高二上学期期末考试数学(理)试题及答案 (10)
2015-2016第一学期高二期末考试理科数学试题及答案
2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。
贵州省贵阳市高二数学上学期期末试卷 理(含解析)
贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:∃x∈R,x﹣2>lgx是真命题,命题q:∀x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:∃x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:∀x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥A B,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。
江苏省盐城市2018-2019学年高二上学期期末考试数学(理)试题-含答案解析
江苏省盐城市2018-2019学年高二上学期期末考试数学(理)试题一、填空题(本大题共14小题,共70.0分)1.已知复数z满足z⋅i=1+i(其中i是虚数单位),则z=______.【答案】1−i【解析】解:由z⋅i=1+i,得z=1+ii =(1+i)(−i)−i2=1−i.故答案为:1−i.把给出的等式两边同时乘以i,然后由复数代数形式的除法运算化简求值.本题考查了复数代数形式的除法运算,是基础的计算题.2.过抛物线y2=4x的焦点且与对称轴垂直的弦长为______.【答案】4【解析】解:抛物线y2=4x的焦点(1,0),可得:y2=4,解得y=±2.可得:对称轴垂直的弦长为:4.故答案为:4.求出抛物线的焦点坐标,然后求解对称轴垂直的弦长.本题考查抛物线的简单性质的应用,考查计算能力.3.命题“∀x>0,x2+3x+1>0“的否定为______.【答案】∃x∈R,x2+3x+1≤0【解析】解:∵命题“∀x>0,x2+3x+1>0”,∴命题“∀x>0,x2+3x+1>0”的否定为:∃x∈R,x2+3x+1≤0.故答案为:∃x∈R,x2+3x+1≤0.命题“∀x∈R,2x2−3x+4>0”,是一个全称命题,其否定命题一定是一个特称命题,由全称命题的否定方法,我们易得到答案.对命题“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对命题“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,即对特称命题的否定是一个全称命题,对一个全称命题的否定是特称命题.4.点P(2,0)到双曲线x29−y216=1的渐近线的距离为______.【答案】85【解析】解:双曲线x29−y216=1的渐近线方程为y=±43x,即4x±3y=0,则点(2,0)到4x−3y=0的距离d=√42+(−3)2=85,故答案为:85先求出渐近线方程,再根据点到直线的距离公式即可求出.本题考查了双曲线的渐近线方程和点到直线的距离公式,属于基础题.5. 已知直线的参数方程为{x =1+12ty =1+√32t (t 为参数),则其倾斜角为______. 【答案】π3【解析】解:直线的参数方程为{x =1+12ty =1+√32t (t 为参数), 消去参数t ,化为普通方程是y −1=√3(x −1), 则该直线的斜率为√3,倾斜角为π3. 故答案为:π3.把直线的参数方程化为普通方程,求出它的斜率和倾斜角的大小. 本题考查了直线的参数方程与普通方程的转化问题,是基础题.6. 已知命题p 为真命题,命题q 为假命题,则在下列命题中:①¬q ;②p ∧q ;③p ∨q 是真命题的有______个. 【答案】2【解析】解:若命题p 为真命题,命题q 为假命题, 则¬q 是真命题,p ∧q 是假命题,p ∨q 是真命题, 则真命题的是①③,有2个, 故答案为:2根据复合命题真假关系进行判断即可.本题主要考查复合命题真假判断,根据¬p 与p 真假性相反,p ∧q 同真为真,其他为假,p ∨q 同假为假,其余为真的结论是解决本题的关键.7. p :“复数z =(m 2−m)+mi(m ∈R,i 为虚数单位)是纯虚数”是q :“m =1”的______条件.(请在“充分不必要”、“必要不充分”、“既不充分又不必要”、“充分必要”选择一个最为恰当的答案填写在横线上) 【答案】充要【解析】解:若复数z =(m 2−m)+mi(m ∈R,i 为虚数单位)是纯虚数,则{m ≠0m2−m=0,即{m ≠0m=1或m=0,得m =1,即p 是q 的充要条件, 故答案为:充要根据纯虚数的定义求出m 的取值,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合纯虚数的定义求出m是解决本题的关键.8.已知直线a,b和平面α满足:①a//b,②a⊥α,③b⊥α,若从其中选出两个作为条件,余下一个作为结论,可以得到______个真命题.【答案】3【解析】解:构成的命题有①②⇒③,①③⇒②,②③⇒①,若a//b,a⊥α,则b⊥α成立,即①②⇒③是真命题,若a//b,b⊥α,则a⊥α成立,即①③⇒②是真命题若a⊥α,b⊥α,则a//b成立,即②③⇒①是真命题,故可以得到3个真命题,故答案为:3根据条件可以构成三个命题①②⇒③,①③⇒②,②③⇒①,根据空间直线和平面平行和垂直的性质进行判断即可.本题主要考查命题的真假关系,结合空间直线平行于直线平面垂直的性质和判定定理是解决本题的关键.9.从装有大小完全相同的2个白球、3个黑球的口袋中随机取出两个小球,记取出白球的个数为随机变量ξ,则P(ξ=1)的值为______.【答案】0.6【解析】解:从装有大小完全相同的2个白球、3个黑球的口袋中随机取出两个小球,基本事件总数n=C52=10,记取出白球的个数为随机变量ξ,ξ=1包含的基本事件个数m=C21C31=6,则P(ξ=1)=mn =610=0.6.故答案为:0.6.基本事件总数n=C52=10,记取出白球的个数为随机变量ξ,ξ=1包含的基本事件个数m=C21C31=6,由此能求出P(ξ=1).本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.已知正方体ABCD−A1B1C1D1的棱长为2,E,F,G,H分别是四条棱AB,BC,CD,DA上的中点,则四棱锥A1−EFGH体积为______.【答案】43【解析】解:∵正方体ABCD−A1B1C1D1的棱长为2,E,F,G,H分别是四条棱AB,BC,CD,DA上的中点,∴EFGH是边长为√2的正方形,点A1到平面EFGH的距离d=AA1=2,∴四棱锥A1−EFGH体积为:V A1−EFGH =13×d×S正方形EFGH=13×2×√2×√2=43.故答案为:43.推导出EFGH是边长为√2的正方形,点A1到平面EFGH的距离d=AA1=2,由此能求出四棱锥A1−EFGH体积.本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的关系等基础知识,考查运算求解能力,是中档题.11.已知抛物线y2=16x上任意一点到双曲线x2a2−y2b2=1右焦点的距离比到左准线的距离大1,则a2=______.【答案】12【解析】解:抛物线y2=16x中,p=8,焦点为F(4,0),准线方程为x=−4;由题意知双曲线x2a2−y2b2=1的右焦点为F(4,0),左准线方程为x=−3,∴c=4,且−a2c=−3,解得a2=12.故答案为:12.利用抛物线方程求出焦点坐标与准线方程,由题意知双曲线的右焦点坐标与左准线方程,由此求出c和a2.本题考查了抛物线方程与双曲线方程的应用问题,是基础题.12.已知椭圆x2a2+y2b2=1(a>b>0)的左右两个焦点分别为F1、F2,以F1F2为斜边的等腰直角三角形PF1F2与椭圆有两个不同的交点M,N,且MN=13F1F2,则该椭圆的离心率为______.【答案】√5−√2【解析】解:∵以F1F2为斜边的等腰直角三角形PF1F2与椭圆有两个不同的交点M,N,且MN=13F1F2,∴N(13c,23c)∵PF1+PF2=√(c3−c)2+(2c3)2+√(c3+c)2+(2c3)2=2a.2√2c 3+2√5c3=2a,∴e=ca =√5+√2=√5−√2.故答案为:√5−√2.可得N(13c,23c),利用PF 1+PF 2=√(c 3−c)2+(2c 3)2+√(c 3+c)2+(2c 3)2=2a.可得2√2c 3+2√5c3=2a ,即可求解.本题考查了椭圆的离心率,属于中档题.13. 在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的______倍. 【答案】3【解析】解:在四面体ABCD 中,E 为CD 的中点,连接AE ,BE ,且M ,N 分别为△ACD ,△BCD 的重心,AN ,BM 交于点G , 在△ABE 中,M ,N 分别为AE ,BE 的三等分点,则EMAE =ENBE =13, 所以MN//AB ,AB =3MN , 所以AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍, 故答案为:3由类比推理及线线平行的判定及运用可得:在△ABE 中,M ,N 分别为AE ,BE 的三等分点,则EMAE =ENBE =13,即MN//AB ,AB =3MN ,即AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍,得解. 本题考查了类比推理及线线平行的判定及运用,属中档题.14. 已知椭圆x 24+y 23=1的右焦点为F ,A 为椭圆在第一象限内的点,连接AF 并延长交椭圆于点B ,连接AO(O 为坐原点)并延长交椭圆于点C ,若S △ABC =3,则点A 的坐标为______. 【答案】(1,32)【解析】解:由题意可得F(1,0),设AB 的方程为x =my +1, 联立椭圆方程可得(4+3m 2)y 2+6my −9=0, 设A(x 1,y 1),B(x 2,y 2),可得y 1+y 2=−6m4+3m 2,y 1y 2=−94+3m 2,|y 1−y 2|2=(y 1+y 2)2−4y 1y 2=36m 2(4+3m 2)2+364+3m 2, 由O 为AC 的中点,且△ABC 的面积为3, 可得△ABO 的面积为32,S △ABO =S △AOF +S △BOF =12⋅|OF|⋅|y 1−y 2|=32, 即有|y 1−y 2|=3, 可得36m 2(4+3m 2)2+364+3m 2=9, 化为9m 4+m 2=0,即m =0,则AB⊥x轴,可得A(1,32),故答案为:(1,32).求得F(1,0),),设AB的方程为x=my+1,联立椭圆方程,运用韦达定理,以及完全平方公式,结合题意可得S△ABO=S△AOF+S△BOF=12⋅|OF|⋅|y1−y2|=32,即有|y1−y2|=3,平方.后由韦达定理,解方程可得m=0,可得A的坐标本题考查椭圆的方程和运用,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题.二、解答题(本大题共9小题,共130.0分)15.已知直线l:{y=1+2tx=1+t(t为参数),曲线C:ρ2−8ρsinθ+15=0.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求曲线C上的点到直线l距离的最小值.【答案】解:(1)∵直线l:{y=1+2tx=1+t(t为参数),∴直线l的普通方程为2x−y−1=0,∵曲线C:ρ2−8ρsinθ+15=0.∴曲线C的直角坐标方程为x2+y2−8y+15=0.(2)曲线C是以C(0,4)为圆心,以r=12√64−60=1为半径的圆,圆心C(0,4)到直线l的距离d=|2×0−4−1|√4+1=√5,∴曲线C上的点到直线l距离的最小值为√5−1.【解析】(1)直线l的参数方程消去参数,能求出直线l的普通方程,由曲线C的极坐标方程能求出曲线C的直角坐标方程.(2)曲线C是以C(0,4)为圆心,以r=1为半径的圆,圆心C(0,4)到直线l的距离d=√5,由此能求出曲线C上的点到直线l距离的最小值.本题考查直线的普通方程、曲线的直角坐标方程的求法,考查极坐标方程、普通方程、直角坐标方程的互化等基础知识,考查运算求解能力,是中档题.16.如图所示,在直三棱柱ABC−A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN//平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.【答案】证明:(1)因为ABC−A1B1C1是直三棱柱,所以AB//A1B1,且AB=A1B1,又点M,N分别是AB、A1B1的中点,所以MB=A1N,且MB//A1N.所以四边形A1NBM是平行四边形,从而A1M//BN.又BN⊄平面A1MC,A1M⊂平面A1MC,所以BN//平面A1MC;(2)因为ABC−A1B1C1是直三棱柱,所以AA1⊥底面ABC,而AA1⊂侧面ABB1A1,所以侧面ABB1A1⊥底面ABC.又CA=CB,且M是AB的中点,所以CM⊥AB.则由侧面ABB1A1⊥底面ABC,侧面ABB1A1∩底面ABC=AB,CM⊥AB,且CM⊂底面ABC,得CM⊥侧面ABB1A1.又AB1⊂侧面ABB1A1,所以AB1⊥CM.又AB1⊥A1M,A1M、MC平面A1MC,且A1M∩MC=M,所以AB1⊥平面A1MC.又A1C⊂平面A1MC,所以AB⊥A1C.【解析】(1)欲证明BN//平面A1MC,只需推知A1M//BN;(2)根据直三棱柱的特征和线面垂直的判定与性质来证明线线垂直.本题考查的知识点是直线与平面垂直的性质,直线与平面平行的判定,其中熟练掌握空间直线与平面间垂直、平行的判定、性质、定义是解答本题的关键.17.设f(x)=x2−2ax+1,g(x)=sinx.(1)若∀x∈[0,1]都有f(x)≥0恒成立,求实数a的取值范围;],都有f(x1)≥g(x2)恒成立,求实数a的取值范围.(2)若∃x1∈(0,1],使得对∀x2∈[0,π2【答案】解:(1)∀x∈[0,1]都有f(x)≥0恒成立,故x2−2ax+1≥0对∀x∈[0,1]恒成立,①x=0时,1≥0恒成立,故a∈R,②x∈(0,1]时,2a≤x+1对∀x∈(0,1]恒成立,x故2a≤2(当且仅当x=1时“=”成立),故a≤1,综上,a≤1;],g(x)=sinx,(2)∵x2∈[0,π2故g(x2)的最大值是1,],都有f(x1)≥g(x2)恒成立,∵∃x1∈(0,1],使得对∀x2∈[0,π2∴∃x1∈(0,1],使得f(x1)≥1恒成立,即∃x1∈(0,1],使得x12−2ax1+1≥1恒成立,故∃x1∈(0,1],使得x1≥2a成立,即2a≤1,解得:a≤1.2【解析】(1)问题转化为x2−2ax+1≥0对∀x∈[0,1]恒成立,通过讨论x的范围,结合不等式的性质求出a 的范围即可;(2)求出g(x)的最大值,问题转化为∃x∈(0,1],使得x2−2ax+1≥1恒成立,求出a的范围即可.