一元素在f
法则对应下,在B 中总有唯一的元素与之对应
一一映射: f 是A →B 的一一映射 (1) 映射,(2)○
1 A 中不同的元素B 中有不同的象 ○
2B 中每一元素都有原象 2.函数: f 是A →B 的函数 (1)是映射 (2)A,B 非空数集 (3)A 中
的任一元素在f 法则对应下,在B 中总有唯一的元素与之对应
(3)定义域:A (4)值域:象的集合C 有C ⊆B 基础练习A:
1.下列对应能构成映射的是:
(1)信与信封的关系 (2)班级学生与班级的座位 (3)班级学生与学生的学号
(4) (5) (6)
(2)A=R,B={0,1},f :x → 对应法则f :x →y=log 2(1+2x ) 3.A 到集合B 的对应:
f:x →2x f:x →2
X
<≥0
x x x y ±=
⑴A =N ,B =R ,f :x →y=1/x ; ⑵A =N ,B =Z ,f :x →y =(-1)X ;
⑶A ={x|x 是平面内的三角形},B ={y|y 是平面内的圆},
f :x →y 是x 的外接圆。

其中能构成映射的是
4.设“f :A →B ”是从A 到B 的一个映射,其中A=B={(x,y)|x,y ∈R},f(x,y)→(X+y,xy)则A 中的元素(1,-2)的象是______;B 中的元素(1,-2)的原象是______。

5.集合A ={2,3,4},B ={5,6,7,8},则可建立从A 到B 的映射个数 是___;从B 到A 的映射个数是___。

6.集合A={1,2,3},B={4,5,6,7},映射f:A →B,若X ∈A,x+f(x)+xf(x)为奇数,则这样的映射的个数
7.集合A={1,2,3},B={-1,0,1},满足f(3)=f(1)+f(2) f:A →B 的个数
二、函数三要素:
定义域 法则 值域
同一函数的判断:(1)定义域相同(2)法则相同 例1:以下四组函数中,表示同一函数的是 A.f(x)=x -1, g(x)=(x 2-1)/(x+1) B.f(x)=x -1, C.f(x)=x -1, D.f(x)=(x -1)0, g(x)=(x ―1)/(x ―1)
2
)1()(-=x x g 2)1()(-=x x g
变2:集合M={x|-2≤x ≤2}, N={y|0≤y ≤2}, 给出下列四种对应的图形
变1:可作为函数y=f(x)的图象是
x
y
x
y
x
y
A
B
C
D
其中能表示从M 到N 的函数关系的序号为____ 变3:直线x=4与函数y=f(x)图象的交点的个数 A 至少一个 B 恰有一个 C 可以有两个或两个以上 D 至多一个 例2 已知A ={1,2,3,k},B ={4,7,a 4,a 2+3a},
a ∈N *,x ∈A ,y ∈B ,f :x →y=3x+1是从定义域A 到值域B 的一个函数,求a 、k 、A 、B 。

基础练习B:
1. 试判断以下各组函数是否表示同一函数?
(1)f (x )=
2
x ,g (x )=3
3
x ;(2)f (x )=x
x ||,g (x )=⎩

⎧<-≥;01,01
x x
(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1
(n ∈N *
);
(4)f (x )=x 1+x ,g (x )=x x +2; (5)f (x )=x 2-2x -1,g (t )=t 2
-2t -1。

2. 设函数
2
211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,
≤则
1(2)f f ⎛⎫
⎪⎝⎭
的值为
(1) (2) (3) (4)
3. 设
12
32,2()((2))log (1) 2.
x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, 4. 函数()f x 对于任意实数x 满足条件()()
1
2f x f x +=
,若()15,f =-则()()5f f =_____
5. 定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),
(1)2f =,则(2)f -等于
6. 设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则
()99f =
7.已知
⎪⎩
⎪⎨⎧>--≤+=)0()1()
0(12
1
)(2x x x x x f 使得1)(-≥x f 成立的x 的取值范围是。

相关文档
最新文档