Matlab中的遗传算法与优化问题求解方法介绍

合集下载

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法引言在现代科技发展的背景下,优化算法成为解决各种问题的重要工具之一。

遗传算法作为一种生物启发式算法,具有全局寻优能力和适应性强的特点,在许多领域中被广泛应用。

本文将介绍如何使用Matlab进行遗传算法优化问题求解,包括问题建模、遗传算子设计、遗传算法编码、适应度评价和求解过程控制等方面。

一、问题建模在使用遗传算法求解优化问题之前,我们首先需要将问题定义为数学模型。

这包括确定问题的目标函数和约束条件。

例如,假设我们要最小化一个多变量函数f(x),其中x=(x1,x2,...,xn),同时还有一些约束条件g(x)<=0和h(x)=0。

在Matlab中,我们可通过定义一个函数来表示目标函数和约束条件。

具体实现时,我们需要在目标函数和约束函数中设置输入参数,通过调整这些参数进行优化。

二、遗传算子设计遗传算法的核心是遗传算子的设计,包括选择(Selection)、交叉(Crossover)、变异(Mutation)和替代(Replacement)等。

选择操作通过一定的策略从种群中选择出适应度较高的个体,作为进行交叉和变异的父代个体。

交叉操作通过将两个父代个体的基因片段进行交换,产生新的子代个体。

变异操作通过改变个体某些基因的值,引入新的基因信息。

替代操作通过选择适应度较低的个体将其替换为新产生的子代个体。

三、遗传算法编码在遗传算法中,个体的编码方式决定了问题的解空间。

常见的编码方式有二进制编码和实数编码等。

当问题的变量是二进制形式时,采用二进制编码。

当问题的变量是实数形式时,采用实数编码。

在Matlab中,我们可以使用矩阵或向量来表示个体的基因型,通过制定编码方式来实现遗传算法的编码过程。

四、适应度评价适应度评价是遗传算法中判断个体优劣的指标。

在适应度评价过程中,我们将问题的目标函数和约束条件应用于个体的解,计算得到一个适应度值。

适应度值越大表示个体越优。

Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。

无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。

而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。

本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。

一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。

其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。

然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。

2. 共轭梯度法共轭梯度法是一种改进的最速下降法。

它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。

相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。

3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。

它通过构建并求解特定的二次逼近模型来求解无约束问题。

然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。

二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。

它通过在可行域内进行边界移动来寻找最优解。

然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。

2. 内点法内点法是一种改进的线性规划问题求解方法。

与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。

内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。

三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。

它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。

信赖域算法既考虑了收敛速度,又保持了数值稳定性。

2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。

它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。

遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。

MATLAB实验遗传算法与优化设计

MATLAB实验遗传算法与优化设计

实验六遗传算法与优化设计一、实验目的1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异);2. 学习使用Matlab中的遗传算法工具箱(gatool)来解决优化设计问题;二、实验原理及遗传算法工具箱介绍1. 一个优化设计例子图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。

微带电极的结构参数如图所示,W、t分别是上电极的宽度和厚度,D是上下电极间距。

当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。

根据微带传输线理论,高频工作状态下(假定信号频率1GHz),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加):图1 微带线横截面结构以及场分布示意图(1)其中为金属的表面电阻率,为电阻率。

可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。

此处设计变量有3个:W、D、t,它们组成决策向量[W, D ,t] T,待优化函数称为目标函数。

上述优化设计问题可以抽象为数学描述:(2)其中是决策向量,x1,…,xn为n个设计变量。

这是一个单目标的数学规划问题:在一组针对决策变量的约束条件下,使目标函数最小化(有时也可能是最大化,此时在目标函数前添个负号即可)。

满足约束条件的解X称为可行解,所有满足条件的X组成问题的可行解空间。

2. 遗传算法基本原理和基本操作遗传算法(Genetic Algorithm, GA)是一种非常实用、高效、鲁棒性强的优化技术,广泛应用于工程技术的各个领域(如函数优化、机器学习、图像处理、生产调度等)。

遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法。

按照达尔文的进化论,生物在进化过程中“物竞天择”,对自然环境适应度高的物种被保留下来,适应度差的物种而被淘汰。

Matlab中的优化问题求解方法

Matlab中的优化问题求解方法

Matlab中的优化问题求解方法在数学和工程领域,优化问题是一个重要的研究方向。

通过寻找最优解,可以提高系统的效率和性能。

Matlab提供了丰富的工具箱和函数,可以用于解决各种不同类型的优化问题。

本文将介绍一些常见的优化问题求解方法,并针对它们在Matlab中的应用进行分析和讨论。

第一种常见的优化问题求解方法是线性规划(Linear Programming,LP)。

在线性规划中,目标函数和约束条件都是线性的。

通过寻找使得目标函数达到最大或最小的变量取值,可以获得问题的最优解。

Matlab中的优化工具箱提供了linprog函数,可以用于求解线性规划问题。

该函数采用单纯形算法或内点算法进行求解,并且可以处理带有等式和不等式约束的问题。

用户只需提供目标函数系数、约束矩阵和约束向量,即可得到问题的最优解和最优值。

除了线性规划,二次规划(Quadratic Programming,QP)也是常见的优化问题求解方法。

在二次规划中,目标函数是一个二次函数,约束条件可以是线性的或二次的。

Matlab中的优化工具箱提供了quadprog函数,可以用于求解二次规划问题。

该函数基于内点算法或者信赖域反射算法进行求解。

用户只需提供目标函数的二次项系数、一次项系数以及约束矩阵和约束向量,即可得到问题的最优解和最优值。

除了线性规划和二次规划,非线性规划(Nonlinear Optimization)也是常见的优化问题求解方法。

与线性规划和二次规划不同,非线性规划中的目标函数和约束条件可以是非线性的。

Matlab中的优化工具箱提供了fmincon函数,可以用于求解约束非线性优化问题。

该函数采用内点法、SQP法或者信赖域反射法进行求解。

用户需要提供目标函数、约束函数以及约束类型,并设定初始解,即可得到问题的最优解和最优值。

除了上述三种基本的优化问题求解方法,约束最小二乘(Constrained Least Squares)问题也是一个重要的优化问题。

matlab多目标优化遗传算法

matlab多目标优化遗传算法

matlab多目标优化遗传算法Matlab多目标优化遗传算法引言:多目标优化是在现实问题中常见的一种情况,它涉及到在多个目标函数的约束下,寻找一组最优解,从而使得多个目标函数达到最优状态。

遗传算法是一种常用的优化方法,它模拟了自然界中的遗传和进化过程,通过不断迭代、选择和交叉变异等操作,逐步搜索最优解。

本文将介绍如何使用Matlab中的遗传算法工具箱来实现多目标优化。

多目标优化问题描述:在传统的单目标优化问题中,我们寻找的是一组参数,使得目标函数的值最小或最大。

而在多目标优化问题中,我们需要考虑多个目标函数的最优化。

具体来说,我们假设有m个目标函数,目标向量为f(x)=(f1(x), f2(x), ..., fm(x)),其中x是决策变量向量。

我们的目标是找到一组解x∗,使得f(x∗)在所有可行解中最优。

然而,由于多目标问题中的目标函数之间往往存在冲突,即改善一个目标函数的同时可能会导致其他目标函数的恶化,导致不存在一个唯一最优解。

因此,我们常常追求一组非劣解,即无法通过改变解的一个目标值而不改变其他目标值。

Matlab多目标优化遗传算法工具箱:Matlab提供了一个强大的工具箱,即Multiobjective Optimization Toolbox,可用于解决多目标优化问题。

该工具箱基于遗传算法,并结合了其他优化策略和算子,能够高效地搜索多目标优化问题的非劣解集合。

使用Matlab多目标优化遗传算法工具箱的步骤如下:1. 定义目标函数:根据具体问题,编写目标函数,输入为决策变量向量,输出为目标函数向量。

2. 设置优化参数:包括种群大小、迭代次数、交叉概率、变异概率等。

3. 定义决策变量的上下界:根据问题的约束条件,设置决策变量的取值范围。

4. 运行遗传算法:使用Matlab中的gamultiobj函数来运行多目标优化遗传算法,得到非劣解集合。

5. 分析结果:根据具体问题,分析非劣解集合,选择最优解。

遗传算法多目标优化matlab源代码

遗传算法多目标优化matlab源代码

遗传算法多目标优化matlab源代码遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传学原理的优化算法。

它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

在多目标优化问题中,GA也可以被应用。

本文将介绍如何使用Matlab实现遗传算法多目标优化,并提供源代码。

一、多目标优化1.1 多目标优化概述在实际问题中,往往存在多个冲突的目标函数需要同时优化。

这就是多目标优化(Multi-Objective Optimization, MOO)问题。

MOO不同于单一目标优化(Single Objective Optimization, SOO),因为在MOO中不存在一个全局最优解,而是存在一系列的Pareto最优解。