本题考查了函数的单调性,最值问题以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.18. 设(1+2x)n =a 0+a 1x +a 2x 2+⋯+a n x n ,若展开式中第4项与第5项二项式系数最大.(1)求n ;(2)求最大的系数a i ;(3)是否存在正整数m ,使得a m+2+4a m =4a m+1成立?若存在,求出m 的值;若不存在,请说明理由.【答案】解:(1)若展开式中第4项与第5项二项式系数最大,即C n 3=C n 4,则n =7. (2)设(1+2x)7展开式中第r +1项T r+1是系数最大的项,则T r+1=C 7r 2r x r , 由不等式组{C 7r 2r≥C 7r−12r−1C 7r 2r≥C 7r+12r+1,解得{r ≤163r≥133,且r ∈N ,∴r =5,所以a i =C 7525=672.(3)因为(1+2x)n =a 0+a 1x +a 2x 2+⋯+a n x n ,所以a m =C 7m 2m , 因为a m+2+4a m =4a m+1,所以C 7m+22m+2+4C 7m 2m =4C 7m+12m+1, 所以7!(m+2)!(5−m)!2m+2+47!m!(7−m)!2m =47!(m+1)!(6−m)!2m+1, 由此方程可得:1(m+1)(m+2)+1(6−m)(7−m)=2(m+1)(6−m), 解得:m =1或4.综上:存在m =1或4,使得a m+2+4a m =4a m+1成立. 【解析】(1)由题意利用二项式系数的性质,求得n 的值.(2)展开式中第r +1项T r+1是系数最大的项,列出不等式组求得r 的值,可得最大的系数a i . (3)假设存在正整数m ,使得a m+2+4a m =4a m+1成立,解出m 的值,可得结论.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,组合数的计算公式,属于中档题.19. (请用空间向量求解)已知正四棱柱ABCD −A 1B 1C 1D 1中,AB =1,AA 1=3,E ,F 分别是棱AA 1,CC 1上的点,且满足AE =2EA 1,CF =2FC 1. (1)求异面直线EC 1,DB 1所成角的余弦值; (2)求面EB 1C 1与面FAD 所成的锐二面角的余弦值.【答案】解:(1)在正四棱柱ABCD −A 1B 1C 1D 1中,DD 1⊥平面ABCD ,底面ABCD 是正方形, 所以AD ,DC ,DD 1两两垂直,以A 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,……………………………………………………………………(2分)又因AB =1,AA 1=3,E ,F 分别是棱AA 1,CC 1上的点, 且满足AE =2EA 1,CF =2FC 1AB =1,AA 1=3,所以D(0,0,0),E(1,0,2),C 1(0,1,3),B(1,1,3),A(1,0,0),F(0,1,2),B 1(1,1,3),所以EC 1⃗⃗⃗⃗⃗⃗⃗ =(−1,1,1),DB 1⃗⃗⃗⃗⃗⃗⃗ =(1,1,3),…………………………………………………(4分) 设异面直线EC 1,DB 1所成角为θ,θ∈(0,π2], 所以cosθ=|cos〈EC 1⃗⃗⃗⃗⃗⃗⃗ ,DB 1⃗⃗⃗⃗⃗⃗⃗ 〉|=|−1+1+3|√3√1+1+9=√3311,………………………………(7分) 所以异面直线EC 1,DB 1所成角的余弦值为√3311. ………………………………………………(8分)(2)EC 1⃗⃗⃗⃗⃗⃗⃗ =(−1,1,1),EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(1,0,0),DF ⃗⃗⃗⃗⃗ =(0,1,2), 设平面EB 1C 1的一个法向量为n 1⃗⃗⃗⃗ , 则{EB 1⃗⃗⃗⃗⃗⃗⃗ ⊥n 1⃗⃗⃗⃗ EC 1⃗⃗⃗⃗⃗⃗⃗ ⊥n 1⃗⃗⃗⃗ ,所以{−x 1+y 1+z 1=0y 1+z 1=0,令z 1=1,所以n 1⃗⃗⃗⃗ =(0,−1,1),……(10分)平面FAD 的一个法向量为n 2⃗⃗⃗⃗ ,则{DA ⃗⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ DF ⃗⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ ,所以{y 2+2z 2=0x 2=0,令z 2=1,所以n 1⃗⃗⃗⃗ =(0,−2,1),…………(12分) 所以cos〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=|0+2+1|√2√5=3√1010,………………………………………………(14分) 所以面EB 1C 1与面FAD 所成的锐二面角的余弦值为3√1010.………………………(15分) 【解析】(1)推导出AD ,DC ,DD 1两两垂直,以A 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法能求出异面直线EC 1,DB 1所成角的余弦值.(2)求出平面EB 1C 1的一个法向量和平面FAD 的一个法向量,利用向量法能求出面EB 1C 1与面FAD 所成的锐二面角的余弦值.本题考查异面直线所成角的余弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 甲乙二人进行定点投篮比赛,已知甲、乙两人每次投进的概率均为12,两人各投一次称为一轮投篮.(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ,求ξ的分布列与期望. 【答案】解:(1)乙在前3次投篮中,恰好投进2个球为事件A ,则P(A)=C 32(12)2(1−12)=38;……………………………………(3分)答:乙在前3次投篮中,恰好投进2个球的概率为38;………………………………(4分) (2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ, 则ξ的取值为0,1,2,3;设前3轮投篮中,甲进球个数为X ,则X 的取值为0,1,2,3,计算P(X =0)=(1−12)3=18,P(X =1)=C 31⋅12⋅(1−12)2=38, P(X =2)=C 32⋅(12)2⋅(1−12)=38,P(X =3)=(12)3=18;所以P(ξ=0)=(18)2+(38)2+(38)2+(18)2=516,………………………………(6分) P(ξ=1)=2×18×38+2×38×(18+38)=1532,……………………………………(8分) P(ξ=2)=4×18×38=316,………………………………………(10分) P(ξ=3)=2×18×18=132;………………………………………(12分)所以ξ的分布列为; ξ 0 12 3 P5161532316132数学期望为E(ξ)=1532+38+332=1516.………………………………………………(15分) 【解析】(1)利用n 次独立重复实验恰有k 次发生的概率公式计算即可; (2)由题意知随机变量ξ的取值,计算对应的概率值, 写出分布列,再求出数学期望值.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.21. 已知点P(1,2)是抛物线y 2=4x 上的一点,过点P 作两条直线l 1与l 2,分别与抛物线相交于异于点P 的A 、B 两点.(1)若直线AB 过点(2,0)且△PAB 的重心G 在x 轴上,求直线AB 的斜率; (2)若直线AB 的斜率为1且△PAB 的垂心H 在x 轴上,求直线AB 的方程.【答案】解:(1)设直线AB的方程为x=my+2,设A,B两点的坐标分别为(x1,y1),(x2,y2)因为△PAB的重心G在x轴上,所以y1+y2=−2,将直线AB代入抛物线y2=4x方程可得:y2−4my−8=0,所以y1+y2=4m=−2,解得:m=−12,所以直线AB的斜率是−2.(2)若直线AB的斜率为1,则直线PH的方程是y−2=−(x−1),所以H(3,0),若直线AB的斜率为1,则设直线AB的方程为x=y+t,将直线AB代入抛物线y2=4x方程可得:y2−4y−4t=0,所以y1+y2=4,y1y2=−4t,且△=16+16t>0,因为BH⊥AP,所以y2x2−3⋅y1−2x1−1=−1(∗),将x1=y1+t,x2=y2+t代入(∗)得2y1y2+(t−3)(y1+y2)+t2−4t+3=0,将y1+y2=4,y1y2=−4t代入上面方程可得:t2−8t−9=0,由此方程解得:t=9或t=−1(舍),所以直线AB的方程是x−y−9=0.【解析】(1)设直线AB的方程为x=my+2,设A,B两点的坐标分别为(x1,y1),(x2,y2),根据重心的性质,以及根与系数,根据斜率公式即可求出,(2)分类讨论,根据韦达定理和斜率公式即可求出.本题考查直线与抛物线的位置关系的应用,直线系方程的应用,考查分析问题解决问题的能力,属于中档题.22.已知A,B分别为椭圆C:x2a2+y2b2=1(a>b>0)右顶点和上顶点,且直线AB的斜率为−√22,右焦点F到直线AB的距离为√6−√33.(1)求椭圆C的方程;(2)若直线l:y=kx+m(m>1)与椭圆交于M,N两点,且直线BM、BN的斜率之和为1,求实数k的取值范围.【答案】解:(1)∵k AB=ba =√22,∴a=√2b,则b=c,直线AB:bx+ay−ab=0,∴|b−√2b|√3=√6−√33,∴a=√2,b=1.因此,椭圆C的方程为x22+y2=1;(2)设点M(x 1,y 1)、N(x 2,y 2),将直线l 的方程与椭圆C 的方程联立{y =kx +m x 22+y 2=1,消去y 并整理得(2k 2+1)x 2+4kmx +2m 2−2=0, ∴△>0,由韦达定理得x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−22k 2+1. ∵k BM +k BN =2kx 1x 2+(m−1)(x 1+x 2)x 1x 2=1,∴(2k −1)x 1x 2+(m −1)(x 1+x 2)=0,∴2k =m +1>2,∴k >1,又∵△>0,∴2k 2>m 2−1,综上所述,0<k <2.因此,实数k 的取值范围是(0,2).【解析】(1)先由直线AB 的斜率得出a =√2b ,于是得出c =b ,再由点F 到直线AB 的距离,得出b 的值,从而可求出a 的值,从而可写出椭圆C 的方程;(2)设点M(x 1,y 1)、N(x 2,y 2),将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由直线BM 、BN 的斜率之和为1,结合韦达定理得出k 与m 所满足的关系式,结合m 的范围,可得出k 的范围,再由△>0,得出k 的另一个范围,两者取交集可得出实数k 的取值范围.本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法在椭圆综合问题中的应用,考查计算能力,属于中等题.23. 已知平面上一个圆可以将平面分成两个部分,两个圆最多可以将平面分成4个部分,设平面上n 个圆最多可以将平面分成f(n)个部分.(1)求f(3),f(4)的值;(2)猜想f(n)的表达式并证明;(3)证明:2n ≥f(n).【答案】解:(1)由已知有:f(3)=8,f(4)=14,(2)f(n)=n 2−n +2下面用数学归纳法证明:①当n =1时,f(1)=12−1+2=2结论成立;②假设n =k 时,结论成立,即平面上k 个圆最多可以将平面分成k 2−k +2个部分,那么当n =k +1时,第k +1个圆与前k 个圆最多有2k 个交点,即此第k +1个圆最多被这2k 个交点分成2k 条圆弧段,由于每增加一个圆弧段,可将原来的区域分成两个区域,因此第k +1个圆使平面增加了2k 个区域,所以f(k +1)=f(k)+2k =k 2−k +2+2k =(k +1)2−(k +1)+2,综合①②得:即平面上n 个圆最多可以将平面分成n 2−n +2个部分,即命题得证(3)证明:①当n =1或2或3时,2n −n 2+n −2=0,即2n ≥f(n),②n ≥4且n ∈N ∗时,设a n =n 2−n+22n ,则a n+1−a n=(n+1)2−(n+1)+22n+1−n2−n+22n=−n2+3n2n+1,设g(n)=−n2+3n=−(n−32)2+94,因为n≥4,所以g(n)≤−42+3×4=−4<0,所以a n+1−a n=−n2+3n2n+1<0所以n≥4时,数列{a n}是单调递减数列,所以a n=n2−n+22n ≤42−4+224=1416<1,所以2n>n2+n−2,综合①②得:2n≥n2+n−2.故不等式得证.【解析】(1)由题意可知:f(3)=8,f(4)=14,(2)猜想f(n)=n2−n+2并用数学归纳法证明可得解:(3)证明:讨论①当n=1或2或3时,2n−n2+n−2=0,②n≥4且n∈N∗时,用数列单调性的证明方法定义法证明即可本题考查了归纳推理、数学归纳法及数列单调性的证明,属难度较大的题型.。
2022-2023学年四川省泸县第五中学高二上学期期末考数学(理)试卷带讲解
12.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线 : 就是一条形状优美的曲线,对于此曲线,给出如下结论:
【详解】∵直线方程 可整理为
∴定点为
∵点A在直线 上
∴
∴ ,当且仅当 时取等号
故答案为:
16.过点 作抛物线 的两条切线,切点分别为 和 ,又直线 经过拋物线 的焦点 ,那么 的最小值为_________.
16
【分析】设 ,写出以 为切点的切线方程,由判别式求出切线斜率,得到以 为切点的切线方程,同理求出以 为切点的切线方程,结合 在两条切线上得直线 的方程,联立直线 与抛物线方程,根据根与系数的关系,结合抛物线定义得出结果.
【考点】圆的方程,点到直线的距离公式
【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离.已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d与半径r的大小关系,以此来确定参数的值或取值范围.
9.已知 , ,若不等式 恒成立,则正数 的最小值是()
A. 2B. 4
C. 6D. 8
第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数
相同,第六组的人数为4人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;
黑龙江省鹤岗市第一中学2018-2019学年高二上学期期末考试数学(理)试题(解析版)
鹤岗一中2018-2019学年度上学期期末考试高二数学试卷(理科)一、单选题。
1.命题“,使”的否定为()A. ,使B. ,使C. ,D. ,【答案】D【解析】因为命题“”的否定为“”,所以命题“,使”的否定为,,选D.点睛:1.命题的否定与否命题区别“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论. 2命题的否定的注意点(1)注意命题是全称命题还是存在性命题,是正确写出命题的否定的前提;(2)注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定;(3)注意“或”“且”的否定,“或”的否定为“且”,且”的否定为“或”.2. “a>0”是“|a|>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:本题主要是命题关系的理解,结合|a|>0就是{a|a≠0},利用充要条件的概念与集合的关系即可判断.解:∵a>0⇒|a|>0,|a|>0⇒a>0或a<0即|a|>0不能推出a>0,∴a>0”是“|a|>0”的充分不必要条件故选A考点:必要条件.3.有50件产品,编号为0,1,2,…,49,现从中抽取5个进行检验,用系统抽样的方法抽取样本的编号可以为( )A. 5,10,15,20,25B. 5,13,21,29,37C. 8,22,23,1,20D. 1,11,21,31,41【解析】试题分析:系统抽样首先按照一定顺序分成5组每组10个个体,在每组中抽取样本抽取的样本间隔为10;所以选D. 考点:系统抽样.4.已知x、y的取值如下表所示:若从散点图分析,y与x线性相关,且,则的值等于()A. 2.6B. 6.3C. 2D. 4.5【答案】A【解析】试题分析:若与线性相关,则样本点中心必在回归直线上,由表中数据,,,将点代入回归方程,得,解得,故选A.考点:线性回归方程中,样本点中心在回归直线上.5.与二进制数相等的十进制数是()A. 6B. 7C. 10D. 11【答案】A【解析】由题意,110(2)=1×22+1×21+0×20=6,故选A.6.下列说法中,正确的是()A. 数据5,4,4,3,5,2的众数是4B. 一组数据的标准差是这组数据的方差的平方C. 数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D. 频率分布直方图中各小长方形的面积等于相应各组的频数【答案】C【解析】试题分析:A选项众数为4、5;B选项应该是方差是标准差的平方;C正确;D选项频率分布直方图中各小长方形的面积等于相应各组的频率.7.5个人站成一排,若甲、乙两人之间恰有1人,则不同的站法数有()A. 18B. 26C. 36D. 48【答案】C【解析】试题分析:先排列其余三人后甲乙两人插空,所以有种考点:排列问题8.在面积为的的边上任取一点,则的面积大于的概率是( )A. B. C. D.【答案】B【解析】试题分析:△的面积大于只需|PB|>,所以概率考点:几何概型9.已知的展开式中没有常数项,则n不能是()A. 5B. 6C. 7D. 8【答案】D【解析】【分析】本题首先可以根据解出二项式的通项,再对通项进行化简,然后通过展开式中没有常数项可知,不能为0,最后将选项依次代入,得出结果。
高二数学上学期期末考试试卷
高二数学上学期期末考试试卷 高二年级数学试题(理)命题人:江国新一、选择题(5分×10=50分)1.已知α,β,γ是两两相交的三个平面,则α∩β∩γ等于A .一个点B .一条直线C .φD .以上三种情况均有可能2.空间四边形ABCD 中,AB=CD ,AB 与CD 成30°角,E 、F 分别为BC 、AD 的中点,则EF 和AB 所成角为A .15°B .75°C .15°或75°D .30° 3.给出以下四个命题①过空间一点有且只有一个平面与两条异面直线都平行②过两条异面直线中的一条有且只有一个平面与另一条直线平行 ③过两条异面直线中的一条有且只有一个平面与另一条直线垂直 ④与两条异面直线都相交的两条直线是异面直线 其中真命题的个数为A .4B .3C .2D .1 4.已知A(1,-2,11),B(4,2,3),C(6,-1,4),则△ABC 是A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形 5.关于直线m ,n 与平面α、β,有下列四个命题:①若m//α,n//β且α//β,则m//n ②若m ⊥α,n ⊥β且α⊥β,则m ⊥n ③若m ⊥α,n//β且α//β,则m ⊥n ④若m//α,n ⊥β且α⊥β,则n//m 其中真命题的个数为A .1B .2C .3D .4 6.若)21,1,2(),,,1(2=-=b a λλλ,且b a 与的夹角为锐角,则λ的取值范围为A .-1<λ<4B .-1<λ<21 C .21<λ<4 D .-1<λ<21或21<λ<47.双曲线C :)0,0(12222>>=-b a by a x 与直线l :mx+ny+t=0的公共点个数可能为①0个 ②1个 ③2个 ④3个 ⑤4个 其中命题正确的个数为A .2B .3C .4D .58.在正方体ABCD —A 1B 1C 1D 1中,M 为DD 1的中点,O 为ABCD 的中心,P 为棱A 1B 1上的任一点,则直线OP 与AM 所成角为A .30°B .45°C .60°D .90° 9.对于四面体ABCD ,给出下列四个命题①若AB=AC ,DB=DC ,则AD=BC ②若AB=CD ,AC=BD ,则BC ⊥AD ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD 其中真命题的个数为A .1B .2C .3D .410.长方体ABCD —A 1B 1C 1D 1中,P 为底面ABCD 内的一动点,P 到点B 的距离与P 到直线DD 1的距离之比为e(0<e<1),则点P 的轨迹是A .椭圆的一部分B .双曲线的一部分C .圆的一部分D .线段 二、填空题(5分×5=25分)11.过点P(1,2)且在两坐标轴上的横纵截距互为相反数的直线方程为____________.12.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x ,则(x -6)2+y 2的最小值为_______________.13.已知)2,0,1(),1,1,1(-==b a ,则b a 在方向上的正射影为_______________.14.设矩形ABCD(AB>AD)的周长为12,把它关于AC 折起来,AB 折过去后,交DC 于点P ,则△ADP 的最大面积为______________.15.已知四面体PABC 中,PA=3,PB=4,PC=5,∠APB=∠BPC=∠APC=60°,则AP 与平面PBC 所成角为_______________,||PC PB PA ++=____________.高二数学上学期期末考试试卷 高二年级数学试题(理)答题卷二、填空题答题卡11._________________ 12.________________ 13.________________ 14.________________ 15.________________ ___________________三、解答题 16.(本小题12分)已知空间四边形OABC 中,OA=OB ,CA=CB ,E 、F 分别为OA 、OB的中点(1)若G 、H 分别为BC 、AC 的中点,求证:四边形EFGH 是矩形; (2)若G 、H 分别为BC 、AC 上的点,且32==CA CH CB CG ,求证三条直线FG 、HE 、OC 交于一点.17.(本小题12分)已知关于x 的不等式2222+-+>++-x x ax x x a x (1)若不等式的解集为R ,求实数a 的取值范围; (2)是否存在实数a 使不等式的解集为(-1,1)?18.(本小题12分)在矩形ABCD 中,AB=3,BC=1,沿对角线BD 将△BCD 折起,使点C 移到C '点,且C '点在平面ABD 上的射影O 恰在AB 上(1)求证:B C '⊥平面A C 'D ;(2)求直线AB 与平面B C 'D 所成角的大小.19.(本小题12分)已知圆C的方程为x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R) (1)求圆C的面积的取值范围;(2)过点P(3,4t2)的直线l与圆C的公共点的个数为0或1或2,求t的取值范围.20.(本小题13分)已知矩形ABCD中,AB=a,BC=2,PA⊥平面ABCD,且PA=1 (1)若M、N分别为BC、PD的中点,求证:MN//平面PAB;(2)若BC边上有且只有一个点Q,使PQ⊥DQ,试求异面直线QN与CD所成的角.21.(本小题14分)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题. 例如:原来问题是“在平面直角坐标系xOy中,求点P(2,1)到直线3x+4y=0的距离”,求出距离2后,它的一个“逆向”问题可以是“求到直线3x+4y=0的距离为2的点的轨迹方程”;也可以是“若点P(2,1)到直线l:ax+by=0的距离为2,求直线l的方程.”试给出问题“过抛物线C:y2=2px(p>0)焦点F的一条直线与抛物线C交于两点P、Q,经过点P和抛物线顶点的直线交准线于点M,求证:MQ//x轴”的一个有意义的“逆向”问题,并解答你所给出的“逆向”问题.。
四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案
高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。
2024北京西城区高二上学期期末数学试题及答案
2024北京西城高二(上)期末数 学2024.1本试卷共5页,共150分.考试时长120分钟.考生务必将答案写在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线3410x y −+=不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线26x y =的焦点到其准线的距离等于( ) A.32B.3C.6D.8 3.在空间直角坐标系O xyz −中,点()4,2,8A −到平面xOz 的距离与其到平面yOz 的距离的比值等于( ) A.14 B.12C.2D.4 4.在312x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为( ) A.3 B.6 C.9 D.125.在正四面体ABCD 中,棱AB 与底面BCD 所成角的正弦值为( )C.13D.36.已知直线,a b 和平面α,且b α⊂,则“直线a ∥直线b ”是“直线a ∥平面α”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.设,A B 为双曲线2222:1(0,0)x y E a b a b−=>>的左、右顶点,M 为双曲线E 上一点,且AMB 为等腰三角形,顶角为120,则双曲线E 的一条渐近线方程是( )A.y x =B.2y x =C.y =D.y =8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有( )A.12种B.24种C.32种D.36种9.如图,在长方体1111ABCD A B C D −中,13,4,AB BC CC E ===为棱11B C 的中点,P 为四边形11BCC B 内(含边界)的一个动点.且DP BE ⊥,则动点P 的轨迹长度为( )A.5B.10.在直角坐标系xOy 内,圆22:(2)(2)1C x y −+−=,若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣B.44⎡−−⎣C.22⎡−−−⎣D.22⎡−+⎣第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.过点()2,3A −且与直线30x y ++=平行的直线方程为__________.12.在4(21)x +的展开式中,所有项的系数和等于__________.(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于__________.14.若方程22124x y m m+=+−m 的取值范围是__________;若此方程表示的曲线为椭圆,则实数m 的取值范围是__________.15.如图,在正方体1111ABCD A B C D −中,2,AB E =为棱1BB 的中点,F 为棱1CC (含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得1B F ∥平面1A ED ;②不存在符合条件的点F ,使得BF DE ⊥;③异面直线1A D 与1EC 所成角的余弦值为5; ④三棱锥1F A DE −的体积的取值范围是2,23⎡⎤⎢⎥⎣⎦. 其中所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(本小题15分)如图,在直三棱柱111ABC A B C −中,1,3,4BA BC BC AB AA ⊥===.(1)证明:直线1AB ⊥平面1A BC ;(2)求二面角1B CA A −−的余弦值.18.(本小题15分)已知C 经过点()1,3A 和()5,1B ,且圆心C 在直线10x y −+=上.(1)求C 的方程; (2)设动直线l 与C 相切于点M ,点()8,0N .若点P 在直线l 上,且PM PN =,求动点P 的轨迹方程.19.(本小题15分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),四个顶点构成的四边形面积等于12.设圆22(1)25x y −+=的圆心为,M P 为此圆上一点.(1)求椭圆C 的离心率; (2)记线段MP 与椭圆C 的交点为Q ,求PQ 的取值范围.20.(本小题15分)如图,在四棱锥P ABCD −中,AD ⊥平面,PAB AB ∥,DC E 为棱PB 的中点,平面DCE 与棱PA 相交于点F ,且22PA AB AD CD ====,再从下列两个条件中选择一个作为已知.条件①:PB BD =;条件②:PA BC ⊥.(1)求证:AB ∥EF ;(2)求点P 到平面DCEF 的距离;(3)已知点M 在棱PC 上,直线BM 与平面DCEF 所成角的正弦值为23,求PM PC的值. 21.(本小题15分) 设椭圆2222:1(0)x y C a b a b+=>>左、右焦点分别为12,F F ,过1F 的直线与椭圆C 相交于,A B 两点.已知椭圆C 的离心率为21,2ABF 的周长为8. (1)求椭圆C 的方程;(2)判断x 轴上是否存在一点M ,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线?若存在,求点M 的坐标;若不存在,说明理由.参考答案一、选择题:本大题共10小题,每小题4分,共40分1.D2.B3.B4.D5.B6.D7.A8.C9.B 10.A二、填空题:本大题共5小题,每小题5分,共25分11.10x y ++= 12.81 13.414.()(),24,∞∞−−⋃+;()()2,11,4−⋃ 15.①②④注:第14题第一问3分,第二问2分;第15题全部选对得5分,有两个选对且无错选得3分,有一个选对且无错选得2分,其他得0分.三、解答题:本大题共6小题,共85分.其他正确解答过程,请参照评分标准给分. 16.(本小题10分)解:(1)从6男4女共10名志愿者中,选出3人参加社会实践活动,选择方法数为310C 120=种.(2)从10名志愿者中选2男1女,选择方法数共有2164C C 60=种,故从10名志愿者中选2男1女,且分别从事经济、文化和民生方面的问卷调查工作的选派方法数为213643C C A 360=种.17.(本小题15分)解:(1)在直三棱柱111ABC A B C −中,因为1AA ⊥.平面,ABC BC ⊂平面ABC ,所以1AA BC ⊥.又因为1,BA BC BA AA A ⊥⋂=,所以BC ⊥平面11AA B B ,所以1BC AB ⊥.由14AB AA ==,得四边形11AA B B 为正方形.所以11AB A B ⊥.又因为1BC A B B ⋂=,所以1AB ⊥平面1A BC .(2)因为1BB ⊥平面,ABC BA BC ⊥,所以1,,BA BC BB 两两互相垂直,故以B 为原点,1,,BA BC BB 的方向分别为x 轴、y .轴、z 轴正方向,建立如图所示的空间直角坐标系.则()()()()114,0,0,0,3,0,4,0,4,0,0,4A C A B .所以()()14,3,0,0,0,4AC AA =−=.设平面1A AC 的法向量为(),,m x y z =,则10,0,m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即430,40.x y z −+=⎧⎨=⎩令3x =,则4,0y z ==.于是()3,4,0m =.由(1)可知:()14,0,4AB =−是平面1A BC 的一个法向量.因为11112cos ,1042||AB m AB m AB m ⋅−===−⨯, 由图可知二面角1B CA A −−的平面角为锐角,所以二面角1B CA A −−的余弦值为10. 18.(本小题15分)解:(1)由题意,设C 的圆心(),1C a a +,半径为r ,则222222(1)(31),(5)(11).a a r a a r ⎧−+−−=⎨−+−−=⎩ 解得:5,5.a r =⎧⎨=⎩ 所以C 的方程为22(5)(6)25x y −+−=.(2)由平面几何,知PMC 为直角三角形,且PM MC ⊥,所以222||||||PM MC PC +=.由PM PN =,得222||||||PN MC PC +=.设(),P x y ,则2222(8)25(5)(6)x y x y −++=−+−.即36140x y −−=,经检验符合题意.所以动点P 的轨迹方程为36140x y −−=.19.(本小题15分)解:(1)由题意,得222212,c ab a b c ===+,所以3,2a b ==,所以椭圆C的离心率3c e a ==. (2)由题意,得5PQ MP MQ MQ =−=−.设()11,Q x y ,则2211194x y +=. 所以MQ ===. 因为[]13,3x ∈−,所以当195x=时,min ||MQ =;当13x =−时,max ||4MQ =.所以PQ 的取值范围为1,55⎡−⎢⎣⎦. 20.(本小题15分)解:选择条件①:(1)因为AB ∥,DC AB ⊄平面,DCEF DC ⊂平面DCEF ,所以AB ∥平面DCEF .又因为AB ⊂平面PAB ,平面PAB ⋂平面DCEF EF =,所以AB ∥EF .(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥.又因为,22PB BD PA AB AD CD =====,所以PAB DAB ≅.因此90PAB DAB ∠∠==,即,,AB AD AP 两两垂直.如图,以A 为原点,,,AB AD AP 的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,所以()()()()0,2,0,1,2,0,0,0,2,2,0,0D C P B .由(1),得AB ∥EF ,且E 为棱PB 的中点,所以点F 为棱PA 的中点.()()1,0,1,0,0,1E F ,故()()()0,0,1,0,2,1,1,0,0FP DF CD ==−=−.设平面DCEF 的一个法向量为(),,n x y z =,则20,0,DF n y z CD n x ⎧⋅=−+=⎪⎨⋅=−=⎪⎩取1y =,则0,2x z ==,即()0,1,2n =.所以点P 到平面DCEF 的距离255FP nd n ⋅==. (3)设[],0,1PM PCλλ=∈, 则()()1,2,2,2,2PM PC λλλλλ==−=−.所以()2,2,22BM BP PM λλλ=+=−−.设直线BM 与平面DCEF 所成角为θ,所以||sin |cos ,|||||BM n BM n BM n θ⋅=<>== 23=. 化简,得29610λλ−+=,解得13λ=, 即13PM PC =. 选择条件②:(1)与上述解法相同,略.(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥,又因为,PA BC BC ⊥与AD 相交,所以PA ⊥平面ABCD . 所以PA AB ⊥.即,,AB AD AP 两两垂直.以下与上述解法相同,略.21.(本小题15分)解:(1)由题意,得22248,1,2,a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩ 解得2,1.a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. (2)假设x 轴上存在一点()0,0M x 符合题意.由题意,设直线()()()()1122:10,,,,AB y k x k A x y B x y =+≠.联立方程()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩消去y , 得()22223484120k x k x k +++−=. 所以221212228412,3434k k x x x x k k−+=−=++. 由题意,知直线AM 的斜率存在,且为()11101010AMk x y k x x x x +−==−−, 同理,直线BM 的斜率为()22202010BM k x y k x x x x +−==−−. 所以()()12102011AM BM k x k x k k x x x x +++=+−−()()()()12120120102022k x x x x x x x x x x x x ⎡⎤++−+−⎣⎦=−−. 因为1MF 为AMB 的一条内角平分线,所以0AM BM k k +=.所以()()12120120220k x x x x x x x x ⎡⎤++−+−=⎣⎦.因为上式要对任意非零的实数k 都成立, 所以2220022241288220343434k k k x x k k k−⨯−+⨯−=+++, 解得04x =−.故x 轴上存在一点()4,0M −,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线.。