Pareto最优解指的是,在不降低任何一个目标函数的情况下,无法找到更好的解决方案。

因此,在MOO中我们需要寻找Pareto前沿(Pareto Front),即所有Pareto最优解组成的集合。

1.2 MOO方法常见的MOO方法有以下几种:(1)加权和法:将每个目标函数乘以一个权重系数,并将其加和作为综合评价指标。

(2)约束法:通过添加约束条件来限制可行域,并在可行域内寻找最优解。

(3)多目标遗传算法:通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

1.3 MOO评价指标在MOO中,我们需要使用一些指标来评价算法的性能。

以下是常见的MOO评价指标:(1)Pareto前沿覆盖率:Pareto前沿中被算法找到的解占总解数的比例。

(2)Pareto前沿距离:所有被算法找到的解与真实Pareto前沿之间的平均距离。

(3)收敛性:算法是否能够快速收敛到Pareto前沿。

二、遗传算法2.1 遗传算法概述遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。

它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

matlab 自带的粒子群和遗传算法

matlab 自带的粒子群和遗传算法

matlab 自带的粒子群和遗传算法粒子群优化算法(Particle Swarm Optimization, PSO)和遗传算法(Genetic Algorithm, GA)是两种常用的进化计算算法,常用于求解优化问题。

在 MATLAB 中,内置了对这两种算法的支持。

粒子群优化算法是一种通过模拟鸟群或鱼群的行为方式来进行优化的算法。

该算法通过维护一个粒子群,每个粒子代表一个解,通过迭代优化粒子的位置来逐步寻找最优解。

在MATLAB 中,可以使用 `pso` 函数来实现粒子群优化算法。

```matlab[x, fval] = pso(@objective, nvars, lb, ub)```其中 `@objective` 是目标函数的句柄,`nvars` 是变量个数,`lb` 和 `ub` 分别是各个变量的下界和上界。

函数返回的 `x` 是最优解,`fval` 是最优解对应的目标函数值。

遗传算法是一种通过模拟生物进化过程来进行优化的算法。

该算法通过定义适应度函数来评价每个个体的适应度,并使用遗传操作(交叉、变异、选择)来进化种群,从而逐步寻找最优解。

在 MATLAB 中,可以使用 `ga` 函数来实现遗传算法。

```matlab[x, fval] = ga(@objective, nvars, [], [], [], [], lb, ub)```其中 `@objective` 是目标函数的句柄,`nvars` 是变量个数,`lb` 和 `ub` 分别是各个变量的下界和上界。

函数返回的 `x` 是最优解,`fval` 是最优解对应的目标函数值。

在使用这两种算法时,需要自定义目标函数 `@objective` 来适应具体的优化问题。

目标函数的输入是一个向量,表示待优化的变量,输出是一个标量,表示对应变量的适应度或目标函数值。

以下是一个示例,使用粒子群优化算法和遗传算法来求解一个简单的函数优化问题:```matlab% Objective functionfunction f = objective(x)f = sin(x) + cos(2*x);end% Particle swarm optimizationnvars = 1; % Number of variableslb = -10; % Lower bound of variableub = 10; % Upper bound of variable[x_pso, fval_pso] = pso(@objective, nvars, lb, ub);% Genetic algorithm[x_ga, fval_ga] = ga(@objective, nvars, [], [], [], [], lb, ub);disp("Particle Swarm Optimization:")disp("Best solution: " + x_pso)disp("Objective value: " + fval_pso)disp("Genetic Algorithm:")disp("Best solution: " + x_ga)disp("Objective value: " + fval_ga)```在上述示例中,首先定义了一个简单的目标函数 `objective`,然后分别使用粒子群优化算法和遗传算法来求解最优化问题。

使用Matlab进行多目标遗传算法优化问题求解的方法

使用Matlab进行多目标遗传算法优化问题求解的方法

使用Matlab进行多目标遗传算法优化问题求解的方法引言多目标优化问题是在现实生活中经常遇到的一种复杂的决策问题,其目标是寻找一个最优解来同时优化多个冲突的目标。

在实际应用中,往往难以找到一个能够满足所有目标的最优解,因此需要采取一种合理的方法来寻找一个最优的解集,这就是多目标优化问题。

多目标遗传算法是一种常用的方法之一,本文将介绍如何使用Matlab进行多目标遗传算法优化问题求解。

1. 问题的定义首先,我们需要明确多目标优化问题的定义和目标函数的形式。

多目标优化问题可以写成如下形式:minimize F(X) = [f1(X), f2(X), ..., fn(X)]subject to constraints(X)其中,X表示问题的决策变量,fi(X)表示问题的第i个目标函数(i=1,2,...,n),constraints(X)为问题的约束条件。

2. 遗传算法的基本原理遗传算法是一种模拟自然进化过程的优化方法,它模拟了遗传、交叉和突变等自然进化的过程。

遗传算法的基本原理包括:种群初始化、适应度评估、选择、交叉、变异和新种群更新等步骤。

3. 多目标遗传算法的改进传统的遗传算法只能求解单目标优化问题,对于多目标优化问题需要进行改进。

常用的改进方法有非支配排序、拥挤度距离以及遗传算子的设计等。

非支配排序:对于多目标优化问题,需要定义支配关系。

如果一个解在优化问题的所有目标上都比另一个解好,则称这个解支配另一个解。

非支配排序根据支配关系将解分为多个非支配层级,层级越高的解越优。

拥挤度距离:拥挤度距离用于衡量解的分布情况,越分散的解拥挤度越大。

拥挤度距离可以有效地保持种群的多样性,避免收敛到局部最优解。

遗传算子的设计:选择、交叉和变异是遗传算法中的三个重要操作。

在多目标遗传算法中,需要设计合适的遗传算子来保持种群的多样性,并尽可能地寻找高质量的解。

4. Matlab实现多目标遗传算法Matlab是一种功能强大的数学软件,它提供了丰富的工具箱和函数来实现多目标遗传算法。

matlab实用教程 实验十 遗传算法与优化问题

matlab实用教程 实验十 遗传算法与优化问题

matlab实用教程实验十遗传算法与优化问题matlab实用教程实验十遗传算法与优化问题一、问题背景与实验目的二、相关函数(命令)及简介三、实验内容四、自己动手一、问题背景与实验目的遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位.本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).(1)遗传算法中的生物遗传学概念由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下:序号遗传学概念遗传算法概念数学概念1个体要处理的基本对象、结构也就是可行解2群体个体的集合被选定的一组可行解3染色体个体的表现形式可行解的编码4基因染色体中的元素编码中的元素5基因位某一基因在染色体中的位置元素在编码中的位置6适应值个体对于环境的适应程度,或在环境压力下的生存能力可行解所对应的适应函数值7种群被选定的一组染色体或个体根据入选概率定出的一组可行解8选择从群体中选择优胜的个体,淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解9交叉一组染色体上对应基因段的交换根据交叉原则产生的一组新解10交叉概率染色体对应基因段交换的概率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.9011变异染色体水平上基因变化编码的某些元素被改变12变异概率染色体上基因变化的概率(可能性大小)开区间(0,1)内的一个值, 一般为0.001~0.0113进化、适者生存个体进行优胜劣汰的进化,一代又一代地优化目标函数取到最大值,最优的可行解(2)遗传算法的步骤遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解.下面给出遗传算法的具体步骤,流程图参见图1:第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;第二步:定义适应函数,便于计算适应值;第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;第四步:随机产生初始化群体;第五步:计算群体中的个体或染色体解码后的适应值;第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.图1 一个遗传算法的具体步骤遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止.2.遗传算法的实际应用例1:设,求.注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题.在此将细化地给出遗传算法的整个过程.(1)编码和产生初始群体首先第一步要确定编码的策略,也就是说如何把到2这个区间内的数用计算机语言表示出来.编码就是表现型到基因型的映射,编码时要注意以下三个原则:完备性:问题空间中所有点(潜在解)都能成为GA编码空间中的点(染色体位串)的表现型;健全性:GA编码空间中的染色体位串必须对应问题空间中的某一潜在解;非冗余性:染色体和潜在解必须一一对应.这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为,则必须将闭区间分为等分.因为所以编码的二进制串至少需要22位.将一个二进制串(b21b20b19…b1b0)转化为区间内对应的实数值很简单,只需采取以下两步(Matlab程序参见附录4):1)将一个二进制串(b21b20b19…b1b0)代表的二进制数化为10进制数:2)对应的区间内的实数:例如,一个二进制串a=<1000101110110101000111>表示实数0.637197.=(1000101110110101000111)2=2288967二进制串<0000000000000000000000>,<1111111111111111111111>,则分别表示区间的两个端点值-1和2.利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则.首先我们来随机的产生一个个体数为4个的初始群体如下:pop(1)={<1101011101001100011110>,%% a1<1000011001010001000010>,%% a2<0001100111010110000000>,%% a3<0110101001101110010101>} %% a4(Matlab程序参见附录2)化成十进制的数分别为:pop(1)={ 1.523032,0.574022 ,-0.697235 ,0.247238 }接下来我们就要解决每个染色体个体的适应值问题了.(2)定义适应函数和适应值由于给定的目标函数在内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础.对于本题中的最大化问题,定义适应函数,采用下述方法:式中既可以是特定的输入值,也可以是当前所有代或最近K代中的最小值,这里为了便于计算,将采用了一个特定的输入值.若取,则当时适应函数;当时适应函数.由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab程序参见附录3):f [pop(1)]={ 1.226437 , 1.318543 , -1.380607 , 0.933350 }然后通过适应函数计算出适应值分别如下(Matlab程序参见附录5、附录6):取,g[pop(1)]= { 2.226437 , 2.318543 , 0 , 1.933350 }(3)确定选择标准这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率.其计算公式如下:对于给定的规模为n的群体pop={},个体的适应值为,则其入选概率为由上述给出的群体,我们可以计算出各个个体的入选概率.首先可得,然后分别用四个个体的适应值去除以,得:P(a1)=2.226437 / 6.478330 = 0.343675 %% a1P(a2)=2.318543 / 6.478330 = 0.357892 %% a2P(a3)= 0 / 6.478330 = 0 %% a3P(a4)=1.933350 / 6.478330 = 0.298433 %% a4(Matlab程序参见附录7)(4)产生种群计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab程序参见附录8、附录11).要说明的是:附录11的算法与这里不完全相同.为保证收敛性,附录11的算法作了修正,采用了最佳个体保存方法(elitist model),具体内容将在后面给出介绍.由初始群体的入选概率我们淘汰掉a3,再加入a2补足成与群体同样大小的种群得到newpop(1)如下:newpop(1)={<1101011101001100011110>,%% a1<1000011001010001000010>,%% a2<1000011001010001000010>,%% a2<0110101001101110010101>} %% a4(5)交叉交叉也就是将一组染色体上对应基因段的交换得到新的染色体,然后得到新的染色体组,组成新的群体(Matlab程序参见附录9).我们把之前得到的newpop(1)的四个个体两两组成一对,重复的不配对,进行交叉.(可以在任一位进行交叉)<110101110 1001100011110>,<1101011101010001000010>交叉得:<100001100 1010001000010>,<1000011001001100011110><10000110010100 01000010>,<1000011001010010010101>交叉得:<01101010011011 10010101>,<0110101001101101000010>通过交叉得到了四个新个体,得到新的群体jchpop (1)如下:jchpop(1)={<1101011101010001000010>,<1000011001001100011110>,<1000011001010010010101>,<0110101001101101000010>}这里采用的是单点交叉的方法,当然还有多点交叉的方法,不过有些烦琐,这里就不着重介绍了.(6)变异变异也就是通过一个小概率改变染色体位串上的某个基因(Matlab程序参见附录10).现把刚得到的jchpop(1)中第3个个体中的第9位改变,就产生了变异,得到了新的群体pop(2)如下:pop(2)= {<1101011101010001000010>,<1000011001001100011110>,<1000011011010010010101>,<0110101001101101000010> }然后重复上述的选择、交叉、变异直到满足终止条件为止.(7)终止条件遗传算法的终止条件有两类常见条件:(1)采用设定最大(遗传)代数的方法,一般可设定为50代,此时就可能得出最优解.此种方法简单易行,但可能不是很精确(Matlab程序参见附录1);(2)根据个体的差异来判断,通过计算种群中基因多样性测度,即所有基因位相似程度来进行控制.3.遗传算法的收敛性前面我们已经就遗传算法中的编码、适应度函数、选择、交叉和变异等主要操作的基本内容及设计进行了详细的介绍.作为一种搜索算法,遗传算法通过对这些操作的适当设计和运行,可以实现兼顾全局搜索和局部搜索的所谓均衡搜索,具体实现见下图2所示.图2 均衡搜索的具体实现图示应该指出的是,遗传算法虽然可以实现均衡的搜索,并且在许多复杂问题的求解中往往能得到满意的结果,但是该算法的全局优化收敛性的理论分析尚待解决.目前普遍认为,标准遗传算法并不保证全局最优收敛.但是,在一定的约束条件下,遗传算法可以实现这一点.下面我们不加证明地罗列几个定理或定义,供读者参考(在这些定理的证明中,要用到许多概率论知识,特别是有关马尔可夫链的理论,读者可参阅有关文献).定理1 如果变异概率为,交叉概率为,同时采用比例选择法(按个体适应度占群体适应度的比例进行复制),则标准遗传算法的变换矩阵P是基本的.定理2 标准遗传算法(参数如定理1)不能收敛至全局最优解.由定理2可以知道,具有变异概率,交叉概率为以及按比例选择的标准遗传算法是不能收敛至全局最最优解.我们在前面求解例1时所用的方法就是满足定理1的条件的方法.这无疑是一个令人沮丧的结论.然而,庆幸的是,只要对标准遗传算法作一些改进,就能够保证其收敛性.具体如下:我们对标准遗传算法作一定改进,即不按比例进行选择,而是保留当前所得的最优解(称作超个体).该超个体不参与遗传.最佳个体保存方法(elitist model)的思想是把群体中适应度最高的个体不进行配对交叉而直接复制到下一代中.此种选择操作又称复制(copy).De Jong对此方法作了如下定义:定义设到时刻t(第t代)时,群体中a*(t)为最佳个体.又设A(t+1)为新一代群体,若A(t+1)中不存在a*(t),则把a*(t)作为A(t+1)中的第n+1个个体(其中,n为群体大小)(Matlab程序参见附录11).采用此选择方法的优点是,进化过程中某一代的最优解可不被交叉和变异操作所破坏.但是,这也隐含了一种危机,即局部最优个体的遗传基因会急速增加而使进化有可能限于局部解.也就是说,该方法的全局搜索能力差,它更适合单峰性质的搜索空间搜索,而不是多峰性质的空间搜索.所以此方法一般都与其他选择方法结合使用.定理3 具有定理1所示参数,且在选择后保留当前最优值的遗传算法最终能收敛到全局最优解.当然,在选择算子作用后保留当前最优解是一项比较复杂的工作,因为该解在选择算子作用后可能丢失.但是定理3至少表明了这种改进的遗传算法能够收敛至全局最优解.有意思的是,实际上只要在选择前保留当前最优解,就可以保证收敛,定理4描述了这种情况.定理4 具有定理1参数的,且在选择前保留当前最优解的遗传算法可收敛于全局最优解.例2:设,求,编码长度为5,采用上述定理4所述的“在选择前保留当前最优解的遗传算法”进行二、相关函数(命令)及简介本实验的程序中用到如下一些基本的Matlab函数:ones, zeros, sum, size, length, subs, double 等,以及for, while 等基本程序结构语句,读者可参考前面专门关于Matlab的介绍,也可参考其他数学实验章节中的“相关函数(命令)及简介”内容,此略.三、实验内容上述例1的求解过程为:群体中包含六个染色体,每个染色体用22位0—1码,变异概率为0.01,变量区间为,取Fmin=,遗传代数为50代,则运用第一种终止条件(指定遗传代数)的Matlab程序为:[Count,Result,BestMember]=Genetic1(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,50)执行结果为:Count =50Result =1.0316 1.0316 1.0316 1.0316 1.0316 1.03161.4990 1.4990 1.4990 1.4990 1.4990 1.4990BestMember =1.03161.4990图2 例1的计算结果(注:上图为遗传进化过程中每一代的个体最大适应度;而下图为目前为止的个体最大适应度——单调递增)我们通过Matlab软件实现了遗传算法,得到了这题在第一种终止条件下的最优解:当取1.0316时,.当然这个解和实际情况还有一点出入(应该是取1时,),但对于一个计算机算法来说已经很不错了.我们也可以编制Matlab程序求在第二种终止条件下的最优解.此略,留作练习.实践表明,此时的遗传算法只要经过10代左右就可完成收敛,得到另一个“最优解”,与前面的最优解相差无几.四、自己动手1.用Matlab编制另一个主程序Genetic2.m,求例1的在第二种终止条件下的最优解.提示:一个可能的函数调用形式以及相应的结果为:[Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001)Count =13Result =1.0392 1.0392 1.0392 1.0392 1.0392 1.03921.4985 1.4985 1.4985 1.4985 1.4985 1.4985BestMember =1.03921.4985可以看到:两组解都已经很接近实际结果,对于两种方法所产生的最优解差异很小.可见这两种终止算法都是可行的,而且可以知道对于例1的问题,遗传算法只要经过10代左右就可以完成收敛,达到一个最优解.2.按照例2的具体要求,用遗传算法求上述例2的最优解.3.附录9子程序Crossing.m中的第3行到第7行为注解语句.若去掉前面的%号,则程序的算法思想有什么变化?4.附录9子程序Crossing.m中的第8行至第13行的程序表明,当Dim(1)>=3时,将交换数组Population的最后两行,即交换最后面的两个个体.其目的是什么?5.仿照附录10子程序Mutation.m,修改附录9子程序Crossing.m,使得交叉过程也有一个概率值(一般取0.65~0.90);同时适当修改主程序Genetic1.m或主程序Genetic2.m,以便代入交叉概率.6.设,求,要设定求解精度到15位小数.。