河南省天一大联考2024_2025学年高二数学上学期期末考试试题理
河南省天一大联考2024-2025学年高二数学上学期期末考试试题 理考生留意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.不等式282x x -+<-1的解集为 A.(-3,2) B.(-3,-2) C.(-3,4) D.(-2,4) 2.下列命题为真命题的是A.∃x 0∈R ,x 02+4x 0+6≤0 B.正切函数y =tanx 的定义域为R C.函数y =1x的单调递减区间为(-∞,0)∪(0,+∞) D.矩形的对角线相等且相互平分 3.已知直线x +2y =4过双曲线C :22221(0,0)x y a b a b-=>>的一个焦点及虚轴的一个端点,则此双曲线的标准方程是A.2211612x y -= B.221164x y -= C.221124x y -= D.221258x y -= 4.已知{a n }为等差数列,公差d =2,a 2+a 4+a 6=18,则a 5+a 7= A.8 B.12 C.16 D.205.已知直线l 和两个不同的平面α,β,若α⊥β,则“l //α”是“l ⊥β”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,c =4,a =,则sinAsinB=A.23B.3 D.37.在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB//DC ,CADC =90°,AD =AB =3,PD =4,DC =6,则DB 与CP 所成角的余弦值为A.5B.6C.26D.138.已知等比数列{a n }的前n 项和为S n ,公比q>0,a 1=1,a 12=9a 10,要使数列{λ+S n }为等比数列,则实数λ的值为 A.13 B.12C.2D.不存在 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B =23π,b =b 2+c 2-a 2。
哈尔滨市第九中学2020-2021学年高二上学期期末考试理科数学试题-含答案
哈尔滨市第九中学2020--2021学年度.上学期期末学业阶段性评价考试高二学年数学学科(理)试卷(考试时间:120分钟满分:150分共2页第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项符合题目要求)1.过点M(-4,3)和N(-2,1)的直线方程是A.x -y+3=0B.x+y+1=0C.x -y -1=0D.x+y -3=02.双曲线221169y x -=的虚半轴长是 A.3 B.4 C.6 D.83.直线x+y=0被圆22|6240x y x y +-++=截得的弦长等于A.4B.2 .C .D 4.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河."诗中隐含着一个有趣的数学问题--“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221,x y +≤若将军从点A(4,-3)处出发,河岸线所在直线方程为x+y=4,并假定将军只要到达军营所在区域即回到军营,则“将军饮马"的最短总路程为A.8B.7C.6D.55.已知抛物线2:4C y x =的焦点为F,过点F 的直线与抛物线交于A,B 两点,满足|AB|=6,则线段AB 的中点的横坐标为A.2B.4C.5D.66.直线kx -y+2k+1=0与x+2y -4=0的交点在第四象限,则k 的取值范围为A.(-6,-2) 1.(,0)6B - 11.(,)26C -- 11.(,)62D -- 7.设12,F F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120,F PF ︒∠=则点P 到x 轴的距离为.A .B .C .D 8.已知点A(-2,3)在抛物线C 2:2y px =的准线上,过点A 的直线与C 在第一象限相切于点B,记C 的焦点为F,则直线BF 的斜率为1.2A2.3B3.4C4.3D 9.已知点(x,y)满足:221,,0x y x y +=≥,则x+y 的取值范围是.[A B.[-1,1] .C .D10.设双曲线221916x y -=的右顶点为A,右焦点为F,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB 的面积为32.15A 34.15B 17.5C 19.5D 11.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B,F 为其右焦点,若AF ⊥BF,设∠ABF=α,且[,]64ππα∈则该椭圆的离心率e 的取值范围是.A .1]B .C .D12.如图,,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于1.2A B.1.C.D 第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分)13.圆222200x y x y ++--=与圆2225x y +=相交所得的公共弦所在直线方程为___.14.若三个点(-2,1),(-2,3),(2,-1)中恰有两个点在双曲线222:1(0)x C y a a-=>上,则双曲线C 的渐近线方程为___. 15.椭圆221123x y +=的焦点分别是12,F F 点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的___倍.16.过抛物线2:2(0)C y px p =>的焦点F 的直线l 与C 相交于A,B 两点,且A,B 两点在准线上的射影分别为M,N ,,,MFN BFN AFM MFN S S S S λμ∆∆∆==则λμ=___. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)在①圆经过C(3,4),②圆心在直线x+y -2=0上,③圆截y 轴所得弦长为8且圆心E 的坐标为整数;这三个条件中任选一个,补充在下面的问题中,进行求解.已知圆E 经过点A(-1,2),B(6,3)且___;(1)求圆E 的方程;(2)求以(2,1)为中点的弦所在的直线方程.18.(本题满分12分)已知抛物线C:22(0)y px p =>,焦点为F,准线为1,抛物线C 上一点M 的横坐标为3,且点M 到焦点的距离为4.(1)求抛物线的方程;(2)设过点P(6,0)的直线'l 与抛物线交于A,B 两点,若以AB 为直径的圆过点F,求直线'l 的方程.19.(本题满分12分)在平面直角坐标系xOy 中,直线l的参数方程为12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=2acosθ(a>0),且曲线C 与直线l 有且仅有一个公共点.(1)求a;(2)设A,B 为曲线C.上的两点,且,3AOB π∠=求|OA|+|OB|的最大值.20.(本题满分12分)在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos ,sin .x t y t αα=+⎧⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2:4cos .C ρθ=(1)求曲线2C 的直角坐标方程;(2)若点A(1,0),且1C 和2C 的交点分别为点M,N,求11||||AM AN +的取值范围.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的焦点为12(F F 且过点1).2 (1)求椭圆C 的方程;(2)设椭圆的上顶点为B,过点(-2,-1)作直线交椭圆于M,N 两点,记直线MB,NB 的斜率分别为,,MB NB k k 试判断MB NB k k +是否为定值?若为定值,求出该定值;若不是定值,说明理由.22.(本题满分12分)已知点F 是椭圆2222:1(0)x y C a b a b+=>>的右焦点,过点F 的直线l 交椭圆于M,N 两点,当直线l 过C 的下顶点时,l当直线l垂直于C的长轴时,△OMN的面积为3 . 2(1)求椭圆C的标准方程;(2)当|MF|=2|FN|时,求直线l的方程;(3)若直线l上存在点P满足|PM|,|PF|,|PN|成等比数列,且点P在椭圆外,证明:点P在定直线上.。
高中数学选择性必修二 北京市昌平区新学道临川学校高二上学期期末考试数学(理)试题(含答案)
高二数学理科试卷
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在等差数列 中,若 , ,则 =()
A. B. C. D.
【答案】C
【解析】
【分析】由等差数列通项公式可求得 ,由 可求得结果.
【详解】设等差数列 的公差为 ,则 , .
【详解】抛物线 ( )的准线为: ,
因为准线经过点 ,可得 ,即 ,
所以抛物线为 ,焦点坐标为 ,
故选:B.
11.椭圆 内有一点 过点 的弦恰好以 为中点,那么这弦所在直线的方程为()
A. B.
C. D.
【答案】B
【解析】
【分析】利用点差法得到直线斜率和中点之间的关系,即可得解.
【详解】设弦的两个端点为 ,
即曲线C右侧部分的点到原点的距离都不超过 ,
再根据对称性可知,曲线C上的所有点到原点的距离都不超过 ,②正确;
对于③,因为在x轴上方,图形面积大于四点(﹣1,0),
(1,0),(1,1),(﹣1,1)围成的矩形面积1×2=2,
在x轴下方,图形面积大于三点(﹣1,0),(1,0),(0,﹣1)围成的等腰直角三角形的面积 ×2×1=1,
故选:C.
2.在等比数列 中, , ,则 与 的等比中项是()
A. B. C. D.
【答案】A
【解析】
【分析】计算出 的值,利用等比中项的定义可求得结果.
【详解】由已知可得 ,由等比中项的性质可得 ,
因此, 与 的等比中项是 .
故选:A.
3.若△ABC中,a=4,A=45°,B=60°,则边b的值为( )
应县第一中学校高二数学上学期期末考试试题理含解析
14.已知p:(x-m)2〉3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为________.
【答案】{m|m≥1或m≤-7}
【解析】
由命题p中的不等式(x-m)2〉3(x-m)变形,得(x-m)(x-m-3)>0,解得x〉m+3或x〈m;
【详解】双曲线 : 的右焦点为 , 由 ,可得直线 的方程为 , , 设直线 与双曲线相切,且切点为左支上一点, 联立 ,可得 ,
由 , 解得 (4舍去),
可得 到直线 的距离为 ,
即有 的面积Байду номын сангаас最小值为 .
故答案为: .
【点睛】本题考查三角形的面积的最小值的求法,注意运用联立直线方程和双曲线方程,运用判别式为0,考查化简整理的运算能力,属于中档题.
【详解】(Ⅰ)当 t=1 时,
≤3 在[1,+∞)上恒成立,故命题 q 为真命题.
(Ⅱ)若 p∨q 为假命题,则 p,q 都是假命题.
当 p 为假命题时,Δ= -4<0,解得-1〈t〈1;
当 q 为真命题时, ≤4 -1,即 -1≥0,解得 t≤ 或 t≥
∴当 q 为假命题时,
∴t 的取值范围是 .
所以圆心到直线的距离
可解得 ,所以切线方程为
当在x轴与y轴上的截距不为0时,设切线方程为
所以 ,解得 或 (舍),即切线方程为
所以共有3条切线方程
所以选C
【点睛】本题考查了点到直线距离 简单应用,直线与圆的位置关系,属于基础题.
6.给出下列两个命题,命题 “ "是“ ”的充分不必要条件;命题q:函数 是奇函数,则下列命题是真命题的是( )
高二上学期期末考试数学(理)试题及答案
N MD 1C 1B 1A 1DCA学年第一学期高二年级期末质量抽测 数 学 试 卷(理科)(满分150分,考试时间 120分钟)考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D)330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD ===a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =± (7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+ ( B)2( C)4+ ( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C 上且满足1223MF MF += 则12MF F ∆的面积为(A)3(B) 2(C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅=,则1BC 与BM 的夹角的最大值为 (A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BAD 1C 1B 1A 1D第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11B C A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,ACBD O =,11AB AA ==.(I)求证:111//OC AB D 平面;N MDCBAP(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且经过点(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,底面ABCD 为直角梯形,//,90,AD BC BAD ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.高二年级期末质量抽测数学试卷参考答案及评分标准 (理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2.…2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为所以点C 到直线l 的距离为11d ==. ……10分 即11d ==. …………12分所以34a =-. …………14分O 1ABCDA 1B 1C 1D 1O(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O =,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分 因为1111AA AC A =,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =, 所以1b =. ……1分由c e a ===,解得2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBCADNM MN ⊂=平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PAAB A =,所以DA PAB ⊥平面. 所以PB DA ⊥. ……7分 因为AMDA A =,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分 设平面PDN 的法向量为(,,)x y z =n 因为(2,1,2)PC =-,(0,2,2)PD =-, 所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩.令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,622BP BP BP⋅〈〉===n n n .所以二面角P DN A --的余弦值为6. ……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC =………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分 所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分 所以2231k -<.所以213k >.即21113k >.所以2103k <<.…12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分。
黑龙江省哈尔滨工业大学附属中学校2021-2022学年高二上学期期末考试数学(理)试题(解析版)