遗传算法求解函数优化问题的Matlab实现

遗传算法求解函数优化问题的Matlab实现




i =1
划 设计 和人 工生 命 等 领 域 . 2 是 1世 纪 有 关 智 能 计 算 中的 关 键技 并 以上 式 的 概 率 分 布 从 当 前 一 代 群 体 p p t 随 机 选 择 一 o,1 (中 术 之 一 Ma a t b语 言 是一 种 高 效 率 的 用 于 科 学 工 程 计 算 的 高 级 些染 色体 遗 传 到下 一 代 群 体 中构 成 一 个 新种 群 l 语 言 .它 的语 法 规 则 简 单 、 更 贴 近 人 的思 维 方 式 .通 俗 易 懂 。 nw o( 1= pp( J l …Ⅳ } eppt ) {oj)I=, + t 2 ; M t b语 言 有 着 丰 富 的各 种 工 具 箱 . t b的 优 化 工 具 箱 就 是 al a Ma a l
初始 种群 的主要参 数是数 据类 型( p l i p u t n£ o ao 变量 的维数 ( ̄ o ai l ) 种 群 的  ̄ Z (z p p U n, 始 种 群 取 值 s e fvr be 、 i a s bs eo o ̄ i )初 i f o
的范 围( ia n e等 。 其 中 , 群 的 大 小 会 影 响 的有 效 性 , i tl ag) ni r 种
5 交叉 操 作 .
以 概 率P交 配 .得 到 一个 有^ 染 色体 组 成 的 群 体 cos o T 个 r pp s { i £ ) + 6 变异 操 作 .
1 遗传 算 法 的 描 述 、 用 某 一 较 小 的概 率| 染 色 体 的 基 因 发 生 变 异 .形 成 新 的 P使 遗 传 算 法 提 供 了一 个 求 解 复 杂 系 统 优 化 问 题 的通 用 框 架 . 群体 m“ p7 该 新 的 群 体 即 为 完 成 一 次 遗 传 操 作 后 的 子代 巾o r + 它 以适 应 度 函数 为依 据 . 过 对 群 体 中的 个 体 施 加 遗 传 操 作 . 通 实  ̄ ?p pt m to( 1,  ̄ o (= u p t ) 同时 它 又 作 为 下 一 次 遗 传 操 作 的 父 代 , J ) p + 现 群体 内个 体 结 构 重组 的迭 代 处 理 过 程

Matlab中的遗传算法实现方法简介

Matlab中的遗传算法实现方法简介

Matlab中的遗传算法实现方法简介遗传算法是一种通过模拟进化机制解决优化问题的启发式算法。

它通过模拟自然选择、遗传变异和群体竞争等过程,不断优化问题的解。

在Matlab中,我们可以利用遗传算法工具箱来实现各种不同的遗传算法。

遗传算法的基本思想是从初始种群中随机生成一组个体(解),然后通过一系列的选择、交叉和变异操作,对个体进行进化,以期得到更优解。

在Matlab中,我们可以使用遗传算法工具箱中的遗传算法函数来实现这些操作。

首先,我们需要定义一个适应度函数,用于评价个体的优劣。

适应度函数应当根据我们的优化目标来设计,通常是将目标函数的结果作为个体的适应度值。

在Matlab中,我们可以通过定义一个.m文件来实现适应度函数,例如:```matlabfunction fitness = myFitness(x)% 定义目标函数fitness = -x^2 + 5*x + 10;end```上述适应度函数是一个简单的目标函数,我们的目标是找到可以最大化该函数值的x。

通过最大化适应度函数值,我们就可以找到解空间中的最优解。

在定义适应度函数后,我们需要设置遗传算法的参数。

在Matlab中,通过创建一个结构体来设置参数。

例如:```matlabgaOptions = gaoptimset('PopulationSize', 100, 'MaxGenerations', 50);```上述代码将种群大小设置为100个个体,最大迭代代数设置为50代。

我们还可以设置许多其他参数,如交叉率、变异率等等。

接下来,我们可以使用Matlab的遗传算法函数来求解优化问题。

例如,我们可以使用`ga`函数来求解上述适应度函数的最大值:```matlab[x, fval] = ga(@myFitness, nvars, gaOptions);```上述代码中的`@myFitness`表示我们要求解的适应度函数,`nvars`表示决策变量的数量。

MATLAB中的遗传算法与优化问题解析

MATLAB中的遗传算法与优化问题解析

MATLAB中的遗传算法与优化问题解析引言随着计算机科学的迅猛发展,优化问题的求解变得越来越重要。

在现实生活中,我们经常遇到各种需要优化的情况,例如在工程设计中寻找最佳方案、在运输调度中确定最优路径、在金融领域优化投资组合等。

针对这些问题,遗传算法作为一种基于生物进化思想的优化算法,成为了研究者们的关注焦点。

一、遗传算法概述遗传算法(Genetic Algorithm, GA)是一种用来求解最优化问题的随机搜索和优化技术。

它通过模拟生物进化的机制,不断地进行个体之间的交叉、变异和选择,以寻找到最优解。

1.1 算法流程遗传算法的基本流程包括初始化种群、评估适应度、选择、交叉、变异和进化等步骤。

首先,通过随机生成一定数量的个体作为初始种群,利用适应度函数评估每个个体的适应程度。

然后,根据适应度大小,按照一定的概率选择优秀个体作为父代,进行交叉和变异操作产生新的个体。

最后,将新个体替换掉原有种群中适应度较差的个体,重复以上步骤直到满足终止条件。

1.2 适应度函数设计适应度函数是遗传算法中非常重要的一个组成部分,它用来评估个体的优劣程度。

适应度函数应该能准确地衡量问题的目标函数,使得达到最大(或最小)适应度的个体能代表问题的最优解。

在设计适应度函数时,需要结合问题本身的特点和要求,合理选择适应性度量。

1.3 交叉与变异操作交叉和变异是遗传算法中的两个重要操作。

交叉操作通过将两个父代个体的染色体片段进行互换,产生出新的后代个体。

变异操作则是在个体的染色体上随机改变一个或多个基因的值。

通过交叉和变异操作可以增加种群的多样性,提高搜索空间的覆盖率,从而增加找到最优解的概率。

二、 MATLAB中的遗传算法工具箱MATLAB作为一种高效且易于使用的科学计算软件,提供了丰富的工具箱,其中包括了强大的遗传算法工具箱。

通过这个工具箱,用户可以方便地实现遗传算法来解决各种优化问题。

2.1 工具箱安装与调用遗传算法工具箱是MATLAB的一个功能扩展包,用户可以在MATLAB官方网站上下载并安装。

MATLAB多目标优化计算方法

MATLAB多目标优化计算方法

MATLAB多目标优化计算方法多目标优化是指在优化问题中存在多个目标函数的情况下,通过寻找一组解来使这些目标函数达到最优或接近最优的过程。

MATLAB中提供了多种方法来进行多目标优化计算,下面将介绍几种常用的方法。

1. 非支配排序遗传算法(Non-dominted Sorting Genetic Algorithm,NSGA)NSGA是一种经典的多目标优化算法,其思想是通过遗传算法求解优化问题。

它采用非支配排序的方法,将种群中的个体按照支配关系划分为不同的层次,然后通过选择、交叉和变异等操作来生成新的个体,最终得到一组非支配解。

2. 多目标粒子群优化算法(Multi-objective Particle Swarm Optimization,MOPSO)MOPSO是一种基于粒子群优化的多目标优化算法,它将种群中的个体看作是粒子,在过程中通过更新速度和位置来寻找最优解。

MOPSO通过使用非支配排序和拥挤度计算来维护多个目标之间的均衡,从而产生一组近似最优的解。

3. 多目标差分进化算法(Multi-objective Differential Evolution,MODE)MODE是一种基于差分进化的多目标优化算法,它通过变异和交叉操作来生成新的个体,并通过比较个体的适应度来选择最优解。

MODE采用了非支配排序和拥挤度计算来维护种群的多样性,从而得到一组较好的近似最优解。

4. 遗传算法与模拟退火的组合算法(Genetic Algorithm with Simulated Annealing,GASA)GASA是一种结合了遗传算法和模拟退火算法的多目标优化算法。

它首先使用遗传算法生成一组候选解,然后使用模拟退火算法对候选解进行优化,从而得到一组更好的近似最优解。

5. 多目标优化的精英多免疫算法(Multi-objective Optimization based on the Elitism Multi-immune Algorithm,MOEMIA)MOEMIA是一种基于免疫算法的多目标优化算法,它通过模拟生物免疫系统的免疫策略来全局最优解。

第7讲matlab部分智能优化算法

第7讲matlab部分智能优化算法

铜 陵 学 院
function f=fitnessfun(x) f=f(x); 当求解有约束条件用 逻辑语句写进上述 fitnessfun 函数。如 function f=fitnessfun(x) if (x<=0|x>4), f=inf; else, f=f(x); end %即上述优化问题有约束x>0和x<=4. 即上述优化问题有约束x>0和
铜 陵 学 院
人工神经网络是由若干个人工神经元相互连接 组成的广泛并行互联的网络,见下图。因联结 方式的不同,有“前馈神经网络” 简称BP网 方式的不同,有“前馈神经网络”(简称BP网 络)和“反馈神经网络”。 反馈神经网络” 下图是BP网络拓扑结构图。 下图是BP网络拓扑结构图。
铜 陵 学 院
铜 陵 学 院
第七讲
Matlab部分智能 Matlab部分智能 优化算法
铜 陵 学 院
本章主要学习matlab中三个智能优化算法 本章主要学习matlab中三个智能优化算法 及其实现. 及其实现. 一、遗传算法 1、算法的相关知识 2、ga及gatool ga及 二、人工神经网络 1、算法的相关知识 2、newff,newlvq,train,sim及nntool newff,newlvq,train,sim及 三、粒子群算法
铜 陵 学 院
进行了上述三个操作所产生的染色体称为后 进行了上述三个操作所产生的染色体称为后 代。对后代重复进行选择、交叉、变异操作, 经过给定次数的迭代处理以后,把最好的染色 经过给定次数的迭代处理以后,把最好的染色 体作为优化问题的最优解。 2 matlab指令与计算举例 matlab指令与计算举例 格式一:x=ga(@fitnessfun,nvars) 格式一:x=ga(@fitnessfun,nvars) 求解:优化问题 min f(x),其中 nvar 为优化 f(x),其中 问题中变量的个数. 问题中变量的个数. fitnessfun 写成如下的m函 写成如下的m 数形式(fitnessfit.m): 数形式(fitnessfit.m):