哈工大附中2021~2022学年度第一学期期末考试试题高二理科数学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数,则的虚部为( )A. B. C. D. 【答案】C 【解析】【分析】利用复数的除法运算化简,再由共轭复数的定义即可得,进而可得虚部.【详解】,所以,的虚部为,故选:C.2. 已知直线和直线互相平行,则等于( )A. 2 B. C. D. 0【答案】C 【解析】【分析】根据题意可得,即可求出.【详解】显然时,两直线不平行,不符合,则,解得.经检验满足题意故选:C.3. 设是两条不同的直线,是两个不同的平面,且,则下列命题正确的是( )① 若 ,则 ②若,则 ③若,则 ④若,则13i1iz +=-z 122-1-z z ()()()()13i 1i 13i 24i12i 1i 1i 1i 2z +++-+====-+--+12i z =--z 2-10x ay +-=410ax y ++=a 2-2±1141a a -=≠0a =1141a a -=≠2a =±,m n ,αβ,m n αβ⊂⊂//,//m n βα//αβm β⊥αβ⊥//αβ//,//m n βααβ⊥,m n βα⊥⊥A. ①③B. ①④C. ②③D. ②④【答案】C 【解析】【分析】① 面面平行需要满足面内两条相交直线分别平行另外一个平面;②面内的一条直线垂直另外一个平面,则线面垂直;③面面平行,面内的直线平行另外一个平面; ④面面垂直面内的直线垂直于两个平面的交线,则线面垂直.【详解】① 面面平行需要满足面内两条相交直线分别平行另外一个平面, 不在同一平内,有可能平行,所以不正确;②面内的一条直线垂直另外一个平面,则线面垂直,所以命题正确;③面面平行,面内的直线平行另外一个平面,所以命题正确; ④面面垂直面内的直线垂直于两个平面的交线,则线面垂直,没出与交线垂直,所以命题不正确.故选:C.4. 已知双曲线:(的渐近线方程为( )A. B. C. D. 【答案】A【解析】【分析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果.【详解】∵双曲线的离心率,∴.又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为.故选:A,m n C 22221x y a b-=0,0a b >>C 2y x =±y =12y x =±y x=±2b a =22220x y a b-=b y x a =±c e a ===2ba=22220x y a b-=b y x a =±22221x y a b-=0,0a b >>b y x a =±2y x =±5. 已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是( )A.B.C. D. 【答案】B 【解析】【分析】根据导数的几何意义,求出切线方程,求出切线和横截距a 和纵截距b,面积为.【详解】由题意可得,所以,则所求切线方程为.令,得;令,得.故所求三角形的面积为.故选:B6. 若方程表示椭圆,则下面结论正确的是( )A. B. 椭圆的焦距为C. 若椭圆的焦点在轴上,则 D. 若椭圆的焦点在轴上,则【答案】C 【解析】【分析】利用椭圆方程与椭圆位置特征逐项分析、计算即可判断作答.【详解】因方程表示椭圆,则有,,且,即,A 错误;2()e (1)x f x x =++()y f x =(0,(0))f 12231212ab ()()()02e 21xf f x x '=,=++()03f '=32y x =+0x =2y =0y =23x -=1222233⨯⨯=22191x y k k +=--C ()1,9k ∈C C x ()1,5k ∈C x ()5,9k ∈90k ->10k ->91k k -≠-()()1,55,9k ∈焦点在轴上时,,解得,D 错误,C 正确;焦点在轴上时,则,焦点在轴上时,,B错误. 故选:C7. 已知抛物线的焦点为F ,准线为,过点F与抛物线C 交于点M (M 在x 轴的上方),过M 作于点N ,连接交抛物线C于点Q ,则( )A.B.C. 3D. 2【答案】D 【解析】【分析】设出直线,与抛物线联立,可求出点坐标,在利用抛物线的定义可得,再利用抛物线的对称性求出,则可求.【详解】如图:相关交点如图所示,由抛物线,得 ,则,与抛物线联立得,即,解得x 910k k ->->()1,5k ∈x ()291102c k k k =---=-y ()219210c k k k =---=-2:2(0)C y px p =>l l 'MN l ⊥NF ||||=NQ QF MF M 2M pMN NF MF x ∴===+FQ ||||NQ QF 2:2(0)C y px p =>(,0)2pF :)2p MF y x =-22y px =22122030x px p -+=()()6230x p x p --=3,26M A p p x x ==,60MN l MFx ︒⊥∠=, 又则为等边三角形,,由抛物线的对称性可得,故选:D.8. 若点P 是曲线上任意一点,则点P 到直线的最小距离为( )A. 0B.C.D.【答案】D 【解析】【分析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离.【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离故选:D.二、多选题(本题共4小题,每小题5分,共20分;在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分)9. 函数的导函数的图象如图所示,则下列说法正确的( )60NMF ︒=∴∠MN MF=NMF V 22M pMN NF MF x p ∴===+=60OFA NFO ︒=∠=∠ 6Q A p x x ==24,,6233p p p p QF NQ NF QF ∴=+=∴=-=||2||NQ QF ∴=2ln y x x =-1y x =-121y x =- P 2ln y x x =-()1,,2(0)P x y y x x x∴=->'121y x x'=-=x =12x =-1x ∴=1y x =-()1,1P P 1y x =-min d ()y f x =A. 为函数的单调递增区间B. 为函数的单调递减区间C. 函数在处取得极小值D. 函数在处取得极大值【答案】ABC 【解析】【分析】利用导数和函数的单调性之间的关系,以及函数在某点取得极值的条件,即可求解,得到答案.【详解】由题意,函数的导函数的图象可知:当时,,函数单调递减;当时,,函数单调递增;当时,,函数单调递减;当时,,函数单调递增;所以函数f (x )单调递减区间为:,,递增区间为,,且函数在和取得极小值,在取得极大值.故选:ABC.10. 已知曲线:,则( )A. 时,则的焦点是,B. 当时,则的渐近线方程为C. 当表示双曲线时,则的取值范围为D. 存在,使表示圆()1,3-()y f x =()3,5()y f x =()y f x =5x =()y f x =0x =()y f x =1x <-()0f x '<()f x 13x -<<()0f x '>()f x 35x <<()0f x '<()f x 5x >()0f x '>()f x (),1-∞-(3,5)(1,3)-(5,)+∞()f x 1x =-5x =3x =C 22142x y m m+=-+2m =C (1F (20,F 6m =C 2y x =±C m 2m <-m C【答案】ABD 【解析】【分析】AB 选项,代入的值,分别得出是什么类型的曲线,进而作出判断;C 选项,要想使曲线表示双曲线要满足;D 选项,求出曲线表示圆时m 的值.【详解】当时,曲线:,是焦点在y 轴上的椭圆,且,所以交点坐标为,,A 正确;当时,曲线:,是焦点在在y 轴上的双曲线,则的渐近线为,B 正确;当表示双曲线时,要满足:,解得:或,C 错误;当,即时,,表示圆,D 正确故选:ABD11. 已知圆和圆相交于、两点,下列说法正确的为( )A. 两圆有两条公切线 B. 直线的方程为C. 线段的长为D. 圆上点,圆上点,的最大值为【答案】ABD 【解析】【分析】由给定条件判断圆O 与圆M 的位置关系,再逐项分析、推理、计算即可作答.【详解】圆的圆心,半径,圆的圆心,,,于是得圆O 与圆M 相交,圆O 与圆M 有两条公切线,A 正确;由得:,则直线的方程为,B 正确;圆心O 到直线:的距离,则,C 不正确;m C ()()420m m -+<C 2m =C 22124x y +=2422c =-=(1F(20,F6m =C 22182-=y x C2yx =±C ()()420m m-+<4m>2m <-42m m -=+1m =223x y +=22:4O x y +=22:4240M x y x y +-+=+A B AB 24y x =+AB 65O E M F EF 3+22:4O x y +=(0,0)O 12r =22:(2)(1)1M x y ++-=(2,1)M -21r =||OM ==1212||r r OM r r -<<+222244240x y x y x y ⎧+=⎨++-+=⎩4280x y -+=AB 24y x =+AB 240x y -+=d ==||AB ===,当且仅当点E ,O ,M ,F 四点共线时取“=”,如图,因此,当点E ,F 分别是直线OM 与圆O 交点,与圆M 交点时,,D 正确.故选:ABD12. 已知椭圆:上有一点,、分别为左、右焦点,,的面积为,则下列选项正确的是( )A. 若,则;B. 若,则满足题意的点有四个;C. 椭圆内接矩形周长的最大值为20;D. 若为钝角三角形,则;【答案】BCD 【解析】【分析】由题可得,,结合选项利用面积公式可得可判断ABD ,设椭圆内接矩形的一个顶点为,利用辅助角公式可得周长的范围可判断C.【详解】∵椭圆:,∴,∴,设,则,,若,则,所以不存在,故A错误;12||||||||||||||3EF EO OF EO OM MF r OM r ≤+≤++=++=+E 'F 'max ||3EF =C 221169x y +=P 1F 2F 12F PF θ∠=12PF F △S S 9=90θ=︒3S =P C 12PF F △S ⎛∈ ⎝4,3a b ==c =11(,)P x y 1y C (4cos ,3sin )(02πααα<<C 221169x y +=4,3a b ==c =12128,PF PF F F +==11(,)P x y 12112S F F y =⋅⋅13y ≤S 9=13y =>12PF F △若,则,可得,故满足题意的点有四个,故B正确;设椭圆内接矩形的一个顶点为,则椭圆内接矩形周长为其中,由得,∴椭圆内接矩形周长的范围为,即,故C 正确;由上知不可能为钝角,由对称性不妨设是钝角,先考虑临界情况,当为直角时,易得,此时当为钝角三角形时,,所以,故D 正确.故选:BCD三、填空题(本大题共4小题,每小题5分,共20分)13. 椭圆:的离心率为_____﹒【解析】【分析】根据椭圆的几何性质求解即可﹒【详解】∵椭圆为,∴,∴﹒﹒14. 已知两点和则以为直径的圆的标准方程是__________.3S =11y y ==1x =P C (4cos ,3sin )(0)2πααα<<C 4(4cos 3sin )20sin(),αααϕ+=+43sin ,cos 55ϕϕ==02πα<<(,)2παϕϕϕ+∈+C (20sin(),20sin ]22ππϕ+(12,20]θ12PF F ∠12PF F ∠194y =12112S F F y =⋅⋅=12PF F △194y <S ⎛∈ ⎝C 22132y x +=22132y x +=1a c ===c e a ==()4,9A ()6,3B AB【答案】【解析】【分析】根据的中点是圆心,是半径,即可写出圆的标准方程.【详解】因为和,故可得中点为,又,则所求圆的标准方程是:.故答案为:.15. 已知是抛物线上一点,是抛物线的焦点,若点满足,则的取值范围是______.【答案】【解析】【分析】根据抛物线的解析式,得出焦点坐标,且由题意可知,进而根据向量的坐标运算求出,再根据向量的数量积求得,从而可求出的取值范围.【详解】解:由题可知,抛物线的焦点坐标,且,由于是抛物线上一点,则,,,,且,解得:,所以的取值范围是.故答案为:.()()225610x x -+-=AB 2AB ()4,9A ()6,3B AB ()5,6AB ==()()225610x x -+-=()()225610x x -+-=()00,M x y 24y x =F ()1,0P -0MF MP ⋅< 0x )2⎡-⎣()1,0F ()200040y x x =≥()()00001,,1,MF x y MP x y →→=--=---200410MF MP x x →→⋅=+-<0x 24y x =()1,0F()1,0P -()00,M x y 24y x =()200040y xx =≥()()00001,,1,MF x y MP x y →→∴=--=---()()2222000000011141MF MP x x y x y x x →→∴⋅=---+=+-=+-0MF MP →→⋅< 200410x x ∴+-<00x ≥002x ≤<-0x )2⎡-⎣)2⎡-⎣16. 已知函数,若,且恒成立,则实数a 的取值范围为_________.【答案】【解析】【分析】由题意得到,由,得到,所以,构造函数,利用导数求出的最小值即可.【详解】由题可知当时,函数单调递增,,当时,,设,则必有,所以,所以,所以,设,则,则时,,函数单调递减,当时,,函数单调递增,所以,所以的最小值为.所以恒成立,即,所以.故答案为:【点睛】本题主要考查利用导数解决双变量问题,将一个变量由另一个变量表示,构造新的函数即可求解,注意变量的范围,考查学生分析转化能力,属于中档题.四、解答题(本大题共6小题,共70分,解答应写出文字说明,说明过程或演算步骤)17. 在中,角所对的边分别为.(1)求角;(2)若,的面积为,求.1ln ,1(){11,122x x f x x x +≥=+<12x x ≠()()12122,2f x f x x x a +=+-≥12ln 2a ≤-121x x <<12()()2f x f x +=1212ln x x =-122212ln x x x x +=-+()12ln (1)g x x x x =-+>()g x 1≥x ()f x min ()(1)1f x f ==1x <()1f x <12x x <121x x <<1212121113()1(ln ln 2222)2f x f x x x x x +=+++=++=1212ln x x =-122212ln x x x x +=-+()12ln (1)g x x x x =-+>22()1x g x x x+'-=-=12x <<()0g x '<()g x 2x >()0g x '>()g x min ()(2)g x g ==12ln2232ln2-+=-12x x +32ln2-122x x a +-≥122a x x ≤+-12ln 2a ≤-12ln 2a ≤-ABC V ,,A B C ,,abc cos sin C c B =C 2b =ABC V c【答案】(1)(2)【解析】【分析】(1),进而得在求解即可得答案;(2)由面积公式得,进而根据题意得,,再根据余弦定理求解即可.【小问1详解】,,因为,,即因为,所以.小问2详解】解:因为的面积为,,所以,即,因为,所以,所以,解得.所以.18. 1.已知圆:,其中.(1)如果圆与圆外切,求的值;(2)如果直线与圆相交所得的弦长为的值.【答案】(1)20 (2)8【解析】【分析】(1)两圆外切,则两圆的圆心距等于两圆半径之和,列出方程,进行求解;(2)先用点到直线距离公式,求出圆的圆心到直线的距离,再用垂径定理列出方程,求出的值.【3C π=c =cos sin sin B C C B =tan C =8ab =2b =4a =cos sin C c B =cos sin sin B C C B =()0,,sin 0B B π∈≠sin C C =tan C =()0,C π∈3C π=ABC V 3C π=1sin 2S ab C ===8ab =2b =4a =2222201cos 2162a b c c C ab +--===c =c =C 22(3)(4)36x y m -+-=-m ∈R C 221x y +=m 30x y +-=C m C 30x y +-=m【小问1详解】圆的圆心为,若圆与圆外切,故两圆的圆心距等于两圆半径之和,【小问2详解】圆的圆心到直线的距离为,由垂径定理得:,解得:19. 书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,估计这100位年轻人每天阅读时间的平均数(单位:分钟);(同一组数据用该组数据区间的中点值表示)(2)采用分层抽样的方法从每天阅读时间位于分组,和的年轻人中抽取5人,再从中任选2人进行调查,求其中至少有1人每天阅读时间位于的概率.【答案】(1); (2).【解析】【分析】(1)由频率之和为1求参数a ,再根据直方图求均值.C ()3,4C 221x y +=1=+20m =C 30x y +-=d 222d =-8m =x [)50,60[)60,70[)80,90[)80,9074710(2)由分层抽样的比例可得抽取的5人中,和分别为:1人,2人,2人,再应用列举法求古典概型的概率即可.【小问1详解】根据频率分布直方图得:∴,根据频率分布直方图得:,【小问2详解】由,和的频率之比为:1∶2∶2,故抽取的5人中,和分别为:1人,2人,2人,记的1人为,的2人为,,的2人为,故随机抽取2人共有,,,,,,,,,10种,其中至少有1人每天阅读时间位于的包含7种,故概率.20. 如图,在四棱锥中,底面为菱形,平面,为的中点,为的中点.(1)求证:平面平面;(2)若,求平面与平面夹角的余弦值.【答案】(1)证明见解析[)50,60[)60,70[)80,90()0.0050.0120.045101a +++⨯=0.02a =()550.01650.02750.045850.02950.00510x =⨯+⨯+⨯+⨯+⨯⨯74=[)50,60[)60,70[)80,90[)50,60[)60,70[)80,90[)50,60a [)60,70b c [)80,90A B(),a b (),a c (),a A (),a B (),b c (),b A (),b B (),c A (),c B (),A B [)80,90710P =P ABCD -ABCD PA ⊥,60ABCD ABC ∠= E BC F PC AEF ⊥PAD 2PA AB ==AEF CEF(2)【解析】【分析】(1)通过证明和得平面,再利用面面垂直判定定理求解;(2)建立空间直角坐标系求两个平面的法向量代入二面角公式求解.【小问1详解】因为底面是菱形,,所以△为等边三角形,所以平分,所以,所以,又因为平面,所以,且,所以平面,又平面,所以平面平面;【小问2详解】据题意,建立空间直角坐标系如图所示:因为,所以,设平面一个法向量为,平面一个法向量为,因为,则,即,取,则,,所以,又因为,则,即,取,则,所以,所以AE AD ⊥PA AE ⊥AE ⊥PAD ABCD 60ABC ∠=︒ABC AE BAC ∠()6018060902EAD ︒∠=︒-︒-=︒AE AD ⊥PA ⊥ABCD PA AE ⊥PA AD A ⋂=AE ⊥PAD AE ⊂AEF AEF ⊥PAD 2PA AB ==())())0,0,0,,0,0,2,,A EP C1,12⎫⎪⎪⎭F AEF ()1111,,n x y z = EFC ()2222,,n x y z =)1,,12AE AF ⎫==⎪⎪⎭,01100AE n AF n ⎧⋅=⎪⎨⋅=⎪⎩1111020y z =++=12y =10x =11z =-()10,2,1n =-()10,1,,,12EC EF ⎛⎫== ⎪ ⎪⎝⎭0 2200EC n EF n ⎧⋅=⎪⎨⋅=⎪⎩ 22220102y x y z =⎧⎪⎨++=⎪⎩22x =220,y z ==(2n =u u r121212cos ,n n n n n n ⋅<>===⋅由图形知,二面角为钝角,故二面角夹角的余弦值为21. 已知椭圆的中心是坐标原点,左右焦点分别为,设是椭圆上一点,满足轴,,椭圆(1)求椭圆的标准方程;(2)过椭圆左焦点且不与轴重合的直线与椭圆相交于两点,求内切圆半径的最大值.【答案】(1)(2)【解析】【分析】(1)利用是椭圆上一点,满足轴,.列出方程组,求出,即可得到椭圆方程.(2)由(1)可知,设直线为,,联立直线与椭圆方程,消元列出韦达定理,即可得到,从而得到,再根据,即可得到,再利用基本不等式求出最值即可;【小问1详解】()2222:10x y C a b a b+=>>O 12,F F P C 2PF x ⊥212PF =C C C 1F x l ,A B 2ABF V 2214x y +=12P C 2PF x ⊥21||2PF =a b 28ABF C =V l x my =-()11,A x y ()22,B x y 12y y -2121212ABF S F F y y =⋅-V 2182ABF S R =⨯⨯V R =解:由题意是椭圆上一点,满足轴,所以,解得所以.