基于Matlab的遗传算法程序设计及优化问题求解

基于Matlab的遗传算法程序设计及优化问题求解

曲靖师范学院学生毕业论文(设计)题目:基于Matlab的遗传算法程序设计及优化问题求解院(系):数学与信息科学学院专业:信息与计算科学班级:20051121班学号:2005112104论文作者:沈秀娟指导教师:刘俊指导教师职称:教授2009年 5月基于Matlab的遗传算法程序设计及优化问题求解摘要遗传算法作为一种新的优化方法,广泛地用于计算科学、模式识别和智能故障诊断等方面,它适用于解决复杂的非线性和多维空间寻优问题,近年来也得到了较为广阔的应用. 本文介绍了遗传算法的发展、原理、特点、应用和改进方法,以及基本操作和求解步骤,再基于Matlab编写程序实现遗传算法并求解函数的优化问题. 程序设计过程表明,用Matlab语言进行优化计算,具有编程语句简单,用法灵活,编程效率高等优点. 经仿真验证,该算法是正确可行的.关键词:遗传算法;Matlab;优化Matlab-based genetic algorithm design and optimization of procedures forproblem solvingAbstract:As a new optimizated method,genetic algorithm is widely used in co mputational science,pattern recognition,intelligent fault diagnosisandsoon. It is suitable to solve complex non-linear and multi-dimensionaloptimizatio n problem.And it has been more widely used in recentyears.This paper descri bes the development of genetic algorithms,principle,features,application an d improvement of methods.At the same time,it in-troduces basic operation and solution steps.And then,it achievesgeneticalgorithm on the matlab programmi ng andsolves the function optimization problem.The program design process sh ows that this optimization calculation has advantages of simple programming language,flexible usage and high efficiency in Matlab language.The algorith m iscorrect and feasible by simulated authentication.Keywords: Genetic algorithm; Matlab;Optimization目录1 引言 (1)2 文献综述 (1)2.1国内外研究现状及评价 (1)2.2提出问题 (2)3 遗传算法的理论研究 (2)3.1遗传算法的产生背景 (2)3.2遗传算法的起源与发展 (3)3.2.1 遗传算法的起源 (3)3.2.2 遗传算法的发展 (3)3.3遗传算法的数学基础研究 (4)3.4遗传算法的组成要素 (6)3.5遗传算法的基本原理 (7)3.6遗传算法在实际应用时采取的一般步骤 (8)3.7遗传算法的基本流程描述 (9)3.8遗传算法的特点 (10)3.9遗传算法的改进 (11)3.10遗传算法的应用领域 (12)4 基于MATLAB的遗传算法实现 (14)5 遗传算法的函数优化的应用举例 (17)6 结论 (18)6.1主要发现 (18)6.2启示 (18)6.3局限性 (19)6.4努力的方向 (19)参考文献 (20)致谢 (21)附录 (22)1引言遗传算法(Genetic Algorithm)是模拟自然界生物进化机制的一种算法即遵循适者生存、优胜劣汰的法则也就是寻优过程中有用的保留无用的则去除. 在科学和生产实践中表现为在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法即找出一个最优解. 这种算法是1960年由Holland提出来的其最初的目的是研究自然系统的自适应行为并设计具有自适应功能的软件系统. 它的特点是对参数进行编码运算不需要有关体系的任何先验知识沿多种路线进行平行搜索不会落入局部较优的陷阱,能在许多局部较优中找到全局最优点是一种全局最优化方法[1-3]. 近年来,遗传算法已经在国际上许多领域得到了应用. 该文将从遗传算法的理论和技术两方面概述目前的研究现状描述遗传算法的主要特点、基本原理以及改进算法,介绍遗传算法的应用领域,并用MATLAB 实现了遗传算法及最优解的求解.2文献综述2.1国内外研究现状及评价国内外有不少的专家和学者对遗传算法的进行研究与改进. 比如:1991年D.WHITEY 在他的论文中提出了基于领域交叉的交叉算子(ADJACENCY BASED CROSSOVER),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证. 2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题. 国内外很多文献都对遗传算法进行了研究. 现查阅到的国内参考文献[1-19]中, 周勇、周明分别在文献[1]、[2]中介绍了遗传算法的基本原理;徐宗本在文献[3]中探讨了包括遗传算法在内的解全局优化问题的各类算法,文本次论文写作提出了明确的思路;张文修、王小平、张铃分别在文献[4]、[5]、[6]从遗传算法的理论和技术两方面概述目前的研究现状;李敏强、吉根林、玄光南分别在文献[7]、[8]、[9]中都不同程度的介绍了遗传算法的特点以及改进算法但未进行深入研究;马玉明、张丽萍、戴晓辉、柴天佑分别在文献[10]、[11]、[12]、[13]中探讨了遗传算法产生的背景、起源和发展;李敏强、徐小龙、林丹、张文修分别在文献[14]、[15]、[16]、[17]探讨了遗传算法的发展现状及以后的发展动向;李敏强,寇纪凇,林丹,李书全在文献[18]中主要论述了遗传算法的具体的实施步1骤、应用领域及特点;孙祥,徐流美在文献[19]中主要介绍了Matlab的编程语句及基本用法.所有的参考文献都从不同角度不同程度的介绍了遗传算法但都不够系统化不够详细和深入.2.2提出问题随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全精确地求出其最优解既不可能,也不现实,因而求出近似最优解或满意解是人们的主要着眼点之一. 很多人构造出了各种各样的复杂形式的测试函数,有连续函数,有离散函数,有凸函数,也有凹函数,人们用这些几何特性各异的函数来评价遗传算法的性能. 而对于一些非线性、多模型、多目标的函数优化问题用其他优化方法较难求解遗传算法却可以方便地得到较好的结果. 鉴于遗传算法在函数优化方面的重要性,该文在参考文献[1-19]的基础上,用Matlab语言编写了遗传算法程序, 并通过了调试用一个实际例子来对问题进行了验证,这对在Matlab环境下用遗传算法来解决优化问题有一定的意义.3遗传算法的理论研究3.1遗传算法的产生背景科学研究、工程实际与国民经济发展中的众多问题可归结作“极大化效益、极小化代价”这类典型模型. 求解这类模型导致寻求某个目标函数(有解析表达式或无解析表达式)在特定区域上的最优解. 而为解决最优化问题目标函数和约束条件种类繁多,有的是线性的,有的是非线性的;有的是连续的,有的是离散的;有的是单峰值的,有的是多峰值的. 随着研究的深入,人们逐渐认识到:在很多复杂情况下要想完全精确地求出其最优解既不可能,也不现实,因而求出近似最优解或满意解是人们的主要着眼点之一. 总的来说,求最优解或近似最优解的方法有三种: 枚举法、启发式算法和搜索算法.(1)枚举法. 枚举出可行解集合内的所有可行解以求出精确最优解. 对于连续函数,该方法要求先对其进行离散化处理,这样就有可能产生离散误差而永远达不到最优解. 另外,当枚举空间比较大时该方法的求解效率比较低,有时甚至在目前最先进的计算工具上都无法求解.(2)启发式算法. 寻求一种能产生可行解的启发式规则以找到一个最优解或近似最优解. 该方法的求解效率虽然比较高,但对每一个需要求解的问题都必须找出其特有的2启发式规则,这个启发式规则无通用性不适合于其它问题.(3)搜索算法. 寻求一种搜索算法,该算法在可行解集合的一个子集内进行搜索操作以找到问题的最优解或近似最优解. 该方法虽然保证了一定能够得到问题的最优解,但若适当地利用一些启发知识就可在近似解的质量和求解效率上达到一种较好的平衡.随着问题种类的不同以及问题规模的扩大,要寻求一种能以有限的代价来解决上述最优化问题的通用方法仍是一个难题. 而遗传算法却为我们解决这类问题提供了一个有效的途径和通用框架开创了一种新的全局优化搜索算法.3.2遗传算法的起源与发展3.2.1 遗传算法的起源50年代末到60年代初,自然界生物进化的理论被广泛接受生物学家Fraser,试图通过计算的方法来模拟生物界“遗传与选择”的进化过程,这是遗传算法的最早雏形. 受一些生物学家用计算机对生物系统进行模拟的启发,Holland开始应用模拟遗传算子研究适应性. 在1967年,Bagley关于自适应下棋程序的论文中,他应用遗传算法搜索下棋游戏评价函数的参数集并首次提出了遗传算法这一术语. 1975年,Holland出版了遗传算法历史上的经典著作《自然和人工系统中的适应性》,首次明确提出遗传算法的概念. 该著作中系统阐述了遗传算法的基本理论和方法,并提出了模式(schemat atheorem)[4],证明在遗传算子选择、交叉和变异的作用下具有低阶、短定义距以及平均适应度高于群体平均适应度的模式在子代中将以指数级增长. Holand创建的遗传算法,是基于二进制表达的概率搜索方法. 在种群中通过信息交换重新组合新串;根据评价条件概率选择适应性好的串进入下一代;经过多代进化种群最后稳定在适应性好的串上. Holand最初提出的遗传算法被认为是简单遗传算法的基础,也称为标准遗传算法.3.2.2 遗传算法的发展(1)20世纪60年代,John Holland教授和他的数位博士受到生物模拟技术的启发,认识到自然遗传可以转化为人工遗传算法. 1962年,John Holland提出了利用群体进化模拟适应性系统的思想,引进了群体、适应值、选择、变异、交叉等基本概念.(2)1967年,J.D.Bagely在其博士论文中首次提出了“遗传算法”的概念.(3)1975年,Holland出版了《自然与人工系统中的适应性行为》(Adaptation in Natural and Artificial System).该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理—模式定理,从而奠定了遗传算法的理论基础. 同年De Jong3在其博士论文中,首次把遗传算法应用于函数优化问题对遗传算法的机理与参数进行了较为系统地研究并建立了著名的五函数测试平台.(4)20世纪80年代初,Holland教授实现了第一个基于遗传算法的机器学习系统—分类器系统(Classifier System简称CS),开创了基于遗传算法的机器学习的新概念.(5)1989年,David Goldberg出版了《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search Optimization and Machine Learning).该书全面系统地总结了当时关于遗传算法的研究成果,结合大量的实例完整的论述了遗传算法的基本原理及应用,奠定了现代遗传算法的基础.(6)1992年,John R.Koza出版了专著《遗传编程》(Genetic Programming)提出了遗传编程的概念,并成功地把遗传编程的方法应用于人工智能、机器学习、符号处理等方面. 随着遗传算法的不断深入和发展,关于遗传算法的国际学术活动越来越多,遗传算法已成为一个多学科、多领域的重要研究方向.