【小问2详解】解:由(1)可知,,设直线为,消去得,设,,则,所以所以,令内切圆的半径为,则,即,令,则,当且仅当,,即时等号成立,所以当时,取得最大值;22. 已知函数,.(1)当时,求函数在处的切线方程;(2)讨论函数的单调性;(3)当函数有两个极值点,,且.证明:P C 2PF x ⊥21||2PF =222212c a b a c a b⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩21a b c ⎧=⎪=⎨⎪=⎩2214x y +=()1F 222112248ABF C AB AF BF AF BF AF BF a =++=+++==V l x my =-2214x my x y ⎧=-⎪⎨+=⎪⎩x ()22410m y +--=()11,A x y ()22,B x y 12y y +=12214y y m -=+12y y -===2121212ABFS F F y y =⋅-=V R 2182ABF S R =⨯⨯V R =t =12R ==≤=3t t =t =m =m =R 12()21ln 2f x x ax x =-+-a R ∈1a =()f x 1x =()f x ()f x 1x 2x 12x x <()()124213ln 2f x f x -≤+【答案】(1) (2)答案见解析 (3)证明见解析【解析】【分析】(1)根据导数的几何意义进行求解即可;(2)根据一元二次方程根判别式,结合导数的性质进行分类讨论求解即可;(3)根据极值定义,给合(2)的结论,构造新函数,再利用导数的性质, 新函数的单调性进行证明即可.【小问1详解】当时,.∴.,..∴在处的切线方程.小问2详解】的定义域.;①当时,即,,此时在单调递减;②当时,即或,(i )当时,∴在,单调递减,在单调递增.(ii )当时,的的【2230x y +-=1a =()21ln 2f x x x x =-+-()11f x x x'=-+-()'11f =-()111221f =-+=()()11122302y x x y -=--⇒+-=()f x 1x =2230x y +-=()f x ()0,∞+()211x ax f x x a x x-+'=-+-=-240a -≤22a -≤≤()0f x '≤()f x ()0,∞+240a ->2a >2a <-2a >()f x ⎛ ⎝⎫+∞⎪⎪⎭()f x 2a <-∴单调递减;综上所述,当时,在单调递减;当时,在,单调递减,在单调递增.【小问3详解】由(2)知,当时,有两个极值点,,且满足:,由题意知,.∴令.则.在单调递增,在单调递减.∴.即.在()f x ()0,∞+2a ≤()f x ()0,∞+2a >()fx ⎛ ⎝⎫+∞⎪⎪⎭()fx 2a >()f x 1x 2x 12121x x ax x +=⎧⎨⋅=⎩1201x x <<<()()221211122211424ln 2ln 22f x f x x ax x x ax x ⎛⎫⎛⎫-=-+---+- ⎪ ⎪⎝⎭⎝⎭22111222244ln 22ln x ax x x ax x =-+-+-+()()221112122122244ln 22ln x x x x x x x x x x =-++-+-++2222226ln 2x x x =-++()()2226ln 21g x x x x x=-++>()3462g x x x x'=--+=()g x ()+∞()2max 213ln 2g x g==-++=+()()124213ln 2f x f x -≤+。
2022-2023学年四川省内江市高二上学期期末考试数学(理)试题(解析版)
2022-2023学年四川省内江市高二上学期期末考试数学(理)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225+<m n 的概率是( ) A .12B .1336 C .49D .512【答案】B【分析】利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.【详解】解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(,)m n 表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足2225+<m n 有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足2225+<m n 的概率1336P =. 故选:B9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //n B .若α⊥β,l ⊂α,则l ⊥β C .若l ⊥α,m α⊂,则l ⊥m D .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线l :x +y -7=0上任意一点,过点P 作两条直线与圆C :()2214x y ++=相切,切点分别为A ,B .则|AB |的最小值为( )A .14B .142C .23D .3【答案】A【分析】根据直线与圆相切的几何性质可知,当||PC 取得最小值时,cos ACP ∠最大,||AB 的值最小,当PC l ⊥时,||PC 取得最小值,进而可求此时||14AB =【详解】圆C 是以(1,0)C -为圆心,2为半径的圆,由题可知,当ACP ∠最小时,||AB 的值最小. ||2cos ||||AC ACP PC PC ∠==,当||PC 取得最小值时,cos ACP ∠最大,ACP ∠最小,点C 到直线l 的距离|8|422d -==,故当||42PC =时,cos ACP ∠最大,且最大值为24,此时||||14sin 2||44AB AB ACP AC ∠===,则||14AB =.故选:A12.如图所示,在长方体1111ABCD A B C D -中,111BB B D =,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F ,下列命题错误的是( )A .四棱锥11B BED F -的体积恒为定值 B .存在点E ,使得1B D ⊥平面1BD EC .存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值D .对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得CG ∥平面1EBD 【答案】D【分析】由111111B BED F E BB D F BB D V V V ---=+结合线面平行的定义,即可判断选项A ,由线面垂直的判定定理即可判断选项B ,由面面平行的性质和对称性,即可判断选项C ,由特殊位置即可判断选项D.【详解】对A ,111111B BED F E BB D F BB D V V V ---=+,又11//CC BB ,1CC ⊄平面11BB D ,1BB ⊂平面11BB D ,所以1//CC 平面11BB D ,同理1//AA 平面11BB D ,所以点E ,F 到平面11BB D 的距离为定值,则四棱锥11B BED F -的体积为定值,故选项A 正确;对于B ,因为111BB B D =,可得对角面11BB D D 为正方形,所以11B D BD ⊥,由DC ⊥平面11BCC B ,BE ⊂平面11BCC B ,所以DC BE ⊥,若1BE B C ⊥,则1B CDC C =,1,B C DC ⊂平面1B DC ,所以BE ⊥平面1B DC ,由1B D ⊂平面1B DC ,所以1B D BE ⊥,又11,,BD BE B BD BE ⋂=⊂平面1BD E ,所以1B D ⊥平面1BD E ,故B 正确;对于C ,由面面平行的性质定理可得,四边形1BED F 为平行四边形,由对称性可得,当四边形为菱形时,周长取得最小值,即存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值,故选项C 正确.对于D ,当E 点在C 处时,对于AD 上任意的点G ,直线CG 与平面1EBD 均相交,故选项D 错误. 故选:D二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=.故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||AB =所以圆心到直线的距离为d ===,=1k =±, 故答案为:1±.15.已知E 是正方体1111ABCD A B C D -的棱1DD 的中点,过A 、C 、E 三点作平面α与平面1111D C B A 相交,交线为l ,则直线l 与1BC 所成角的余弦值为______. 【答案】12【分析】由面面平行的性质与异面直线所成的角的求法求解即可 【详解】因为过,,A C E 三点的平面α与平面1111D C B A 相交于l , 平面α与平面ABCD 相交于AC ,平面1111D C B A 与平面ABCD 平行, 所以//l AC ,又11//A C AC ,故11//AC l所以直线l 与1BC 所成的角就是直线11A C 与1BC 所成的角, 也即是11AC B ∠(或补角) 又易知11A C B △为等边三角形,所以直线l 与1BC 所成角的余弦值为1cos602︒=, 故答案为:1216.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PAB 面积的最大值是_________. 【答案】52【详解】试题分析:易知A (0,0),B (1,3)两直线互相垂直,故222221510222PA PB PA PB AB S PA PB ++==∴=≤=为所求.【解析】基本不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料. 日期第一年 第二年 第三年 第四年优惠金额x (千元) 10 11 13 12 销售量y (辆) 22243127(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn iii i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =- (2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过(6,1),(3,2)A B -两点,且圆心C 在直线230x y +-=上. (1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程; (2)求圆C 的标准方程;(3)斜率为34-的直线l 过点B 且与圆C 相交于,E F 两点,求||EF .【答案】(1)60x y -=或+7=0x y -; (2)22(5)(1)5x y -++=; (3)2.【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答. (2)设出圆心坐标,由已知求出圆心及半径作答. (3)求出直线l 的方程,利用弦长公式计算作答.【详解】(1)经过点A ,在两坐标轴上的截距相等的直线,当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为=x y a +,将点(6,1)A 代入解得=7a ,即直线的方程为+7=0x y -, 所以所求直线的方程为60x y -=或+7=0x y -.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -, 又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径||||r AC BC ==,1b =-,圆心(5,1)C -,圆C的半径r = 所以圆C 的标准方程为22(5)(1)5x y -++=.(3)依题意,直线l 的方程为32(3)4y x +=--,即3410x y +-=, 圆心(5,1)C -到直线的距离为|1541|25d --==, 所以22||22542EF r d =-=-=.19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD : (2)求三棱锥1F ACA -的体积.【答案】(1)见解析2【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形,所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=.21.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2AB =,1AF =,M 是线段EF 的中点.(1)求证:平面ACEF ⊥平面BDF ;(2)求证:DM ⊥平面BEF ;(3)求二面角A DF B --的大小.【答案】(1)见解析(2)见解析(3)60【分析】(1)建立空间直角坐标系,利用0AM BD =,0AM DF =,可得AM ⊥平面BDF ,进而可得面面垂直.(2)由2AB 1AF =,得3==DF DE DM EF ⊥,连BM ,得DM BM ⊥,由此能证明DM ⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.(1,1,0)DC =--是平面ADF 的一个法向量,cos AM <,1222DC >==⨯即可. 【详解】(1)四边形ACEF 是矩形,FA AC ∴⊥,平面ACEF ABCD ⊥,平面ACEF 平面ABCD AC =,AF ⊂平面ACEFAF ∴⊥平面ABCD .设AC DB O ⋂=,则OM ⊥平面ABCD建立如图的直角坐标系,则各点的坐标分别为:(0O ,0,0),(0A ,1,0),(1B -,0,0),(0C ,1-,0),(1D ,0,0),(0E ,1-,1),(0F ,1,1),(0M ,0,1).(2BD =,0,0),(1DF =-,1,1),(0AM =,1-,1),∴0AM BD =,0110AM DF =-+=, AM BD ∴⊥,AM DF ⊥,BD DF D =,,BD DF ⊂平面BDF ,AM ∴⊥平面BDF ,AM ⊂平面ACEF ,所以平面ACEF ⊥平面BDF(2)由2AB =,1AF =,得3==DF DE ,M 是线段EF 的中点,DM EF ,连接BM ,由于2222,,DM OM OD MB OM OB OB OD =+=+=,得2BM DM ==,又2BD =,222DM BM BD += DM BM ∴⊥,又BM EF M =,,MB EF ⊂平面BEF , DM ∴⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.又AF ⊥平面ABCD 得AF CD ⊥,又CD DA ⊥ ,故(1,1,0)DC =--是平面ADF 的一个法向量, 故cos AM <,11222DC >==⨯ 二面角A DF B --为锐角,∴二面角A DF B --为60.22.已知圆22:(3)9M x y -+=.设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于P 、Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.【答案】(1)17;(2)点N 在定直线6x =-上.【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l的距离为:1d =所以PQ == 由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号,所以四边形EPFQ 的面积S 的最大值为17.(2)点N 在定直线6x =-上.证明:设()()1122,,,P x y Q x y ,直线PQ 过点D ,则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N , 所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。
北京市大兴区2023-2024学年高二上学期期末检测数学试题含答案
大兴区2023~2024学年度第一学期高二期末检测数学(答案在最后)1.本试卷共4页,共两部分,21道小题.满分150分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他题用黑色字迹签字笔作答.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.椭圆22194x y +=的长轴长为()A.4B.5C.6D.9【答案】C 【解析】【分析】由椭圆的方程即可得出答案.【详解】由22194x y +=可得29a =,则26a =.故选:C .2.双曲线22142x y -=的渐近线方程为()A.y x =±B.22y x =±C.y =D.12y x =±【答案】B 【解析】【分析】直接由渐近线的定义即可得解.【详解】由题意双曲线22142x y -=的渐近线方程为22042x y -=,即2y x =±.故选:B.3.若直线l 的方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,则m =()A.1B.2C.3D.4【答案】D 【解析】【分析】由l α⊥可知,直线l 的方向向量与平面α的法向量平行,列方程组求解即可.【详解】∵直线l 的方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,∴直线l 的方向向量与平面α的法向量平行,则存在实数λ使()12,1,1,,22m λ⎛⎫= ⎪⎝⎭,∴21122m λλλ=⎧⎪⎪=⎨⎪=⎪⎩,解得2,4m λ==,故选:D.4.两条平行直线0x y -=与10x y --=间的距离等于()A.2B.1C.D.2【答案】A 【解析】【分析】直接利用两平行线间的距离公式求解.【详解】两条平行直线0x y -=与10x y --=,由两平行线间的距离公式可知,所求距离为22d ==.故选:A .5.过点()1,0且被圆22(2)1x y ++=截得的弦长最大的直线方程为()A.220x y +-=B.220x y --=C.210x y +-= D.210x y --=【答案】B【解析】【分析】根据圆的性质可知所求直线即为过圆心的直线,结合直线的截距式方程求解.【详解】由题意可知:圆22(2)1x y ++=的圆心为()0,2-,显然圆的最大弦长为直径,所求直线即为过圆心的直线,可得直线方程为112x y +=-,即220x y --=.故选:B.6.圆221:2C x y +=与圆222:(2)(2)2C x y -+-=的位置关系是()A.相交B.相离C.内切D.外切【答案】D 【解析】【分析】求出两个圆的圆心距即可判断得解.【详解】圆221:2C x y +=的圆心1(0,0)C ,半径1r =,圆222:(2)(2)2C x y -+-=的圆心2(2,2)C ,半径2r =显然1212||C C r r ==+,所以圆1C 与2C 外切.故选:D7.采取随机模拟的方法估计气步枪学员击中目标的概率,先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,以三个随机数为一组,代表三次射击击中的结果,经随机数模拟产生了20组随机数:907966181925271932812458569683431257393027556488730113537989根据以上数据估计,该学员三次射击至少击中两次的概率为()A.310B.720C.25 D.920【答案】B 【解析】【分析】根据所给数据计数至少击中两次的次数后计算概率.【详解】所给数据中有181,271,932,812,431,393,113共7个数据表示至少击中两次,所以概率为720P =.故选:B .8.若方程221343x y m m+=--表示双曲线,则实数m 的取值范围为()A.()4,3,3⎛⎫-∞⋃+∞ ⎪⎝⎭ B.4,33⎛⎫⎪⎝⎭C.()4,3,3⎛⎫-∞-⋃+∞ ⎪⎝⎭D.4,33⎛⎫-⎪⎝⎭【答案】A 【解析】【分析】根据题意得到()()3430m m --<,再解不等式即可.【详解】依题意,()()3430m m --<,则43<m 或3m >.