今天遗传算法的研究已经成为国际学术界跨学科的热门话题之一. 遗传算法是一种有广泛应用前景的算法,但是它的研究和应用在国内尚处于起步阶段. 近年来遗传算法已被成功地应用于工业、经济管理、交通运输、工业设计等不同领域解决了许多问题.例如可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等.3.3 遗传算法的数学基础研究模式定理及隐含并行性原理被看作遗传算法的两大基石,后来又提出了建筑块假设,但是模式定理无法解释遗传算法实际操作中的许多现象,隐性并行性的论证存在严重漏洞,而建筑块假设却从未得到过证明. 对遗传算法的基础理论的研究主要分三个方面:模式定理的拓广和深入、遗传算法的新模型、遗传算法的收敛性理论.(1)模式定理的拓广和深入. Holland给出模式定理:具有短的定义长度、低阶、并且模式采样的平均适应值在种群平均适应值以上的模式在遗传迭代过程中将按指数增长率被采样模式定理可表达为:m(H,t+1)≥m(H,t).()fHf.()⎪⎭⎫⎝⎛---PHOlP mHc.1.1δ(1)其中m(Ht):在t代群体中存在模式H 的串的个数.4()Hf:在t 代群体中包含模式H 的串的平均适应值. f:t代群体中所有串的平均适应值.l表示串的长度pc 表示交换概率pm表示变异概率.Holland的模式定理奠定了遗传算法的数学基础根据隐性并行性得出每一代处理有效模式的下限值是()l c n2113.其中n是种群的大小c1是小整数. Bertoui和Dorigo进行了深入的研究获得当2βln=,β为任意值时处理多少有效模式的表达式. 上海交通大学的恽为民等获得每次至少产生()21-no数量级的结果. 模式定理中模式适应度难以计算和分析A.D.Berthke首次提出应用Walsh函数进行遗传算法的模式处理并引入模式变换的概念采用Walsh函数的离散形式有效地计算出模式的平均适应度并对遗传算法进行了有效的分析. 1972年Frantz首先发现一种常使GA从全局最优解发散出去的问题,称为GA-欺骗题[5]. Goldberg最早运用Walsh模式转换设计出最小的GA-欺骗问题并进行了详细分析.(2)遗传算法的新模型. 由于遗传算法中的模式定理和隐性并行性存在不足之处,为了搞清楚遗传算法的机理,近几年来人们建立了各种形式的新模型最为典型的是马氏链模型遗传算法的马氏链模型[6-7],主要由三种分别是种群马氏链模型、Vose模型和Cerf 扰动马氏链模型. 种群马氏链模型将遗传算法的种群迭代序列视为一个有限状态马氏链来加以研究,运用种群马氏链模型转移概率矩阵的某些一般性质分析遗传算法的极限行为,但转移概率的具体形式难以表达妨碍了对遗传算法的有限时间行为的研究;Vose 模型是在无限种群假设下利用相对频率导出,表示种群的概率的向量的迭代方程,通过这一迭代方程的研究,可以讨论种群概率的不动点及其稳定性,从而导致对遗传算法的极限行为的刻画,但对解释有限种群遗传算法的行为的能力相对差一些. Cerf扰动模型是法国学者Cerf将遗传算法看成一种特殊形式的广义模拟退火模型,利用了动力系统的随机扰动理论,对遗传算法的极限行为及收敛速度进行了研究. 还有其它改进模型,例如张铃、张钹等人提出的理想浓度模型,它首先引入浓度和家族的概念,通过浓度计算建立理想浓度模型[8-10],其浓度变化的规律为:5c(Hi,t +1)=c(H,t).()()()t ftOHfi,(2)c(Hi,t+1)表示模式Hi在t时刻的浓度,并对其进行分析,得出结论:遗传算法本质上是一个具有定向制导的随机搜索技术,其定向制导原则是导向适应度高的模式为祖先的染色体“家族”方向.(3)遗传算法的收敛性理论. 对于遗传算法的马氏链分析本身就是建立遗传算法的收敛性理论[11-12], Eiben等用马尔可夫链证明了保留最优个体的遗传算法的概率性全局收敛,Rudolph用齐次有限马尔可夫链证明了具有复制、交换、突变操作的标准遗传算法收敛不到全局最优解,不适合于静态函数的优化问题,建议改变复制策略以达到全局收敛,Back和Muhlenbein研究了达到全局最优解的算法的时间复杂性问题,近几年,徐宗本等人建立起鞅序列模型,利用鞅序列收敛定理证明了遗传算法的收敛性.3.4遗传算法的组成要素遗传算法所涉及的五大要素:参数编码、初始群体的设定、适应度函数的设计、遗传操作的设计和控制参数的设定,其具体内容如下:(1)参数编码. 遗传算法中常用的编码方法是二进制编码,它将问题空间的参数用字符集{0,1}构成染色体位串,符合最小字符集原则,操作简单,便于用模式定理分析.(2)适应度函数的设计. 适应度函数是评价个体适应环境的能力,使选择操作的依据,是由目标函数变换而成. 对适应度函数唯一的要求是其结果为非负值. 适应度的尺度变换是对目标函数值域的某种映射变换,可克服未成熟收敛和随机漫游现象. 常用的适应度函数尺度变化方法主要有线性变换、幂函数变换和指数变换.[13](3)遗传操作的设计. 包括选择、交叉、变异.①选择(Selection). 选择是用来确定交叉个体,以及被选个体将产生多少个子代个体. 其主要思想是个体的复制概率正比于其适应值,但按比例选择不一定能达到好的效果. 选择操作从早期的轮盘赌选择发展到现在最佳个体保存法、排序选择法、联赛选择法、随机遍历抽样法、局部选择法、柔性分段复制、稳态复制、最优串复制、最优串保留等.②交叉(Crossover). 交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作,其作用是组合出新的个体,在串空间进行有效搜索,同时降低对有效模式的破坏概率. 各种交叉算子均包含两个基本内容:确定交叉点的位置和进行部分基因的6交换. 常用的交叉操作方法有单点交叉、双点交叉、一致交叉、均匀交叉、算术交叉、二维交叉、树结构交叉、部分匹配交叉、顺序交叉和周期交叉等等.③变异(Mutation). 变异是指将个体编码串中的某些基因值用其它基因值来替换,形成一个新的个体. 遗传算法中的变异运算是产生新个体的辅助方法,其目的是使遗传算法具有局部的随机搜索能力和保持群体的多样性. 变异算法包括确定变异点的位置和进行基因值替换. 常见的变异算子有基本位变异、均匀变异、高斯变异、二元变异、逆转变异、自适应变异等.(4) 控制参数设定. 遗传算法中需要确定一些参数取值,主要有串长l,群体大小n,交叉概率pc、变异概率pm等,对遗传算法性能影响很大. 目前对参数根据情况进行调整变化研究比较多,而一般确定的参数范围是:n=20~200,pc = 015 ~110,pm =0~0105.3.5遗传算法的基本原理在自然界,由于组成生物群体中各个体之间的差异,对所处环境有不同的适应和生存能力,遵照自然界生物进化的基本原则,适者生存、优胜劣汰,将要淘汰那些最差个体,通过交配将父本优秀的染色体和基因遗传给子代,通过染色体核基因的重新组合产生生命力更强的新的个体与由它们组成的新群体. 在特定的条件下,基因会发生突变,产生新基因和生命力更强的新个体;但突变是非遗传的,随着个体不断更新,群体不断朝着最优方向进化,遗传算法是真实模拟自然界生物进化机制进行寻优的. 在此算法中,被研究的体系的响应曲面看作为一个群体,相应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵和向量的参数相应于生物种组成染色体的基因,染色体用固定长度的二进制串表述,通过交换、突变等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究的不同的解,目标函数值较优的点被保留,目标函数值较差的点被淘汰.[14]由于遗传操作可以越过位垒,能跳出局部较优点,到达全局最优点.遗传算法是一种迭代算法,它在每一次迭代时都拥有一组解,这组解最初是随机生成的,在每次迭代时又有一组新的解由模拟进化和继承的遗传操作生成,每个解都有一目标函数给与评判,一次迭代成为一代. 经典的遗传算法结构图如下:图1 遗传算法的结构图3.6遗传算法在实际应用时采取的一般步骤(1)根据求解精度的要求,确定使用二进制的长度. 设值域的取值范围为[a i ,b i ],若要求精确到小数点后6位,则由(b i -a i )×106<2m i -1求得m i 的最小长度,进而可求出位于区间的任一数:x i =a i +decimal(1001...0012)×12--m i a b i i [15] (3)其中,i=1,2, ..., Popsize ;Popsize 为种群中染色体的个数;(2)利用随机数发生器产生种群;(3)对种群中每一染色体v i ,计算其对应适应度eval(v i ),i=1,2,… ,Popsize ;(4)计算种群适应度之和F :F=()v eval iPopsizei ∑=1(4) (5)计算每个染色体选择概率Pi :()F v eval p i i =(5) i=1,2, ... ,Popsize ;(6)计算每个染色体的累加概率qi:q i =∑=ijjp1(6)i=1, 2, ...,Popsize ;(7)产生一个位于[0,1]区间的随机数序列,其长度为N,如果其中任意一数r<q1,则选择第一个染色体,若qi1-<r<qi,则选择第i个染色体,i=1,2, ... Popsize,这样可以获得新一代种群;(8)对新一代种群进行交叉运算:设交叉概率为pc,首先产生一个位于区间[0,1]内的随机数序列,其长度为N,如果其中任意一数r<pc,则对应染色体被选中(如果选中奇数个,则可以去掉一个),然后在[1,m-1]区间中产生随机数,个数为选中的染色体数的一半,然后根据随机数在对应位置进行交换操作,从而构成新的染色体;(9)变异操作:设变异概率为pm,产生m×N个位于区间[0,1]上的随机数.如果某一随机数r<pm,则选中对应位变异,构成新的种群;(10)第一代计算完毕,返回③继续计算,直到达到满意的结果为止.3.7遗传算法的基本流程描述随机初始化种群p(0)={x1,x2,...,xn};t=0;计算p(0)中个体的适应值;while(不满足终止条件){ 根据个体的适应值及选择策略从p(t)中选择下一代生成的父体p(t);执行交叉,变异和再生成新的种群p(t+1) ;计算p(t+1)中个体的适应值;t=t+1;}伪代码为:BEGIN:I=0;Initialize P(I);Fitness P(I);While (not Terminate2Condition){I++;GA2Operation P(I);Fitness P(I);}END.3.8遗传算法的特点遗传算法不同于传统的搜索和优化方法. 主要区别在于:(1)自组织、自适应和自学习性(智能性). 应用遗传算法求解问题时,在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自行组织搜索. 由于基于自然的选择策略“适者生存、不适者被淘汰”,因而适应度大的个体具有较高的生存概率. 通常适应度大的个体具有更适应环境的基因结构,再通过基因重组和基因突变等遗传操作,就可能产生更适应环境的后代. 进化算法的这种自组织、自适应特征,使它同时具有能根据环境变化来自动发现环境的特性和规律的能力. 自然选择消除了算法设计过程中的一个最大障碍,即需要事先描述问题的全部特点,并要说明针对问题的不同特点算法应采取的措施.因此,利用遗传算法,我们可以解决那些复杂的非结构化问题.(2)遗传算法的本质并行性. 遗传算法按并行方式搜索一个种群数目的点,而不是单点. 它的并行性表现在两个方面,一是遗传算法是内在并行的( inherent paralleli sm),即遗传算法本身非常适合大规模并行. 最简单的并行方式是让几百甚至数千台计算机各自进行独立种群的演化计算,运行过程中甚至不进行任何通信(独立的种群之间若有少量的通信一般会带来更好的结果),等到运算结束时才通信比较,选取最佳个体.这种并行处理方式对并行系统结构没有什么限制和要求,可以说,遗传算法适合在目前所有的并行机或分布式系统上进行并行处理,而且对并行效率没有太大影响. 二是遗传算法的内含并行性. 由于遗传算法采用种群的方式组织搜索,因而可同时搜索解空间内的多个区域,并相互交流信息. 使用这种搜索方式,虽然每次只执行与种群规模N成比例的计算,但实质上已进行了大约O(N3)次有效搜索,这就使遗传算法能以较少的计算。

智能优化算法及matlab实例

智能优化算法及matlab实例

智能优化算法及matlab实例1. Genetic Algorithm (遗传算法): 智能优化算法的一种,通过模拟自然选择和遗传机制来搜索问题的最优解。

在Matlab中,可以使用Global Optimization Toolbox中的gamultiobj和ga函数来实现遗传算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('ga','Display','iter');% 运行遗传算法x = ga(fitnessFunction, 2, [], [], [], [], [], [], [], options);2. Particle Swarm Optimization (粒子群优化): 一种启发式优化算法,模拟鸟群或鱼群等群体行为来搜索最优解。

在Matlab中,可以使用Global Optimization T oolbox中的particleswarm函数来实现粒子群优化算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('particleswarm','Display','iter');% 运行粒子群优化算法x = particleswarm(fitnessFunction, 2, [], [], options);3. Simulated Annealing (模拟退火): 一种基于概率的全局优化算法,模拟固体退火的过程来搜索最优解。

在Matlab中,可以使用Global Optimization Toolbox中的simulannealbnd函数来实现模拟退火算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('simulannealbnd','Display','iter');% 运行模拟退火算法x = simulannealbnd(fitnessFunction, zeros(2,1), [], [], options);以上是三种常见的智能优化算法及其在Matlab中的实例。

MATLAB中的遗传算法及其应用示例

MATLAB中的遗传算法及其应用示例

MATLAB中的遗传算法及其应用示例引言:遗传算法是一种基于自然进化规律的优化方法,适用于求解复杂的问题。

作为MATLAB的重要工具之一,遗传算法在各个领域的优化问题中被广泛应用。

本文将介绍MATLAB中的遗传算法的原理及其应用示例。

一、遗传算法的原理遗传算法(Genetic Algorithm, GA)是一种基于进化的搜索算法,源于对达尔文进化论的模拟。

它模拟了自然界中生物个体基因遗传和自然选择的过程,通过优胜劣汰和进化操作寻找问题的最优解。

遗传算法的基本步骤包括:初始化种群、适应度评估、选择、交叉、变异和进化终止准则。

在初始化阶段,种群中的个体由一组基因表示,基因可以是二进制、实数或其他形式。

适应度评估阶段根据问题的特定要求对每个个体进行评估。

选择操作通过适应度大小选择出较优的个体,形成下一代种群。

交叉操作模拟自然界中的基因交换过程,将不同个体的基因进行组合。

变异操作引入新的基因,增加种群的多样性。

经过多次迭代后,算法会逐渐收敛,并得到一个近似的最优解。

二、遗传算法的应用示例:函数优化遗传算法在函数优化问题中有广泛应用。

以一个简单的函数优化问题为例,假设我们要求解以下函数的最小值:f(x) = x^2 + 5sin(x)首先,我们需要定义适应度函数,即f(x)在给定范围内的取值。