故选:A9.已知12,F F 是双曲线221:18y C x -=与椭圆2C 的左、右公共焦点,A 是12,C C 在第一象限内的公共点,若121F F F A =,则2C 的离心率是()A.35B.25 C.13D.23【答案】A 【解析】【分析】由双曲线定义、椭圆定义以及离心率公式,结合已知条件运算即可得解.【详解】由221:18y C x -=知1,3a b c ====,所以12126F F F A c ===,∵12||||22F A F A a -==,∴24F A =,∴1210F A F A +=,∵12||6F F =,∴2C 的离心率是63105e ==.故选:A.10.平面内与定点()()12,0,,0F a F a -距离之积等于2(0)a a >的动点的轨迹称为双纽线.曲线C 是当a =P 是曲线C 上的一个动点,则下列结论不正确的是()A.曲线C 关于原点对称B.满足12PF PF =的点P 有且只有一个C.4OP ≤D.若直线y kx =与曲线C 只有一个交点,则实数k 的取值范围为()1,1-【答案】D 【解析】【分析】由题意得当a =()()2222216x y x y +=-,对于A ,用(,)x y --替换方程中的(,)x y 即可判断;对于B ,令12PF PF =,求出点P 的坐标即可验证;对于C ,由()2222221616x y x y x y -+=≤+即可判断;对于D ,由方程()()22221161k x k +=-无零解,即可得解.2a =,当a =C 8,即()()2422228864y y x x +++-=,整理,得()()2222216x y x y +=-,对于A ,用(,)x y --替换方程中的(,)x y ,原方程不变,所以曲线C 关于原点中心对称,故A 正确;对于B ,若12PF PF =,=所以0x =,此时288y +=,即0y =,所以满足12PF PF =的点P 有且只有一个,即()0,0,故B 正确;对于C ,由()()2222216x yx y+=-,得()2222221616x y x y x y -+=≤+,所以曲线C 上任意一点到原点的距离,即都不超过4,故C 正确;对于D ,直线与曲线C 一定有公共点()0,0,若直线与曲线C 只有一个交点,将y kx =代入方程()()2222216x y x y +=-中,得()()224221161kx k x +=-,当0x ≠时,方程()()22221161k x k +=-无零解,则210k -≤,解得1k ≥或1k ≤-,故D 错误.故选:D.【点睛】关键点睛:判断D 选项的关键是首先一定有公共点()0,0,然后通过化简方程组得方程()()22221161k x k +=-无零解,由此即可顺利得解.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.如果事件A 与事件B 互斥,且()0.2P A =,()0.3P B =,则()P A B =.【答案】0.5【解析】【分析】()P A B 表示事件A 与事件B 满足其中之一占整体的占比.所以根据互斥事件概率公式求解.【详解】()()0.20.3)0.5(P A P B P A B =+=+= 【点睛】此题考查互斥事件概率公式,关键点在于理解清楚题目概率表示的实际含义,属于简单题目.12.经过原点()0,0且与直线3450x y ++=垂直的直线方程为__________.【答案】430x y -=【解析】【分析】与直线3450x y ++=垂直的直线方程可设为:430x y b -+=,再将()0,0代入即可得出答案.【详解】与直线3450x y ++=垂直的直线方程可设为:430x y b -+=,又因为经过原点()0,0,所以0b =.所求方程为430x y -=故答案为:430x y -=.13.已知双曲线222:1(0)y C x m m-=>是等轴双曲线,则C 的右焦点坐标为__________;C 的焦点到其渐近线的距离是__________.【答案】①.)②.1【解析】【分析】根据等轴双曲线的概念求得m ,即可得焦点,再根据点到直线的距离可得结果.【详解】双曲线222:1(0)y C x m m-=>是等轴双曲线,则21m =,1m =,222112c a b =+=+=,则c =C 的右焦点坐标为),双曲线的渐近线方程为y x =±,即0x y ±=,则焦点()到渐近线的距离1d ==,故答案为:),1.14.探照灯、汽车灯等很多灯具的反光镜是抛物面(其纵断面是拋物线的一部分),正是利用了抛物线的光学性质:由其焦点射出的光线经抛物线反射之后沿对称轴方向射出.根据光路可逆图,在平面直角坐标系中,抛物线2:8C y x =,一条光线经过()8,6M -,与x 轴平行射到抛物线C 上,经过两次反射后经过()08,N y 射出,则0y =________,光线从点M 到N 经过的总路程为________.【答案】①.83②.20【解析】【分析】由点N 与点Q 的纵坐标相同和韦达定理可得0y ,利用抛物线的定义可求得总路程.【详解】如图,设第一次射到抛物线上的点记为P ,第二次射到抛物线上的点记为Q ,易得9,62P ⎛⎫- ⎪⎝⎭,因为()2,0F ,所以直线PF 的方程为125240x y +-=.联立28125240y xx y ⎧=⎨+-=⎩消去x 整理得2310480y y +-=,可设()00,Q x y ,显然6-和0y 是该方程的两个根,则0616y -=-,所以083y =.(方法一)光线从点M 到N 经过的总路程为()()()||||||4420M P P Q N Q M N MP PQ QN x x x x x x x x ++=-++++-=++=.(方法二)设抛物线的准线为l ,则其方程为2x =-,分别过点P ,Q 做准线l 的垂线,垂足分别为G ,H ,则PF PG =,QF QH =,所以PQ PF QF PG QH =+=+,故光线从点M 到N 经过的总路程为828220MP PQ QN MG NH ++=+=+++=.故答案为:83;20.15.画法几何的创始人法国数学家加斯帕尔⋅蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆,我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,,2F F 分别为椭圆的左、右焦点,,A B 为椭圆上两个动点.直线l 的方程为220bx ay a b +--=.给出下列四个结论:①C 的蒙日圆的方程为2223x y b +=;②在直线l 上存在点P ,椭圆C 上存在,A B ,使得PA PB ⊥;③记点A 到直线l 的距离为d ,则2d AF -的最小值为3b ;④若矩形MNGH 的四条边均与C 相切,则矩形MNGH 面积的最大值为26b .其中所有正确结论的序号为__________.【答案】①②④【解析】【分析】由(),Q a b 在蒙日圆上可得蒙日圆的方程,结合离心率可得,a b 关系,由此可知①正确;由l 过(),P b a 且(),P b a 在蒙日圆上,可知当,A B 恰为切点时,PA PB ⊥,知②正确;根据椭圆定义可将2||d AF -转化为12d AF a +-,可知1F A l ⊥时,1||d AF +取得最小值,由点到直线距离公式可求得1||d AF +最小值,代入可得2||d AF -的最小值,知③错误;由题意知,蒙日圆为矩形MNGH 的外接圆,由矩形外接圆特点可知矩形长宽与圆的半径之间的关系22212x y b +=,利用基本不等式可求得矩形面积最大值,知④正确.【详解】对于①,过(),Q a b 可作椭圆的两条互相垂直的切线:,x a y b ==,∴(),Q a b 在蒙日圆上,∴蒙日圆方程为2222x y a b +=+,由2c e a ==,得222a b =,∴C 的蒙日圆方程为2223x y b +=,故①正确;对于②,由l 方程知:l 过(),P b a ,又(),P b a 满足蒙日圆方程,∴(),P b a 在圆2223x y b +=上,当,A B 恰为过P 作椭圆两条互相垂直切线的切点时,PA PB ⊥,故②正确;对于③,∵A 在椭圆上,∴12||||2AF AF a +=,∴211||(2||)||2d AF d a AF d AF a -=--=+-,当1F A l ⊥时,1||d AF +取得最小值,最小值为1F 到直线l 的距离,又1F 到直线l 的距离2222213d b ==,∴2min (||)23d AF a -=-,故③错误;对于④,当矩形MNGH 的四条边均与C 相切时,蒙日圆为矩形MNGH 的外接圆,∴矩形MNGH 的对角线为蒙日圆的直径,设矩形MNGH 的长和宽分别为,m n ,则22212m n b +=,∴矩形MNGH 的面积22262m n S mn b +=≤=,当且仅当m n ==时取等号,即矩形MNGH 面积的最大值为26b ,故④正确.故答案为:①②④.【点睛】关键点睛:本题考查圆锥曲线中的新定义问题的求解,解题关键是能够根据蒙日圆的定义,结合点(),a b 在蒙日圆上,得到蒙日圆的标准方程,从而结合圆的方程来判断各个选项.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知两直线1l :80mx y n ++=和2l :210x my +-=,(1)若1l 与2l 交于点(,1)P m -,求,m n 的值;(2)若12l l //,试确定,m n 需要满足的条件.【答案】(1)1,7m n ==(2)当4,2m n =≠-或4,2m n =-≠时,【解析】【分析】(1)将点代入则得到方程,解出即可;(2)根据平行列出方程,解出4m =±,再排除重合的情况即可.【小问1详解】将点(,1)P m -代入两直线方程得:280m n -+=和210m m --=,解得1,7m n ==.【小问2详解】由12l l //得:28204m m -⨯=⇒=±,又两直线不能重合,所以有8(1)0nm ⨯--≠,对应得2n ≠±,所以当4,2m n =≠-或4,2m n =-≠时,12l l //.17.已知椭圆22:143x y C +=与经过左焦点1F 的一条直线交于,A B 两点.(1)若2F 为右焦点,求2ABF △的周长;(2)若直线AB 的倾斜角为π4,求线段AB 的长.【答案】(1)8(2)247【解析】【分析】(1)直接画出图形结合椭圆的定义即可求解.(2)由题意结合左焦点1F 的坐标以及直线AB 的倾斜角为π4,可得直线AB 的方程,将其与椭圆方程联立,结合韦达定理以及弦长公式即可得解.【小问1详解】由题意2a =,由椭圆定义有121224,24AF AF a BF BF a +==+==,所以2ABF △的周长为221212448AB AF BF AF AF BF BF ++=+++=+=.【小问2详解】设()()1122,,,A x y B x y ,由题意直线AB 的斜率为πtan 14k ==,1c ===,即()11,0F -,所以直线AB 的方程为1y x =+,将它与椭圆方程22143x y +=联立得221431x y y x ⎧+=⎪⎨⎪=+⎩,消去y 并化简整理得27880x x +-=,显然0∆>,由韦达定理得121288,77x x x x +=-=-,所以线段AB的长为12247AB x =-===.18.已知圆C 经过点A (2,0),与直线x +y =2相切,且圆心C 在直线2x +y ﹣1=0上.(1)求圆C 的方程;(2)已知直线l经过点(0,1),并且被圆C截得的弦长为2,求直线l的方程.【答案】(1)(x﹣1)2+(y+1)2=2(2)x=0或3x+4y﹣4=0【解析】【分析】(1)由圆C的圆心经过直线2x+y﹣1=0上,可设圆心为C(a,1﹣2a).由点到直线的距离公式表示出圆心C到直线x+y=2的距离d,然后利用两点间的距离公式表示出AC的长度即为圆的半径,然后根据直线与圆相切时圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值,由a的值可确定出圆心坐标及半径,然后根据圆心和半径写出圆的方程即可.(2)分类讨论,利用圆心到直线的距离为1,即可得出结论.【小问1详解】因为圆心C在直线2x+y﹣1=0上,可设圆心为C(a,1﹣2a).则点C到直线x+y=2的距离d=.据题意,d=|AC|=解得a=1.所以圆心为C(1,﹣1),半径r=d=则所求圆的方程是(x﹣1)2+(y+1)2=2.【小问2详解】k不存在时,x=0符合题意;k存在时,设直线方程为kx﹣y+1=0=1,∴k34=-,∴直线方程为3x+4y﹣4=0.综上所述,直线方程为x=0或3x+4y﹣4=0.19.如图,在四面体ABCD中,AD⊥平面ABC,点M为棱AB的中点,2,2 AB AC BC AD====.(1)证明:AC BD ⊥;(2)求平面BCD 和平面DCM 夹角的余弦值;(3)在线段BD 上是否存在一点P ,使得直线PC 与平面DCM 所成角的正弦值为66?若存在,求BP BD 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)23(3)不存在,理由见解析【解析】【分析】(1)由勾股定理得AB AC ⊥,由AD ⊥平面ABC 得AD AC ⊥,从而AC ⊥平面ABD ,进而得出结论;(2)以A 为坐标原点,以,,AB AC AD 所在直线分别为,,x y z 轴,建立空间直角坐标系,求出平面BCD 与平面DCM 的法向量,利用向量夹角公式求解;(3)设()01BP BD λλ=≤≤,则BP BD λ= ,求得22,0(,2)P λλ-,设直线PC 与平面DCM 所成角为θ,由题意sin cos ,PC n PC n PC nθ⋅== ,列式求解即可.【小问1详解】∵2,2AB AC BC ===,∴222AB AC BC +=,∴AB AC ⊥,∵AD ⊥平面ABC ,AC ⊂平面ABC ,∴AD AC ⊥,∵AB AD A ⋂=,,AB AD ⊂平面ABD ,∴AC ⊥平面ABD ,∵BD ⊂平面ABD ,∴AC BD ⊥.【小问2详解】以A 为坐标原点,以,,AB AC AD 所在直线分别为,,x y z轴,建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(1,0,0)A B C D M ,(2,2,0),(0,2,2),(1,2,0)BC CD CM =-=-=- ,设平面BCD 的法向量为111(,,)m x y z = ,由1111220220m BC x y m CD y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令11x =,则111,1==y z ,(1,1,1)m = ,设平面DCM 的法向量为222(,,)n x y z = ,由222222020n CD y z n CM x y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ ,令21y =,则222,1x z ==,(2,1,1)n = ,∴cos ,3m n m n m n ⋅=== ,∴平面BCD 和平面DCM夹角的余弦值为3.【小问3详解】设()01BP BDλλ=≤≤,则BP BD λ= ,设(,,)P x y z ,则()()2,,2,0,2x y z λ-=-,得22,0,2x y z λλ-=-==,∴22,0(,2)P λλ-,()22,2,2PC λλ=-- ,平面DCM 的法向量为(2,1,1)n = ,设直线PC 与平面DCM 所成角为θ,由题意,sin cos ,6PC n PC n PC n θ⋅==== ,∴210λ+=,此方程无解,∴在线段BD 上是不存在一点P ,使得直线PC 与平面DCM 所成角的正弦值为6.20.已知抛物线2:2(0)C y px p =>,过C 的焦点F 且垂直于x 轴的直线交C 于不同的两点,P Q ,且4PQ =.(1)求抛物线C 的方程;(2)若过点()0,2M 的直线l 与C 相交于不同的两点,,A B N 为线段AB 的中点,O 是坐标原点,且AOB与MON △:1,求直线l 的方程.【答案】(1)24y x=(2)123=+y x 或2y x =-+【解析】【分析】(1)由题意可得直线,P Q 方程,进而可得2PQ p =,可求得p 值,即可得答案.(2)设直线l 的方程为2(0)y kx k =+≠,联立直线与抛物线,根据韦达定理及弦长公式求得点N 的横坐标N x ,AB ,求出O 到直线l 距离d ,由AOB 与MON △的面积的关系列式求出k ,可得答案.【小问1详解】抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫ ⎪⎝⎭,则,P Q 两点所在的直线方程为:2p x =,代入抛物线2:2(0)C y px p =>,得22y p =,y p =±,则||24PQ p ==,故2p =,∴抛物线C 的方程为24.y x =【小问2详解】由题意,设直线l 的方程为2(0)y kx k =+≠,1122(,),(,)A x y B x y ,联立224y kx y x=+⎧⎨=⎩,得22(44)40k x k x +-+=,∴22(44)1632160k k k ∆=--=-+>,解得12k <且0k ≠,121222444,k x x x x k k -+==,∴点N 的横坐标为122222N x x k x k +-==,∴A B =O 到直线l 距离d =,∴AOB 的面积21122AOB S d k AB =⋅=△,MON △的面积22112222222M N ON k k S OM x k k --=⋅=⨯=⨯△,由题意AOB MON S =,∴2222kk k =-,整理得23210k k +-=,解得13k =或1k =-,∴直线l 的方程为123=+y x 或2y x =-+.21.已知椭圆2222:1(0)x y C a b a b+=>>的上、下顶点为21,B B ,左、右焦点为12,F F ,四边形1122B F B F 是面积为2的正方形.(1)求椭圆C 的方程;(2)若P 是椭圆C 上异于12,B B 的点,判断直线1PB 和直线2PB 的斜率之积是否为定值?如果是,求出定值;如果不是,请说明理由;(3)已知圆2223x y +=的切线l 与椭圆C 相交于,D E 两点,判断以DE 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.【答案】(1)2212x y +=(2)是定值,定值为12-(3)过定点,定点为(0,0)【解析】【分析】(1)根据题意列式求,,a b c ,即可得椭圆方程;(2)设()000,,0P x y x ≠,根据斜率公式结合椭圆方程分析求解;(3)取特例3x =±可知定点应为()0,0,再对一般情况,利用韦达定理可得0OC OD ⋅= ,即可得结果.【小问1详解】由题意可得22212222b c b c a b c=⎧⎪⎪⨯⨯=⎨⎪=+⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为2212x y +=.【小问2详解】是定值,理由如下:设()000,,0P x y x ≠,则220012x y +=,可得()220021x y =-,由(1)可知:()()120,1,0,1B B -,则()1222000022000011111221PB PB y y y y k k x x x y +---⋅=⋅===--,所以直线1PB 和直线2PB 的斜率之积是定值12-.【小问3详解】由题意可知:圆2223x y +=的圆心为()0,0,半径为3,因为13<,可知圆2223x y +=在椭圆内,可知切线l 与椭圆C 相交,①当直线l 的斜率不存在时,因为直线l 与圆M相切,故切线方程为3x =±,若切线方程为3x =代入椭圆方程可得,可得,33C ⎛⎫ ⎪ ⎪⎝⎭,,33D ⎛⎫- ⎪ ⎪⎝⎭,则以CD为直径的圆的方程为22233x y ⎛⎫-+= ⎪ ⎪⎝⎭;若切线方程为3x =-代入椭圆方程可得,可得,33C ⎛⎫- ⎪ ⎪⎝⎭,,33D ⎛-- ⎝⎭,则以CD 为直径的圆的方程为226233x y ⎛⎫++= ⎪ ⎪⎝⎭;联立方程2222233233x y x y ⎧⎛⎫⎪-+= ⎪ ⎪⎪⎪⎝⎭⎨⎛⎪++= ⎪ ⎪⎝⎭⎩,解得00x y ==⎧⎨⎩,即两圆只有一个交点()0,0,若存在定点,则定点应为()0,0;②当直线l 的斜率存在时,设直线l 的方程为y kx m =+,则3d ==,整理得222(1)3m k =+,联立方程2212y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 得222(21)4220k x kmx m +++-=,设()11,C x y ,()22,D x y ,则122421km x x k -+=+,21222221m x x k -=+,所以22221212121222()()()21m k y y kx m kx m k x x km x x m k -=++=+++=+,所以()2222121222212232202121k k m k OC OD x x y y k k +----⋅=+===++ 即0OC OD ⋅=,所以以CD 为直径的圆经过定点(0,0)O ;综上可知,以CD 为直径的圆过定点(0,0).【点睛】方法点睛:1.过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y kx t =+,由题设条件将t 用k 表示为t mk n =+,得()y k x m n =++,故动直线过定点(),m n -;(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点;2.求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.。
山东省德州市某重点中学2021-2022学年高二上学期期末考试数学理试题 Word版含答案
高二上学期期末考试数学试题(理)留意事项:1.答卷前,考生务必用钢笔或签字笔将自己的班别、姓名、考号填写在答题纸和答题卡的相应位置处。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
3.非选择题答案必需写在答题纸相应位置处,不按要求作答的答案无效。
4.考生必需保持答题卡的洁净,考试结束后,将答题卡和答题纸一并收回。
第I卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分)1. 数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n可以等于()A. (-1)n+12 B. cosnπ2 C. cosn+12π D. cosn+22π2. 设a<b<0,则下列不等式中不成立的是()A. 1a>1b B.1a-b>1a C. |a|>-b D. -a>-b3. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为()A.1 B.2sin 10°C.2cos 10°D.cos 20°4. 等差数列{a n}前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()A. 6B. 7C. 8D. 95. 一个等比数列的前三项的积为3,最终三项的积为9,且全部项的积为729,则该数列的项数是()A. 13B. 12C. 11D. 106. 双曲线C:x2a2-y2b2=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A. x280-y220=1 B.x220-y280=1 C.x220-y25=1 D.x25-y220=17. 若a>0,b>0,且ln(a+b)=0,则1a+1b的最小值是()A.14 B. 1 C. 4 D. 88. 如图所示,平行六面体ABCD—A1B1C1D1中,M为A1C1与B1D1的交点.若AB→=a,AD→=b,AA1→=c,则下列向量中与BM→相等的向量是 ()A.-12a+12b+c B.12a+12b+cC.-12a-12b+c D.12a-12b+c9. 数列}{na的前n项和为nS,511=a,且对任意正整数m,n,都有nmnmaaa⋅=+,若tSn<恒成立,则实数t的最小值为()A.4B.34C.43D.4110.过双曲线2222100x y(a,b)a b-=>>的左焦点0F(c,)-作圆222x y a+=的切线,切点为E,延长FE交抛物线24y cx=于点P,O为原点,若12OE(OF OP)=+,则双曲线离心率为()A.152+B.333+C.52D.132+第Ⅱ卷(非选择题共100分)二、填空题(本大题共5小题,每小题5分,共25分)11. 若点P到直线y=-3的距离等于它到点(0,3)的距离,则点P的轨迹方程是_________.12.推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=________________.13. 已知△ABC的面积为32,AC=3,∠ABC=π3,则△ABC的周长等于_________________.14. 若x<m-1或x>m+1是x2-2x-3>0的必要不充分条件,则实数m的取值范围是_______.15. 已知变量x ,y 满足条件⎩⎨⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是_____________________. 三、解答题(本大题共6小题,共75分) 16. (本小题满分12分)设p :关于x 的不等式 a x >1的解集是 {x |x <0} ;q :函数y =ax 2-x +a 的定义域为R . 若 p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.17. (本小题满分12分)已知△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1) 若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值; (2) 若sin C +sin(B -A )=sin 2A ,试推断△ABC 的外形.18.(本小题满分12分)已知数列{a n }的各项均为正数,前n 项和为S n ,且 S n =a n (a n +1)2, n ∈N *.(1) 求证:数列{a n }是等差数列;(2) 设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .19.(本小题满分12分)某市近郊有一块大约500500m m ⨯的接近正方形的荒地,地方政府预备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地外形相同),塑胶运动场地占地面积为S 平方米.(1) 分别用x 表示y 和S 的函数关系式,并给出定义域;(2) 怎样设计能使S 取得最大值,并求出最大值.20. (本小题满分13分)已知四边形ABCD 是菱形,060BAD ∠=,四边形BDEF 是矩形 ,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点. (1) 求证 : 平面//AEF 平面BDGH ; (2) 若平面BDGH 与平面ABCD 所成的角为060,求直线CF 与平面BDGH 所成的角的正弦值.21.(本小题满分14分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为3. (1) 求椭圆C 的标准方程;(2) 直线x =2与椭圆C 交于P 、Q 两点,A 、B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB的斜率为12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学年度上学期期末质量检测 高 二 数 学 试 卷 (理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.注意事项:1.第Ⅰ卷的答案填在答题卷方框里,第Ⅱ卷的答案或解答过程写在答题卷指定处,写在试题卷上的无效.2.答题前,考生务必将自己的“姓名”、“班级’’和“考号”写在答题卷上.3.考试结束,只交答题卷.第Ⅰ卷 (选择题共60分)一、选择题(每小题5分,共20个小题,本题满分60分) 1、复数(2)z i i =--在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 命题“0x R ∃∈,3210x x -+>”的否定是 ( ) A .0x R ∃∈,3210x x -+<B . x R ∀∈,3210x x -+≤C .0x R ∃∈,3210x x -+≤D .∀x R ∈,3210x x -+>3.设a R ∈,则“1a =”是“直线1:210l ax y +-=与直线2:(1)40l x a y +++=平行”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.函数f (x )=sin xe x 的图像在点(0,f (0))处的切线的倾斜角为( ) A .0B .π4C .1D .π25.以抛物线241x y =的焦点为圆心,且过坐标原点的圆的方程为 ( )A .022=-+x y xB .0222=-+x y xC .022=-+y y xD .0222=-+y y x6.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,以12F F 为直径的圆与双曲线渐近线的一个交点为(1,2),则此双曲线方程为( )A .2214x y -=B .2212y x -=C .2214y x -=D .2212x y -= 7.已知圆的方程为22240x y y +--=,过点(2,1)A 的直线被圆所截,则截得的最短弦的长度为( )A .32B .2C .322D .22 8.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6)D .(-∞,-1)∪(2,+∞)9.若方程330x x m -+=在[0,2]上只有一个解,则实数m 的取值范围是 A .[2,2]- B. 0,2](C. {}[2,02-⋃)D. (,2)(2,)-∞-+∞10.我们把由半椭圆)0(1)0(122222222<=+≥=+x cx b y x b y a x 与半椭圆合成的曲线称作“果圆”(其中0,222>>>+=c b a c b a )。
如图,设点210,,F F F 是相应椭圆的焦点,A 1、A 2和B 1、B 2是“果圆”与x ,y 轴的交点,若△F 0F 1F 2是腰长为1的等腰直角三角形,则a ,b 的值分别为 ( )A .5,4B.7,12C .21,2D .6,1211.函数()f x 的定义域为R ,(1)1f -=,对任意x R ∈,函数导数'()3f x >,则()34f x x >+的解集为( )A .(1,1)- B. (1,)-+∞C. (,1)-∞-D.(,)-∞+∞12.已知圆22:(7)64M x y ++=,定点(7,0)N ,P M 点为圆上的动点,Q NP 点在上, G MP =2NP NQ 点在线段上,且满足,G GQ NP =0,则点的轨迹方程是( )A .221169x y += B. 2216457x y += C. 221169x y -= D. 2216457x y -=第Ⅱ卷 (非选择题共90分)二、填空题(每小题5分,共4小题,满分20分) 13.2224x --⎰= .14. 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为 .15.已知12,F F 分别为椭圆2221(30)9x y b b+=>>的左、右焦点,若存在过12,F F 的圆与直线20x y ++=相切,则椭圆离心率的最大值为 .16.设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.三、解答题(本大题共6小题,17题10分,18—22题均为12分,共计70分,解答时应写出解答过程或证明步骤)17.已知命题p :方程22113x y m m+=+-表示焦点在y 轴上的椭圆,命题q :关于X 的方程22230xmx m +++=无实根,(1)若命题p 为真命题,求实数m 的取值范围;(2)若“p q ∧”为假命题,“p q ∨”为真命题,求实数m 的取值范围.18.已知圆C :228140x y y +-+=,直线l 过点(1,1) (1)若直线l 与圆C 相切,求直线l 的方程;(2)C A B AB =l l 当与圆交于不同的两点,,且2时,求直线的方程。
19.已知抛物线C :22(0)y px p =>上的一点0(3,)M y 到焦点F 的距离等于5. (1)求抛物线C 的方程;(2)若过点(4,0)的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点,求ABO ∆面积最小值.20.已知函数f (x )=e x-ax -1.(1)若1a =,求f (x )的单调增区间;(2)是否存在a ,使f (x )在(-2,3)上为减函数,若存在,求出a 的取值范围,若不存在,请说明理由.21. 已知椭圆C :12222=+by a x )0(>>b a 2(1,0)-F ,过点(0,2)D 且斜率为k 的直线l 交椭圆于,A B 两点.(1)求椭圆C 的标准方程; (2)求k 的取值范围;(3)在y 轴上,是否存在定点E ,使AE BE ⋅恒为定值?若存在,求出E 点的坐标和这个定值;若不存在,说明理由.22. 已知函数2()ln(1)f x a x ax x =+--.(Ⅰ)若1x =为函数()f x 的极值点,求a 的值; (Ⅱ)讨论()f x 在定义域上的单调性; (Ⅲ)证明:对任意正整数n ,222341ln(1)223n n n++<+++⋅⋅⋅+.高二数学(理)试卷参考答案一、选择题(每小题5分,共12个小题,本题满分60分)1 D2 B3 A4 B5 D6 C7 B8 B9 C 10 D 11 B 12 A 二、填空题(每小题5分,共4小题,满分20分) 13、2π 14、[3,3]- 15、2316、4 三.解答题(17题10分,18—22题均为12分,共计70分. 需要写出解答过程或证明步骤)17. 解:(1)因为方程22113x y m m+=+-表示焦点在y 轴上的椭圆,所以 310m m ->+> .⋯⋯3分 解得 11m -<< .⋯⋯5分2=4(23)0,.,711.1311.93m p q p q p q m p q m m m m m p q m m ∆-+<⋯⋯∧∨⋯-<<⎧∈∅⋯⋯⎨≤-≥⎩≥≤-⎧≤⋯⋯⎨-<<⎩(2)若q 为真命题,则4m 解得 -1<m<3 6分因为“”为假命题,“”为真命题,等价于恰有一真一假分当真假时,,则 8分或或当假真时,,则1m<3 分1综上所述,实数的取值范围是[1,3).10⋯⋯。
分18. 解:(1)圆C :228140x y y +-+=,配方,得22(4)2,x y +-= 圆心()0,4C ,半径2r =,① 当直线l 的斜率不存在时,l :1x =,此时l 不与圆相切。
-----2分 ②若直线l 的斜率,设l :1(1)y k x -=-,由2321k d k+==+得7k =或-1, ---------4分 所以直线方程为760x y --=或20x y +-= ---------6分(2)由2221(2)d +=,得1d =,①若当直线l 的斜率不存在时,l :1x =,满足题意 ----------8分 ②若直线l 的斜率存在,设l :1(1)y k x -=-由223()121k k ++=+得43k =-,此时:4370l x y +-=1x = -------10分 综上所述l 方程为1x =或4370x y +-= -------12分 19. 解:(1)依题意得352pMF =+=,所以4p = 故此抛物线的方程为28y x = ---------4分 (2)设直线1122: 4.(,),(,)l x ty A x y B x y =+联立方程组28,4,y x x ty ⎧=⎨=+⎩消去x 得28320y ty --=, ------6分所以12128,32y y t y y +=⋅=- -------8分 所以2121212142()42ABC S y y y y y y ∆=⨯⨯-=+-⋅22264(2)162t t =+=+分当0t =时,ABC S ∆取得最小值2 --------12分 20.解:(1) f ′(x )=e x-1, ------2分 令e x -1≥0,则e x≥1,x ≥0.因此当,f (x )的单调增区间 [0,+∞). ----------5分 (2)∵f ′(x )=e x-a ≤0在(-2,3)上恒成立.------6分 ∴a ≥e x在x ∈(-2,3)上恒成立. ----------8分 ∴e -2<e x <e 3,只需a ≥e 3. ---------10分 当a =e 3时,f ′(x )=e x -e 3<0在x ∈(-2,3)上恒成立, 即f (x )在(-2,3)上为减函数,∴a ≥e 3.故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数. ------12分.262602416)21(24644.068)21(212.2)2,0(D )2(121,2122)1(.2122222222222>-<>-=+-=∆⋯⋯=+++⎪⎩⎪⎨⎧+==++=⋯⋯=+==⎪⎩⎪⎨⎧==k k k k k kx x k kx y y x kx y l k y x b a c a c 或解得:则分 得由的方程为的直线且斜率为设点2分 所求的椭圆方程为,解得由已知可得解:所以k的取值范围是6(,(,)22-∞-+∞. ……6分(3)设1122(,),(,)A x y B x y , 则12122286,1212k x x x x k k +=-=++. 又2212121212224(2)(2)2()421k y y kx kx k x x k x x k -=++=+++=-+,12121224(2)(2)()421y y kx kx k x x k +=+++=++=+. ……8分设存在点(0,)E m ,则11(,)AE x m y =--,22(,)BE x m y =--, 所以2121212()AE BE x x m m y y y y ⋅=+-++124212412622222+--+⋅-++=k k k m m k 2222(22)41021m k m m k -+-+=+,……8分要使得AE BE t ⋅=(t 为常数),只要2222(22)41021m k m m t k -+-+=+, 从而222(222)4100m t k m m t --+-+-=,即222220, (1)4100, (2)m t m m t ⎧--=⎪⎨-+-=⎪⎩ ……10分由(1)得21t m =-, 代入(2)解得114m =,从而10516t =, 故存在定点11(0,)4E ,使AE BE ⋅恒为定值10516. ……12分22.(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x )>0,f (x )递增;x∈(1,+∞),f'(x )<0,f (x )递减,∴f(x )在x=1处取极大值.满足题意.---------------------------4分(2),令f'(x )=0,得x=0,或,又f (x )的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x )>0,f (x )递增;若x∈(0,+∞),则f'(x )<0,f (x )递减; ②当,即﹣2<a <0时,若x∈(﹣1,,则f'(x )<0,f (x )递减; 若,0),则f'(x )>0,f (x )递增;若x∈(0,+∞),则f'(x )<0,f (x )递减; ③当,即a=﹣2时,f'(x )≤0,f (x )在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;-------------------9分(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.----------------------------12分。