接下来,我们需要设置参数,例如种群数量、交叉概率和变异概率等。

然后,我们可以利用MATLAB中的遗传算法工具箱,通过以下步骤实现函数的最小化求解:1. 初始化种群:随机生成一组个体,每个个体表示参数x的一个取值。

2. 适应度评估:计算每个个体在函数中的取值,得到适应度。

3. 选择:根据适应度大小选择优秀的个体。

4. 交叉:随机选择两个个体进行基因交叉。

5. 变异:对个体的基因进行变异操作,引入新的基因。

6. 迭代:重复步骤2至步骤5,直到达到迭代终止条件。

通过上述步骤,我们可以较快地找到给定函数的最小值。

在MATLAB中,我们可以使用遗传算法工具箱的相关函数来实现遗传算法的迭代过程,如'ga'函数。

matlab遗传算法求解曲面拟合和多参数优化

matlab遗传算法求解曲面拟合和多参数优化

matlab遗传算法求解曲面拟合和多参数优化Matlab遗传算法求解曲面拟合和多参数优化引言:曲面拟合和多参数优化是机器学习和数据挖掘领域中重要的问题。

曲面拟合是通过给定的数据点集,找到一个最合适的曲面模型以拟合这些数据。

而多参数优化是寻找多个参数的最佳取值,使得目标函数达到最大或最小。

遗传算法是一种启发式搜索算法,可以用来求解这类问题。

本文将介绍使用Matlab中的遗传算法工具箱来进行曲面拟合和多参数优化,并提供详细的步骤。

第一部分:曲面拟合曲面拟合的目标是通过给定的数据点集找到一个最佳曲面模型,以拟合这些数据。

在Matlab中,可以使用遗传算法工具箱来求解该问题。

下面是一步一步的操作:步骤1:导入数据和设置参数首先,需要导入拟合曲面所需的数据点集。

数据通常以矩阵的形式给出,其中每一行表示一个数据点的坐标。

除此之外,还需要设置遗传算法的一些参数,包括种群大小、迭代次数、交叉概率和变异概率等。

具体的参数设置根据具体问题而定。

步骤2:编写目标函数目标函数是遗传算法的核心,它用来评估每个个体的适应度。

在曲面拟合问题中,可以使用最小二乘法来定义适应度函数。

具体来说,可以计算每个个体拟合曲面与真实数据之间的误差,然后将这些误差累加起来作为适应度值。

步骤3:初始化种群通过随机生成一定数量的个体(即曲面模型的参数),可以初始化种群。

个体的参数可以根据实际问题设定,例如,对于二次方程的拟合,可以设置个体为三个参数:a、b、c。

步骤4:选择操作选择操作是指根据个体的适应度值选择下一代的个体。

在遗传算法中,常用的选择操作有轮盘赌选择、锦标赛选择和最佳选择等。

通过选择操作,可以保留适应度较高的个体,从而增加下一代的优势基因。

步骤5:交叉操作交叉操作是指通过交换个体的染色体片段来产生新的个体。

这个过程模拟了生物进化中的杂交行为。

在曲面拟合中,可以选择某个个体的参数与另一个个体的参数进行交换,得到一个混合的个体。

步骤6:变异操作变异操作是通过对个体的染色体进行随机改变来引入新的基因。

遗传算法优化的matlab案例

遗传算法优化的matlab案例

遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的搜索和优化算法,通过模拟生物的遗传、交叉和变异操作来寻找问题的最优解。

它以一种迭代的方式生成和改进解决方案,并通过评估每个解决方案的适应度来选择下一代解决方案。

在Matlab中,遗传算法优化工具箱提供了方便的函数和工具,可以帮助用户快速开发和实现遗传算法优化问题。

下面,我们以一个简单的最优化问题为例,演示在Matlab中如何使用遗传算法优化工具箱进行优化。

假设我们要优化一个简单的函数f(x),其中x是一个实数。

我们的目标是找到使得f(x)取得最小值的x值。

具体来说,我们将优化以下函数: f(x) = x² - 4x + 4首先,我们在Matlab中定义目标函数f(x)的句柄(用于计算函数值)和约束条件(如果有的话)。

代码如下:function y = testfunction(x)y = x^2 - 4*x + 4;end接下来,我们需要使用遗传算法优化工具箱的函数ga来进行优化。

我们需要指定目标函数的句柄、变量的取值范围和约束条件(如果有的话),以及其他一些可选参数。

以下是一个示例代码:options = gaoptimset('Display', 'iter'); % 设置显示迭代过程lb = -10; % 变量下界ub = 10; % 变量上界[x, fval] = ga(@testfunction, 1, [], [], [], [], lb, ub, [], options);在上面的代码中,gaoptimset函数用于设置遗传算法的参数。

在这里,我们使用了可选参数'Display',它的值设置为'iter',表示显示迭代过程。

变量lb和ub分别指定了变量的取值范围,我们在这里将其设置为-10到10之间的任意实数。

横线[]表示没有约束条件。

第9讲 MATLAB遗传算法

第9讲  MATLAB遗传算法
设s1’与s2’配对,s3’与s4’配对。分别交换后 两位基因,得新染色体: s1’’=11001(25), s2’’=01100(12)
s3’’=11011(27), s4’’=10000(16)
变异
设变异率pm=0.001。
这样,群体S1中共有
5×4×0.001=0.02
位基因可以变异。 0.02位显然不足 1位,所以本轮遗传操作不 做变异。
● 选择-复制(selection-reproduction)
● 交叉(crossover,亦称交换、交配或杂交)
● 变异(mutation,亦称突变)
选择 - 复制
通常做法是:对于一个规模为 N
的种群 S, 按每个染色体 xi∈S 的选择概率 P(xi) 所决
定的选中机会 , 分 N 次从 S 中随机选定 N 个染色体 ,
(3) 计算各代种群中的各个体的适应度 , 并
对其染色体进行遗传操作,直到适应度最高的个
体(即31(11111))出现为止。
首先计算种群S1中各个体 s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011) 的适应度f (si) 。 容易求得 f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
于是,得到第二代种群S2:
s1=11001(25), s2=01100(12)
s3=11011(27), s4=10000(16)
第二代种群S2中各染色体的情况 染色体 s1=11001 s2=01100 s3=11011 适应度 625 144 729 选择概率 0.36 0.08 0.41 积累概率 0.36 0.44 0.85 估计的 选中次数 1 0 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab中的遗传算法与优化问题求解方法介

引言
随着科技的不断进步,优化问题在各个领域中的应用越来越广泛。

在实际问题中,我们往往需要找到一个最优解或者接近最优解的近似解。

为了解决这类问题,遗传算法作为一种自适应的搜索算法,被广泛应用于各个领域。

而Matlab作为一
种功能强大的数学软件,提供了丰富的遗传算法工具箱,为优化问题的求解提供了便利。

本文将介绍Matlab中的遗传算法和一些常用的优化问题求解方法。

一、遗传算法概述
遗传算法是源于达尔文的进化论思想的一种优化算法。

它是通过模拟自然选择、交叉、变异等生物遗传的过程来搜索最优解的方法。

遗传算法由编码、适应度评估、选择、交叉和变异等基本操作组成。

1. 编码:遗传算法使用二进制编码或者其他离散编码,将问题的解表示为一串
二进制码或离散码。

2. 适应度评估:将编码得到的解转化为问题的实际解,并计算该解的适应度,
即问题的目标函数值。

3. 选择:根据适应度对解进行选择,适应度越大的解,被选中的概率越大。

4. 交叉:从父代中选择两个个体,通过某种交叉方式生成子代。

5. 变异:对子代进行变异操作,以增加解的多样性。

二、Matlab中的遗传算法函数
在Matlab的遗传算法工具箱中,包含了一系列的遗传算法函数,可以快速实
现遗传算法优化问题的求解。

1. ga函数:这是Matlab中最基本的遗传算法函数,用于求解普通的优化问题。

它可以通过改变种群大小、交叉概率、变异概率等参数来调整算法的性能。

2. gamultiobj函数:这个函数是用于解决多目标优化问题的。

它使用了帕累托
前沿的概念,可以得到一系列的非支配解,以帮助决策者选择最优解。

3. gaplotbestf函数:这个函数可以绘制遗传算法的收敛曲线,直观地展示算法
求解的过程。

三、优化问题求解方法
除了遗传算法外,Matlab还提供了其他一些常用的优化问题求解方法。

1. 粒子群算法(PSO):这是一种群体智能算法,通过模拟鸟群或鱼群的行为,寻找最优解。

Matlab中的pso函数可以方便地实现粒子群算法求解。

2. 人工鱼群算法(AFSA):这是一种基于鱼群行为的优化算法,通过模拟鱼
群觅食行为来求解最优解。

Matlab中的afsa函数可以用于实现人工鱼群算法。

3. 其他优化算法:Matlab还提供了诸如模拟退火算法、差分进化算法、蚁群算
法等其他优化算法函数,可以根据具体问题选择合适的算法进行求解。

四、案例分析
为了更好地理解和应用上述的遗传算法和优化问题求解方法,我们将通过一个
经典案例来进行讲解。

假设我们要求解一个简单的连续优化问题,即最小化函数f(x)=x^2+2x+1,其
中x的取值范围是[-10,10]。

我们可以使用ga函数来求解该问题,设置目标函数为f(x),约束条件为x在[-10,10]之间。

通过调整种群大小、交叉概率、变异概率等参数,可以得到不同的结果。

另外,我们还可以使用gamultiobj函数来解决多目标优化问题,例如求解一个带有多个目标函数的最优解。

通过设置不同的目标函数和约束条件,可以得到一系列的非支配解。

结论
本文介绍了Matlab中的遗传算法和优化问题求解方法。

遗传算法是一种基于生物进化的搜索算法,通过模拟自然选择、交叉和变异等操作来寻找最优解。

Matlab提供了丰富的遗传算法函数,可以方便地实现优化问题的求解。

此外,Matlab还提供了其他一些优化算法函数,如粒子群算法和人工鱼群算法等,可以根据具体问题选择合适的算法。

通过实际案例的分析,我们可以更好地理解和应用这些方法。

希望读者通过本文的介绍,能够对Matlab中的遗传算法和优化问题求解方法有所了解。

相关文档
最新文档